二次函数培优100题突破
二次函数培优专题
二次函数培优专题一、二次函数的基本概念1. 二次函数的定义- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。
- 例如y = 2x^2+3x - 1,这里a = 2,b = 3,c=-1。
- 题目解析:判断一个函数是否为二次函数,关键看其是否符合y = ax^2+bx + c(a≠0)的形式。
比如y=3x + 2就不是二次函数,因为它不符合二次函数的定义形式,其中x的最高次数是1;而y=(1)/(x^2)也不是二次函数,因为它不是整式函数。
2. 二次函数的图象- 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。
- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 例如,对于二次函数y = x^2,a = 1>0,其图象开口向上;对于y=-2x^2,a=-2 < 0,其图象开口向下。
- 题目解析:给定二次函数,判断其图象开口方向是常见题型。
如y = 3x^2-2x + 1,因为a = 3>0,所以图象开口向上。
对于二次函数图象开口方向的理解,可以从二次函数的增减性角度来看,当a>0时,在对称轴左侧y随x的增大而减小,在对称轴右侧y随x的增大而增大;当a < 0时,在对称轴左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小。
3. 二次函数的对称轴和顶点坐标- 对于二次函数y = ax^2+bx + c(a≠0),其对称轴公式为x =-(b)/(2a),顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。
- 例如,对于二次函数y = 2x^2-4x + 3,a = 2,b=-4,c = 3。
对称轴x=-(-4)/(2×2)=1,顶点纵坐标y=frac{4×2×3-(-4)^2}{4×2}=(24 - 16)/(8)=1,所以顶点坐标为(1,1)。
二次函数培优100题突破.
⼆次函数培优100题突破.初三数学培优卷:⼆次函数考点分析培优★★★⼆次函数的图像抛物线的时候应抓住以下五点:开⼝⽅向,对称轴,顶点,与x 轴的交点,与y 轴的交点.★★⼆次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)⼀般式:y=ax 2+bx+c ,三个点顶点式:y=a (x -h )2+k ,顶点坐标对称轴顶点坐标(-2ba,244ac b a -).顶点坐标(h ,k )★★★a b c 作⽤分析│a │的⼤⼩决定了开⼝的宽窄,│a │越⼤,开⼝越⼩,│a │越⼩,开⼝越⼤,a ,b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=-2ba <0,即对称轴在y 轴左侧,当a ,b?异号时,对称轴x=-2ba>0,即对称轴在yc?的符号决定了抛物线与y 轴交点的位置,c=0时,抛物线经过原点,c>0时,与y 轴交于正半轴;c<0时,与y?轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作⽤的,也可以互相推出.交点式:y=a(x- x 1)(x- x 2),(有交点的情况)与x 轴的两个交点坐标x 1,x 2 对称轴为221x x h +=1.把⼆次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的⼆次函数关系式是2)1(2-+=x y 则原⼆次函数的解析式为2.⼆次函数的图象顶点坐标为(2,1),形状开品与抛物线y= - 2x 2相同,这个函数解析式为________。
3.如果函数1)3(232++-=+-kx x k y k k 是⼆次函数,则k 的值是______4.(08绍兴)已知点11()x y ,,22()x y ,均在抛物线21y x =-上,下列说法中正确的是()A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >5.(兰州10) 抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2★6.抛物线5)43()1(22+--++=x m m x m y 以Y 轴为对称轴则。
初三数学二次函数的专项培优 易错 难题练习题(含答案)及答案
初三数学二次函数的专项培优 易错 难题练习题(含答案)及答案一、二次函数1.某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量(y 万件)与销售单价(x 元)之间符合一次函数关系,其图象如图所示.()1求y 与x 的函数关系式;()2物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x 定为每件多少元时,厂家每月获得的利润()w 最大?最大利润是多少?【答案】(1)2280y x =-+;(2)当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元. 【解析】 【分析】()1根据函数图象经过点()40,200和点()60,160,利用待定系数法即可求出y 与x 的函数关系式;()2先根据利润=销售数量(⨯销售单价-成本),由试销期间销售单价不低于成本单价,也不高于每千克80元,结合电子产品的成本价即可得出x 的取值范围,根据二次函数的增减性可得最值. 【详解】解:()1设y 与x 的函数关系式为()0y kx b k =+≠,Q 函数图象经过点()40,200和点()60,160,{4020060160k b k b +=∴+=,解得:{2280k b =-=,y ∴与x 的函数关系式为2280y x =-+.()2由题意得:()()224022802360112002(90)5000w x x x x x =--+=-+-=--+.Q 试销期间销售单价不低于成本单价,也不高于每千克80元,且电子产品的成本为每千克40元,∴自变量x 的取值范围是4080x ≤≤.20-<Q ,∴当90x <时,w 随x 的增大而增大,80x ∴=时,w 有最大值, 当80x =时,4800w =,答:当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元. 【点睛】本题考查了一次函数和二次函数的应用,根据点的坐标利用待定系数法求出函数关系式是解题的关键,并注意最值的求法.2.如图,已知二次函数y=ax 2+bx+c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3). (1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC .①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.【答案】(1)二次函数的表达式y=x 2﹣2x ﹣3;(2)①PM 最大=94;②P (2,﹣3)或(22﹣2). 【解析】 【分析】(1)根据待定系数法,可得答案;(2)①根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案. 【详解】(1)将A ,B ,C 代入函数解析式,得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,这个二次函数的表达式y=x 2﹣2x ﹣3; (2)设BC 的解析式为y=kx+b , 将B ,C 的坐标代入函数解析式,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, BC 的解析式为y=x ﹣3,设M (n ,n ﹣3),P (n ,n 2﹣2n ﹣3), PM=(n ﹣3)﹣(n 2﹣2n ﹣3)=﹣n 2+3n=﹣(n ﹣32)2+94, 当n=32时,PM 最大=94; ②当PM=PC 时,(﹣n 2+3n )2=n 2+(n 2﹣2n ﹣3+3)2, 解得n 1=0(不符合题意,舍),n 2=2, n 2﹣2n ﹣3=-3, P (2,-3);当PM=MC 时,(﹣n 2+3n )2=n 2+(n ﹣3+3)2,解得n 1=0(不符合题意,舍),n 2(不符合题意,舍),n 3,n 2﹣2n ﹣,P (,综上所述:P (2,﹣3)或(,2﹣). 【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.3.如图,直线AB 和抛物线的交点是A (0,﹣3),B (5,9),已知抛物线的顶点D 的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x 轴上是否存在一点C ,与A ,B 组成等腰三角形?若存在,求出点C 的坐标,若不在,请说明理由;(3)在直线AB 的下方抛物线上找一点P ,连接PA ,PB 使得△PAB 的面积最大,并求出这个最大值.【答案】(1)21248355y x x =--,顶点D (2,635-);(2)C (10±0)或(5222±0)或(9710,0);(3)752【解析】 【分析】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入函数表达式,即可求解; (2)分AB =AC 、AB =BC 、AC =BC ,三种情况求解即可;(3)由S △PAB 12=•PH •x B ,即可求解. 【详解】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2①,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入上式得:9=25a +5b ﹣3②,联立①、②解得:a 125=,b 485=-,c =﹣3,∴抛物线的解析式为:y 125=x 2485-x ﹣3. 当x =2时,y 635=-,即顶点D 的坐标为(2,635-); (2)A (0,﹣3),B (5,9),则AB =13,设点C 坐标(m ,0),分三种情况讨论: ①当AB =AC 时,则:(m )2+(﹣3)2=132,解得:m 10,即点C 坐标为:(10,0)或(﹣10,0);②当AB =BC 时,则:(5﹣m )2+92=132,解得:m =5222±,即:点C 坐标为(5222+,0)或(5﹣220);③当AC =BC 时,则:5﹣m )2+92=(m )2+(﹣3)2,解得:m =9710,则点C 坐标为(9710,0).综上所述:存在,点C的坐标为:(±410,0)或(5222±,0)或(9710,0);(3)过点P作y轴的平行线交AB于点H.设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k125=,故函数的表达式为:y125=x﹣3,设点P坐标为(m,12 5m2485-m﹣3),则点H坐标为(m,125m﹣3),S△PAB12=•PH•x B52=(125-m2+12m)=-6m2+30m=25756()22m--+,当m=52时,S△PAB取得最大值为:752.答:△PAB的面积最大值为752.【点睛】本题是二次函数综合题.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.4.如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B ,C 的坐标;(2)判断△CDB 的形状并说明理由;(3)将△COB 沿x 轴向右平移t 个单位长度(0<t <3)得到△QPE .△QPE 与△CDB 重叠部分(如图中阴影部分)面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围. 【答案】(Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB ∆为直角三角形;(Ⅲ)22333(0)221933(3)222t t t S t t t ⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩.【解析】 【分析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标. (2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形. (3)△COB 沿x 轴向右平移过程中,分两个阶段: ①当0<t≤32时,如答图2所示,此时重叠部分为一个四边形; ②当32<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】解:(Ⅰ)∵点()1,0A -在抛物线()21y x c =--+上,∴()2011c =---+,得4c =∴抛物线解析式为:()214y x =--+,令0x =,得3y =,∴()0,3C ; 令0y =,得1x =-或3x =,∴()3,0B . (Ⅱ)CDB ∆为直角三角形.理由如下: 由抛物线解析式,得顶点D 的坐标为()1,4. 如答图1所示,过点D 作DM x ⊥轴于点M ,则1OM =,4DM =,2BM OB OM =-=.过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=. 在Rt OBC ∆中,由勾股定理得:22223332BC OB OC =+=+=; 在Rt CND ∆中,由勾股定理得:2222112CD CN DN =+=+=; 在Rt BMD ∆中,由勾股定理得:22222425BD BM DM =+=+=.∵222BC CD BD +=, ∴CDB ∆为直角三角形.(Ⅲ)设直线BC 的解析式为y kx b =+, ∵()()3,0,0,3B C ,∴303k b b +=⎧⎨=⎩,解得1,3k b =-=,∴3y x =-+,直线QE 是直线BC 向右平移t 个单位得到,∴直线QE 的解析式为:()33y x t x t =--+=-++; 设直线BD 的解析式为y mx n =+, ∵()()3,0,1,4B D , ∴304m n m n +=⎧⎨+=⎩,解得:2,6m n =-=,∴26y x =-+.连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫ ⎪⎝⎭. 在COB ∆向右平移的过程中: (1)当302t <≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-. 设QE 与BD 的交点为F ,则:263y x y x t=-+⎧⎨=-++⎩.解得32x ty t=-⎧⎨=⎩,∴()3,2F t t -.111222QPE PBK FBE F S S S S PE PQ PB PK BE y ∆∆∆=--=⋅-⋅-⋅ ()221113333232222t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:设PQ 分别与BC BD 、交于点K 、点J . ∵CQ t =,∴KQ t =,3PK PB t ==-.直线BD 解析式为26y x =-+,令x t =,得62y t =-, ∴(),62J t t -.1122PBJ PBK S S S PB PJ PB PK ∆∆=-=⋅-⋅ ()()()211362322t t t =---- 219322t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩.5.在平面直角坐标系中,有两点(),A a b 、(),B c d ,若满足:当a b ≥时,c a =,2d b =-;当a b <时,c a <-,d b <,则称点为点的“友好点”.(1)点()4,1的“友好点”的坐标是_______.(2)点(),A a b 是直线2y x =-上的一点,点B 是点A 的“友好点”. ①当B 点与A 点重合时,求点A 的坐标.②当A 点与A 点不重合时,求线段AB 的长度随着a 的增大而减小时,a 的取值范围. 【答案】(1)()41-,;(2)①点A 的坐标是()2,0或()1,1-;②当1a <或322a ≤<时,AB 的长度随着a 的增大而减小; 【解析】 【分析】(1)直接利用“友好点”定义进行解题即可;(2)先利用 “友好点”定义求出B 点坐标,A 点又在直线2y x =-上,得到2b a =-;①当点A 和点B 重合,得2b b =-.解出即可,②当点A 和点B 不重合, 1a ≠且2a ≠.所以对a 分情况讨论,1°、当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=-- ⎪⎝⎭,所以当a ≤32时,AB 的长度随着a 的增大而减小,即取1a <.2°当12a <<时,()22231+3224AB b b a a a ⎛⎫=--=--=--+ ⎪⎝⎭,当32a ≥时,AB 的长度随着a 的增大而减小,即取322a ≤<. 综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小. 【详解】(1)点()4,1,4>1,根据“友好点”定义,得到点()4,1的“友好点”的坐标是()41-, (2)Q 点(),A a b 是直线2y x =-上的一点,∴2b a =-.Q 2a a >-,根据友好点的定义,点B 的坐标为()2,B a b -,①当点A 和点B 重合,∴2b b =-. 解得0b =或1b =-. 当0b =时,2a =;当1b =-时,1a =,∴点A 的坐标是()2,0或()1,1-.②当点A 和点B 不重合,1a ≠且2a ≠.当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=-- ⎪⎝⎭. ∴当a ≤32时,AB 的长度随着a 的增大而减小, ∴取1a <.当12a <<时, ()22231+3224AB b b a a a ⎛⎫=--=--=--+ ⎪⎝⎭ .∴当32a ≥时,AB 的长度随着a 的增大而减小, ∴取322a ≤<. 综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小. 【点睛】本题属于阅读理解题型,结合二次函数的基本性质进行解题,第二问的第二小问的关键是求出AB 的长用a 进行表示,然后利用二次函数基本性质进行分类讨论6.如图,抛物线y =ax 2+bx +4与x 轴交于点A (﹣1,0)、B (3,0),与y 轴交于点C . (1)求抛物线的解析式;(2)如图1,D 为抛物线对称轴上一动点,求D 运动到什么位置时△DAC 的周长最小; (3)如图2,点E 在第一象限抛物线上,AE 与BC 交于点F ,若AF :FE =2:1,求E 点坐标;(4)点M 、N 同时从B 点出发,分别沿BA 、BC 方向运动,它们的运动速度都是1个单位/秒,当点M 运动到点A 时,点N 停止运动,则当点N 停止运动后,在x 轴上是否存在点P ,使得△PBN 是等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)248433y x x =-++(2)81,3D ⎛⎫⎪⎝⎭(3)点P 的坐标P 1(﹣1,0)或P 2(7,0)或P 3(﹣95,0)或P 4(13,0). 【解析】 【分析】(1)直接待定系数法代入求解即可 (2)找到D 点在对称轴时是△DAC 周长最小的点,先求出直线BC ,然后D 点横坐标是1,直接代入直线BC 求出纵坐标即可 (3)作EH ∥AB 交BC 于H ,则∠FAB =∠FEH ,∠FBA =∠FHE ,易证△ABF ∽△EHF ,得AB AF2EH EF==,得EH=2,设E (x ,248x x 433-++),则H (x ﹣2,420x 33-+),y E =y H ,解出方程x =1或x =2,得到E 点坐标 (4)△PBN 是等腰三角形,分成三种情况,①BP =BC 时,利用等腰三角性质直接得到P 1(﹣1,0)或P 2(7,0),②当NB =NP 时,作NH ⊥x 轴,易得△NHB ∽△COB ,利用比例式得到NH 、 BH 从而得到 PH =BH ,BP ,进而得到OP ,即得到P 点坐标,③当PN =PB 时,取NB 中点K ,作KP ⊥BN ,交x 轴于点P ,易得△NOB ∽△PKB ,利用比例式求出PB ,进而得到OP ,即求出P 点坐标 【详解】解:(1)将A (﹣1,0)、B (3,0)代入y =ax 2+bx+4, 得 40930a b a b c -+=⎧⎨++=⎩解得a =43-,b =83, ∴抛物线的解析式248433y x x =-++; (2)22484164(1)3333=-++=--+y x x x ∴抛物线对称轴为直线x =1, ∴D 的横坐标为1,由(1)可得C (0,4),∵B (3,0),∴直线BC :4y 43x =-+ ∵DA =DB ,△DAC 的周长=AC+CD+AD =AC+CD+BD , 连接BC ,与对称轴交于点D ,此时CD+BD 最小, ∵AC 为定值, ∴此时△DAC 的周长, 当x =1时,y =﹣43×1+4=83, ∴D (1,83); (3)作EH ∥AB 交BC 于H ,则∠FAB =∠FEH ,∠FBA =∠FHE ,∴△ABF ∽△EHF , ∵AF :FE =2:1,∴AB AF2EH EF ==, ∵AB =4, ∴EH =2,设E (x ,248x x 433-++),则H (x ﹣2,420x 33-+) ∵EH ∥AB , ∴y E =y H ,∴248x x 433-++=420x 33-+ 解得x =1或x =2,y =163或4, ∴E (1,163)或(2,4); (4)∵A (﹣1,0)、B (3,0),C (0,4) ∴AB =4,OC =4,点M 运动到点A 时,BM =AB =4, ∴BN =4,∵△PBN 是等腰三角形, ①BP =BC 时,若P 在点B 左侧,OP =PB ﹣OB =4﹣3=1, ∴P 1(﹣1,0),若P 在点B 右侧,OP =OB+BP =4+3=7, ∴P 2(7,0);②当NB =NP 时,作NH ⊥x 轴, △NHB ∽△COB ,∴45NH BH BN OC OB BC === ∴NH =45OC =445⨯=165,BH =45BC =125,∴PH=BH=125,BP=245,∴OP=BP﹣OB=249355-=,∴P3(﹣95,0);③当PN=PB时,取NB中点K,作KP⊥BN,交x轴于点P,∴△NOB∽△PKB,∴PB BKBN OB=∴PB=83,∴OP=OB﹣PB=3﹣83=13P4(13,0)综上,当△PBN是等腰三角形时,点P的坐标P1(﹣1,0)或P2(7,0)或P3(﹣95,0)或P4(13,0).【点睛】本题考查二次函数、平行线性质、相似三角形、等腰三角形性质及最短距离等知识点,综合程度比较高,对综合能力要求比较高. 第一问比较简单,考查待定系数法;第二问最短距离,找到D点是解题关键;第三问证明出相似是关键;第四问能够分情况讨论是解题关键7.如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.(1)求抛物线的解析式;(2)当何值时,的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;(2)当t=时,△PEF的面积最大,其最大值为×,最大值的立方根为=;(3)存在满足条件的点P,t的值为1或【解析】试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.试题解析:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴,即,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.考点:二次函数综合题8.温州茶山杨梅名扬中国,某公司经营茶山杨梅业务,以3万元/吨的价格买入杨梅,包装后直接销售,包装成本为1万元/吨,它的平均销售价格y(单位:万元/吨)与销售数量x(2≤x≤10,单位:吨)之间的函数关系如图所示.(1)若杨梅的销售量为6吨时,它的平均销售价格是每吨多少万元?(2)当销售数量为多少时,该经营这批杨梅所获得的毛利润(w)最大?最大毛利润为多少万元?(毛利润=销售总收入﹣进价总成本﹣包装总费用)(3)经过市场调查发现,杨梅深加工后不包装直接销售,平均销售价格为12万元/吨.深加工费用y(单位:万元)与加工数量x(单位:吨)之间的函数关系是y=12x+3(2≤x≤10).①当该公司买入杨梅多少吨时,采用深加工方式与直接包装销售获得毛利润一样?②该公司买入杨梅吨数在范围时,采用深加工方式比直接包装销售获得毛利润大些?【答案】(1)杨梅的销售量为6吨时,它的平均销售价格是每吨10万元;(2)当x=8时,此时W最大值=40万元;(3)①该公司买入杨梅3吨;②3<x≤8.【解析】【分析】(1)设其解析式为y=kx+b,由图象经过点(2,12),(8,9)两点,得方程组,即可得到结论;(2)根据题意得,w=(y﹣4)x=(﹣12x+13﹣4)x=﹣12x2+9x,根据二次函数的性质即可得到结论;(3)①根据题意列方程,即可得到结论;②根据题意即可得到结论.【详解】(1)由图象可知,y是关于x的一次函数.∴设其解析式为y=kx+b,∵图象经过点(2,12),(8,9)两点,∴212 89k bk b+=⎧⎨+=⎩,解得k=﹣12,b=13,∴一次函数的解析式为y=﹣12x+13,当x=6时,y=10,答:若杨梅的销售量为6吨时,它的平均销售价格是每吨10万元;(2)根据题意得,w=(y﹣4)x=(﹣12x+13﹣4)x=﹣12x2+9x,当x =﹣2ba=9时,x =9不在取值范围内, ∴当x =8时,此时W 最大值=﹣12x 2+9x =40万元; (3)①由题意得:﹣12x 2+9x =9x ﹣(12x +3) 解得x =﹣2(舍去),x =3, 答该公司买入杨梅3吨;②当该公司买入杨梅吨数在 3<x ≤8范围时,采用深加工方式比直接包装销售获得毛利润大些.故答案为:3<x ≤8. 【点睛】本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.9.如图,抛物线y =ax 2+bx+c 经过A (﹣3,0),B (1,0),C (0,3)三点. (1)求抛物线的函数表达式;(2)如图1,P 为抛物线上在第二象限内的一点,若△PAC 面积为3,求点P 的坐标; (3)如图2,D 为抛物线的顶点,在线段AD 上是否存在点M ,使得以M ,A ,O 为顶点的三角形与△ABC 相似?若存在,求点M 的坐标;若不存在,请说明理由.【答案】(1)y =﹣x 2﹣2x+3;(2)点P 的坐标为(﹣1,4)或(﹣2,3);(3)存在,(32-,32)或(34-,94),见解析. 【解析】 【分析】(1)利用待定系数法,然后将A 、B 、C 的坐标代入解析式即可求得二次函数的解析式; (2))过P 点作PQ 垂直x 轴,交AC 于Q ,把△APC 分成两个△APQ 与△CPQ ,把PQ 作为两个三角形的底,通过点A ,C 的横坐标表示出两个三角形的高即可求得三角形的面积.(3)通过三角形函数计算可得∠DAO=∠ACB ,使得以M ,A ,O 为顶点的三角形与△ABC 相似,则有两种情况,∠AOM=∠CAB=45°,即OM 为y=-x ,若∠AOM=∠CBA ,则OM 为y=-3x+3,然后由直线解析式可求OM 与AD 的交点M . 【详解】(1)把A (﹣3,0),B (1,0),C (0,3)代入抛物线解析式y =ax 2+bx+c 得93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得123a b c =-⎧⎪=-⎨⎪=⎩,所以抛物线的函数表达式为y =﹣x 2﹣2x+3.(2)如解(2)图1,过P 点作PQ 平行y 轴,交AC 于Q 点,∵A (﹣3,0),C (0,3), ∴直线AC 解析式为y =x+3,设P 点坐标为(x ,﹣x 2﹣2x+3.),则Q 点坐标为(x ,x+3), ∴PQ =﹣x 2﹣2x+3﹣(x+3)=﹣x 2﹣3x . ∴S △PAC =1PQ A 2O ⋅, ∴()213332x x --⋅=, 解得:x 1=﹣1,x 2=﹣2.当x =﹣1时,P 点坐标为(﹣1,4), 当x =﹣2时,P 点坐标为(﹣2,3),综上所述:若△PAC 面积为3,点P 的坐标为(﹣1,4)或(﹣2,3),(3)如解(3)图1,过D 点作DF 垂直x 轴于F 点,过A 点作AE 垂直BC 于E 点,∵D 为抛物线y =﹣x 2﹣2x+3的顶点, ∴D 点坐标为(﹣1,4), 又∵A (﹣3,0),∴直线AC 为y =2x+4,AF =2,DF =4,tan ∠PAB =2, ∵B (1,0),C (0,3)∴tan ∠ABC =3,BC =10,sin ∠ABC =310,直线BC 解析式为y =﹣3x+3. ∵AC =4,∴AE =AC•sin ∠ABC =310410⨯=6105,BE =2105, ∴CE =310, ∴tan ∠ACB =2AECE=, ∴tan ∠ACB =tan ∠PAB =2, ∴∠ACB =∠PAB ,∴使得以M ,A ,O 为顶点的三角形与△ABC 相似,则有两种情况,如解(3)图2Ⅰ.当∠AOM =∠CAB =45°时,△ABC ∽△OMA , 即OM 为y =﹣x ,设OM 与AD 的交点M (x ,y )依题意得:3y xy x =-⎧⎨=+⎩,解得3232x y ⎧=-⎪⎪⎨⎪=⎪⎩,即M 点为(32-,32). Ⅱ.若∠AOM =∠CBA ,即OM ∥BC , ∵直线BC 解析式为y =﹣3x+3.∴直线OM 为y =﹣3x ,设直线OM 与AD 的交点M (x ,y ).则依题意得:33y xy x =-⎧⎨=+⎩,解得3494x y ⎧=-⎪⎪⎨⎪=⎪⎩,即M 点为(34-,94), 综上所述:存在使得以M ,A ,O 为顶点的三角形与△ABC 相似的点M ,其坐标为(32-,32)或(34-,94). 【点睛】本题结合三角形的性质考查二次函数的综合应用,函数和几何图形的综合题目,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.10.如图,在平面直角坐标系中,抛物线y=ax 2+bx ﹣3(a≠0)与x 轴交于点A (﹣2,0)、B (4,0)两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使S △CBK :S △PBQ =5:2,求K 点坐标.【答案】(1)y=38x 2﹣34x ﹣3 (2)运动1秒使△PBQ 的面积最大,最大面积是910(3)K 1(1,﹣278),K 2(3,﹣158)【解析】 【详解】试题分析:(1)把点A 、B 的坐标分别代入抛物线解析式,列出关于系数a 、b 的解析式,通过解方程组求得它们的值;(2)设运动时间为t 秒.利用三角形的面积公式列出S △PBQ 与t 的函数关系式S △PBQ =﹣910(t ﹣1)2+910.利用二次函数的图象性质进行解答; (3)利用待定系数法求得直线BC 的解析式为y=34x ﹣3.由二次函数图象上点的坐标特征可设点K 的坐标为(m ,38m 2﹣34m ﹣3).如图2,过点K 作KE ∥y 轴,交BC 于点E .结合已知条件和(2)中的结果求得S △CBK =94.则根据图形得到:S △CBK =S △CEK +S △BEK =12EK•m+12•EK•(4﹣m ),把相关线段的长度代入推知:﹣34m 2+3m=94.易求得K 1(1,﹣278),K 2(3,﹣158).解:(1)把点A (﹣2,0)、B (4,0)分别代入y=ax 2+bx ﹣3(a≠0),得423016430a b a b --=⎧⎨+-=⎩, 解得3834a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以该抛物线的解析式为:y=38x 2﹣34x ﹣3;(2)设运动时间为t 秒,则AP=3t ,BQ=t . ∴PB=6﹣3t .由题意得,点C 的坐标为(0,﹣3). 在Rt △BOC 中,BC=2234+=5. 如图1,过点Q 作QH ⊥AB 于点H .∴QH ∥CO , ∴△BHQ ∽△BOC , ∴HB OC BGBC=,即Hb 35t=,∴HQ=35t . ∴S △PBQ =12PB•HQ=12(6﹣3t )•35t=﹣910t 2+95t=﹣910(t ﹣1)2+910.当△PBQ 存在时,0<t <2 ∴当t=1时,S △PBQ 最大=910. 答:运动1秒使△PBQ 的面积最大,最大面积是910; (3)设直线BC 的解析式为y=kx+c (k≠0). 把B (4,0),C (0,﹣3)代入,得403k c c +=⎧⎨=-⎩, 解得3k 4c 3⎧=⎪⎨⎪=-⎩,∴直线BC 的解析式为y=34x ﹣3. ∵点K 在抛物线上.∴设点K 的坐标为(m ,38m 2﹣34m ﹣3).如图2,过点K作KE∥y轴,交BC于点E.则点E的坐标为(m,34m﹣3).∴EK=34m﹣3﹣(38m2﹣34m﹣3)=﹣38m2+32m.当△PBQ的面积最大时,∵S△CBK:S△PBQ=5:2,S△PBQ=9 10.∴S△CBK=94.S△CBK=S△CEK+S△BEK=12EK•m+12•EK•(4﹣m)=12×4•EK=2(﹣38m2+32m)=﹣34m2+3m.即:﹣34m2+3m=94.解得 m1=1,m2=3.∴K1(1,﹣278),K2(3,﹣158).点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式和三角形的面积求法.在求有关动点问题时要注意该点的运动范围,即自变量的取值范围.11.已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或>【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵2,∴QF=1.①当点P 在点M 上方时,即0<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=12PM×QF=21(3)2t t -+=21322t t -+,②如图3,当点P 在点M 下方时,即t <0或t>3时,PM=223t t --﹣(t ﹣3)=23t t -,∴S=12PM×QF=12(23t t -)=21322t t -.综上所述,S=2213(03)22{13 (03)22t t t tt t t 或-+<<-.考点:二次函数综合题;分类讨论.12.如图,若b 是正数,直线l :y =b 与y 轴交于点A ;直线a :y =x ﹣b 与y 轴交于点B ;抛物线L :y =﹣x 2+bx 的顶点为C ,且L 与x 轴右交点为D .(1)若AB =8,求b 的值,并求此时L 的对称轴与a 的交点坐标; (2)当点C 在l 下方时,求点C 与l 距离的最大值;(3)设x 0≠0,点(x 0,y 1),(x 0,y 2),(x 0,y 3)分别在l ,a 和L 上,且y 3是y 1,y 2的平均数,求点(x 0,0)与点D 间的距离;(4)在L 和a 所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b =2019和b =2019.5时“美点”的个数. 【答案】(1)b =4,(2,﹣2 );(2)1;(3)12;(4)当b =2019时“美点”的个数为4040个,b =2019.5时“美点”的个数为1010个. 【解析】 【分析】(1)求出A 、B 的坐标,由AB =8,可求出b 的值.从而得到L 的解析式,找出L 的对称轴与a 的交点即可;(2)通过配方,求出L 的顶点坐标,由于点C 在l 下方,则C 与l 的距离24b b -,配方即可得出结论;(3)由題意得y 1+y 2=2y 3,进而有b +x 0﹣b =2(﹣x 02+bx 0)解得x 0的值,求出L 与x 轴右交点为D 的坐标,即可得出结论;(4)①当b =2019时,抛物线解析式L :y =﹣x 2+2019x 直线解析式a :y =x ﹣2019,美点”总计4040个点,②当b =2019.5时,抛物线解析式L :y =﹣x 2+2019.5x ,直线解析式a :y =x ﹣2019.5,“美点”共有1010个. 【详解】(1)当x =0吋,y =x ﹣b =﹣b ,∴B (0,﹣b ).∵AB =8,而A (0,b ),∴b ﹣(﹣b )=8,∴b =4,∴L :y =﹣x 2+4x ,∴L 的对称轴x =2,当x =2时,y =x ﹣4=﹣2,∴L 的对称轴与a 的交点为(2,﹣2 );(2)y =﹣(x 2b -)224b +,∴L 的顶点C (2b ,24b ).∵点C 在l 下方,∴C 与l 的距离b 2144b -=-(b ﹣2)2+1≤1,∴点C 与l 距离的最大值为1;(3)∵y 3是y 1,y 2的平均数,∴y 1+y 2=2y 3,∴b +x 0﹣b =2(﹣x 02+bx 0),解得:x 0=0或x 0=b 12-. ∵x 0≠0,∴x 0=b 12-,对于L ,当y =0吋,0=﹣x 2+bx ,即0=﹣x (x ﹣b ),解得:x 1=0,x 2=b .∵b >0,∴右交点D (b ,0),∴点(x 0,0)与点D 间的距离b ﹣(b 12-)12=.(4)①当b =2019时,抛物线解析式L :y =﹣x 2+2019x ,直线解析式a :y =x ﹣2019. 联立上述两个解析式可得:x 1=﹣1,x 2=2019,∴可知每一个整数x 的值都对应的一个整数y 值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点,∴总计4042个点.∵这两段图象交点有2个点重复,∴美点”的个数:4042﹣2=4040(个);②当b =2019.5时,抛物线解析式L :y =﹣x 2+2019.5x ,直线解析式a :y =x ﹣2019.5,联立上述两个解析式可得:x 1=﹣1,x 2=2019.5,∴当x 取整数时,在一次函数y =x ﹣2019.5上,y 取不到整数值,因此在该图象上“美点”为0,在二次函数y =x 2+2019.5x 图象上,当x 为偶数时,函数值y 可取整数,可知﹣1到2019.5之 间有1010个偶数,因此“美点”共有1010个.故b =2019时“美点”的个数为4040个,b =2019.5时“美点”的个数为1010个. 【点睛】本题考查了二次函数,熟练运用二次函数的性质以及待定系数法求函数解析式是解题的关键.13.如图1,抛物线2:C y ax bx =+经过点(4,0)A -、(1,3)B -两点,G 是其顶点,将抛物线C 绕点O 旋转180o ,得到新的抛物线'C .(1)求抛物线C 的函数解析式及顶点G 的坐标; (2)如图2,直线12:5l y kx =-经过点A ,D 是抛物线C 上的一点,设D 点的横坐标为m (2m <-),连接DO 并延长,交抛物线'C 于点E ,交直线l 于点M ,2DE EM =,求m 的值;(3)如图3,在(2)的条件下,连接AG 、AB ,在直线DE 下方的抛物线C 上是否存在点P ,使得DEP GAB ∠=∠?若存在,求出点P 的横坐标;若不存在,请说明理由.【答案】(1)24y x x =--,顶点为:(2,4)G -;(2)m 的值为﹣3;(3)存在,点P 的横坐标为:7734+-7374. 【解析】 【分析】(1)运用待定系数法将(4,0)A -、(1,3)B -代入2y ax bx =+中,即可求得a 和b 的值和抛物线C 解析式,再利用配方法将抛物线C 解析式化为顶点式即可求得顶点G 的坐标; (2)根据抛物线C 绕点O 旋转180o ,可求得新抛物线'C 的解析式,再将(4,0)A -代入125y kx =-中,即可求得直线l 解析式,根据对称性可得点E 坐标,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K ,由2DE EM =,即可得13ME MD =,再证明MEK ∆∽MDH ∆,即可得3DH EK =,建立方程求解即可; (3)连接BG ,易证ABG ∆是Rt ∆,90ABG ∠=o ,可得1tan tan 3DEP GAB ∠=∠=,在x 轴下方过点O 作OH OE ⊥,在OH 上截取13OH OE ==E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点;通过建立方程组求解即可. 【详解】(1)将(4,0)A -、(1,3)B -代入2y ax bx =+中,得16403a b a b -=⎧⎨-=⎩解得14a b =-⎧⎨=-⎩∴抛物线C 解析式为:24y x x =--,配方,得:224(2)4y x x x =--=-++,∴顶点为:(2,4)G -; (2)∵抛物线C 绕点O 旋转180o ,得到新的抛物线'C . ∴新抛物线'C 的顶点为:'(2,4)G -,二次项系数为:'1a = ∴新抛物线'C 的解析式为:22(2)44y x x x =--=- 将(4,0)A -代入125y kx =-中,得12045k =--,解得35k =-, ∴直线l 解析式为31255y x =--, ∵2(,4)D m m m --,∴直线DO 的解析式为(4)y m x =-+,由抛物线C 与抛物线'C 关于原点对称,可得点D 、V 关于原点对称, ∴2(,4)E m m m -+如图2,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K ,则312(,)55H m m --,312(,)55K m m --, ∴2231217124()5555DH m m m m m =-----=--+,2231217124()5555EK m m m m m =+--=++,∵2DE EM = ∴13ME MD =, ∵//DH y 轴,//EK y 轴∴//DH EK∴MEK ∆∽MDH ∆ ∴13EK ME DH MD ==,即3DH EK =∴22171217123()5555m m m m --+=++ 解得:13m =-,225m =-, ∵2m <-∴m 的值为:﹣3;(3)由(2)知:3m =-,∴(3,3)D -,(3,3)E -,OE = 如图3,连接BG ,在ABG ∆中,∵222(14)(30)18AB =-++-=,22BG =,220AG =∴222AB BG AG +=∴ABG ∆是直角三角形,90ABG ∠=o ,∴1tan 3BG GAB AB ∠===, ∵DEP GAB ∠=∠ ∴1tan tan 3DEP GAB ∠=∠=, 在x 轴下方过点O 作OH OE ⊥,在OH上截取13OH OE == 过点E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点; ∵(3,3)E -,∴45EOT ∠=o∵90EOH ∠=o∴45HOT ∠=o∴(1,1)H --,设直线EH 解析式为y px q =+,则331p q p q +=-⎧⎨-+=-⎩,解得1232p q ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线EH 解析式为1322y x =--, 解方程组213224y x y x x ⎧=--⎪⎨⎪=--⎩,得117458x y ⎧-=⎪⎪⎨⎪=⎪⎩,227458x y ⎧-+=⎪⎪⎨⎪=-⎪⎩, ∴点P的横坐标为:.【点睛】本题考查了二次函数图象和性质,待定系数法求函数解析式,旋转变换,相似三角形判定和性质,直线与抛物线交点,解直角三角形等知识点;属于中考压轴题型,综合性强,难度较大.14.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F (0,12),当点P 在x 轴上运动时,试求m 为何值时,四边形DMQF 是平行四边形? (3)点P 在线段AB 运动过程中,是否存在点Q ,使得以点B 、Q 、M 为顶点的三角形与△BOD 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)y=﹣12x 2+32x+2;(2)m=﹣1或m=3时,四边形DMQF 是平行四边形;(3)点Q 的坐标为(3,2)或(﹣1,0)时,以点B 、Q 、M 为顶点的三角形与△BOD 相似.【解析】 分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD 解析式为y=12x-2,则Q (m ,-12m 2+32m+2)、M (m ,12m-2),由QM ∥DF 且四边形DMQF 是平行四边形知QM=DF ,据此列出关于m 的方程,解之可得;(3)易知∠ODB=∠QMB ,故分①∠DOB=∠MBQ=90°,利用△DOB ∽△MBQ 得12DO MB OB BQ ==,再证△MBQ ∽△BPQ 得BM BP BQ PQ =,即214 132222m m m -=-++,解之即可得此时m 的值;②∠BQM=90°,此时点Q 与点A 重合,△BOD ∽△BQM′,易得点Q 坐标.详解:(1)由抛物线过点A (-1,0)、B (4,0)可设解析式为y=a (x+1)(x-4), 将点C (0,2)代入,得:-4a=2,解得:a=-12, 则抛物线解析式为y=-12(x+1)(x-4)=-12x 2+32x+2; (2)由题意知点D 坐标为(0,-2),。
初三数学《二次函数》培优题
初三数学培优小卷1.若二次函数y =x 2−2x −3的图象上有且只有两个个点到x 轴的距离等于m ,则实数m 的取值范围________.2.下列关于二次函数y =−(x −m )2+m 2+1(m 为常数)的结论,①该函数的图象与函数y =−x 2的图象形状相同;②该函数的图象一定经过点(0,1);③当x >0时,y 随x 的增大而减小;④该函数的图象的顶点在函数21y x =+的图像上,其中所有正确的结论序号是__________.3.如图,直线l 与半径为6的⊙O 相切于点A ,P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB ⊥l ,垂足为B ,连接PA .设PA =x ,PB =y ,则(x -y )的最大值是 .4.如图,已知点()()1122,,,M x y N x y 在二次函数2(2)1(0)y a x a =−−>的图像上,且213x x −=.(1)若二次函数的图像经过点(3,1).①求这个二次函数的表达式;②若12y y =,求顶点到MN 的距离;(2)当12x x x ≤≤时,二次函数的最大值与最小值的差为1,点M ,N 在对称轴的异侧,1.以初速度v (单位:m/s )从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是h =vt −4.9t 2,现将某弹性小球从地面竖直向上抛出,初速度为v 1,经过时间t 1落回地面,运动过程中小球的最大高度为h 1(如图1);小球落地后,竖直向上弹起,初速度为v 2,经过时间t 2落回地面,运动过程中小球的最大高度为h 2(如图2).若h 1=2h 2,则t 1:t 2=_____.2.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线21y x k 2=+与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是_______3.抛物线2:L y x mx n =++经过图中的网格区域.(1)当抛物线L 过原点及点(1,0)时,m n +的值是______.(2)当1m n +=,且抛物线L 恰好只经过如......图网格区域(包括边界)中的3个格点(横纵坐标均为整数),则满足条件的整数m 有______个.4.如图,已知抛物线212y x bx =+与直线y =2x 交于点O (0,0),A (a ,12).点B 是抛物线上O ,A 之间的一个动点,过点B 分别作x 轴、y 轴的平行线与直线OA 交于点C ,E .(1)求抛物线的函数解析式;(2)若点C 为OA 的中点①点C 坐标为 。
初三数学二次函数的专项培优练习题含详细答案
初三数学二次函数的专项培优练习题含详细答案一、二次函数1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)如图2,∵PH ⊥OB 于H ,∴∠DHB=∠AOB=90°,∴DH ∥AO ,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE ∥x 轴、PD ⊥x 轴,∴∠DPE=90°,若△PDE 为等腰直角三角形,则∠EDP=45°,∴∠EDP 与∠BDH 互为对顶角,即点E 与点A 重合,则当y=6时,﹣12x 2+2x+6=6, 解得:x=0(舍)或x=4,即点P (4,6). 【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.2.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y (盒)与销售单价x (元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?【答案】(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元【解析】【分析】(1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可; (2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可.【详解】(1)()()()80802320w x y x x =-=--+,2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-;(2)()2224802560021203200w x x x =-+-=--+,2080160x -<≤≤Q ,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元.(3)当2400w =时,()2212032002400x --+=.解得:12100140x x ,.== ∵想卖得快, 2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.3.如图,抛物线y =﹣x 2﹣2x+3的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.(1)求点A 、B 、C 的坐标;(2)点M(m ,0)为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N ,可得矩形PQNM .如图,点P 在点Q 左边,试用含m 的式子表示矩形PQNM 的周长;(3)当矩形PQNM 的周长最大时,m 的值是多少?并求出此时的△AEM 的面积;(4)在(3)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G(点G 在点F 的上方).若FG =22DQ ,求点F 的坐标.【答案】(1)A(﹣3,0),B(1,0);C(0,3) ;(2)矩形PMNQ 的周长=﹣2m 2﹣8m+2;(3) m =﹣2;S =12;(4)F(﹣4,﹣5)或(1,0). 【解析】【分析】 (1)利用函数图象与坐标轴的交点的求法,求出点A ,B ,C 的坐标;(2)先确定出抛物线对称轴,用m表示出PM,MN即可;(3)由(2)得到的结论判断出矩形周长最大时,确定出m,进而求出直线AC解析式,即可;(4)在(3)的基础上,判断出N应与原点重合,Q点与C点重合,求出DQ=DC=,再建立方程(n+3)﹣(﹣n2﹣2n+3)=4即可.【详解】(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).令y=0,则0=﹣x2﹣2x+3,解得,x=﹣3或x=l,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1.∵M(m,0),∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,∴矩形的周长最大时,m=﹣2.∵A(﹣3,0),C(0,3),设直线AC的解析式y=kx+b,∴303k bb-+=⎧⎨=⎩解得k=l,b=3,∴解析式y=x+3,令x=﹣2,则y=1,∴E(﹣2,1),∴EM=1,AM=1,∴S=12AM×EM=12.(4)∵M(﹣2,0),抛物线的对称轴为x=﹣l,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4),∴DQ=DC∵FG=,∴FG=4.设F(n,﹣n2﹣2n+3),则G(n,n+3),∵点G在点F的上方且FG=4,∴(n+3)﹣(﹣n2﹣2n+3)=4.解得n =﹣4或n =1,∴F(﹣4,﹣5)或(1,0).【点睛】此题是二次函数综合题,主要考查了函数图象与坐标轴的交点的求法,待定系数法求函数解析式,函数极值的确定,解本题的关键是用m 表示出矩形PMNQ 的周长.4.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上.①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 2﹣1,2);②P (﹣32,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c b a++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+),①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得x=21-(舍去)或x=21--,∴点P (21--,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P (32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.5.如图,直线l :y =﹣3x +3与x 轴、y 轴分别相交于A 、B 两点,抛物线y =ax 2﹣2ax +a +4(a <0)经过点B ,交x 轴正半轴于点C .(1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值及此时动点M 的坐标;(3)将点A 绕原点旋转得点A ′,连接CA ′、BA ′,在旋转过程中,一动点M 从点B 出发,沿线段BA ′以每秒3个单位的速度运动到A ′,再沿线段A ′C 以每秒1个单位长度的速度运动到C 后停止,求点M 在整个运动过程中用时最少是多少?【答案】(1)y=﹣x2+2x+3;(2)S与m的函数表达式是S=252m m--,S的最大值是25 8,此时动点M的坐标是(52,74);(3)点M82秒.【解析】【分析】(1)首先求出B点的坐标,根据B点的坐标即可计算出二次函数的a值,进而即可计算出二次函数的解析式;(2)计算出C点的坐标,设出M点的坐标,再根据△ABM的面积为S=S四边形OAMB﹣S△AOB =S△BOM+S△OAM﹣S△AOB,化简成二次函数,再根据二次函数求解最大值即可.(3)首先证明△OHA′∽△OA′B,再结合A′H+A′C≥HC即可计算出t的最小值.【详解】(1)将x=0代入y=﹣3x+3,得y=3,∴点B的坐标为(0,3),∵抛物线y=ax2﹣2ax+a+4(a<0)经过点B,∴3=a+4,得a=﹣1,∴抛物线的解析式为:y=﹣x2+2x+3;(2)将y=0代入y=﹣x2+2x+3,得x1=﹣1,x2=3,∴点C的坐标为(3,0),∵点M是抛物线上的一个动点,并且点M在第一象限内,点M的横坐标为m,∴0<m<3,点M的坐标为(m,﹣m2+2m+3),将y=0代入y=﹣3x+3,得x=1,∴点A的坐标(1,0),∵△ABM的面积为S,∴S=S四边形OAMB﹣S△AOB=S△BOM+S△OAM﹣S△AOB=()2123313 222m mm⨯-++⨯⨯+-,化简,得S=252m m--=21525228m⎛⎫--+⎪⎝⎭,∴当m =52时,S 取得最大值,此时S =258,此时点M 的坐标为(52,74), 即S 与m 的函数表达式是S =252m m --,S 的最大值是258,此时动点M 的坐标是(52,74); (3)如右图所示,取点H 的坐标为(0,13),连接HA ′、OA ′, ∵∠HOA ′=∠A ′OB ,13OH OA '=,13OA OB '=, ∴△OHA ′∽△OA ′B ,∴3BA A H''=, 即3BA A H ''=, ∵A ′H +A ′C ≥HC =2218233⎛⎫+= ⎪⎝⎭, ∴t ≥82, 即点M 在整个运动过程中用时最少是82秒.【点睛】本题主要考查抛物线的性质,关键在于设元,还有就是(3)中利用代替法计算t 的取值范围,难度系数较大,是中考的压轴题.6.对于某一函数给出如下定义:若存在实数m ,当其自变量的值为m 时,其函数值等于﹣m ,则称﹣m 为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n 称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n 为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n 等于5.(1)分别判断函数y=﹣x+1,y=1x-,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.【答案】(1)y=−1x有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b ≤3,∴0≤n ≤8;(3)∵y =223()3()x x x m x x x m ⎧-≥⎨--<⎩, ∴当x ≥m 时,﹣m =m 2﹣3m ,得m =0或m =2,∴n =2﹣0=2,∴m >2或m ≤﹣2;当x <m 时,﹣m =﹣m 2﹣3m ,解得,m =0或m =﹣4,∴n =0﹣(﹣4)=4,∴﹣2<m ≤2,由上可得,当m >2或m ≤﹣2时,n =2,当﹣2<m ≤2时,n =4.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.7.如图,抛物线2y ax bx c =++的图象过点(10)(30)(03)A B C ﹣,、,、,.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△PAC 的周长最小,若存在,请求出点P 的坐标及△PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAM PAC S S ∆∆=?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =++-;(2)存在,点(12)P ,1032;(3)存在,点M 坐标为(14), 【解析】【分析】(1)由于条件给出抛物线与x 轴的交点1030A B (﹣,)、(,),故可设交点式13y a x x +=()(﹣),把点C 代入即求得a 的值,减小计算量.(2)由于点A 、B 关于对称轴:直线1x =对称,故有PA PB =,则PAC C AC PC PA AC PC PB ∆++++==,所以当C 、P 、B 在同一直线上时,PAC C AC CB ∆+=最小.利用点A 、B 、C 的坐标求AC 、CB 的长,求直线BC 解析式,把1x =代入即求得点P 纵坐标.(3)由PAM PAC S S ∆∆=可得,当两三角形以PA 为底时,高相等,即点C 和点M 到直线PA 距离相等.又因为M 在x 轴上方,故有//CM PA .由点A 、P 坐标求直线AP 解析式,即得到直线CM 解析式.把直线CM 解析式与抛物线解析式联立方程组即求得点M 坐标.【详解】解:(1)∵抛物线与x 轴交于点1030A B (﹣,)、(,)∴可设交点式13y a x x +=()(﹣) 把点03C (,)代入得:33a ﹣=1a ∴=﹣21323y x x x x ∴+++=-()(﹣)=﹣∴抛物线解析式为223y x x ++=-(2)在抛物线的对称轴上存在一点P ,使得PAC ∆的周长最小.如图1,连接PB 、BC∵点P 在抛物线对称轴直线1x =上,点A 、B 关于对称轴对称PA PB ∴=PAC C AC PC PA AC PC PB ∆∴++++==∵当C 、P 、B 在同一直线上时,PC PB CB +=最小103003A B C Q (﹣,)、(,)、(,)AC BC ∴===PAC C AC CB ∆∴+=设直线BC 解析式为3y kx +=把点B 代入得:330k +=,解得:1k =﹣∴直线BC :3y x +=﹣132P y ∴+=﹣=∴点12P (,)使PAC ∆.(3)存在满足条件的点M ,使得PAM PAC S S ∆∆=.∵PAM PAC S S ∆∆=S △PAM =S △PAC∴当以PA 为底时,两三角形等高∴点C 和点M 到直线PA 距离相等∵M 在x 轴上方//CM PA ∴1012A P Q (﹣,),(,),设直线AP 解析式为y px d += 02p d p d -+=⎧∴⎨+=⎩ 解得:p 1d 1=⎧⎨=⎩ ∴直线1AP y x +:=∴直线CM 解析式为:3y x +=2323y x y x x =+⎧⎨=-++⎩Q 解得:1103x y =⎧⎨=⎩(即点C ),2214x y =⎧⎨=⎩ ∴点M 坐标为14(,)【点睛】考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M 在x 轴上方,无需分类讨论,解法较常规而简单.8.如图,抛物线y =ax 2+bx+c 经过A (﹣3,0),B (1,0),C (0,3)三点. (1)求抛物线的函数表达式;(2)如图1,P 为抛物线上在第二象限内的一点,若△PAC 面积为3,求点P 的坐标; (3)如图2,D 为抛物线的顶点,在线段AD 上是否存在点M ,使得以M ,A ,O 为顶点的三角形与△ABC 相似?若存在,求点M 的坐标;若不存在,请说明理由.【答案】(1)y =﹣x 2﹣2x+3;(2)点P 的坐标为(﹣1,4)或(﹣2,3);(3)存在,(3 2 -,32)或(34-,94),见解析.【解析】【分析】(1)利用待定系数法,然后将A、B、C的坐标代入解析式即可求得二次函数的解析式;(2))过P点作PQ垂直x轴,交AC于Q,把△APC分成两个△APQ与△CPQ,把PQ作为两个三角形的底,通过点A,C的横坐标表示出两个三角形的高即可求得三角形的面积.(3)通过三角形函数计算可得∠DAO=∠ACB,使得以M,A,O为顶点的三角形与△ABC 相似,则有两种情况,∠AOM=∠CAB=45°,即OM为y=-x,若∠AOM=∠CBA,则OM为y=-3x+3,然后由直线解析式可求OM与AD的交点M.【详解】(1)把A(﹣3,0),B(1,0),C(0,3)代入抛物线解析式y=ax2+bx+c得9303a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得123abc=-⎧⎪=-⎨⎪=⎩,所以抛物线的函数表达式为y=﹣x2﹣2x+3.(2)如解(2)图1,过P点作PQ平行y轴,交AC于Q点,∵A(﹣3,0),C(0,3),∴直线AC解析式为y=x+3,设P点坐标为(x,﹣x2﹣2x+3.),则Q点坐标为(x,x+3),∴PQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x.∴S△PAC=1PQ A2O⋅,∴()213332x x --⋅=, 解得:x 1=﹣1,x 2=﹣2.当x =﹣1时,P 点坐标为(﹣1,4),当x =﹣2时,P 点坐标为(﹣2,3),综上所述:若△PAC 面积为3,点P 的坐标为(﹣1,4)或(﹣2,3),(3)如解(3)图1,过D 点作DF 垂直x 轴于F 点,过A 点作AE 垂直BC 于E 点,∵D 为抛物线y =﹣x 2﹣2x+3的顶点,∴D 点坐标为(﹣1,4),又∵A (﹣3,0),∴直线AC 为y =2x+4,AF =2,DF =4,tan ∠PAB =2,∵B (1,0),C (0,3)∴tan ∠ABC =3,BC 10,sin ∠ABC 310BC 解析式为y =﹣3x+3. ∵AC =4,∴AE =AC•sin ∠ABC =310410⨯=6105,BE =105, ∴CE 310, ∴tan ∠ACB =2AE CE =, ∴tan ∠ACB =tan ∠PAB =2,∴∠ACB =∠PAB ,∴使得以M ,A ,O 为顶点的三角形与△ABC 相似,则有两种情况,如解(3)图2Ⅰ.当∠AOM =∠CAB =45°时,△ABC ∽△OMA ,即OM 为y =﹣x ,设OM 与AD 的交点M (x ,y )依题意得:3y x y x =-⎧⎨=+⎩, 解得3232x y ⎧=-⎪⎪⎨⎪=⎪⎩, 即M 点为(32-,32). Ⅱ.若∠AOM =∠CBA ,即OM ∥BC ,∵直线BC 解析式为y =﹣3x+3.∴直线OM 为y =﹣3x ,设直线OM 与AD 的交点M (x ,y ).则依题意得:33y x y x =-⎧⎨=+⎩, 解得3494x y ⎧=-⎪⎪⎨⎪=⎪⎩, 即M 点为(34-,94), 综上所述:存在使得以M ,A ,O 为顶点的三角形与△ABC 相似的点M ,其坐标为(32-,32)或(34-,94). 【点睛】 本题结合三角形的性质考查二次函数的综合应用,函数和几何图形的综合题目,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.9.在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由.【答案】(1)A (﹣3,0),C (0,3),D (﹣1,4);(2)E (37-,0);(3)P (2,﹣5)或(1,0).【解析】 试题分析:(1)令抛物线解析式中y=0,解关于x 的一元二次方程即可得出点A 、B 的坐标,再令抛物线解析式中x=0求出y 值即可得出点C 坐标,利用配方法将抛物线解析式配方即可找出顶点D 的坐标;(2)作点C 关于x 轴对称的点C′,连接C′D 交x 轴于点E ,此时△CDE 的周长最小,由点C 的坐标可找出点C′的坐标,根据点C′、D 的坐标利用待定系数法即可求出直线C′D 的解析式,令其y=0求出x 值,即可得出点E 的坐标;(3)根据点A 、C 的坐标利用待定系数法求出直线AC 的解析式,假设存在,设点F (m ,m+3),分∠PAF=90°、∠AFP=90°和∠APF=90°三种情况考虑.根据等腰直角三角形的性质结合点A 、F 点的坐标找出点P 的坐标,将其代入抛物线解析式中即可得出关于m 的一元二次方程,解方程求出m 值,再代入点P 坐标中即可得出结论.试题解析:(1)当223y x x =--+中y=0时,有2230x x --+=,解得:1x =﹣3,2x =1,∵A 在B 的左侧,∴A (﹣3,0),B (1,0).当223y x x =--+中x=0时,则y=3,∴C (0,3).∵223y x x =--+=2(1)4x -++,∴顶点D (﹣1,4).(2)作点C 关于x 轴对称的点C′,连接C′D 交x 轴于点E ,此时△CDE 的周长最小,如图1所示.∵C (0,3),∴C′(0,﹣3).设直线C′D 的解析式为y=kx+b ,则有:3{4b k b =--+=,解得:7{3k b =-=-,∴直线C′D 的解析式为y=﹣7x ﹣3,当y=﹣7x ﹣3中y=0时,x=37-,∴当△CDE 的周长最小,点E 的坐标为(37-,0). (3)设直线AC 的解析式为y=ax+c ,则有:3{30c a c =-+=,解得:1{3a c ==,∴直线AC 的解析式为y=x+3.假设存在,设点F (m ,m+3),△AFP 为等腰直角三角形分三种情况(如图2所示): ①当∠PAF=90°时,P (m ,﹣m ﹣3),∵点P 在抛物线223y x x =--+上,∴2323m m m --=--+,解得:m 1=﹣3(舍去),m 2=2,此时点P 的坐标为(2,﹣5);②当∠AFP=90°时,P (2m+3,0)∵点P 在抛物线223y x x =--+上,∴20(23)2(23)3m m =-+-++,解得:m 3=﹣3(舍去),m 4=﹣1,此时点P 的坐标为(1,0);③当∠APF=90°时,P (m ,0),∵点P 在抛物线223y x x =--+上,∴2023m m =--+,解得:m 5=﹣3(舍去),m 6=1,此时点P 的坐标为(1,0). 综上可知:在抛物线上存在点P ,使得△AFP 为等腰直角三角形,点P 的坐标为(2,﹣5)或(1,0).考点:二次函数综合题;最值问题;存在型;分类讨论;综合题.10.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.11.已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=25cm.如图①,动点M从点A出发,在矩形边上沿着A B C→→的方向匀速运动(不包含点C).设动点M的运动时间为t(s),APM∆的面积为S(cm²),S与t的函数关系如图②所示:(1)直接写出动点M的运动速度为/cm s,BC的长度为cm;(2)如图③,动点M重新从点A出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N从点D出发,在矩形边上沿着D C B→→的方向匀速运动,设动点N的运动速度为()/v cm s.已知两动点M、N经过时间()x s在线段BC上相遇(不包含点C),动点M、N相遇后立即停止运动,记此时APM DPN∆∆与的面积为()()2212,S cm S cm.①求动点N运动速度()/v cm s的取值范围;②试探究12S S⋅是否存在最大值.若存在,求出12S S⋅的最大值并确定运动速度时间x的值;若不存在,请说明理由.【答案】(1)2,10;(2)①2/6/3cm s v cm s≤<;②当154x=时,12S S⋅取最大值2254.【解析】【分析】(1)由题意可知图像中0~2.5s时,M在AB上运动,求出速度,2.5~7.5s时,M在BC上运动,求出BC长度;(2)①分别求出在C点相遇和在B点相遇时的速度,取中间速度,注意C点相遇时的速度不能取等于;②过M点做MH⊥AC,则125 MH CM==得到S1,同时利用12()PAD CDM ABM NABCDS S S S S S∆∆∆+=---(N)矩形=15,得到S2,再得到12S S⋅关于x的二次函数,利用二次函数性质求得最大值【详解】(1)5÷2.5=2/cm s;(7.5-2.5)×2=10cm(2)①解:在C点相遇得到方程57.5v=在B点相遇得到方程152.5v=∴5=7.515=2.5vv⎧⎪⎪⎨⎪⎪⎩解得23=5vv⎧=⎪⎨⎪⎩∵在边BC上相遇,且不包含C点∴2/6/3cm s v cm s≤<②如下图12()PAD CDM ABM NABCDS S S S S S∆∆∆+=---(N)矩形()()5152525751022x x⨯-⨯-=---=15过M点做MH⊥AC,则125MH CM==∴112152S MH AP x =⋅=-+ ∴22S x =()122152S S x x ⋅=-+⋅ =2430x x -+ =215225444x ⎛⎫--+ ⎪⎝⎭因为152.57.54<<,所以当154x =时,12S S ⋅取最大值2254. 【点睛】本题重点考查动点问题,二次函数的应用,求不规则图形的面积等知识点,第一问关键能够从图像中得到信息,第二问第一小问关键在理清楚运动过程,第二小问关键在能够用x 表示出S 1和S 212.如图,已知直线AB 与抛物线C :2y ax 2x c =++ 相交于()1,0A -和点()B 2,3两点.⑴求抛物线C 的函数表达式;⑵若点M 是位于直线AB 上方抛物线上的一动点,以MA MB 、为相邻两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时四边形MANB 的面积S 及点M 的坐标;⑶在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线17y 4=的距离,若存在,求出定点F 的坐标;若不存在,请说明理由. 【答案】⑴2y x 2x 3=-++;⑵当12a =,S □MANB =2S △ABM =274,此时115M ,24⎛⎫ ⎪⎝⎭;⑶存在. 当15F 1,4⎛⎫⎪⎝⎭时,无论x 取任何实数,均有PG PF =. 理由见解析.【解析】 【分析】(1)利用待定系数法,将A ,B 的坐标代入y=ax 2+2x+c 即可求得二次函数的解析式;(2)过点M作MH⊥x轴于H,交直线AB于K,求出直线AB的解析式,设点M(a,-a2+2a+3),则K(a,a+1),利用函数思想求出MK的最大值,再求出△AMB面积的最大值,可推出此时平行四边形MANB的面积S及点M的坐标;(3)如图2,分别过点B,C作直线y=174的垂线,垂足为N,H,设抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离,其中F(1,a),连接BF,CF,则可根据BF=BN,CF=CN两组等量关系列出关于a的方程组,解方程组即可.【详解】(1)由题意把点(-1,0)、(2,3)代入y=ax2+2x+c,得,20 443 a ca c-+=⎧⎨++=⎩,解得a=-1,c=3,∴此抛物线C函数表达式为:y=-x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(-1,0)、(2,3)代入y=kx+b中,得,0 23k bk b-+⎧⎨+⎩==,解得,k=1,b=1,∴y AB=x+1,设点M(a,-a2+2a+3),则K(a,a+1),则MK=-a2+2a+3-(a+1)=-(a-12)2+94,根据二次函数的性质可知,当a=12时,MK有最大长度94,∴S△AMB最大=S△AMK+S△BMK=12MK•AH+12MK•(x B-x H)=12MK•(x B-x A)=12×94×3=278,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S最大=2S△AMB最大=2×278=274,M(12,154);(3)存在点F,∵y=-x2+2x+3=-(x-1)2+4,∴对称轴为直线x=1,当y=0时,x1=-1,x2=3,∴抛物线与点x轴正半轴交于点C(3,0),如图2,分别过点B,C作直线y=174的垂线,垂足为N,H,抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离,设F(1,a),连接BF,CF,则BF=BN=174-3=54,CF=CH=174,由题意可列:2222225(21)(3)417(31)4aa⎧⎛⎫-+-=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得,a=154,∴F(1,154).【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,△ABM的面积最大,且此时线段MK的长度也最大.13.抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标;(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.【答案】(1)抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)点E的坐标为E(﹣4,5)(3)当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.【解析】试题分析:(1)利用待定系数法求二次函数的解析式,并配方求对称轴;(2)如图1,设E(m,m2+2m﹣3),先根据已知条件求S△ACE=10,根据不规则三角形面积等于铅直高度与水平宽度的积列式可求得m的值,并根据在对称轴左侧的抛物线上有一点E,则点E 的横坐标小于﹣1,对m的值进行取舍,得到E的坐标;(3)分两种情况:①当B在原点的左侧时,构建辅助圆,根据直径所对的圆周角是直角,只要满足∠BPF=90°就可以构成∠OBP=∠FPG,如图2,求出圆E与y轴有一个交点时的m值,则可得取值范围;②当B在原点的右侧时,只有△OBP是等腰直角三角形,△FPG也是等腰直角三角形时满足条件,直接计算即可.试题解析:(1)当m=﹣3时,B(﹣3,0),把A(1,0),B(﹣3,0)代入到抛物线y=x2+bx+c中得:,解得,∴抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)如图1,设E(m,m2+2m﹣3),由题意得:AD=1+1=2,OC=3,S△ACE=S△ACD=×ADOC=×2×3=10,设直线AE的解析式为:y=kx+b,把A(1,0)和E(m,m2+2m﹣3)代入得,,解得:,∴直线AE的解析式为:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,∴S△ACE=FC(1﹣m)=10,﹣m(1﹣m)=20,m2﹣m﹣20=0,(m+4)(m﹣5)=0,m1=﹣4,m2=5(舍),∴E(﹣4,5);(3)如图2,当B在原点的左侧时,连接BF,以BF为直径作圆E,当⊙E与y轴相切时,设切点为P,∴∠BPF=90°,∴∠FPG+∠OPB=90°,∵∠OPB+∠OBP=90°,∴∠OBP=∠FPG,连接EP,则EP⊥OG,∵BE=EF,∴EP是梯形的中位线,∴OP=PG=2,∵FG=1,tan∠FPG=tan∠OBP=,∴,∴m=﹣4,∴当﹣4≤m<0时,在线段OG上存在点P,使∠OBP=∠FPG;如图3,当B在原点的右侧时,要想满足∠OBP=∠FPG,则∠OBP=∠OPB=∠FPG,∴OB=OP,∴△OBP是等腰直角三角形,△FPG也是等腰直角三角形,∴FG=PG=1,∴OB=OP=3,∴m=3,综上所述,当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.考点:二次函数的综合题.14.一次函数y=x的图象如图所示,它与二次函数y=ax2-4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.【答案】(1)点C(2,);(2)①y=x2-x;②y=-x2+2x+.【解析】试题分析:(1)求得二次函数y=ax2-4ax+c对称轴为直线x=2,把x=2代入y=x求得y=,即可得点C的坐标;(2)①根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m),根据S△ACD=3即可求得m的值,即求得点A的坐标,把A.D的坐标代入y=ax2-4ax+c得方程组,解得a、c的值即可得二次函数的表达式.②设A(m,m)(m<2),过点A作AE⊥CD于E,则AE=2-m,CE=-m,根据勾股定理用m表示出AC的长,根据△ACD的面积等于10可求得m的值,即可得A 点的坐标,分两种情况:第一种情况,若a>0,则点D在点C下方,求点D的坐标;第二种情况,若a<0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入y=ax2-4ax+c即可求得函数表达式.试题解析:(1)y=ax2-4ax+c=a(x-2)2-4a+c.∴二次函数图像的对称轴为直线x =2.当x=2时,y=x=,∴C(2,).(2)①∵点D与点C关于x轴对称,∴D(2,-),∴CD=3.设A(m,m)(m<2),由S△ACD=3,得×3×(2-m)=3,解得m=0,∴A(0,0).由A(0,0)、 D(2,-)得解得a=,c=0.∴y=x2-x.②设A(m,m)(m<2),过点A作AE⊥CD于E,则AE=2-m,CE=-m,。
专题02 二次函数(满分突破卷)【满分王】(解析版)
专题02 二次函数(满分突破卷)1.将抛物线y=3x2向上平移4个单位,再向右平移2个单位,所得抛物线的函数解析式为 .【答案】y=3(x﹣2)2+4.【解答】解:将抛物线y=3x2向上平移4个单位,再向右平移2个单位,所得抛物线的函数解析式为y=3(x﹣2)2+4,故答案是:y=3(x﹣2)2+4.2.当m﹣2≤x≤m时,函数y=x2﹣4x+4的最小值为4,则m的值为 .【答案】:0或6.【解答】解:∵二次函数y=x2﹣4x+4=(x﹣2)2,∴该函数的对称轴是直线x=2,∵当m﹣2≤x≤m时,函数y=x2﹣4x+4的最小值为4,且x=0和x=4时,y=4,①当m≤0,得m=0时,当m﹣2≤x≤m时,函数y=x2﹣4x+4的最小值为4;②当m﹣2≥4,得m=6时,当m﹣2≤x≤m时,函数y=x2﹣4x+4的最小值为4;由上可得,m的值是0或6,故答案为:0或6.3.已知二次函数y=﹣(x﹣k)2+h,当x>2时,y随x的增大而减小,则函数中k的取值范围是( )A.k≥2B.k≤2C.k=2D.k≤﹣2【答案】B【解答】解:抛物线的对称轴为直线x=k,因为a=﹣1<0,所以抛物线开口向下,所以当x>k时,y的值随x值的增大而减小,而x>2时,y的值随x值的增大而减小,所以k≤2.故选:B.4.在平面直角坐标系中,抛物线y=x2的图象如图所示.已知点A的坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线交于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线交于点A4,…,依此规律进行下去,则点A2020的坐标为 .【解答】解:∵A点坐标为(1,1),∴直线OA为y=x,A1(﹣1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解得或,∴A2(2,4),∴A3(﹣2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解得或,∴A4(3,9),∴A5(﹣3,9)…,∴A2020(1011,10112),故答案为(1011,10112).5.(2022•莱芜区一模)将抛物线y=﹣(x+1)2的图象位于直线y=﹣4以下的部分向上翻折,得到如图所示的图象,若直线y=x+m与图象只有四个交点,则m的取值范围是( )A.﹣1<m<1B.1<m<C.﹣1<m<D.﹣1<m<【答案】C【解答】解:令y=﹣4,则﹣4=﹣(x+1)2,解得x=﹣3或1,∴A(﹣3,﹣4),平移直线y=x+m知:直线位于l1和l2时,它与新图象有三个不同的公共点.①当直线位于l1时,此时l1过点A(﹣3,﹣4),∴﹣4=﹣3+m,即m=﹣1.②当直线位于l2时,此时l2与函数y=﹣(x+1)2的图象有一个公共点,∴方程x+m=﹣x2﹣2x﹣1,即x2+3x+1+m=0有两个相等实根,∴△=9﹣4(1+m)=0,即m=.由①②知若直线y=﹣x+m与新图象只有四个交点,m的取值范围为﹣1<m<.故选:C.6.如图,菱形ABCD的边长为2,∠A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为( )A.B.C.D.【答案】A【解答】解:∵菱形ABCD的边长为2,∠A=60°,∴∠DBC=60°,∵BQ=2+x,QH⊥BD,∴BH=BQ=1+x,过H作HG⊥BC,∴HG=BH=+x,∴S=PB•GH=x2+x,(0<x≤2),故选:A.7.(2022•日照一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b2<4ac;③2c<3b;④a+2b>m(am+b)(m≠1);⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为2,其中正确的结论有( )A.2个B.3个C.4个D.5个【答案】A【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc<0,①错误.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,∴b2>4ac,②错误.∵x=﹣1时,y<0,∴a﹣b+c<0,∵b=﹣2a,∴a=﹣,∴﹣b+c<0,∴2c<3b,③正确.∵x=1时,y=a+b+c为函数最大值,∴a+b+c>m(am+b)+c(m≠1),∴a+b>m(am+b)(m≠1),∵b>0,∴a+2b>a+b>m(am+b)(m≠1),④正确.方程|ax2+bx+c|=1的四个根分别为ax2+bx+c=1和ax2+bx+c=﹣1的根,∵抛物线y=ax2+bx+c关于直线x=1对称,∴抛物线与直线y=1的交点的横坐标为之和为2,抛物线与直线y=﹣1的交点横坐标为之和为2,∴方程|ax2+bx+c|=1的四个根的和为4,⑤错误.故选:A8.“燃情冰雪,拼出未来”,北京冬奥会将于2022年2月4日如约而至.某商家已提前开始冬奥会吉祥物“冰墩墩”纪念品的销售.每个纪念品进价40元,规定销售单价不低于44元,且不高于52元.销售期间发现,当销售单价定为44元时,每天可售出300个,销售单价每上涨1元,每天销量减少10个.现商家决定提价销售,设每天销售量为y个,销售单价为x元.(1)直接写出y与x之间的函数关系式和自变量x的取值范围;(2)求当每个纪念品的销售单价是多少元时,商家每天获利2400元;(3)将纪念品的销售单价定为多少元时,商家每天销售纪念品获得的利润w元最大?最大利润是多少元?【解答】解:(1)根据题意得:y=300﹣10(x﹣44)=﹣10x+740,∴y与x之间的函数关系式为y=﹣10x+740(44≤x≤52);(2)根据题意得:(﹣10x+740)(x﹣40)=2400,整理得:x2﹣114x+3200=0,解得:x1=50,x2=64,∵44≤x≤52,∴x=50,∴当每个纪念品的销售单价是50元时,商家每天获利2400元;(3)根据题意得:w=(﹣10x+740)(x﹣40)=﹣10x2+1140x﹣29600=﹣10(x﹣57)2+2890,∵﹣10<0,∴当x<57时,w随x的增大而增大,∵44≤x≤52,∴当x=52时,w有最大值,最大值为2640,∴将纪念品的销售单价定为52元时,商家每天销售纪念品获得的利润w元最大,最大利润是2640元.9.如图,△ABC是等腰直角三角形,AB=,D为斜边BC上的一点(D与B、C均不重合),连接AD,把△ABD绕点A按逆时针旋转后得到△ACE,连接DE,设BD=x.(1)求证∠DCE=90°;(2)当△DCE的面积为1.5时,求x的值;(3)试问:△DCE的面积是否存在最大值?若存在,请求出这个最大值,并指出此时x 的取值;若不存在,请说明理由.【解答】解:(1)∵△ABD绕点A按逆时针旋转后得到△ACE,∴△ACE≌△ABD,∴∠ABD=∠ACE,(2分)又∵△ABC是等腰直角三角形,且BC为斜边,∴∠ABD+∠ACD=90°,(3分)∴∠ACE+∠ACD=90°,即:∠DCE=90°;(5分)(2)∵AC=AB=,∴BC2=AC2+AB2=,∴BC=4.(6分)∵△ACE≌△ABD,∠DCE=90°,∴CE=BD=x,而BC=4,∴DC=4﹣x,∴Rt△DCE的面积为:DC•CE=(4﹣x)x.∴(4﹣x)x=1.5,(8分)即x2﹣4x+3=0.解得x=1或x=3.(10分)(3)△DCE存在最大值.(11分)理由如下:设△DCE的面积为y,于是得y与x的函数关系式为:y=(4﹣x)x(0<x<4),(12分)=﹣(x﹣2)2+2,∵a=﹣<0,∴当x=2时,函数y有最大值2.(13分)又∵x满足关系式0<x<4,故当x=2时,△DCE的最大面积为2.(14分)10.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C (0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.【解答】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣3x﹣4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PC,此时P点即为满足条件的点,∵C(0,﹣4),∴D(0,﹣2),∴P点纵坐标为﹣2,代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,﹣2);(3)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P 作PE ⊥x 轴于点E ,交直线BC 于点F ,如图2,∵B (4,0),C (0,﹣4),∴直线BC 解析式为y =x ﹣4,∴F (t ,t ﹣4),∴PF =(t ﹣4)﹣(t 2﹣3t ﹣4)=﹣t 2+4t ,∴S △PBC =S △PFC +S △PFB =PF •OE +PF •BE =PF •(OE +BE )=PF •OB =(﹣t 2+4t )×4=﹣2(t ﹣2)2+8,∴当t =2时,S △PBC 最大值为8,此时t 2﹣3t ﹣4=﹣6,∴当P 点坐标为(2,﹣6)时,△PBC 的最大面积为8.11.如图,已知抛物线y =﹣x 2+mx +m ﹣2的顶点为A ,且经过点B (3,﹣3).(1)求顶点A 的坐标;(2)在对称轴左侧的抛物线上存在一点P ,使得∠PAB =45°,求点P 坐标;(3)如图(2),将原抛物线沿射线OA 方向进行平移得到新的抛物线,新抛物线与射线OA 交于C ,D 两点,请问:在抛物线平移的过程中,线段CD 的长度是否为定值?若是,请求出这个定值;若不是,请说明理由.【解答】解:(1)依题意﹣32+3m+m﹣2=﹣3∴m=2,∴y=﹣x2+2x=﹣(x﹣1)2+1∴顶点A(1,1);(2)过B作BQ⊥BA交AP于Q,过B作GH∥y轴分别过A,Q作AG⊥GH于G,QH⊥GH于H,∠AGB=∠ABQ=∠BHQ=90°,∴∠ABG=∠BQH.∵∠PAB=45°,∴BA=BQ.在△ABG和△BQH中,,∴△ABG≌△BQH(AAS),∴AG=BH=3﹣1=2,BG=QH=1﹣(﹣3)=4∴Q(﹣1,﹣5)∴直线AP的解析式为y=3x﹣2联立抛物线与AP,得∴﹣x2+2x=3x﹣2∴x1=1(不符合题意的解要舍去),x2=﹣2∴P(﹣2,﹣8);(3)在抛物线平移的过程中,线段CD的长度是为定值,∵直线OA的解析式为y=x,∴可设新抛物线解析式为y=﹣(x﹣a)2+a联立抛物线与OA,,∴﹣(x﹣a)2+a=x,∴x1=a,x2=a﹣1,x1﹣x2=1;y1=x1=a,y2=x2=a﹣1,y1﹣y2=1;即C,D两点横坐标的差是常数1,C,D两点纵坐标的差是常数1,∴CD====,∴在抛物线平移的过程中,线段CD的长度是定值.12.如图,直线y=x﹣3与坐标轴交于A、B两点,抛物线y=x2+bx+c经过点B,与直线y=x﹣3交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【解答】解:(1)直线y=x﹣3与坐标轴交于A、B两点,则A(3,0)B(0,﹣3),把B、E点坐标代入二次函数方程,解得:抛物线的解析式y=x2﹣x﹣3…①,则:C(6,0);(2)符合条件的有M和M′,如下图所示,当∠MBE=75°时,∵OA=OB,∴∠MBO=30°,此时符合条件的M只有如图所示的一个点,MB直线的k为﹣,所在的直线方程为:y=﹣x﹣3…②,联立方程①、②可求得:x=4﹣4,即:点M的横坐标4﹣4;当∠M′BE=75°时,∠OBM′=120°,直线M′B的k值为﹣,其方程为y=﹣x﹣3,将M′B所在的方程与抛物线表达式联立,解得:x=,故:即:点M的横坐标4﹣4或.(3)存在.①当BC为矩形对角线时,矩形BP′CQ′所在的位置如图所示,设:P′(m,n),n=m2﹣m﹣3…③,P′C所在直线的k1=,P′B所在的直线k2=,则:k1•k2=﹣1…④,③、④联立得:=0,解得:m=0或6,这两个点分别和点B、C重合,与题意不符,故:这种情况不存在,舍去.②当BC为矩形一边时,情况一:矩形BCQP所在的位置如图所示,直线BC所在的方程为:y=x﹣3,则:直线BP的k为﹣2,所在的方程为y=﹣2x﹣3…⑤,联立①⑤解得点P(﹣4,5),则Q(2,8),情况二:矩形BCP″Q″所在的位置如图所示,此时,P″在抛物线上,其坐标为:(﹣10,32),Q″坐标为(﹣16,29).故:存在矩形,点Q的坐标为:(2,8)或(﹣16,29).13.直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,与抛物线y=ax2﹣2ax+a+4(a <0)交于点B,如图所示.(1)求该抛物线的解析式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,四边形OAMB的面积为S,求S与m的函数表达式,并求出S的最大值;(3)若点D在平面内,点C在直线AB上,平面内是否存在点D使得以O,B,C,D 为顶点的四边形是菱形.若存在,请直接写出点D的坐标;若不存在,请说明理由.【解答】解:(1)∵直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,∴A(1,0)、B(0,3);∵抛物线y=ax2﹣2ax+a+4(a<0)经过点B,∴a+4=3,∴a=﹣1,∴该抛物线的解析式为y=﹣x2+2x+3;(2)过点M作MH⊥x轴于点H,如图所示:设点M (m ,﹣m 2+2m +3),则S =S 梯形BOHM ﹣S △AMH=(3﹣m 2+2m +3)×m ﹣(m ﹣1)×(﹣m 2+2m +3)=﹣m 2+m +,∵﹣<0,∴S 有最大值,当m =时,S 的最大值是.∴S 与m 的函数表达式为S =﹣m 2+m +,S 的最大值是;(3)设点C 的坐标为(m ,﹣3m +3),而点B 和点O 的坐标分别为(0,3)和(0,0),①当OB 是菱形的一条边时,∵OB =BC =3,或OB =OC =3,∴9=(m ﹣0)2+(﹣3m +3﹣3)2,或m 2+(﹣3m +3)2=9,∴m =±或m =或m =0(舍),∴点D的坐标为(﹣,)或(,﹣)或(,);②当OB是菱形的对角线时,CD必在OB的中垂线上,∴y C=,∴点C(,),此时BC2=+==CO2,此时以O、C、B、D为顶点的四边形是菱形,则点D(﹣,).综上所述,点D的坐标为(﹣,)或(,﹣)或(,)或(﹣,).。
【数学】数学二次函数的专项培优练习题附详细答案
一、二次函数 真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线2234323y x x =--+与其“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由.【答案】(1)2323y=;(-2,231,0); (2)N 点的坐标为(0,3-3),(0,23+3);(3)E (-1,43F (023)或E (-1,43),F (-4103) 【解析】【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D ,则可知AN=AC ,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可【详解】(1)∵23432333y x x =--+a=233-,则抛物线的“衍生直线”的解析式为2323y=x+33-;联立两解析式求交点22343232323y=x+y x x⎧=--+⎪⎪⎨⎪-⎪⎩,解得x=-2y=23⎧⎪⎨⎪⎩或x=1y=0⎧⎨⎩,∴A(-2,23),B(1,0);(2)如图1,过A作AD⊥y轴于点D,在223432333y x x=--+中,令y=0可求得x= -3或x=1,∴C(-3,0),且A(-2,23),∴AC=22-++2133=(23)()由翻折的性质可知AN=AC=13,∵△AMN为该抛物线的“衍生三角形”,∴N在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN=22AN-AD=13-4=3,∵OD=23,∴ON=23-3或ON=23+3,∴N点的坐标为(0,23-3),(0,23+3);(3)①当AC为平行四边形的边时,如图2 ,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ ACK=∠ EFH,在△ ACK和△ EFH中ACK=EFHAKC=EHFAC=EF∠∠⎧⎪∠∠⎨⎪⎩∴△ ACK≌△ EFH,∴FH=CK=1,HE=AK=23,∵抛物线的对称轴为x=-1,∴ F点的横坐标为0或-2,∵点F在直线AB上,∴当F点的横坐标为0时,则F(0,23),此时点E在直线AB下方,∴E到y轴的距离为EH-OF=23-23=43,即E的纵坐标为-43,∴ E(-1,-43);当F点的横坐标为-2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵ C(-3,0),且A(-2,23),∴线段AC的中点坐标为(-2.5,3),设E(-1,t),F(x,y),则x-1=2×(-2.5),y+t=23,∴x= -4,y=23-t,23-t=-233×(-4)+233,解得t=43-3,∴E(-1,43-3),F(-4,1033);综上可知存在满足条件的点F,此时E(-1,-43)、(0,23)或E(-1,43-),F(-4,103)【点睛】本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题2.函数()2110,>02y x mx x m =-++≥的图象记为1C ,函数()2110,>02y x mx x m =---<的图象记为2C ,其中m 为常数,1C 与2C 合起来的图象记为C .(Ⅰ)若1C 过点()1,1时,求m 的值;(Ⅱ)若2C 的顶点在直线1y =上,求m 的值;(Ⅲ)设C 在42x -≤≤上最高点的纵坐标为0y ,当0392y ≤≤时,求m 的取值范围. 【答案】(Ⅰ)12m =;(Ⅱ)2m =;(Ⅲ)912m ≤≤. 【解析】【分析】(Ⅰ)将点C 的坐标代入1C 的解析式即可求出m 的值;(Ⅱ)先求出抛物线2C 的顶点坐标,再根据顶点在直线y 1=上得出关于m 的方程,解之即可(Ⅲ)先求出抛物线1C 的顶点坐标,结合(Ⅱ)抛物线2C 的顶点坐标,和x 的取值范围,分三种情形讨论求解即可;【详解】解:(Ⅰ)将点()1,1代入1C 的解析式,解得1m .2= (Ⅱ)抛物线2C 的顶点坐标为2m m,12⎛⎫-- ⎪⎝⎭, 令2m 112-=,得m 2,=± ∵m>0,∴m 2.=(Ⅲ)∵抛物线1C 的顶点2m P m,12⎛⎫+ ⎪⎝⎭,抛物线2C 的顶点2m Q m,12⎛⎫-- ⎪⎝⎭, 当0m 2<≤时,最高点是抛物线G 1的顶点 ∴203m y 1922≤=+≤,解得1m 2.≤≤ 当2m 4<≤时,G 1中(2,2m-1)是最高点,0y =2m-1 ∴32≤2m-19≤,解得2m 4.<≤ 当m>4时,G 2中(-4,4m-9)是最高点,0y =4m-9.∴32≤4m-99≤,解得94m 2<≤. 综上所述,91m 2≤≤即为所求. 【点睛】本题考查二次函数综合题,待定系数法、不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,利用数形结合的思想解决问题,属于中考压轴题.3.综合与探究如图,抛物线26y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC .(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】(1)233642y x x =-++;(2)3;(3)1234(8,0),(0,0),(14,0),(14,0)M M M M -. 【解析】【分析】 (1)利用待定系数法进行求解即可;(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F ,先求出S △OAC =6,再根据S △BCD =34S △AOC ,得到S △BCD =92,然后求出BC 的解析式为362y x =-+,则可得点G 的坐标为3(,6)2m m -+,由此可得2334DG m m =-+,再根据S △BCD =S △CDG +S △BDG =12DG BO ⋅⋅,可得关于m 的方程,解方程即可求得答案; (3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图,以BD 为边时,有3种情况,由点D 的坐标可得点N 点纵坐标为±154,然后分点N 的纵坐标为154和点N 的纵坐标为154-两种情况分别求解;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,根据平行四边形的对边平行且相等可求得BM 1=N 1D=4,继而求得OM 1= 8,由此即可求得答案.【详解】(1)抛物线2y ax bx c =++经过点A(-2,0),B(4,0),∴426016460a b a b -+=⎧⎨++=⎩, 解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的函数表达式为233642y x x =-++; (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F ,∵点A 的坐标为(-2,0),∴OA=2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC=6,∴S △OAC =1126622OA OC ⋅⋅=⨯⨯=, ∵S △BCD =34S △AOC , ∴S △BCD =39642⨯=, 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩,解得326k n ⎧=-⎪⎨⎪=⎩, ∴直线BC 的函数表达式为362y x =-+, ∴点G 的坐标为3(,6)2m m -+, ∴2233336(6)34224DG m m m m m =-++--+=-+, ∵点B 的坐标为(4,0),∴OB=4,∵S △BCD =S △CDG +S △BDG =1111()2222DG CF DG BE DG CF BE DG BO ⋅⋅+⋅⋅=⋅+=⋅⋅,∴S △BCD =22133346242m m m m -+⨯=-+(), ∴239622m m -+=, 解得11m =(舍),23m =,∴m 的值为3;(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图, 以BD 为边时,有3种情况,∵D 点坐标为15(3,)4,∴点N 点纵坐标为±154, 当点N 的纵坐标为154时,如点N 2, 此时233156424x x -++=,解得:121,3x x =-=(舍), ∴215(1,)4N -,∴2(0,0)M ; 当点N 的纵坐标为154-时,如点N 3,N 4, 此时233156424x x -++=-,解得:12114,114x x ==∴315(114,)4N +-,415(114,)4N -, ∴3(14,0)M ,4(14,0)M -;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,∵115(1,)4N -,D(3,154), ∴N 1D=4,∴BM 1=N 1D=4,∴OM 1=OB+BM 1=8,∴M 1(8,0), 综上,点M 的坐标为:1234(80)(00)(14(14M M M M -,,,,,,,.【点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.4.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y 轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.【答案】(1)y=﹣x2+2x+1;(2)-3;(3)当2﹣1时,点P的坐标为(02)和(022);当m=2时,点P的坐标为(0,1)和(0,2).【解析】【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)利用待定系数法进行求解可即得;(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=12 BG•xN﹣12BG•x M=1得出x N﹣x M=1,联立直线和抛物线解析式求得x=228k k-±-,根据x N﹣x M=1列出关于k的方程,解之可得;(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.【详解】(1)由题意知()1211bc⎧-=⎪⨯-⎨⎪=⎩,解得:21bc=⎧⎨=⎩,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,设M点的横坐标为x M,N点的横坐标为x N,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=12BG•(x N﹣1)-12BG•(x M-1)=1,∴x N﹣x M=1,由2421y kx ky x x=-+⎧⎨=--+⎩得:x2+(k﹣2)x﹣k+3=0,解得:()()22243k k k-±---228k k-±-,则x N228k k-+-、x M228k k---由x N﹣x M=128k-,∴k=±3,∵k <0,∴k=﹣3;(3)如图2,设抛物线L 1的解析式为y=﹣x 2+2x+1+m , ∴C (0,1+m )、D (2,1+m )、F (1,0), 设P (0,t ),(a )当△PCD ∽△FOP 时,PC FO CD OP =, ∴112m t t+-=, ∴t 2﹣(1+m )t+2=0①; (b)当△PCD ∽△POF 时,PC PO CD OF =, ∴121m t t +-=, ∴t=13(m+1)②; (Ⅰ)当方程①有两个相等实数根时,△=(1+m )2﹣8=0,解得:21(负值舍去),此时方程①有两个相等实数根t 1=t 22, 方程②有一个实数根t=223, ∴2﹣1,此时点P 的坐标为(02)和(022); (Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:19(m+1)2﹣13(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程②有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=22﹣1时,点P的坐标为(0,2)和(0,223);当m=2时,点P的坐标为(0,1)和(0,2).【点睛】本题主要考查二次函数的应用,涉及到待定系数法求函数解析式、割补法求三角形的面积、相似三角形的判定与性质等,(2)小题中根据三角形BMN的面积求得点N与点M的横坐标之差是解题的关键;(3)小题中运用分类讨论思想进行求解是关键.5.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【解析】【分析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=12×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3; (2)令y=0,则x 2﹣4x+3=0, 解得:x=1或x=3, ∴B (3,0), ∴BC=32,点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1, ①当CP=CB 时,PC=32,∴OP=OC+PC=3+32或OP=PC ﹣OC=32﹣3 ∴P 1(0,3+32),P 2(0,3﹣32); ②当PB=PC 时,OP=OB=3, ∴P 3(0,-3); ③当BP=BC 时, ∵OC=OB=3 ∴此时P 与O 重合, ∴P 4(0,0);综上所述,点P 的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t ,由AB=2,得BM=2﹣t ,则DN=2t , ∴S △MNB=12×(2﹣t )×2t=﹣t 2+2t=﹣(t ﹣1)2+1, 当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.6.已知:如图,抛物线y =ax 2+bx +3与坐标轴分别交于点A ,B (﹣3,0),C (1,0),点P 是线段AB 上方抛物线上的一个动点. (1)求抛物线解析式;(2)当点P 运动到什么位置时,△PAB 的面积最大?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 作PE ∥x 轴交抛物线于点E ,连接DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求点P 的坐标;若不存在,说明理由.【答案】(1)y =﹣x 2﹣2x +3 (2)(﹣32,154) (3)存在,P (﹣2,3)或P (5172-+,53172-+)【解析】 【分析】(1)用待定系数法求解;(2)过点P 作PH ⊥x 轴于点H ,交AB 于点F ,直线AB 解析式为y =x +3,设P (t ,﹣t 2﹣2t +3)(﹣3<t <0),则F (t ,t +3),则PF =﹣t 2﹣2t +3﹣(t +3)=﹣t 2﹣3t ,根据S △PAB =S △PAF +S △PBF 写出解析式,再求函数最大值;(3)设P (t ,﹣t 2﹣2t +3)(﹣3<t <0),则D (t ,t +3),PD =﹣t 2﹣3t ,由抛物线y =﹣x 2﹣2x +3=﹣(x +1)2+4,由对称轴为直线x =﹣1,PE ∥x 轴交抛物线于点E ,得y E =y P ,即点E 、P 关于对称轴对称,所以2E Px x +=﹣1,得x E =﹣2﹣x P =﹣2﹣t ,故PE =|x E ﹣x P |=|﹣2﹣2t |,由△PDE 为等腰直角三角形,∠DPE =90°,得PD =PE ,再分情况讨论:①当﹣3<t≤﹣1时,PE =﹣2﹣2t ;②当﹣1<t <0时,PE =2+2t 【详解】解:(1)∵抛物线y =ax 2+bx +3过点B (﹣3,0),C (1,0)∴933030a b a b -+=⎧⎨++=⎩ 解得:12a b =-⎧⎨=-⎩∴抛物线解析式为y =﹣x 2﹣2x +3(2)过点P 作PH ⊥x 轴于点H ,交AB 于点F ∵x =0时,y =﹣x 2﹣2x +3=3 ∴A (0,3)∴直线AB 解析式为y =x +3 ∵点P 在线段AB 上方抛物线上 ∴设P (t ,﹣t 2﹣2t +3)(﹣3<t <0) ∴F (t ,t +3)∴PF =﹣t 2﹣2t +3﹣(t +3)=﹣t 2﹣3t ∴S △PAB =S △PAF +S △PBF =12PF •OH +12PF •BH =12PF •OB =32(﹣t 2﹣3t )=﹣32(t +32)2+278∴点P 运动到坐标为(﹣32,154),△PAB 面积最大 (3)存在点P 使△PDE 为等腰直角三角形设P (t ,﹣t 2﹣2t +3)(﹣3<t <0),则D (t ,t +3) ∴PD =﹣t 2﹣2t +3﹣(t +3)=﹣t 2﹣3t ∵抛物线y =﹣x 2﹣2x +3=﹣(x +1)2+4 ∴对称轴为直线x =﹣1 ∵PE ∥x 轴交抛物线于点E∴y E =y P ,即点E 、P 关于对称轴对称∴2E Px x +=﹣1 ∴x E =﹣2﹣x P =﹣2﹣t ∴PE =|x E ﹣x P |=|﹣2﹣2t |∵△PDE 为等腰直角三角形,∠DPE =90° ∴PD =PE①当﹣3<t ≤﹣1时,PE =﹣2﹣2t ∴﹣t 2﹣3t =﹣2﹣2t 解得:t 1=1(舍去),t 2=﹣2 ∴P (﹣2,3)②当﹣1<t <0时,PE =2+2t ∴﹣t 2﹣3t =2+2t解得:t 1=517-+,t 2=517--(舍去) ∴P (5172-+,53172-+)综上所述,点P 坐标为(﹣2,3)或(517-+,5317-+)时使△PDE 为等腰直角三角形.【点睛】考核知识点:二次函数的综合.数形结合分析问题,运用轴对称性质和等腰三角形性质分析问题是关键.7.如图,抛物线25(0)y ax bx a =+-≠经过x 轴上的点A (1,0)和点B 及y 轴上的点C ,经过B 、C 两点的直线为y x n =+. ①求抛物线的解析式.②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,△PBE 的面积最大并求出最大值.③过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B 、C 重合)作直线AM 的平行线交直线BC 于点Q .若点A 、M 、N 、Q 为顶点的四边形是平行四边形,求点N 的横坐标.【答案】①265y x x =-+-;②当2t =时,△PBE 的面积最大,最大值为22③点N 的横坐标为:4或52+或52. 【解析】 【分析】①点B 、C 在直线为y x n =+上,则B (﹣n ,0)、C (0,n ),点A (1,0)在抛物线上,所以250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩,解得1a =-,6b =,因此抛物线解析式:265y x x =-+-;②先求出点P 到BC 的高h为sin 45(4)2BP t ︒=-,于是211)22)22PBE S BE h t t t ∆=⋅=-⨯=-+2t =时,△PBE 的面积最大,最大值为③由①知,BC 所在直线为:5y x =-,所以点A 到直线BC的距离d =N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN为等腰直角三角形,即NQ PQ ==4PN =,Ⅰ.4NH HP +=,所以265(5)4m m m -+---=解得11m =(舍去),24m =,Ⅱ.4NH HP +=,()25654m m m ---+-=解得1m =,2m =去),Ⅲ.4NH HP -=,()265[(5)]4m m m --+----=,解得152m =(舍去),252m =. 【详解】解:①∵点B 、C 在直线为y x n =+上, ∴B (﹣n ,0)、C (0,n ), ∵点A (1,0)在抛物线上,∴250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩, ∴1a =-,6b =,∴抛物线解析式:265y x x =-+-; ②由题意,得,4PB t =-,2BE t =,由①知,45OBC ︒∠=,∴点P 到BC 的高h 为sin 45)BP t ︒=-,∴211)22)22PBE S BE h t t t ∆=⋅=-⨯=-+当2t =时,△PBE 的面积最大,最大值为 ③由①知,BC 所在直线为:5y x =-, ∴点A 到直线BC 的距离d =过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H . 设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN 为等腰直角三角形,即NQ PQ == ∴4PN =, Ⅰ.4NH HP +=, ∴265(5)4m m m -+---= 解得11m =,24m =,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形, ∴4m =;Ⅱ.4NH HP +=, ∴()25654m m m ---+-=解得152m =,252m =,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,5m >,∴52m =, Ⅲ.4NH HP -=,∴()265[(5)]4m m m --+----=,解得152m =,252m =,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,0m <,∴52m =, 综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或5412+或5412-. 【点睛】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.8.如图,顶点M 在y 轴上的抛物线与直线y=x+1相交于A 、B 两点,且点A 在x 轴上,点B 的横坐标为2,连结AM 、BM . (1)求抛物线的函数关系式; (2)判断△ABM 的形状,并说明理由;(3)把抛物线与直线y=x 的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m ,2m ),当m 满足什么条件时,平移后的抛物线总有不动点.【答案】(1)抛物线解析式为y=x 2﹣1;(2)△ABM 为直角三角形.理由见解析;(3)当m≤时,平移后的抛物线总有不动点. 【解析】试题分析:(1)分别写出A 、B 的坐标,利用待定系数法求出抛物线的解析式即可; 根据OA =OM =1,AC =BC =3,分别得到∠MAC =45°,∠BAC =45°,得到∠BAM =90°,进而得到△ABM 是直角三角形;(3)根据抛物线的平以后的顶点设其解析式为,∵抛物线的不动点是抛物线与直线的交点,∴,方程总有实数根,则≥0,得到m 的取值范围即可试题解析:解:(1)∵点A 是直线与轴的交点,∴A 点为(-1,0)∵点B 在直线上,且横坐标为2,∴B 点为(2,3)∵过点A 、B 的抛物线的顶点M 在轴上,故设其解析式为:∴,解得:∴抛物线的解析式为.(2)△ABM 是直角三角形,且∠BAM =90°.理由如下:作BC ⊥轴于点C ,∵A (-1,0)、B (2,3)∴AC =BC =3,∴∠BAC =45°;点M 是抛物线的顶点,∴M 点为(0,-1)∴OA =OM =1,∵∠AOM =90°∴∠MAC =45°;∴∠BAM =∠BAC +∠MAC =90°∴△ABM 是直角三角形. (3)将抛物线的顶点平移至点(,),则其解析式为.∵抛物线的不动点是抛物线与直线的交点,∴化简得:∴==当时,方程总有实数根,即平移后的抛物线总有不动点 ∴.考点:二次函数的综合应用(待定系数法;直角三角形的判定;一元二次方程根的判别式)9.如图,已知抛物线2(0)y ax bx a =+≠过点A(3,-3) 和B(33,0),过点A 作直线AC//x 轴,交y 轴与点C . (1)求抛物线的解析式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D ,连接OA ,使得以A ,D ,P 为顶点的三角形与△AOC 相似,求出对应点P 的坐标; (3)抛物线上是否存在点Q ,使得13AOC AOQ S S ∆∆=?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)213322y x x =-;(2)P 点坐标为(383,- 43);(3)Q 点坐标(30)或(315) 【解析】 【分析】(1)把A 与B 坐标代入抛物线解析式求出a 与b 的值,即可确定出解析式;(2)设P坐标为21,2x x x ⎛⎫- ⎪ ⎪⎝⎭,表示出AD 与PD ,由相似分两种情况得比例求出x 的值,即可确定出P 坐标;(3)存在,求出已知三角形AOC 边OA 上的高h ,过O 作OM ⊥OA ,截取OM=h,与y 轴交于点N ,分别确定出M 与N 坐标,利用待定系数法求出直线MN 解析式,与抛物线解析式联立求出Q 坐标即可. 【详解】(1)把A 3)-和点B 0)代入抛物线得:33270a a ⎧+=-⎪⎨+=⎪⎩,解得:12a =,b =,则抛物线解析式为212y x x =-; (2)当P 在直线AD 上方时, 设P坐标为21,2x x x ⎛⎫ ⎪ ⎪⎝⎭,则有AD x =21322PD x x =-+, 当OCA ADP ∆∆∽时,OC CA AD DP ==,整理得:23186x -+=-,即23240x -+=,解得:6x =,即3x =或x =此时(3P ,4)3-;当OCA PDA ∆∆∽时,OC CA PD AD ==,296x x -+=-2120x -+=,解得:x =x =此时P 6);当点()0,0P 时,也满足OCA PDA ∆∆∽; 当P 在直线AD 下方时,同理可得:P的坐标为10)3-,综上,P的坐标为83(3,4)3-或(43,6)或43(3,10)3-或()0,0;(3)在Rt AOC∆中,3OC=,3AC=,根据勾股定理得:23OA=,11··22OC AC OA h=,32h∴=,1333AOC AOQS S∆∆==,AOQ∴∆边OA上的高为92,过O作OM OA⊥,截取92OM=,过M作//MN OA,交y轴于点N,如图所示:在Rt OMN∆中,29ON OM==,即()0,9N,过M作MH x⊥轴,在Rt OMH∆中,1924MH OM==,393OH==,即93(M,9)4,设直线MN解析式为9y kx=+,把M坐标代入得:99394=+,即3k=39y x=+,联立得:2391332y xy x x⎧=-+⎪⎨=-⎪⎩,解得:33xy⎧=⎪⎨=⎪⎩315xy⎧=-⎪⎨=⎪⎩(33Q0)或(23-,15),则抛物线上存在点Q ,使得13AOC AOQ S S ∆∆=,此时点Q 的坐标为(33,0)或(23-,15).【点睛】二次函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,点到直线的距离公式,熟练掌握待定系数法是解本题的关键.10.如图1,抛物线y=ax 2+2x+c 与x 轴交于A (﹣4,0),B (1,0)两点,过点B 的直线y=kx+23分别与y 轴及抛物线交于点C ,D . (1)求直线和抛物线的表达式; (2)动点P 从点O 出发,在x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;(3)如图2,将直线BD 沿y 轴向下平移4个单位后,与x 轴,y 轴分别交于E ,F 两点,在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM+MN 的值最小?若存在,求出其最小值及点M ,N 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=228233x x +-,BD 解析式为y=﹣2233x +;(2)t 的值为49、151296±、233.(3)N 点坐标为(﹣2,﹣2),M 点坐标为(﹣32,﹣54),213 【解析】分析:(1)利用待定系数法求解可得;(2)先求得点D 的坐标,过点D 分别作DE ⊥x 轴、DF ⊥y 轴,分P 1D ⊥P 1C 、P 2D ⊥DC 、P 3C ⊥DC 三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.详解:(1)把A (﹣4,0),B (1,0)代入y=ax 2+2x+c ,得168020a c a c -+=⎧⎨++=⎩,解得:2383 ac⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线解析式为:y=228233x x+-,∵过点B的直线y=kx+23,∴代入(1,0),得:k=﹣23,∴BD解析式为y=﹣2233x+;(2)由2282332233y x xy x﹣⎧=+-⎪⎪⎨⎪=+⎪⎩得交点坐标为D(﹣5,4),如图1,过D作DE⊥x轴于点E,作DF⊥y轴于点F,当P1D⊥P1C时,△P1DC为直角三角形,则△DEP1∽△P1OC,∴DEPO=PEOC,即4t=523t-,解得15129±,当P2D⊥DC于点D时,△P2DC为直角三角形由△P2DB∽△DEB得DBEB=2P BDB,5252,解得:t=233;当P3C⊥DC时,△DFC∽△COP3,∴DFOC =3CFP O,即523=103t,解得:t=49,∴t的值为49、15129±、233.(3)由已知直线EF解析式为:y=﹣23x﹣103,在抛物线上取点D的对称点D′,过点D′作D′N⊥EF于点N,交抛物线对称轴于点M过点N作NH⊥DD′于点H,此时,DM+MN=D′N最小.则△EOF∽△NHD′设点N坐标为(a,﹣21033a-),∴OENH=OFHD',即52104()33a---=1032a-,解得:a=﹣2,则N点坐标为(﹣2,﹣2),求得直线ND′的解析式为y=32x+1,当x=﹣32时,y=﹣54,∴M点坐标为(﹣32,﹣54),此时,DM+MN22D H NH'+2246+13点睛:本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.。
初三数学 二次函数的专项 培优练习题附详细答案
初三数学二次函数的专项培优练习题附详细答案一、二次函数1.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P13+515-),P2(35-1+52),P35+5,1+52),P4(552-,152).【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P 的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=12×3×3+12PG•AE,=92+12×3×(-m2+5m-3),=-32m2+152m,=32(m-52)2+758, ∵-32<0, ∴当m=52时,S 有最大值是758; (3)如图3,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,∵△OPF 是等腰直角三角形,且OP=PF ,易得△OMP ≌△PNF ,∴OM=PN ,∵P (m ,m 2-4m+3),则-m 2+4m-3=2-m ,解得:m=5+5或55-, ∴P 的坐标为(5+5,1+5)或(55-,15-); 如图4,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,∴PN=FM ,则-m2+4m-3=m-2,解得:x=3+5或35 -;P的坐标为(3+5,15-)或(35-,1+52);综上所述,点P的坐标是:(5+52,1+52)或(552-,152-)或(3+5,15-)或(35-,1+5).点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.2.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=14,∴抛物线的解析式为y=14(x-2)2=14x2-x+1.(2)联立直线AB与抛物线解析式成方程组,得:214114y xy x x⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114xy⎧⎪⎨⎪⎩==,2241xy⎧⎨⎩==,∴点A的坐标为(1,14),点B的坐标为(4,1).作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示).∵点B(4,1),直线l为y=-1,∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b(k≠0),将A(1,14)、B′(4,-3)代入y=kx+b,得:1443k bk b⎧+⎪⎨⎪+-⎩==,解得:131243kb⎧-⎪⎪⎨⎪⎪⎩==,∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等,∴(m-x 0)2+(n-y 0)2=(n+1)2,∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1.∵M (m ,n )为抛物线上一动点,∴n=14m 2-m+1, ∴m 2-2x 0m+x 02-2y 0(14m 2-m+1)+y 02=2(14m 2-m+1)+1, 整理得:(1-12-12y 0)m 2+(2-2x 0+2y 0)m+x 02+y 02-2y 0-3=0. ∵m 为任意值, ∴000220001110222220230y x y x y y ⎧--⎪⎪-+⎨⎪+--⎪⎩===,∴0021x y ⎧⎨⎩==, ∴定点F 的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P 的位置;(3)根据点M 到直线l 的距离与点M 到点F 的距离总是相等结合二次函数图象上点的坐标特征,找出关于x 0、y 0的方程组.3.如图,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式;(2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.①当线段PQ =34AB 时,求tan ∠CED 的值; ②当以点C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标.【答案】(1)抛物线的函数表达式为y =x 2-2x -3.(2)直线BC 的函数表达式为y =x -3.(3)①23.①P 1(122),P 2(16,74). 【解析】【分析】已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式.【详解】(1)∵抛物线的对称轴为直线x=1, ∴− 221bb a-⨯==1 ∴b=-2 ∵抛物线与y 轴交于点C (0,-3),∴c=-3,∴抛物线的函数表达式为y=x 2-2x-3;(2)∵抛物线与x 轴交于A 、B 两点,当y=0时,x 2-2x-3=0.∴x 1=-1,x 2=3.∵A 点在B 点左侧,∴A (-1,0),B (3,0)设过点B (3,0)、C (0,-3)的直线的函数表达式为y=kx+m ,则033k m m ==+⎧⎨-⎩, ∴13k m ⎧⎨-⎩==∴直线BC的函数表达式为y=x-3;(3)①∵AB=4,PQ=34 AB,∴PQ=3∵PQ⊥y轴∴PQ∥x轴,则由抛物线的对称性可得PM=32,∵对称轴是直线x=1,∴P到y轴的距离是12,∴点P的横坐标为−12,∴P(−12,−74)∴F(0,−74),∴FC=3-OF=3-74=54∵PQ垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(1-2,-2),P2(1-6,-52).设OE=a,则GE=2-a,当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),∴1=1×(2-a),∴a=1,∴CE=2,∴OF=OE+EF=2∴F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:x=1+2或1-2∵点P在第三象限.∴P1(1-2,-2),当CD为斜边时,DE⊥CE,∴OE=2,CE=1,∴OF=2.5,∴P和F的纵坐标为:-52,把y=-52,代入抛物线的函数表达式为y=x2-2x-3得:x=1-6,或1+6,∵点P在第三象限.∴P2(1-62,-52).综上所述:满足条件为P1(1-2,-2),P2(1-6,-52).【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.4.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s时,足球离地面最高,最大高度是4.5m;(2)能.【解析】试题分析:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.考点:二次函数的应用.5.抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.【答案】(1)y=x2﹣2x﹣3;(2)C(0,﹣3),D(0,﹣1);(3)P(2,﹣2).【解析】【分析】(1)把A (﹣1,0)、B (2,﹣3)两点坐标代入y =ax 2+bx ﹣3可得抛物线解析式. (2)当x =0时可求C 点坐标,求出直线AB 解析式,当x =0可求D 点坐标.(3)由题意可知P 点纵坐标为﹣2,代入抛物线解析式可求P 点横坐标.【详解】解:(1)把A (﹣1,0)、B (2,﹣3)两点坐标代入y =ax 2+bx ﹣3可得 304233a b a b --=⎧⎨+-=-⎩ 解得12a b =⎧⎨=-⎩∴y =x 2﹣2x ﹣3(2)把x =0代入y =x 2﹣2x ﹣3中可得y =﹣3∴C (0,﹣3)设y =kx+b ,把A (﹣1,0)、B (2,﹣3)两点坐标代入023k b k b -+=⎧⎨+=-⎩解得11k b =-⎧⎨=-⎩∴y =﹣x ﹣1∴D (0,﹣1)(3)由C (0,﹣3),D (0,﹣1)可知CD 的垂直平分线经过(0,﹣2)∴P 点纵坐标为﹣2,∴x 2﹣2x ﹣3=﹣2解得:x =∵x >0∴x =.∴P (,﹣2)【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x =0代入二次函数解析式和一次函数解析式可求图象与y 轴交点坐标,知道点P 纵坐标带入抛物线解析式可求点P 的横坐标.6.已知抛物线2(5)6y x m x m =-+-+-.(1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或【解析】【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论.【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知,方程的两根为:x = 即1216x x m =-=-+, 由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0),它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -),由题意,可得:6166m m m 或-+=-+=-56m m ∴==或【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.7.如图,已知二次函数图象的顶点坐标为(1,4)A ,与坐标轴交于B 、C 、D 三点,且B 点的坐标为(1,0)-.(1)求二次函数的解析式;(2)在二次函数图象位于x 轴上方部分有两个动点M 、N ,且点N 在点M 的左侧,过M 、N 作x 轴的垂线交x 轴于点G 、H 两点,当四边形MNHG 为矩形时,求该矩形周长的最大值;(3)当矩形MNHG 的周长最大时,能否在二次函数图象上找到一点P ,使PNC ∆的面积是矩形MNHG 面积的916?若存在,求出该点的横坐标;若不存在,请说明理由.【答案】(1)2y x 2x 3=-++ (2)最大值为10(3)故点P 坐标为:315(,)24或332362+--或332362--+. 【解析】【分析】(1)二次函数表达式为:()214y a x =-+,将点B 的坐标代入上式,即可求解; (2)矩形MNHG 的周长()()2222222223282C MN GM x x x x x =+=-+-++=-++,即可求解; (3)2711sin4532822PNC S PK CD PH ∆==⨯⨯=⨯⨯︒⨯94PH HG ==,即可求解.【详解】(1)二次函数表达式为:()214y a x =-+,将点B 的坐标代入上式得:044a =+,解得:1a =-,故函数表达式为:223y x x =-++…①;(2)设点M 的坐标为()2,23x x x -++,则点()22,23N x x x --++,则222MN x x x =-+=-,223GM x x =-++,矩形MNHG 的周长()()2222222223282C MN GM x x x x x =+=-+-++=-++, ∵20-<,故当22b x a=-=,C 有最大值,最大值为10, 此时2x =,点()0,3N 与点D 重合; (3)PNC ∆的面积是矩形MNHG 面积的916, 则99272316168PNC S MN GM ∆=⨯⨯=⨯⨯=, 连接DC ,在CD 得上下方等距离处作CD 的平行线m 、n ,过点P 作y 轴的平行线交CD 、直线n 于点H 、G ,即PH GH =,过点P 作PK CD ⊥于点K ,将()3,0C 、()0,3D 坐标代入一次函数表达式并解得:直线CD 的表达式为:3y x =-+,OC OD =,∴45OCD ODC PHK ∠=∠=︒=∠,32CD =设点()2,23P x x x -++,则点(),3H x x -+, 2711sin4532822PNC S PK CD PH ∆==⨯⨯=⨯⨯︒⨯ 解得:94PH HG ==, 则292334PH x x x =-+++-=, 解得:32x =, 故点315,24P ⎛⎫ ⎪⎝⎭, 直线n 的表达式为:93344y x x =-+-=-+…②, 联立①②并解得:3322x ±=, 即点'P 、''P 的坐标分别为332362+--⎝⎭、332362--+⎝⎭; 故点P 坐标为:315,24⎛⎫ ⎪⎝⎭或33236224⎛⎫+-- ⎪ ⎪⎝⎭或33236224⎛--+ ⎝⎭. 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.8.如图,在平面直角坐标系中,抛物线y=ax 2+2ax ﹣3a (a <0)与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E .(1)当a=﹣1时,求抛物线顶点D 的坐标,OE 等于多少;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.【答案】(1)(﹣1,4),3;(2)结论:OE的长与a值无关.理由见解析;(3)﹣3≤a≤﹣1;(4)n=﹣m﹣1(m<1).【解析】【分析】(1)求出直线CD的解析式即可解决问题;(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;(3)求出落在特殊情形下的a的值即可判断;(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题.【详解】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3,∴顶点D(﹣1,4),C(0,3),∴直线CD的解析式为y=﹣x+3,∴E(3,0),∴OE=3,(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(3)当β=45°时,OC=OE=3,∴﹣3a=3,∴a=﹣1,当β=60°时,在Rt△OCE中,33∴﹣3∴a=﹣3,∴45°≤β≤60°,a的取值范围为﹣3≤a≤﹣1.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,PM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,当顶点D在x轴上时,P(1,﹣2),此时m的值1,∵抛物线的顶点在第二象限,∴m<1.∴n=﹣m﹣1(m<1).故答案为:(1)(﹣1,4),3;(2)OE的长与a值无关;(3)3﹣1;(4)n=﹣m﹣1(m<1).【点睛】本题是二次函数综合题,考查了二次函数的图象与性质。
九年级数学 二次函数的专项 培优练习题含详细答案
九年级数学 二次函数的专项 培优练习题含详细答案一、二次函数1.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D .(1)求该二次函数的解析式及点C ,D 的坐标;(2)点(,0)P t 是x 轴上的动点,①求PC PD -的最大值及对应的点P 的坐标;②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2||23y a x a x =-+的图像只有一个公共点,求t 的取值范围.【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2)①最,P 的坐标为(3,0)-,②t 的取值范围为3t ≤-或332t ≤<或72t =. 【解析】【分析】(1)先利用对称轴公式x=2a 12a--=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标;(3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ 过点(0,3),即点Q 与点C 重合时,两图象有一个公共点,当线段PQ 过点(3,0),即点P 与点(3,0)重合时,两函数有两个公共点,写出t 的取值;②线段PQ 与当函数y=a|x|2-2a|x|+c (x≥0)时有一个公共点时,求t 的值;③当线段PQ 过点(-3,0),即点P 与点(-3,0)重合时,线段PQ 与当函数y=a|x|2-2a|x|+c (x <0)时也有一个公共点,则当t≤-3时,都满足条件;综合以上结论,得出t 的取值.【详解】解:(1)∵2a x 12a-=-=, ∴2y ax ax 3=-+的对称轴为x 1=.∵2y ax ax 3=-+人最大值为4,∴抛物线过点()1,4.得a 2a 34-+=,解得a 1=-.∴该二次函数的解析式为2y x 2x 3=-++.C 点坐标为()0,3,顶点D 的坐标为()1,4.(2)①∵PC PD CD -≤,∴当P,C,D 三点在一条直线上时,PC PD -取得最大值.连接DC 并延长交y 轴于点P ,PC PD CD -===∴PC PD -.易得直线CD 的方程为y x 3=+.把()P t,0代入,得t 3=-.∴此时对应的点P 的坐标为()3,0-.②2y a |x |2a x 3=-+的解析式可化为22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩ 设线段PQ 所在直线的方程为y kx b =+,将()P t,0,()Q 0,2t 的坐标代入,可得线段PQ 所在直线的方程为y 2x 2t =-+.(1)当线段PQ 过点()3,0-,即点P 与点()3,0-重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时t 3=-. ∴当t 3≤-时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. (2)当线段PQ 过点()0,3,即点Q 与点C 重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时3t 2=. 当线段PQ 过点()3,0,即点P 与点()3,0重合时,t 3=,此时线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像有两个公共点. 所以当3t 32≤<时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. (3)将y 2x 2t =-+带入()2y x 2x 3x 0=-++≥,并整理,得2x 4x 2t 30-+-=. ()Δ1642t 3288t =--=-.令288t 0-=,解得7t 2=. ∴当7t 2=时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.综上所述,t 的取值范围为t 3≤-或3t 32≤<或7t 2=. 【点睛】 本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.2.如图,抛物线y =ax 2+bx (a ≠0)过A (4,0),B (1,3)两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH ⊥x 轴,交x 轴于点H .(1)求抛物线的表达式;(2)直接写出点C 的坐标,并求出△ABC 的面积;(3)点P 是抛物线上一动点,且位于第四象限,是否存在这样的点P ,使得△ABP 的面积为△ABC 面积的2倍?若存在,求出点P 的坐标,若不存在,请说明理由;(4)若点M 在直线BH 上运动,点N 在x 轴正半轴上运动,当以点C ,M ,N 为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN 的面积.【答案】(1)y =-x 2+4x ;(2)C (3,3),面积为3;(3)P 的坐标为(5,-5);(4)52或5. 【解析】 试题分析:(1)利用待定系数法进行求解即可;(2)先求出抛物线的对称轴,利用对称性即可写出点C 的坐标,利用三角形面积公式即可求面积;(3)利用三角形的面积以及点P 所处象限的特点即可求;(4)分情况进行讨论,确定点M 、N ,然后三角形的面积公式即可求.试题解析:(1)将A (4,0),B (1,3)代入到y =ax 2+bx 中,得16403a b a b +=⎧⎨+=⎩ ,解得14a b =-⎧⎨=⎩ , ∴抛物线的表达式为y =-x 2+4x .(2)∵抛物线的表达式为y=-x2+4x,∴抛物线的对称轴为直线x=2.又C,B关于对称轴对称,∴C(3,3).∴BC=2,∴S△ABC=12×2×3=3.(3)存在点P.作PQ⊥BH于点Q,设P(m,-m2+4m).∵S△ABP=2S△ABC,S△ABC=3,∴S△ABP=6.∵S△ABP+S△BPQ=S△ABH+S梯形AHQP∴6+12×(m-1)×(3+m2-4m)=12×3×3+12×(3+m-1)(m2-4m)整理得m2-5m=0,解得m1=0(舍),m2=5,∴点P的坐标为(5,-5).(4)52或5.提示:①当以M为直角顶点,则S△CMN=52;②当以N为直角顶点,S△CMN=5;③当以C为直角顶点时,此种情况不存在.【点睛】本题是二次函数的综合题,主要考查待定系数法求解析式,三角形面积、直角三角形的判定等,能正确地根据题意确定图形,分情况进行讨论是解题的关键.3.二次函数y=x2-2mx+3(m>)的图象与x轴交于点A(a,0)和点B(a+n,0)(n >0且n为整数),与y轴交于C点.(1)若a=1,①求二次函数关系式;②求△ABC的面积;(2)求证:a=m-;(3)线段AB(包括A、B)上有且只有三个点的横坐标是整数,求a的值.【答案】(1)y=x2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A的坐标,然后代入二次函数的解析式,求得m的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m,然后根据A、B两点关于x=m对称得到a+n-m=m-a,从而确定a、m、n之间的关系;(3)根据a=m-得到A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,求得m 的值即可确定a的值.试题解析:(1)①∵a=1,∴A(1,0),代入y=x2-2mx+3得1-2m+3=0,解得m=2,∴y=x2-4x+3;②在y=x2-4x+3中,当y=0时,有x2-4x+3=0可得x=1或x=3,∴A(1,0)、B(3,0),∴AB=2再根据解析式求出C点坐标为(0,3),∴OC=3,△ABC的面积=×2×3=3;(2)∵y=x2-2mx+3=(x-m)2-m2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.4.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A (0,6)代入,得:﹣12a=6,解得:a=﹣12, 所以抛物线解析式为y=﹣12(x ﹣6)(x+2)=﹣12x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)如图2,∵PH ⊥OB 于H ,∴∠DHB=∠AOB=90°,∴DH ∥AO ,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE ∥x 轴、PD ⊥x 轴,∴∠DPE=90°,若△PDE 为等腰直角三角形,则∠EDP=45°,∴∠EDP 与∠BDH 互为对顶角,即点E 与点A 重合,则当y=6时,﹣12x 2+2x+6=6, 解得:x=0(舍)或x=4,即点P (4,6). 【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.5.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y1 3 =x2﹣3;(3)M的坐标为(33,6)或(3,﹣2).【解析】【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【详解】(1)将C(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:390ba b=-⎧⎨+=⎩,解得:133ab⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y13=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°3=设DC为y=kx﹣33,0),可得:k3=联立两个方程可得:233133y xy x⎧=-⎪⎨=-⎪⎩,解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩,, 所以M 1(33,6);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°-15°=30°,∴OE =OC •tan60°=33,设EC 为y =kx ﹣3,代入(33,0)可得:k 33=, 联立两个方程可得:233133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得:12120332x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩,, 所以M 2(3,﹣2).综上所述M 的坐标为(33,6)或(3,﹣2).【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.6.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
数学二次函数的专项培优练习题附答案
(3)当 x=﹣1 时,y=﹣1﹣1=﹣2,
∴ 点 E(﹣1,﹣2),
如图,直线 BC 的解析式为 y=5x+15,直线 BE 的解析式为 y=x﹣1,直线 CE 的解析式为 y
=﹣x﹣3,
∵ 以点 B、C、E、D 为顶点的四边形是平行四边形,
∴ 直线 D1D3 的解析式为 y=5x+3,直线 D1D2 的解析式为 y=x+3,直线 D2D3 的解析式为 y= ﹣x﹣9,
(3)过点 C 作 AC 的垂线交抛物线于另一点 P,如图 2,利用两直线垂直一次项系数互为
负倒数设直线 PC 的解析式为 y=- 1 x+b,把 C 点坐标代入求出 b 得到直线 PC 的解析式为 3
y= x2 2x 3
y=-
1 3
x+3,再解方程组
y=
1 3
x
3
得此时 P 点坐标;当过点 A 作 AC 的垂线交抛物
;(3)t=1,(1+ 2 ,2)和(1- 2 ,
2). 【解析】
【分析】
(1)当 x=0 时代入抛物线 y=ax2+bx+3(a≠0)就可以求出 y=3 而得出 C 的坐标,就可以得 出直线的解析式,就可以求出 B 的坐标,在直角三角形 AOC 中,由三角形函数值就可以求
出 OA 的值,得出 A 的坐标,再由待定系数法建立二元一次方程组求出其解就可以得出结 论; (2)分两种情况讨论,当点 P 在线段 CB 上时,和如图 3 点 P 在射线 BN 上时,就有 P 点 的坐标为(t,-t+3),Q 点的坐标为(t,-t2+2t+3),就可以得出 d 与 t 之间的函数关系式 而得出结论;
y=5x 3
备战中考数学备考之二次函数压轴突破训练培优篇含答案
备战中考数学备考之二次函数压轴突破训练∶培优篇含答案一、二次函数1.某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量(y 万件)与销售单价(x 元)之间符合一次函数关系,其图象如图所示.()1求y 与x 的函数关系式;()2物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x 定为每件多少元时,厂家每月获得的利润()w 最大?最大利润是多少?【答案】(1)2280y x =-+;(2)当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元.【解析】【分析】()1根据函数图象经过点()40,200和点()60,160,利用待定系数法即可求出y 与x 的函数关系式;()2先根据利润=销售数量(⨯销售单价-成本),由试销期间销售单价不低于成本单价,也不高于每千克80元,结合电子产品的成本价即可得出x 的取值范围,根据二次函数的增减性可得最值.【详解】解:()1设y 与x 的函数关系式为()0y kx b k =+≠,函数图象经过点()40,200和点()60,160,{4020060160k b k b +=∴+=,解得:{2280k b =-=, y ∴与x 的函数关系式为2280y x =-+.()2由题意得:()()224022802360112002(90)5000w x x x x x =--+=-+-=--+. 试销期间销售单价不低于成本单价,也不高于每千克80元,且电子产品的成本为每千克40元,∴自变量x 的取值范围是4080x ≤≤.20-<,∴当90x <时,w 随x 的增大而增大,80x ∴=时,w 有最大值,当80x =时,4800w =,答:当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元.【点睛】本题考查了一次函数和二次函数的应用,根据点的坐标利用待定系数法求出函数关系式是解题的关键,并注意最值的求法.2.已知抛物线26y x x c =-++.(1)若该抛物线与x 轴有公共点,求c 的取值范围;(Ⅱ)设该抛物线与直线21y x =+交于M ,N 两点,若MN =C 的值; (Ⅲ)点P ,点Q 是抛物线上位于第一象限的不同两点,,PA QB 都垂直于x 轴,垂足分别为A ,B ,若OPA OQB ∆≅∆,求c 的取值范围.【答案】(I )9c -;(Ⅱ)2c =-;(Ⅲ)c 的取值范围是2174c -<< 【解析】【分析】(1) 抛物线与x 轴有公共点,则判别式为非负数,列不等式求解即可;(2)求出二次函数与直线的交点,并根据勾股定理求出MN 的长度,列方程即可求解;(3)由OPA OQB ∆≅∆可知,P ,Q 两点的坐标特点,设坐标得到设点P 的坐标为(, )m n ,则点Q 的坐标为(,)n m ,代入二次函数,得到n,m 的关系,则只需保证该方程有正根即可求解.【详解】解:(I )∵抛物线26y x x c =-++与x 轴有交点, ∴一元二次方程260x x c -++=有实根。
二次函数培优专题训练(含答案)
A. 个B. 个C. 个D. 个
二、填空题
11.若抛物线y=x2﹣2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.
12.二次函数y=x2-4x+5的最小值是
13.已知(x1,y1),(x2,y2)是抛物线y=ax2(a≠0)上的两点.当x2<x1<0时,y2<y1,则a的取值范围是_____.
(1)求y与x的函数关系式;
(2)每件文具的售价定为多少元时,月销售利润为2520元?
(3)每件文具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
参考答案
1.A
【解析】
试题分析:二次函数的一般形式中的顶点式是:y=a(x-h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).
(1)求x=2时,平行四边形AGEF的面积.
(2)当x为何值时,平行四边形AGEF的面积最大?最大面积是多少?
19.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示.
(1)已知6月份这种蔬菜的成本最低,此时出售每干克的收益是多少元?(收益=售价-成本)
试题解析:A:在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.故此选项正确,
B:当x=0,y=1,∴图象与y轴的交点坐标为:(0,1),故此选项错误,
C:∵a=-1,∴函数的开口向下,对称轴是x=1,故此选项错误,
D:∵这个函数的顶点是(1,2),故此选项错误,
故选A.
考点:二次函数的性质.
(2)S是x的什么函数?
(3)当S=6时,求点P的坐标;
(4)在y=x2的图象上求一点P′,使△OP′A的两边OP′=P′A.
50 搞定二次函数压轴100题(含详解)
搞定二次函数压轴100题1. 若二次函数y=a1x2+b1x+c1的图象记为C1,其顶点为A,二次函数y=a2x2+b2x+c2的图象记为C2,其顶点为B,且满足点A 在C2上,点B在C1上,则称这两个二次函数互为“伴侣二次函数”.(1)一个二次函数的“伴侣二次函数”有个;(2)①求二次函数y=x2+3x+2与x轴的交点;②求以上述交点为顶点的二次函数y=x2+3x+2的“伴侣二次函数”.(3)试探究a1与a2满足的数量关系.2. 已知二次函数y=x2+2bx+c(b,c为常数).(1)当b=1,c=−3时,求二次函数在−2≤x≤2上的最小值;(2)当c=3时,求二次函数在0≤x≤4上的最小值;(3)当c=4b2时,若在自变量x的值满足2b≤x≤2b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.3. 如图,已知二次函数图象的顶点坐标为(2,0),直线y=x+1与二次函数的图象交于A、B两点,其中点A在y轴上.(1)二次函数的解析式为y=;(2)证明点不在(1)中所求的二次函数的图象上;(3)若C为线段AB的中点,过C点作轴于E点,CE与二次函数的图象交于D点.①y轴上存在点K,使以K、A、D、C为顶点的四边形是平行四边形,则K点的坐标是;②二次函数的图象上是否存在点P,使得?若存在,求出P点坐标;若不存在,请说明理由.x和直线y= 4. 二次函数y=x2+px+q的顶点M是直线y=−12x+m的交点.(1)若直线y=x+m过点D(0,−3),求M点的坐标及二次函数y=x2+px+q的解析式;(2)试证明无论m取任何值,二次函数y=x2+px+q的图象与直线y=x+m总有两个不同的交点;(3)在(1)的条件下,若二次函数y=x2+px+q的图象与yx上求异于轴交于点C,与x的右交点为A,试在直线y=−12 M的点P,使P在△CMA的外接圆上.5. 已知二次函数y=−x2+bx+c+1.(1)当b=1时,求这个二次函数的对称轴方程;(2)若c=−14b2−2b,问:b为何值时,二次函数的图象与x轴相切;(3)若c=0,二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好经过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别相交于点D,E,F且满足DEEF =13,求二次函数的表达式.6. 如图,已知二次函数y=−x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连接BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC 的边界),求m的取值范围;(3)点P是直线AC上的动点,若以点P,点C,点M构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).7. 已知二次函数y=−x2+bx+c的图象经过点P(0,1)与Q(2,−3).(1)求此二次函数的解析式;(2)若点A是第一象限内该二次函数图象上一点,过点A作x轴的平行线交二次函数图象于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,且所得四边形ABCD恰为正方形.①求正方形的ABCD的面积;②联结PA、PD,PD交AB于点E,求证:△PAD∽△PEA.8. 如图,在直角坐标系中,O为坐标原点,二次函数y=x2+mx+ 2的图象与x轴的正半轴交于点A,与y轴的正半轴交于点B,且OA:OB=1:2.设此二次函数图象的顶点为D.(1)求这个二次函数的解析式;(2)将△OAB绕点A顺时针旋转90∘后,点B落到点C的位置.将上述二次函数图象沿y轴向上或向下平移后经过点C.请直接写出点C的坐标和平移后所得图象的函数解析式;(3)设(2)中平移后所得二次函数图象与y轴的交点为B1,顶点为D1.点P在平移后的二次函数图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标.9. 如图,已知二次函数y=−x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连接BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).10. 已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x1<0<x2,与y轴交于点C,O为坐标原点,tan∠CAO−tan∠CBO=1.(1)求证:n+4m=0;(2)求m,n的值;(3)当p>0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.11. 如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的解析式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.,当x=0和x=2时,12. 已知二次函数y=(t+1)x2+2(t+2)x+32函数值相等.(1)求二次函数的表达式.(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(−3,m),求m和k的值.(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位长度后得到的图象记为G,同时将2中得到的直线y=kx+6向上平移n个单位长度.请结合图象回答:当平移后的直线与图象G有公共点时,n的取值范围是多少?13. 已知二次函数y=x2−2ax−2a−6(a为常数,a≠0).(1)求证:该二次函数的图象与x轴有两个交点;(2)设该二次函数的图象与x轴交于点A(−2,0)和点B,与y轴交于点C,线段BC的垂直平分线l与x轴交于点D.①求点D的坐标;②设点P是抛物线上的一个动点,点Q是直线l上的一个动点.以点B,D,P,Q为顶点的四边形是否可能为平行四边形?若能,直接写出点Q的坐标.14. 如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(−1,0),B(4,0),C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O 是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA 分别交BC,y轴于点E,F,若△PEB,△CEF的面积分别为S1,S2,求S1−S2的最大值.15. 已知二次函数y=(t−4)x2−(2t−5)x+4在x=0与x=5的函数值相等.(1)求二次函数的解析式;(2)若二次函数的图象与x轴交于A,B两点(A在B左侧),与y轴交于点C,一次函数y=kx+b经过B,C两点,求一次函数的表达式;(3)在(2)的条件下,过动点D(0,m)作直线l∥x轴,其中m>−2.将二次函数图象在直线l下方的部分沿直线l向上翻折,其余部分保持不变,得到一个新图象M.若直线y=kx+b与新图象M恰有两个公共点,请直接写出m的取值范围.),A(5,0),16. 已知二次函数y=ax2+bx+c的图象经过点P(0,−52 B(1,0).(1)求该二次函数的解析式;(2)点C在该二次函数的图象上,当△ABC的面积为12时,求点C坐标;(3)在(2)的条件下,求△ABC外接圆圆心点D的坐标.17. 如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.18. 如图1,一次函数y=kx+k与二次函数y=kx2+kx(k>0)交于A,B两点,二次函数图象的顶点为P.(1)写出三条与系数k无关的一次函数与二次函数共有的结论.(2)当k为何值时,△AOP为等边三角形?(3)若一次函数y=kx+k的图象与二次函数y=kx2+2kx的图象交于点C,D,与y轴交于点F,如图2,某数学学习小组探究k=1时得出以下结论,其中正确结论的序号有.①AF=BF;②点C是BF的黄金分割点;③AFAD =√5+12;④△CFO与△ADO的面积相等.(4)在(3)中,若去掉k=1,以上正确的结论还成立吗?若成立,请选择两个加以说明.19. 如图,顶点为P(4,−4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M,N关于点P对称,连接AN,ON.(1)求该二次函数的关系式.(2)若点A的坐标是(6,−3),求△ANO的面积.(3)当点A在对称轴l右侧的二次函数图象上运动时,请解答下列问题:①证明:∠ANM=∠ONM;②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标,如果不能,请说明理由.20. 对于二次函数y=x2−3x+2和一次函数y=−2x+4,把y=t(x2−3x+2)+(1−t)(−2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E,现有点A(2,0)和抛物线E上的点B(−1,n),请完成下列任务:(1)【尝试】(1)当t=2时,抛物线y=t(x2−3x+2)+(1−t)(−2x+4)的顶点坐标为;(2)判断点A是否在抛物线E上;(3)求n的值.(2)【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,坐标为.(3)【应用】(1)二次函数y=−3x2+5x+2是二次函数y=x2−3x+2和一次函数y=−2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由;(2)以AB为边作矩形ABCD,使得其中一个顶点落在y轴上;若抛物线E经过A,B,C,D其中的三点,求出所有符合条件的t的值.与y=x2−mx−21. 已知关于x的二次函数y=x2−mx+m2+12m2+2,这两个二次函数图象中的一条与x轴交于A、B两个不同2的点.(1)试判断哪个二次函数的图象经过A、B两点(写出判断过程);(2)若A点坐标为(−1,0),求点B的坐标;(3)在(2)的条件下,设点C是抛物线上的一点,且△ABC的面积为10,直接写出点C的坐标.22. 已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(1,0)与点C(0,−3),其顶点为P.(1)求二次函数的解析式;(2)若Q为对称轴上的一点,且QC平分∠PQO,求Q点坐标;(3)当m≤x≤m+1时,y的取值范围是−4≤y≤2m,求m 的值.23. 如图,在直角坐标系中,O为原点.点A在x轴的正半轴上,点B在y轴的正半轴上,tan∠OAB=2.二次函数y=x2+mx+2的图象经过点A,B,顶点为D.(1)求这个二次函数的解析式;(2)将△OAB绕点A顺时针旋转90∘后,点B落到点C的位置.将上述二次函数图象沿y轴向上或向下平移后经过点C.请直接写出点C的坐标和平移后所得图象的函数解析式;(3)设(2)中平移后所得二次函数图象与y轴的交点为B1,顶点为D1.点P在平移后的二次函数图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标.24. 在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别相交于A(−3,0),B(0,−3)两点,二次函数y=x2+mx+n 的图象经过点A.(1)求一次函数y=kx+b的解析式;(2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n的值;(3)当−3≤x≤0时,二次函数y=x2+mx+n的最小值为−4,求m,n的值.在x=0和x=2时25. 已知二次函数y=(t+1)x2+2(t+2)x+32的函数值相等.(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(−3,m),求m和k的值;(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位.请结合图象回答:当平移后的直线与图象G有公共点时,n的取值范围.26. 如图,在平面直角坐标系中,点A,C的坐标分别为(−1,0),(0,−√3),点B在x轴上.已知某二次函数的图象经过A,B,C 三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B,C不重合),过点P作y轴的平行线交BC于点F.(1)求该二次函数的解析式;(2)若设点P的横坐标为m,用含m的代数式表示线段PF的长;(3)求△PBC面积的最大值,并求此时点P的坐标.27. 如图,已知二次函数y=ax2+bx+c的图象经过A(−1,0),B(3,0),N(2,3)三点,且与y轴交于点C.(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;(2)若直线y=kx+d经过C,M两点,且与x轴交于点D.试证明四边形CDAN是平行四边形;(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A,B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.28. 如图,已知在平面直角坐标系xOy中,二次函数y=−x2+mx+n的图象经过点A(3,0),B(m,m+1),且与y轴相交于点C.(1)求这个二次函数的解析式并写出其图象顶点D的坐标;(2)求∠CAD的正弦值;(3)设点P在线段DC的延长线上,且∠PAO=∠CAD,求点P 的坐标.x2+bx+c的图象29. 如图,在平面直角坐标系中,二次函数y=−14与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(−4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.(1)求S的最大值;(2)在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.30. 已知二次函数y1=x2−2x−3及一次函数y2=x+m.(1)求该二次函数图象的顶点坐标以及它与x轴的交点坐标;(2)将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象.请你在图中画出这个新图象,并求出新图象与直线y2=x+m有三个不同公共点时m的值;(3)当0≤x≤2时,函数y=y1+y2+(m−2)x+3的图象与x轴有两个不同的公共点,求m的取值范围.31. 如图,已知二次函数y=ax2−4x+c的图象与坐标轴交于点A(−1,0)和点B(0,−5).(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标.32. 如图,二次函数y=ax2+bx+c的图象经过点A(−1,0),B(4,0),C(−2,−3),直线BC与y轴交于点D,E为二次函数图象上任一点.(1)求这个二次函数的表达式;(2)若点E在直线BC的上方,过点E分别作BC和y轴的垂线,交直线BC于不同的两点F,G(F在G的左侧),求△EFG的周长的最大值;(3)是否存在点E,使得△EDB是以BD为直角边的直角三角形,如果存在,求点E的坐标;如果不存在,请说明理由.x+3的图象33. 已知平面直角坐标系xOy(如图),一次函数y=34x的图象上,且MO=与y轴交于点A,点M在正比例函数y=32MA.二次函数y=x2+bx+c的图象经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数x+3的图象上,且四边形的图象上,点D在一次函数y=34ABCD是菱形,求点C的坐标.34. 如图,二次函数y=a(x2−2mx−3m2)(其中a,m为常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B左侧),与y轴交于点C(0,−3),点D在二次函数图象上,且CD∥AB,连接AD;过点A作射线AE交二次函数于点E,使AB 平分∠DAE.(1)当a=1时,求点D的坐标;(2)证明:无论a,m取何值,点E在同一直线上运动;(3)设该二次函数图象顶点为F,试探究:在x轴上是否存在点P,使以PF,AD,AE为边构成的三角形是以AE为斜边的直角三角形?如果存在,请用含m的代数式表示点P的横坐标;如果不存在,请说明理由.m+1(m为常数).35. 已知:二次函数y=x2−mx+34(1)若这个二次函数的图象与x轴只有一个公共点A,且A点在x轴的正半轴上.①求m的值;②四边形AOBC是正方形,且点B在y轴的负半轴上,现将这个二次函数的图象平移,使平移后的函数图象恰好经过B,C 两点,求平移后的图象对应的函数解析式;m+1的最小值(2)当0≤x≤2时,求函数y=x2−mx+34(用含m的代数式表示).36. 如图,在平面直角坐标系xOy中,将二次函数y=x2−1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A,B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.x2+bx+c的图象经过点A(−3,6),并与x轴37. 已知二次函数y=12交于点B(−1,0)和点C,与y轴交于点E,顶点为P,对称轴与x 轴交于点D.(1)求这个二次函数的解析式;(2)连接CP,△DCP是什么特殊形状的三角形?并加以说明;(3)点Q是第一象限的抛物线上一点,且满足∠QEO=∠BEO,求出点Q的坐标.38. 如图,二次函数y=ax2+bx+c的图象经过点A(−1,0),B(4,0),C(−2,−3),直线BC与y轴交于点D,E为二次函数上任一点.(1)求这个二次函数的解析式;(2)若点E在直线BC的上方,过E分别作BC和y轴的垂线,交直线BC于不同的两点F,G(F在G的左侧),求△EFG周长的最大值;(3)是否存在点E,使得△EDB是以BD为直角边的直角三角形,如果存在,求点E的坐标;如果不存在,请说明理由.39. 已知关于x的二次函数y=x2+(k2−3k−4)x+2k的图象与x轴从左到右分别交于A,B两点,且这两点关于原点对称.(1)求k的值;(2)在(1)的条件下,若反比例函数y=m的图象与二次函数xy=x2+(k2−3k−4)x+2k的图象从左到右交于Q,R,S三点,且点Q的坐标为(−1,−1),点R(x R,y R),S(x S,y S)中的纵坐标y R,y S分别是一元二次方程y2+my−1=0的解,求四边形AQBS的面积S;四边形AQBS(3)在(1),(2)的条件下,在x轴下方是否存在二次函数y=x2+(k2−3k−4)x+2k图象上的点P使得S△PAB=2S△RAB,若存在,求出点P的坐标;若不存在,请说明理由.40. 如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,−4).(1)求出图象与轴的交点A,B的坐标;S△MAB,若(2)在二次函数的图象上是否存在点P,使S△PAB=54存在,求出P点的坐标;若不存在,请说明理由;(3)将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y= x+b(b<1)与此图象有两个公共点时,的取值范围.41. 下图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,−4).(1)求出图象与x轴的交点A,B的坐标.S△MAB?若存(2)在二次函数的图象上是否存在点P,使S△PAB=54在,求出P点的坐标;若不存在,请说明理由.(3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b 的取值范围.42. 已知二次函数y=ax2+bx+c的图象经过A(1,0),B(3,0),C(0,−3).(1)求此二次函数的解析式以及顶点D的坐标;(2)如图①,过此二次函数抛物线图象上一动点P(m,n)(0<m<3)作y轴平行线,交直线BC于点E,是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,说明理由.(3)如图②,过点A作y轴的平行线交直线BC于点F,连接DA,DB,四边形OAFC沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点F重合时立即停止运动,求运动过程中四边形OAFC与四边形ADBF重叠部分面积S的最大值.),点F(0,1)在y轴上,43. 二次函数的顶点在原点O,经过点A(1,14直线y=−1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=−1交于点M,求证:FM平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.44. 如图,已知二次函数图象的顶点坐标为D(1,1),直线y=kx+m的图象与该二次函数的图象交于A,C两点,且A(0,2),直线与x,点P是线段AC上一动点,轴的交点为B,满足sin∠ABO=√55且不与A,C两点重合,PG∥y轴交抛物线于点G.(1)求k,m和这个二次函数的解析式;(2)点E是直线BC与抛物线对称轴的交点,当△PGE∽△AOB 时,求点P的坐标;(3)若PG=21时,另外一点F在抛物线上,当S△ACF=S△ACG时,16求点F的坐标.45. 如图,△ABC是以BC为底边的等腰三角形,点A,C分别是一次x+3的图象与y轴、x轴的交点,点B在二次函数函数y=−34x2+bx+c的图象上,且该二次函数图象上存在一点D,使y=18四边形ABCD能构成平行四边形.(1)试求b,c的值,并写出该二次函数的解析式;(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:①当P运动到何处时,△APQ是直角三角形?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?46. 如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A,B.两点,与y轴交于点C(0,−1),△ABC的面积为54(1)求该二次函数的解析式;(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使四边形ACBD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.47. 如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6).写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.48. 如图,三角形ABC是以BC为底边的等腰三角形,点A,C分别x+3的图象与y轴、x轴的交点,点B在二是一次函数y=−34x2+bx+c的图象上,且该二次函数图象上存在一次函数y=18点D使四边形ABCD能构成平行四边形.(1)试求b,c的值,并写出该二次函数表达式;(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:①当P运动到何处时,有PQ⊥AC?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?49. 如图,已知二次函数y=12x2+bx+c的图象经过点A(3,6),并与x轴交于点B(1,0)和点C.(1)求二次函数的解析式及点C的坐标;(2)若D为线段AC上一点,且以D,O,C为顶点的三角形与△ABC相似,求点D的坐标;(3)设直线y=1为直线l,将该二次函数的图象在直线l下方的部分沿直线l翻折到直线l上方,图象的其余部分不变,得到一个新图象.是否存在与新图象恰有三个不同公共点且平行于AC 的直线?若存在,请求出所有符合条件的直线的解析式;若不存在,请说明理由.50. 已知二次函数y=ax2−2ax+c(a<0)的最大值为4,且抛物线过点(72,−94).点P(t,0)是x轴上的动点,抛物线与y轴的交点为C,顶点为D.(1)求该二次函数的解析式及顶点D的坐标;(2)求∣PC−PD∣的最大值及对应的点P的坐标;(3)设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a∣x∣2−2a∣x∣+c的图象只有一个公共点,求t的取值.51. 如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(−2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.52. 如图,三角形ABC是以BC为底边的等腰三角形,点A,C分别x+3的图象与y轴,x轴的交点,点B在二是一次函数y=−34x2+bx+c的图象上,且该二次函数图象上存在一次函数y=18点D使四边形ABCD为平行四边形.(1)试求b,c的值,并写出该二次函数表达式;(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:①当P运动到何处时,有PQ⊥AC?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?53. 已知关于x的二次函数y=x2+(k2−3k−4)x+2k的图象与x轴分别交于A,B两点(点A在点B左侧),且这两点关于原点对称.(1)求k的值.的图象与二次函数(2)在(1)的条件下,若反比例函数y=mxy=x2+(k2−3k−4)x+2k的图象从左到右分别交于Q,R,S三点,且点Q的坐标为(−1,−1),点R(x R,y R),S(x S,y S)的纵坐标y R,y S分别是一元二次方程y2+my−1=0的解,求四边形AQBS的面积.(3)在(1)(2)的条件下,在x轴下方的二次函数y=x2+ (k2−3k−4)x+2k的图象上是否存在点P,使得S△PAB=2S△RAB?若存在,求出点P坐标;若不存在,请说明理由.54. 如图,二次函数y=ax2−6ax+4a+3的图象与y轴交于点A,点B是x轴上一点,其坐标为(1,0),连接AB,tan∠ABO=2.(1)则点A的坐标为,a=;(2)过点A作AB的垂线与该二次函数的图象交于另一点C,求点C的坐标;(3)连接BC,过点A作直线l交线段BC于点P,设点B,点C 到l的距离分别为d1,d2,求d1+d2的最大值.55. 二次函数y=ax2+bx+4的图象与x轴交于两点A,B,与y轴交于点C,且A(−1,0),B(4,0).(1)求此二次函数的表达式.(2)如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足,0),动点N在线段DE上运动,连接CF,为点D,点F(−76CN,FN,若以点C,D,N为顶点的三角形与△FEN相似,求点N的坐标.(3)如图2,点M在抛物线上,且点M的横坐标是1,点P为抛物线上一动点,若∠PMA=45∘,求点P的坐标.56. 在平面直角坐标系中,O为坐标原点,一次函数y=ax+b的图象与二次函数y=ax2+bx的图象交于点A,B.其中a,b均为非零实数.(1)当a=b=1时,求AB的长;(2)当a>0时,请用含a,b的代数式表示△AOB的面积;(3)当点A的横坐标小于点B的横坐标时,过点B作x轴的垂线,垂足为Bʹ.若二次函数y=ax2+bx的图象的顶点在反比例函的图象上,请用含a的代数式表示△BBʹA的面积.数y=ax57. 如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(3,0),B(−1,0),C(0,−3),顶点为D.(1)求这个二次函数的解析式及顶点坐标;(2)在y轴上找一点P(点P与点C不重合),使得∠APD= 90∘,求点P坐标;(3)在(2)的条件下,将△APD沿直线AD翻折,得到△AQD,求点Q坐标.58. 已知:二次函数y=ax2+bx+6(a≠0)的图象与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是方程x2−4x−12=0的两个根.(1)求出该二次函数的表达式及顶点坐标;(2)如图,连接AC、BC,点P是线段OB上一个动点(点P不与点O、B重合),过点P作PQ∥AC交BC于点Q,当△CPQ的面积最大时,求点P的坐标.59. 如图,二次函数y=−x2+bx+c的图象与x轴交于点B(−3,0),与y轴交于点C(0,−3).(1)求直线BC及二次函数的解析式;(2)设抛物线的顶点为D,与x轴的另一个交点为A.点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;(3)连接CD,求∠OCA与∠OCD两角和的度数.60. 如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数x刻画.y=−x2+4x刻画,斜坡可以用一次函数y=12(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O,A得△POA.求△POA的面积;。
中考数学备考之二次函数压轴突破训练∶培优篇附答案(1)
一、二次函数真题与模拟题分类汇编(难题易错题)1.(6分)(2015•牡丹江)如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.【答案】(1)y=-2x-3;(2).【解析】试题分析:(1)把A,B两点坐标代入,求待定系数b,c,进而确定抛物线的解析式;(2)连接BE,点F是AE中点,H是AB中点,则FH为三角形ABE的中位线,求出BE的长,FH就知道了,先由抛物线解析式求出点E坐标,根据勾股定理可求BE,再根据三角形中位线定理求线段HF的长.试题解析:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0),∴把A,B两点坐标代入得:,解得:,∴抛物线的解析式是:y=-2x-3;(2)∵点E(2,m)在抛物线上,∴把E点坐标代入抛物线解析式y=-2x-3得:m=4﹣4﹣3=﹣3,∴E(2,﹣3),∴BE==.∵点F是AE中点,点H是抛物线的对称轴与x轴交点,即H为AB的中点,∴FH是三角形ABE的中位线,∴FH=BE=×=.∴线段FH的长.考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理.2.如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x 轴上是否存在一点C ,与A ,B 组成等腰三角形?若存在,求出点C 的坐标,若不在,请说明理由;(3)在直线AB 的下方抛物线上找一点P ,连接PA ,PB 使得△PAB 的面积最大,并求出这个最大值.【答案】(1)21248355y x x =--,顶点D (2,635-);(2)C (10±0)或(5222±0)或(9710,0);(3)752【解析】 【分析】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入函数表达式,即可求解; (2)分AB =AC 、AB =BC 、AC =BC ,三种情况求解即可;(3)由S △PAB 12=•PH •x B ,即可求解. 【详解】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2①,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入上式得:9=25a +5b ﹣3②,联立①、②解得:a 125=,b 485=-,c =﹣3,∴抛物线的解析式为:y 125=x 2485-x ﹣3. 当x =2时,y 635=-,即顶点D 的坐标为(2,635-); (2)A (0,﹣3),B (5,9),则AB =13,设点C 坐标(m ,0),分三种情况讨论: ①当AB =AC 时,则:(m )2+(﹣3)2=132,解得:m 10,即点C 坐标为:(10,0)或(﹣10,0);②当AB=BC时,则:(5﹣m)2+92=132,解得:m=5222±,即:点C坐标为(5222+,0)或(5﹣222,0);③当AC=BC时,则:5﹣m)2+92=(m)2+(﹣3)2,解得:m=9710,则点C坐标为(9710,0).综上所述:存在,点C的坐标为:(±410,0)或(5222±,0)或(9710,0);(3)过点P作y轴的平行线交AB于点H.设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k125=,故函数的表达式为:y125=x﹣3,设点P坐标为(m,12 5m2485-m﹣3),则点H坐标为(m,125m﹣3),S△PAB12=•PH•x B52=(125-m2+12m)=-6m2+30m=25756()22m--+,当m=52时,S△PAB取得最大值为:752.答:△PAB的面积最大值为752.【点睛】本题是二次函数综合题.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.3.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:(1)房间每天的入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费p (元)关于x (元)的函数关系式;(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?【答案】(1)y=60-10x;(2)z=-110x 2+40x+12000;(3)w=-110x 2+42x+10800,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元. 【解析】试题分析:(1)根据题意可得房间每天的入住量=60个房间﹣每个房间每天的定价增加的钱数÷10;(2)已知每天定价增加为x 元,则每天要(200+x )元.则宾馆每天的房间收费=每天的实际定价×房间每天的入住量;(3)支出费用为20×(60﹣10x ),则利润w =(200+x )(60﹣10x )﹣20×(60﹣10x),利用配方法化简可求最大值. 试题解析:解:(1)由题意得:y =60﹣10x (2)p =(200+x )(60﹣10x )=﹣2110x +40x +12000 (3)w =(200+x )(60﹣10x )﹣20×(60﹣10x ) =﹣2110x +42x +10800 =﹣110(x ﹣210)2+15210 当x =210时,w 有最大值.此时,x +200=410,就是说,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元.点睛:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题主要考查的是二次函数的应用,难度一般.4.如图,过()A 1,0、()B 3,0作x 轴的垂线,分别交直线y 4x =-于C 、D 两点.抛物线2y ax bx c =++经过O 、C 、D 三点.()1求抛物线的表达式;()2点M 为直线OD 上的一个动点,过M 作x 轴的垂线交抛物线于点N ,问是否存在这样的点M ,使得以A 、C 、M 、N 为顶点的四边形为平行四边形?若存在,求此时点M 的横坐标;若不存在,请说明理由;()3若AOC 沿CD 方向平移(点C 在线段CD 上,且不与点D 重合),在平移的过程中AOC 与OBD 重叠部分的面积记为S ,试求S 的最大值.【答案】(1)2413y x x 33=-+;(2)32或3322+或3322-;(3)13. 【解析】 【分析】(1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3.设点M 的横坐标为x ,则求出MN =|43x 2﹣4x |;解方程|43x 2﹣4x |=3,求出x 的值,即点M 横坐标的值;(3)设水平方向的平移距离为t (0≤t <2),利用平移性质求出S 的表达式:S 16=-(t ﹣1)213+;当t =1时,s 有最大值为13. 【详解】(1)由题意,可得C (1,3),D (3,1).∵抛物线过原点,∴设抛物线的解析式为:y =ax 2+bx ,∴3931a b a b +=⎧⎨+=⎩,解得43133a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为:y 43=-x 2133+x . (2)存在.设直线OD 解析式为y =kx ,将D (3,1)代入,求得k 13=,∴直线OD 解析式为y 13=x . 设点M 的横坐标为x ,则M (x ,13x ),N (x ,43-x 2133+x ),∴MN =|y M ﹣y N |=|13x ﹣(43-x 2133+x )|=|43x 2﹣4x |.由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3,∴|43x 2﹣4x |=3.若43x 2﹣4x =3,整理得:4x 2﹣12x ﹣9=0,解得:x =或x = 若43x 2﹣4x =﹣3,整理得:4x 2﹣12x +9=0,解得:x 32=,∴存在满足条件的点M ,点M 的横坐标为:32. (3)∵C (1,3),D (3,1),∴易得直线OC 的解析式为y =3x ,直线OD 的解析式为y 13=x . 如解答图所示,设平移中的三角形为△A 'O 'C ',点C '在线段CD 上. 设O 'C '与x 轴交于点E ,与直线OD 交于点P ; 设A 'C '与x 轴交于点F ,与直线OD 交于点Q .设水平方向的平移距离为t (0≤t <2),则图中AF =t ,F (1+t ,0),Q (1+t ,1133+t ),C '(1+t ,3﹣t ).设直线O 'C '的解析式为y =3x +b ,将C '(1+t ,3﹣t )代入得:b =﹣4t ,∴直线O 'C '的解析式为y =3x ﹣4t ,∴E (43t ,0). 联立y =3x ﹣4t 与y 13=x ,解得:x 32=t ,∴P (32t ,12t ). 过点P 作PG ⊥x 轴于点G ,则PG 12=t ,∴S =S △OFQ ﹣S △OEP 12=OF •FQ 12-OE •PG 12=(1+t )(1133+t )12-•43t •12t 16=-(t ﹣1)213+当t =1时,S 有最大值为13,∴S 的最大值为13.【点睛】本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题的关键是根据平行四边形定义,得到MN=AC=3,由此列出方程求解;第(3)问中,解题的关键是求出S的表达式,注意图形面积的计算方法.5.如图1,在矩形ABCD中,DB=6,AD=3,在Rt△PEF中,∠PEF=90°,EF=3,PF=6,△PEF(点F和点A重合)的边EF和矩形的边AB在同一直线上.现将Rt△PEF从A以每秒1个单位的速度向射线AB方向匀速平移,当点F与点B重合时停止运动,设运动时间为t秒,解答下列问题:(1)如图1,连接PD,填空:PE=,∠PFD=度,四边形PEAD的面积是;(2)如图2,当PF经过点D时,求△PEF运动时间t的值;(3)在运动的过程中,设△PEF与△ABD重叠部分面积为S,请直接写出S与t的函数关系式及相应的t的取值范围.【答案】(1)300,9+932;(233)见解析.【解析】分析:(1)根据锐角三角形函数可求出角的度数,然后根据勾股定理求出PE的长,再根据梯形的面积公式求解.(2)当PF经过点D时,PE∥DA,由EF=3,PF=6,可得∠EPD=∠ADF=30°,用三角函数计算可得3(3)根据题意,分三种情况:①当0≤t 时,<3时,③3≤t≤6时,根据三角形、梯形的面积的求法,求出S 与t 的函数关系式即可. 详解:(1)∵在Rt △PEF 中,∠PEF=90°,EF=3,PF=6∴sin ∠P=1=2EF PF ∴∠P=30° ∵PE ∥AD∴∠PAD=300,根据勾股定理可得所以S 四边形PEAD =12×(+3); (2)当PF 经过点D 时,PE ∥DA ,由EF=3,PF=6,得∠EPF=∠ADF=30°,在Rt △ADF 中,由AD=3,得 ; (3)分三种情况讨论:①当0≤t PF 交AD 于Q ,∵AF=t ,t ,∴S=12;②<3时,PF 交BD 于K ,作KH ⊥AB 于H ,∵AF=t ,∴-t ,S △ABD ,∵∠FBK=∠FKB ,∴,KH=KF×sin600,∴S=S △ABD ﹣S △FBK=29,424t -+-③当PE 与BD 交O ,PF 交BD 于K ,∵AF=t ,∴AE=t-3,-t+3,OE=BE×tan300∴S=2++. 点睛:此题主要考查了几何变换综合题,用到的知识点有直角三角形的性质,三角函数值,三角形的面积,图形的平移等,考查了分析推理能力,分类讨论思想,数形结合思想,要熟练掌握,比较困难.6.如图,抛物线y =﹣x 2+bx +c 与x 轴交于点A 和点B (3,0),与y 轴交于点C (0,3),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接DB . (1)求此抛物线的解析式及顶点D 的坐标;(2)点M 是抛物线上的动点,设点M 的横坐标为m . ①当∠MBA =∠BDE 时,求点M 的坐标;②过点M 作MN ∥x 轴,与抛物线交于点N ,P 为x 轴上一点,连接PM ,PN ,将△PMN 沿着MN 翻折,得△QMN ,若四边形MPNQ 恰好为正方形,直接写出m 的值.【答案】(1)(1,4)(2)①点M坐标(﹣12,74)或(﹣32,﹣94);②m的值为317±或117±【解析】【分析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA=2233m mMGBG m-++=-,tan∠BDE=BEDE=12,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.【详解】(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到930{3b cc-++==,解得2{3bc==,∴抛物线的解析式为y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4);(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=2233m mMGBG m-++=-,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B (3,0), ∴BE=2,∴tan ∠BDE=BE DE =12, ∵∠MBA=∠BDE ,∴2233m m m-++-=12, 当点M 在x 轴上方时,2233m m m-++- =12, 解得m=﹣12或3(舍弃), ∴M (﹣12,74), 当点M 在x 轴下方时,2233m m m--- =12, 解得m=﹣32或m=3(舍弃), ∴点M (﹣32,﹣94), 综上所述,满足条件的点M 坐标(﹣12,74)或(﹣32,﹣94); ②如图中,∵MN ∥x 轴,∴点M 、N 关于抛物线的对称轴对称, ∵四边形MPNQ 是正方形,∴点P 是抛物线的对称轴与x 轴的交点,即OP=1, 易证GM=GP ,即|﹣m 2+2m+3|=|1﹣m|, 当﹣m 2+2m+3=1﹣m 时,解得317±, 当﹣m 2+2m+3=m ﹣1时,解得m=1172±, ∴满足条件的m 317±117±.【点睛】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.7.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.【答案】(1)2y x 2x 3=--+.(2)3210. (3)①2S m 4m 3=---.②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2). 【解析】 【分析】(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可. 【详解】解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0), ∴可设抛物线交点式为()()y a x 3x 1=+-.又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-. ∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+.(2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值. ∴当PB+PC 最小时,△PBC 的周长最小. ∵点A 、点B 关于对称轴I 对称, ∴连接AC 交l 于点P ,即点P 为所求的点.∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.∵A (-3,0),B (1,0),C (0,3),∴2,10. ∴△PBC 的周长最小是:3210.(3)①∵抛物线2y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),∴直线AD 的解析式为y=2x+6∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+) ∴()22EF m 2m 32m 6m 4m 3=--+-+=---.∴()22DEF AEF 1111S S S EF GH EF AG EF AH m 4m 32m 4m 32222∆∆=+=⋅⋅+⋅⋅=⋅⋅=⋅---⋅=---.∴S 与m 的函数关系式为2S m 4m 3=---. ②()22S m 4m 3m 21=---=-++,∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).8.如图甲,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=x 2+bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.9.如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线2=-++过A、B两点,且与x轴交于另一点C.y x bx c(1)求b、c的值;(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内以点,连接PA、PC、PG,分别以AP、AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR①求证:PG=RQ;②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.【答案】(1)b=﹣2,c=3;(2)M (125-,5125);(3)①证明见解析;②PA+PC+PG 的最小值为19P 的坐标(﹣919,12319). 【解析】试题分析:(1)把A (﹣3,0),B (0,3)代入抛物线2y x bx c =-++即可解决问题.(2)首先求出A 、C 、D 坐标,根据BE=2ED ,求出点E 坐标,求出直线CE ,利用方程组求交点坐标M .(3)①欲证明PG=QR ,只要证明△QAR ≌△GAP 即可.②当Q 、R 、P 、C 共线时,PA+PG+PC 最小,作QN ⊥OA 于N ,AM ⊥QC 于M ,PK ⊥OA 于K ,由sin ∠ACM=AM AC =NQQC求出AM ,CM ,利用等边三角形性质求出AP 、PM 、PC ,由此即可解决问题.试题解析:(1)∵一次函数y=x+3的图象与x 轴、y 轴分别交于A 、B 两点,∴A (﹣3,0),B (0,3),∵抛物线2y x bx c =-++过A 、B 两点,∴3{930c b c =--+=,解得:2{3b c =-=,∴b=﹣2,c=3. (2),对于抛物线223y x x =--+,令y=0,则2230x x --+=,解得x=﹣3或1,∴点C 坐标(1,0),∵AD=DC=2,∴点D 坐标(﹣1,0),∵BE=2ED ,∴点E 坐标(23-,1),设直线CE 为y=kx+b ,把E 、C 代入得到:21{30k b k b -+=+=,解得:35{35k b =-=,∴直线CE 为3355y x =-+,由233{5523y x y x x =-+=--+,解得10x y =⎧⎨=⎩或125{5125x y =-=,∴点M 坐标(125-,5125). (3)①∵△AGQ ,△APR 是等边三角形,∴AP=AR ,AQ=AG ,∠QAC=∠RAP=60°,∴∠QAR=∠GAP ,在△QAR 和△GAP 中,∵AQ=AG ,∠QAR=∠GAP ,AR=AP ,∴△QAR≌△GAP,∴QR=PG.②如图3中,∵PA+PB+PC=QR+PR+PC=QC,∴当Q、R、P、C共线时,PA+PG+PC最小,作QN⊥OA于N,AM⊥QC于M,PK⊥OA于K.∵∠GAO=60°,AO=3,∴AG=QG=AQ=6,∠AGO=30°,∵∠QGA=60°,∴∠QGO=90°,∴点Q坐标(﹣6,33),在RT△QCN中,QN=33,CN=7,∠QNC=90°,∴QC=22QN NC+=219,∵sin∠ACM=AMAC=NQQC,∴AM=657,∵△APR是等边三角形,∴∠APM=60°,∵PM=PR,cos30°=AMAP,∴AP=121919,PM=RM=61919,∴MC=22AC AM-=141919,∴PC=CM﹣PM=81919,∵PK CP CKQN CQ CN==,∴CK=2819,PK=12319,∴OK=CK﹣CO=919,∴点P坐标(﹣919,123),∴PA+PC+PG的最小值为219,此时点P的坐标(﹣919,123).考点:二次函数综合题;旋转的性质;最值问题;压轴题.10.抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标;(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.【答案】(1)抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)点E的坐标为E(﹣4,5)(3)当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.【解析】试题分析:(1)利用待定系数法求二次函数的解析式,并配方求对称轴;(2)如图1,设E(m,m2+2m﹣3),先根据已知条件求S△ACE=10,根据不规则三角形面积等于铅直高度与水平宽度的积列式可求得m的值,并根据在对称轴左侧的抛物线上有一点E,则点E 的横坐标小于﹣1,对m的值进行取舍,得到E的坐标;(3)分两种情况:①当B在原点的左侧时,构建辅助圆,根据直径所对的圆周角是直角,只要满足∠BPF=90°就可以构成∠OBP=∠FPG,如图2,求出圆E与y轴有一个交点时的m值,则可得取值范围;②当B在原点的右侧时,只有△OBP是等腰直角三角形,△FPG也是等腰直角三角形时满足条件,直接计算即可.试题解析:(1)当m=﹣3时,B(﹣3,0),把A(1,0),B(﹣3,0)代入到抛物线y=x2+bx+c中得:,解得,∴抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)如图1,设E(m,m2+2m﹣3),由题意得:AD=1+1=2,OC=3,S△ACE=S△ACD=×ADOC=×2×3=10,设直线AE的解析式为:y=kx+b,把A(1,0)和E(m,m2+2m﹣3)代入得,,解得:,∴直线AE的解析式为:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,∴S△ACE=FC(1﹣m)=10,﹣m(1﹣m)=20,m2﹣m﹣20=0,(m+4)(m﹣5)=0,m1=﹣4,m2=5(舍),∴E(﹣4,5);(3)如图2,当B在原点的左侧时,连接BF,以BF为直径作圆E,当⊙E与y轴相切时,设切点为P,∴∠BPF=90°,∴∠FPG+∠OPB=90°,∵∠OPB+∠OBP=90°,∴∠OBP=∠FPG,连接EP,则EP⊥OG,∵BE=EF,∴EP是梯形的中位线,∴OP=PG=2,∵FG=1,tan∠FPG=tan∠OBP=,∴,∴m=﹣4,∴当﹣4≤m<0时,在线段OG上存在点P,使∠OBP=∠FPG;如图3,当B在原点的右侧时,要想满足∠OBP=∠FPG,则∠OBP=∠OPB=∠FPG,∴OB=OP,∴△OBP是等腰直角三角形,△FPG也是等腰直角三角形,∴FG=PG=1,∴OB=OP=3,∴m=3,综上所述,当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.考点:二次函数的综合题.。
数学二次函数的专项培优练习题及答案
一、二次函数 真题与模拟题分类汇编(难题易错题)1.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x 元.求:(1)房间每天的入住量y (间)关于x (元)的函数关系式; (2)该宾馆每天的房间收费p (元)关于x (元)的函数关系式;(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?【答案】(1)y=60-10x;(2)z=-110x 2+40x+12000;(3)w=-110x 2+42x+10800,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元. 【解析】试题分析:(1)根据题意可得房间每天的入住量=60个房间﹣每个房间每天的定价增加的钱数÷10;(2)已知每天定价增加为x 元,则每天要(200+x )元.则宾馆每天的房间收费=每天的实际定价×房间每天的入住量;(3)支出费用为20×(60﹣10x ),则利润w =(200+x )(60﹣10x )﹣20×(60﹣10x),利用配方法化简可求最大值. 试题解析:解:(1)由题意得:y =60﹣10x (2)p =(200+x )(60﹣10x )=﹣2110x +40x +12000 (3)w =(200+x )(60﹣10x )﹣20×(60﹣10x ) =﹣2110x +42x +10800 =﹣110(x ﹣210)2+15210 当x =210时,w 有最大值.此时,x +200=410,就是说,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元.点睛:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题主要考查的是二次函数的应用,难度一般.2.如图,过()A 1,0、()B 3,0作x 轴的垂线,分别交直线y 4x =-于C 、D 两点.抛物线2y ax bx c =++经过O 、C 、D 三点.()1求抛物线的表达式;()2点M 为直线OD 上的一个动点,过M 作x 轴的垂线交抛物线于点N ,问是否存在这样的点M ,使得以A 、C 、M 、N 为顶点的四边形为平行四边形?若存在,求此时点M 的横坐标;若不存在,请说明理由;()3若AOC 沿CD 方向平移(点C 在线段CD 上,且不与点D 重合),在平移的过程中AOC 与OBD 重叠部分的面积记为S ,试求S 的最大值.【答案】(1)2413y x x 33=-+;(2)32332+332-;(3)13. 【解析】 【分析】(1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3.设点M 的横坐标为x ,则求出MN =|43x 2﹣4x |;解方程|43x 2﹣4x |=3,求出x 的值,即点M 横坐标的值;(3)设水平方向的平移距离为t (0≤t <2),利用平移性质求出S 的表达式:S 16=-(t ﹣1)213+;当t =1时,s 有最大值为13. 【详解】(1)由题意,可得C (1,3),D (3,1).∵抛物线过原点,∴设抛物线的解析式为:y =ax 2+bx ,∴3931a b a b +=⎧⎨+=⎩,解得43133a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为:y 43=-x 2133+x .(2)存在.设直线OD 解析式为y =kx ,将D (3,1)代入,求得k 13=,∴直线OD 解析式为y 13=x . 设点M 的横坐标为x ,则M (x ,13x ),N (x ,43-x 2133+x ),∴MN =|y M ﹣y N |=|13x ﹣(43-x 2133+x )|=|43x 2﹣4x |. 由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3,∴|43x 2﹣4x |=3.若43x 2﹣4x =3,整理得:4x 2﹣12x ﹣9=0,解得:x 32+=或x 32-= 若43x 2﹣4x =﹣3,整理得:4x 2﹣12x +9=0,解得:x 32=,∴存在满足条件的点M ,点M 的横坐标为:32或32+或32-. (3)∵C (1,3),D (3,1),∴易得直线OC 的解析式为y =3x ,直线OD 的解析式为y 13=x . 如解答图所示,设平移中的三角形为△A 'O 'C ',点C '在线段CD 上. 设O 'C '与x 轴交于点E ,与直线OD 交于点P ; 设A 'C '与x 轴交于点F ,与直线OD 交于点Q .设水平方向的平移距离为t (0≤t <2),则图中AF =t ,F (1+t ,0),Q (1+t ,1133+t ),C '(1+t ,3﹣t ).设直线O 'C '的解析式为y =3x +b ,将C '(1+t ,3﹣t )代入得:b =﹣4t ,∴直线O 'C '的解析式为y =3x ﹣4t ,∴E (43t ,0). 联立y =3x ﹣4t 与y 13=x ,解得:x 32=t ,∴P (32t ,12t ). 过点P 作PG ⊥x 轴于点G ,则PG 12=t ,∴S =S △OFQ ﹣S △OEP 12=OF •FQ 12-OE •PG 12=(1+t )(1133+t )12-•43t •12t 16=-(t ﹣1)213+当t =1时,S 有最大值为13,∴S 的最大值为13.【点睛】本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题的关键是根据平行四边形定义,得到MN=AC=3,由此列出方程求解;第(3)问中,解题的关键是求出S的表达式,注意图形面积的计算方法.3.对于二次函数 y=ax2+(b+1)x+(b﹣1),若存在实数 x0,使得当 x=x0,函数 y=x0,则称x0为该函数的“不变值”.(1)当 a=1,b=﹣2 时,求该函数的“不变值”;(2)对任意实数 b,函数 y 恒有两个相异的“不变值”,求 a 的取值范围;(3)在(2)的条件下,若该图象上 A、B 两点的横坐标是该函数的“不变值”,且 A、B 两点关于直线 y=kx-2a+3 对称,求 b 的最小值.【答案】(1)-1,3;(2)0<a<1;(3)-9 8【解析】【分析】(1)先确定二次函数解析式为y=x2-x-3,根据x o是函数y的一个不动点的定义,把(x o,x o)代入得x02-x0-3=x o,然后解此一元二次方程即可;(2)根据x o是函数y的一个不动点的定义得到ax o2+(b+1)x o+(b-1)=x o,整理得ax02+bx o+(b-1)=0,则根据判别式的意义得到△=b2-4a(b-1)>0,即b2-4ab+4a>0,把b2-4ab+4a看作b的二次函数,由于对任意实数b,b2-4ab+4a>0成立,则(4a)2-4.4a<0,然后解此不等式即可.(3)(利用两点关于直线对称的两个结论,一是中点在已知直线上,二是两点连线和已知直线垂直.找到a,b之间的关系式,整理后在利用基本不等式求解可得.【详解】解:(1)当a=1,b=-2时,二次函数解析式为y=x2-x-3,把(x o,x o)代入得x02-x0-3=x o,解得x o=-1或x o=3,所以函数y的不动点为-1和3;(2)因为y=x o,所以ax o2+(b+1)x o+(b-1)=x o,即ax02+bx o+(b-1)=0,因为函数y 恒有两个相异的不动点,所以此方程有两个不相等的实数解,所以△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,而对任意实数b ,b 2-4ab+4a>0成立,所以(4a )2-4.4a<0,解得0<a<1.(3)设A (x 1,x 1),B (x 2,x 2),则x 1+x 2b a=- A ,B 的中点的坐标为(1212,22x x x x ++ ),即M (,22b ba a-- ) A 、B 两点关于直线y=kx-2a+3对称, 又∵A ,B 在直线y=x 上,∴k=-1,A ,B 的中点M 在直线y=kx-2a+3上.∴b a -=ba-2a+3 得:b=2a 2-3a 所以当且仅当a=34 时,b 有最小值-98【点睛】本题是在新定义下对函数知识的综合考查,是一道好题.关于两点关于直线对称的问题,有两个结论同时存在,一是中点在已知直线上,二是两点连线和已知直线垂直.4.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的 日销售量(件)与时间(天)的关系如下表: 时间(天) 1 3 6 10 36 … 日销售量(件)9490847624…未来40天内,前20天每天的价格y 1(元/件)与t 时间(天)的函数关系式为:y 1=t+25(1≤t≤20且t 为整数);后20天每天的价格y 2(原/件)与t 时间(天)的函数关系式为:y 2=—t+40(21≤t≤40且t 为整数).下面我们来研究 这种商品的有关问题.(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数 、反比例函数的知识确定一个满足这些数据之间的函数关系式;(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a 元利润(a <4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求a 的取值范围.【答案】(1)y=﹣2t+96;(2)当t=14时,利润最大,最大利润是578元;(3)3≤a <4. 【解析】分析:(1)通过观察表格中的数据日销售量与时间t 是均匀减少的,所以确定m 与t 是一次函数关系,利用待定系数法即可求出函数关系式;(2)根据日销售量、每天的价格及时间t 可以列出销售利润W 关于t 的二次函数,然后利用二次函数的性质即可求出哪一天的日销售利润最大,最大日销售利润是多少; (3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数的性质求出a 的取值范围 .详解:(1)设数m=kt+b ,有,解得∴m=-2t+96,经检验,其他点的坐标均适合以上析式故所求函数的解析式为m=-2t+96. (2)设日销售利润为P , 由P=(-2t+96)=t 2-88t+1920=(t-44)2-16,∵21≤t≤40且对称轴为t=44,∴函数P 在21≤t≤40上随t 的增大而减小,∴当t=21时,P 有最大值为(21-44)2-16=529-16=513(元),答:来40天中后20天,第2天的日销售利润最大,最大日销售利润是513元. (3)P 1=(-2t+96)=-+(14+2a )t+480-96n ,∴对称轴为t=14+2a , ∵1≤t≤20,∴14+2a≥20得a≥3时,P 1随t 的增大而增大, 又∵a <4, ∴3≤a <4.点睛:解答本题的关键是要分析题意根据实际意义准确的求出解析式,并会根据图示得出所需要的信息.同时注意要根据实际意义准确的找到不等关系,利用不等式组求解.5.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.【答案】(1)抛物线的解析式为223y x x =--+,直线的解析式为3yx .(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(1,)+-或317(1,)--.【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203ba abc c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+. ∵对称轴为1x =-,且抛物线经过()1,0A , ∴把()3,0B -、()0,3C 分别代入直线y mx n =+, 得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩,∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-. (注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得:13172t +=,23172t -=. 综上所述P 的坐标为()1,2--或()1,4-或3171,⎛⎫+- ⎪ ⎪⎝⎭或3171,⎛⎫-- ⎪ ⎪⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.6.如图,抛物线y =ax 2+bx+c 经过A (﹣3,0),B (1,0),C (0,3)三点. (1)求抛物线的函数表达式;(2)如图1,P 为抛物线上在第二象限内的一点,若△PAC 面积为3,求点P 的坐标; (3)如图2,D 为抛物线的顶点,在线段AD 上是否存在点M ,使得以M ,A ,O 为顶点的三角形与△ABC 相似?若存在,求点M 的坐标;若不存在,请说明理由.【答案】(1)y =﹣x 2﹣2x+3;(2)点P 的坐标为(﹣1,4)或(﹣2,3);(3)存在,(32-,32)或(34-,94),见解析. 【解析】 【分析】(1)利用待定系数法,然后将A 、B 、C 的坐标代入解析式即可求得二次函数的解析式; (2))过P 点作PQ 垂直x 轴,交AC 于Q ,把△APC 分成两个△APQ 与△CPQ ,把PQ 作为两个三角形的底,通过点A ,C 的横坐标表示出两个三角形的高即可求得三角形的面积.(3)通过三角形函数计算可得∠DAO=∠ACB ,使得以M ,A ,O 为顶点的三角形与△ABC 相似,则有两种情况,∠AOM=∠CAB=45°,即OM 为y=-x ,若∠AOM=∠CBA ,则OM 为y=-3x+3,然后由直线解析式可求OM 与AD 的交点M . 【详解】(1)把A (﹣3,0),B (1,0),C (0,3)代入抛物线解析式y =ax 2+bx+c 得93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得123a b c =-⎧⎪=-⎨⎪=⎩,所以抛物线的函数表达式为y =﹣x 2﹣2x+3.(2)如解(2)图1,过P 点作PQ 平行y 轴,交AC 于Q 点,∵A (﹣3,0),C (0,3), ∴直线AC 解析式为y =x+3,设P 点坐标为(x ,﹣x 2﹣2x+3.),则Q 点坐标为(x ,x+3), ∴PQ =﹣x 2﹣2x+3﹣(x+3)=﹣x 2﹣3x . ∴S △PAC =1PQ A 2O ⋅, ∴()213332x x --⋅=, 解得:x 1=﹣1,x 2=﹣2.当x =﹣1时,P 点坐标为(﹣1,4), 当x =﹣2时,P 点坐标为(﹣2,3),综上所述:若△PAC 面积为3,点P 的坐标为(﹣1,4)或(﹣2,3),(3)如解(3)图1,过D 点作DF 垂直x 轴于F 点,过A 点作AE 垂直BC 于E 点,∵D 为抛物线y =﹣x 2﹣2x+3的顶点, ∴D 点坐标为(﹣1,4), 又∵A (﹣3,0),∴直线AC 为y =2x+4,AF =2,DF =4,tan ∠PAB =2, ∵B (1,0),C (0,3)∴tan ∠ABC =3,BC =10,sin ∠ABC =310,直线BC 解析式为y =﹣3x+3. ∵AC =4,∴AE =AC•sin ∠ABC =310410⨯=6105,BE =2105, ∴CE =310, ∴tan ∠ACB =2AECE=, ∴tan ∠ACB =tan ∠PAB =2, ∴∠ACB =∠PAB ,∴使得以M ,A ,O 为顶点的三角形与△ABC 相似,则有两种情况,如解(3)图2Ⅰ.当∠AOM =∠CAB =45°时,△ABC ∽△OMA , 即OM 为y =﹣x ,设OM 与AD 的交点M (x ,y )依题意得:3y xy x =-⎧⎨=+⎩,解得3232x y ⎧=-⎪⎪⎨⎪=⎪⎩,即M 点为(32-,32). Ⅱ.若∠AOM =∠CBA ,即OM ∥BC , ∵直线BC 解析式为y =﹣3x+3.∴直线OM 为y =﹣3x ,设直线OM 与AD 的交点M (x ,y ).则依题意得:33y xy x =-⎧⎨=+⎩,解得3494x y ⎧=-⎪⎪⎨⎪=⎪⎩,即M 点为(34-,94), 综上所述:存在使得以M ,A ,O 为顶点的三角形与△ABC 相似的点M ,其坐标为(32-,32)或(34-,94). 【点睛】本题结合三角形的性质考查二次函数的综合应用,函数和几何图形的综合题目,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.7.如图,已知抛物线2y ax bx c =++的顶点为()4,3A ,与y 轴相交于点()0,5B -,对称轴为直线l ,点M 是线段AB 的中点.(1)求抛物线的表达式;(2)写出点M 的坐标并求直线AB 的表达式;(3)设动点P ,Q 分别在抛物线和对称轴l 上,当以A ,P ,Q ,M 为顶点的四边形是平行四边形时,求P ,Q 两点的坐标. 【答案】(1)21452=-+-y x x ;(2)()2,1-M ,25y x =-;(3)点P 、Q 的坐标分别为()6,1或()2,1、()4,3-或()4,1. 【解析】 【分析】(1)函数表达式为:()243y a x ==+,将点B 坐标代入上式,即可求解; (2)()4,3A 、()0,5B -,则点()2,1-M ,设直线AB 的表达式为:5y kx =-,将点A 坐标代入上式,即可求解;(3)分当AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可. 【详解】解:(1)函数表达式为:()243y a x ==+, 将点B 坐标代入上式并解得:12a =-, 故抛物线的表达式为:21452=-+-y x x ; (2)()4,3A 、()0,5B -,则点()2,1-M , 设直线AB 的表达式为:5y kx =-,将点A 坐标代入上式得:345k =-,解得:2k =, 故直线AB 的表达式为:25y x =-; (3)设点()4,Q s 、点21,452P m m m ⎛⎫-+- ⎪⎝⎭, ①当AM 是平行四边形的一条边时,点A 向左平移2个单位、向下平移4个单位得到M , 同样点21,452P m m m ⎛⎫-+- ⎪⎝⎭向左平移2个单位、向下平移4个单位得到()4,Q s , 即:24m -=,214542m m s -+--=, 解得:6m =,3s =-,故点P 、Q 的坐标分别为()6,1、()4,3-; ②当AM 是平行四边形的对角线时,由中点定理得:424m +=+,2131452m m s -=-+-+, 解得:2m =,1s =,故点P 、Q 的坐标分别为()2,1、()4,1;故点P 、Q 的坐标分别为()6,1,()4,3-或()2,1、()4,3-,()2,1或()4,1. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,避免遗漏.8.如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形?请直接写出相应的t 值.【答案】(1)点A 的坐标为(4,8)将A (4,8)、C (8,0)两点坐标分别代入y=ax 2+bx 得8=16a+4b 0=64a+8b 解得a=,b=4∴抛物线的解析式为:y=-x 2+4x(2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE=PE AP =BC AB ,即PE AP =48∴PE=AP=t .PB=8-t .∴点E的坐标为(4+t ,8-t ).∴点G的纵坐标为:-(4+t)2+4(4+t)=-t2+8.∴EG=-t2+8-(8-t)=-t2+t.∵-<0,∴当t=4时,线段EG最长为2.②共有三个时刻:t1=163, t2=4013,t3=8525.【解析】(1)根据题意即可得到点A的坐标,再由A、C两点坐标根据待定系数法即可求得抛物线的解析式;(2)①在Rt△APE和Rt△ABC中,由tan∠PAE,即可表示出点E的坐标,从而得到点G 的坐标,EG的长等于点G的纵坐标减去点E的纵坐标,得到一个函数关系式,根据函数关系式的特征即可求得结果;②考虑腰和底,分情况讨论.9.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,12),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)y=﹣12x2+32x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似. 【解析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD 解析式为y=12x-2,则Q (m ,-12m 2+32m+2)、M(m ,12m-2),由QM ∥DF 且四边形DMQF 是平行四边形知QM=DF ,据此列出关于m 的方程,解之可得;(3)易知∠ODB=∠QMB ,故分①∠DOB=∠MBQ=90°,利用△DOB ∽△MBQ 得12DO MB OB BQ ==,再证△MBQ ∽△BPQ 得BM BP BQ PQ=,即214 132222mm m -=-++,解之即可得此时m 的值;②∠BQM=90°,此时点Q 与点A 重合,△BOD ∽△BQM′,易得点Q 坐标.详解:(1)由抛物线过点A (-1,0)、B (4,0)可设解析式为y=a (x+1)(x-4), 将点C (0,2)代入,得:-4a=2, 解得:a=-12, 则抛物线解析式为y=-12(x+1)(x-4)=-12x 2+32x+2;(2)由题意知点D 坐标为(0,-2), 设直线BD 解析式为y=kx+b ,将B (4,0)、D (0,-2)代入,得:402k b b +⎧⎨-⎩==,解得:122k b ⎧⎪⎨⎪-⎩==, ∴直线BD 解析式为y=12x-2, ∵QM ⊥x 轴,P (m ,0),∴Q (m ,--12m 2+32m+2)、M (m ,12m-2),则QM=-12m 2+32m+2-(12m-2)=-12m 2+m+4,∵F (0,12)、D (0,-2),∴DF=52,∵QM ∥DF ,∴当-12m2+m+4=52时,四边形DMQF是平行四边形,解得:m=-1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则21=42 DO MBOB BQ==,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴BM BPBQ PQ=,即214132222mm m-=-++,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.10.如图,抛物线交轴于点,交轴于点,已知经过点的直线的表达式为.(1)求抛物线的函数表达式及其顶点的坐标;(2)如图①,点是线段上的一个动点,其中,作直线轴,交直线于,交抛物线于,作∥轴,交直线于点,四边形为矩形.设矩形的周长为,写出与的函数关系式,并求为何值时周长最大;(3)如图②,在抛物线的对称轴上是否存在点,使点构成的三角形是以为腰的等腰三角形.若存在,直接写出所有符合条件的点的坐标;若不存在,请说明理由.图① 图②【答案】(1)抛物线的表达式为y=-x2-2x+3,顶点C坐标为(-1,4);(2)L=-4m2-12m=-4(m+)2+9;当m=-时,最大值L=9;(3)点Q的坐标为(-1,),(-1,-),(-1,3+),(-1,3-).【解析】试题分析:(1)由直线经过A、B两点可求得这两点的坐标,然后代入二次函数解析式即可求出b、c的值,从而得到解析式,进而得到顶点的坐标;(2)由题意可表示出D、E的坐标,从而得到DE的长,由已知条件可得DE=EF,从而可表示出矩形DEFG的周长L,利用二次函数的性质可求得最大值;(3)分别以点A、点B为圆心,以AB长为半径画圆,圆与对称轴的交点即为所求的点.试题解析:(1)直线y=x+3与x轴相交于A(-3,0 ),与y轴相交于B(0,3)抛物线y=-x2+bx+c经过A(-3,0 ),B(0,3),所以,,∴,所以抛物线的表达式为y=-x2-2x+3,∵y=-x2-2x+3=-(x+1)2+4,所以,顶点坐标为C(-1,4).(2)因为D在直线y=x+3上,∴D(m,m+3).因为E在抛物线上,∴E(m,-m2-2m+3).DE=-m2-2m+3-(m+3)=-m2-3m.由题意可知,AO=BO,∴∠DAP=∠ADP=∠EDF=∠EFD=45°,∴DE=EF.L=4DE=-4m2-12m.L=-4m2-12m=-4(m+)2+9.∵a=-4<0,∴二次函数有最大值当m=-时,最大值L=9.(3)点Q的坐标为(-1,),(-1,-),(-1,3+),(-1,3-).考点:1、待定系数法;2、正方形的判定;3、二次函数的性质的应用;4、等腰三角形.。
中考数学 二次函数 培优练习(含答案)含答案
中考数学 二次函数 培优练习(含答案)含答案一、二次函数1.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值. 【答案】(1)点B 的坐标为(1,0). (2)①点P 的坐标为(4,21)或(-4,5). ②线段QD 长度的最大值为94. 【解析】 【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解. 【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0),∴2a 1b12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=, ∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3). 又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭.∵a 10<=-,-3302<<- ∴线段QD 长度的最大值为94.2.某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y (千克)与销售单价x (元)之间的函数关系如图所示. (1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少? (3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?【答案】(1)y =﹣20x +500,(x ≥6);(2)当x =15.5时,w 的最大值为1805元;(3)当x =13时,w =1680,此时,既能销售完又能获得最大利润. 【解析】【分析】(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 即可求解; (2)由题意得:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,即可求解;(3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;由50(500﹣20x )≥12000,解得:x ≤13,当x =13时,既能销售完又能获得最大利润. 【详解】解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:2001530010k bk b=+⎧⎨=+⎩, 解得:20500k b =-⎧⎨=⎩,即:函数的表达式为:y =﹣20x +500,(x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大, 则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6), ∵﹣20<0,故w 有最大值, 当x =﹣2b a =312=15.5时,w 的最大值为1805元; (3)当x =15.5时,y =190, 50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完; 设:应定销售价为x 元时,既能销售完又能获得最大利润w , 由题意得:50(500﹣20x )≥12000,解得:x ≤13, w =﹣20(x ﹣25)(x ﹣6), 当x =13时,w =1680,此时,既能销售完又能获得最大利润. 【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).3.已知,m ,n 是一元二次方程x 2+4x +3=0的两个实数根,且|m |<|n |,抛物线y =x 2+bx +c 的图象经过点A (m ,0),B (0,n ),如图所示. (1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或>【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵2,∴QF=1.①当点P 在点M 上方时,即0<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=12PM×QF=21(3)2t t -+=21322t t -+,②如图3,当点P 在点M 下方时,即t <0或t>3时,PM=223t t --﹣(t ﹣3)=23t t -,∴S=12PM×QF=12(23t t -)=21322t t -.综上所述,S=2213(03)22{13 (03)22t t t t t t t 或-+<<-.考点:二次函数综合题;分类讨论.4.如图,过()A 1,0、()B 3,0作x 轴的垂线,分别交直线y 4x =-于C 、D 两点.抛物线2y ax bx c =++经过O 、C 、D 三点.()1求抛物线的表达式;()2点M 为直线OD 上的一个动点,过M 作x 轴的垂线交抛物线于点N ,问是否存在这样的点M ,使得以A 、C 、M 、N 为顶点的四边形为平行四边形?若存在,求此时点M 的横坐标;若不存在,请说明理由;()3若AOC V 沿CD 方向平移(点C 在线段CD 上,且不与点D 重合),在平移的过程中AOC V 与OBD V 重叠部分的面积记为S ,试求S 的最大值.【答案】(1)2413y x x 33=-+;(2)32或3322+或3322-;(3)13. 【解析】【分析】(1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3.设点M 的横坐标为x ,则求出MN =|43x 2﹣4x |;解方程|43x 2﹣4x |=3,求出x 的值,即点M 横坐标的值;(3)设水平方向的平移距离为t (0≤t <2),利用平移性质求出S 的表达式:S 16=-(t ﹣1)213+;当t =1时,s 有最大值为13. 【详解】(1)由题意,可得C (1,3),D (3,1).∵抛物线过原点,∴设抛物线的解析式为:y =ax 2+bx ,∴3931a b a b +=⎧⎨+=⎩,解得43133a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为:y 43=-x 2133+x . (2)存在.设直线OD 解析式为y =kx ,将D (3,1)代入,求得k 13=,∴直线OD 解析式为y 13=x . 设点M 的横坐标为x ,则M (x ,13x ),N (x ,43-x 2133+x ),∴MN =|y M ﹣y N |=|13x ﹣(43-x 2133+x )|=|43x 2﹣4x |. 由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3,∴|43x 2﹣4x |=3. 若43x 2﹣4x =3,整理得:4x 2﹣12x ﹣9=0,解得:x =或x = 若43x 2﹣4x =﹣3,整理得:4x 2﹣12x +9=0,解得:x 32=,∴存在满足条件的点M ,点M 的横坐标为:32. (3)∵C (1,3),D (3,1),∴易得直线OC 的解析式为y =3x ,直线OD 的解析式为y 13=x . 如解答图所示,设平移中的三角形为△A 'O 'C ',点C '在线段CD 上. 设O 'C '与x 轴交于点E ,与直线OD 交于点P ;设A 'C '与x 轴交于点F ,与直线OD 交于点Q .设水平方向的平移距离为t (0≤t <2),则图中AF =t ,F (1+t ,0),Q (1+t ,1133+t ),C '(1+t ,3﹣t ).设直线O 'C '的解析式为y =3x +b ,将C '(1+t ,3﹣t )代入得:b =﹣4t ,∴直线O 'C '的解析式为y =3x ﹣4t ,∴E (43t ,0). 联立y =3x ﹣4t 与y 13=x ,解得:x 32=t ,∴P (32t ,12t ). 过点P 作PG ⊥x 轴于点G ,则PG 12=t ,∴S =S △OFQ ﹣S △OEP 12=OF •FQ 12-OE •PG 12=(1+t )(1133+t )12-•43t •12t 16=-(t ﹣1)213+当t =1时,S 有最大值为13,∴S 的最大值为13.【点睛】本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题的关键是根据平行四边形定义,得到MN =AC =3,由此列出方程求解;第(3)问中,解题的关键是求出S 的表达式,注意图形面积的计算方法.5.对于二次函数 y=ax 2+(b+1)x+(b ﹣1),若存在实数 x 0,使得当 x=x 0,函数 y=x 0,则称x 0 为该函数的“不变值”.(1)当 a=1,b=﹣2 时,求该函数的“不变值”;(2)对任意实数 b ,函数 y 恒有两个相异的“不变值”,求 a 的取值范围;(3)在(2)的条件下,若该图象上 A 、B 两点的横坐标是该函数的“不变值”,且 A 、B 两点关于直线 y=kx-2a+3 对称,求 b 的最小值.【答案】(1)-1,3;(2)0<a<1;(3)-98【解析】 【分析】(1)先确定二次函数解析式为y=x 2-x-3,根据x o 是函数y 的一个不动点的定义,把(x o ,x o )代入得x 02-x 0-3=x o ,然后解此一元二次方程即可;(2)根据x o 是函数y 的一个不动点的定义得到ax o 2+(b+1)x o +(b-1)=x o ,整理得ax 02+bx o +(b-1)=0,则根据判别式的意义得到△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,把b 2-4ab+4a 看作b 的二次函数,由于对任意实数b ,b 2-4ab+4a>0成立,则(4a )2-4.4a<0,然后解此不等式即可.(3)(利用两点关于直线对称的两个结论,一是中点在已知直线上,二是两点连线和已知直线垂直.找到a ,b 之间的关系式,整理后在利用基本不等式求解可得. 【详解】解:(1)当a=1,b=-2时,二次函数解析式为y=x 2-x-3,把(x o ,x o )代入得x 02-x 0-3=x o ,解得x o =-1或x o =3,所以函数y 的不动点为-1和3;(2)因为y=x o ,所以ax o 2+(b+1)x o +(b-1)=x o ,即ax 02+bx o +(b-1)=0,因为函数y 恒有两个相异的不动点,所以此方程有两个不相等的实数解,所以△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,而对任意实数b ,b 2-4ab+4a>0成立,所以(4a )2-4.4a<0,解得0<a<1.(3)设A (x 1,x 1),B (x 2,x 2),则x 1+x 2b a=- A ,B 的中点的坐标为(1212,22x x x x ++ ),即M (,22b ba a-- ) A 、B 两点关于直线y=kx-2a+3对称, 又∵A ,B 在直线y=x 上,∴k=-1,A ,B 的中点M 在直线y=kx-2a+3上.∴b a -=ba-2a+3 得:b=2a 2-3a 所以当且仅当a=34 时,b 有最小值-98【点睛】本题是在新定义下对函数知识的综合考查,是一道好题.关于两点关于直线对称的问题,有两个结论同时存在,一是中点在已知直线上,二是两点连线和已知直线垂直.6.如图,抛物线y =ax 2+bx +4与x 轴交于点A (﹣1,0)、B (3,0),与y 轴交于点C . (1)求抛物线的解析式;(2)如图1,D 为抛物线对称轴上一动点,求D 运动到什么位置时△DAC 的周长最小; (3)如图2,点E 在第一象限抛物线上,AE 与BC 交于点F ,若AF :FE =2:1,求E 点坐标;(4)点M 、N 同时从B 点出发,分别沿BA 、BC 方向运动,它们的运动速度都是1个单位/秒,当点M 运动到点A 时,点N 停止运动,则当点N 停止运动后,在x 轴上是否存在点P ,使得△PBN 是等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)248433y x x =-++(2)81,3D ⎛⎫⎪⎝⎭(3)点P 的坐标P 1(﹣1,0)或P 2(7,0)或P 3(﹣95,0)或P 4(13,0). 【解析】 【分析】(1)直接待定系数法代入求解即可 (2)找到D 点在对称轴时是△DAC 周长最小的点,先求出直线BC ,然后D 点横坐标是1,直接代入直线BC 求出纵坐标即可 (3)作EH ∥AB 交BC 于H ,则∠FAB =∠FEH ,∠FBA =∠FHE ,易证△ABF ∽△EHF ,得AB AF2EH EF==,得EH=2,设E (x ,248x x 433-++),则H (x ﹣2,420x 33-+),y E =y H ,解出方程x =1或x =2,得到E 点坐标 (4)△PBN 是等腰三角形,分成三种情况,①BP =BC 时,利用等腰三角性质直接得到P 1(﹣1,0)或P 2(7,0),②当NB =NP 时,作NH ⊥x 轴,易得△NHB ∽△COB ,利用比例式得到NH 、 BH 从而得到 PH =BH ,BP ,进而得到OP ,即得到P 点坐标,③当PN =PB 时,取NB 中点K ,作KP ⊥BN ,交x 轴于点P ,易得△NOB ∽△PKB ,利用比例式求出PB ,进而得到OP ,即求出P 点坐标 【详解】解:(1)将A (﹣1,0)、B (3,0)代入y =ax 2+bx+4,得 40930a b a b c -+=⎧⎨++=⎩解得a =43-,b =83, ∴抛物线的解析式248433y x x =-++; (2)22484164(1)3333=-++=--+y x x x∴抛物线对称轴为直线x =1, ∴D 的横坐标为1, 由(1)可得C (0,4), ∵B (3,0),∴直线BC :4y 43x =-+ ∵DA =DB ,△DAC 的周长=AC+CD+AD =AC+CD+BD , 连接BC ,与对称轴交于点D ,此时CD+BD 最小, ∵AC 为定值, ∴此时△DAC 的周长, 当x =1时,y =﹣43×1+4=83, ∴D (1,83); (3)作EH ∥AB 交BC 于H ,则∠FAB =∠FEH ,∠FBA =∠FHE ,∴△ABF ∽△EHF , ∵AF :FE =2:1, ∴AB AF2EH EF==,∵AB =4, ∴EH =2,设E (x ,248x x 433-++),则H (x ﹣2,420x 33-+) ∵EH ∥AB , ∴y E =y H ,∴248x x 433-++=420x 33-+ 解得x =1或x =2,y =163或4, ∴E (1,163)或(2,4); (4)∵A (﹣1,0)、B (3,0),C (0,4) ∴AB =4,OC =4,点M 运动到点A 时,BM =AB =4, ∴BN =4,∵△PBN 是等腰三角形, ①BP =BC 时,若P 在点B 左侧,OP =PB ﹣OB =4﹣3=1, ∴P 1(﹣1,0),若P 在点B 右侧,OP =OB+BP =4+3=7, ∴P 2(7,0);②当NB =NP 时,作NH ⊥x 轴, △NHB ∽△COB ,∴45NH BH BN OC OB BC === ∴NH =45OC =445⨯=165,BH=45BC=125,∴PH=BH=125,BP=245,∴OP=BP﹣OB=249355-=,∴P3(﹣95,0);③当PN=PB时,取NB中点K,作KP⊥BN,交x轴于点P,∴△NOB∽△PKB,∴PB BKBN OB=∴PB=83,∴OP=OB﹣PB=3﹣83=13P4(13,0)综上,当△PBN是等腰三角形时,点P的坐标P1(﹣1,0)或P2(7,0)或P3(﹣95,0)或P4(13,0).【点睛】本题考查二次函数、平行线性质、相似三角形、等腰三角形性质及最短距离等知识点,综合程度比较高,对综合能力要求比较高. 第一问比较简单,考查待定系数法;第二问最短距离,找到D点是解题关键;第三问证明出相似是关键;第四问能够分情况讨论是解题关键7.如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P 从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<5.(1)设四边形PQCB的面积为S,求S与t的关系式;(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD (或CD)于点N,当t为何值时,点P、M、N在一直线上?(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.【答案】(1) S=﹣2+0<t<5); (2) 307;(3)见解析.【解析】【分析】(1)如图1,根据S=S△ABC-S△APQ,代入可得S与t的关系式;(2)设PM=x,则AM=2x,可得,计算x的值,根据直角三角形30度角的性质可得AM=AO+OM,列方程可得t的值;(3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值.【详解】解:(1)如图1,∵四边形ABCD是菱形,∴∠ABD=∠DBC=12∠ABC=60°,AC⊥BD,∴∠OAB=30°,∵AB=20,∴OB=10,由题意得:AP=4t,∴PQ=2t,,∴S=S△ABC﹣S△APQ,=11··22AC OB PQ AQ-,=1110222t⨯⨯⨯⨯,=﹣2(0<t<5);(2)如图2,在Rt△APM中,AP=4t,∵点Q关于O的对称点为M,∴OM=OQ,设PM=x,则AM=2x,∴,∴∴AM=2PM=83t , ∵AM=AO+OM ,∴83t =103+103﹣23t ,t=307; 答:当t 为307秒时,点P 、M 、N 在一直线上; (3)存在,如图3,∵直线PN 平分四边形APMN 的面积, ∴S △APN =S △PMN ,过M 作MG ⊥PN 于G ,∴11··22PN AP PN MG , ∴MG=AP ,易得△APH ≌△MGH ,∴AH=HM=3t ,∵AM=AO+OM ,同理可知:OM=OQ=103﹣23t ,3t=103=103﹣23t , t=3011. 答:当t 为3011秒时,使得直线PN 平分四边形APMN 的面积.【点睛】考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.8.温州茶山杨梅名扬中国,某公司经营茶山杨梅业务,以3万元/吨的价格买入杨梅,包装后直接销售,包装成本为1万元/吨,它的平均销售价格y(单位:万元/吨)与销售数量x(2≤x≤10,单位:吨)之间的函数关系如图所示.(1)若杨梅的销售量为6吨时,它的平均销售价格是每吨多少万元?(2)当销售数量为多少时,该经营这批杨梅所获得的毛利润(w)最大?最大毛利润为多少万元?(毛利润=销售总收入﹣进价总成本﹣包装总费用)(3)经过市场调查发现,杨梅深加工后不包装直接销售,平均销售价格为12万元/吨.深加工费用y(单位:万元)与加工数量x(单位:吨)之间的函数关系是y=12x+3(2≤x≤10).①当该公司买入杨梅多少吨时,采用深加工方式与直接包装销售获得毛利润一样?②该公司买入杨梅吨数在范围时,采用深加工方式比直接包装销售获得毛利润大些?【答案】(1)杨梅的销售量为6吨时,它的平均销售价格是每吨10万元;(2)当x=8时,此时W最大值=40万元;(3)①该公司买入杨梅3吨;②3<x≤8.【解析】【分析】(1)设其解析式为y=kx+b,由图象经过点(2,12),(8,9)两点,得方程组,即可得到结论;(2)根据题意得,w=(y﹣4)x=(﹣12x+13﹣4)x=﹣12x2+9x,根据二次函数的性质即可得到结论;(3)①根据题意列方程,即可得到结论;②根据题意即可得到结论.【详解】(1)由图象可知,y是关于x的一次函数.∴设其解析式为y=kx+b,∵图象经过点(2,12),(8,9)两点,∴212 89k bk b+=⎧⎨+=⎩,解得k=﹣12,b=13,∴一次函数的解析式为y =﹣12x +13, 当x =6时,y =10,答:若杨梅的销售量为6吨时,它的平均销售价格是每吨10万元; (2)根据题意得,w =(y ﹣4)x =(﹣12x +13﹣4)x =﹣12x 2+9x , 当x =﹣2ba=9时,x =9不在取值范围内, ∴当x =8时,此时W 最大值=﹣12x 2+9x =40万元; (3)①由题意得:﹣12x 2+9x =9x ﹣(12x +3) 解得x =﹣2(舍去),x =3, 答该公司买入杨梅3吨;②当该公司买入杨梅吨数在 3<x ≤8范围时,采用深加工方式比直接包装销售获得毛利润大些.故答案为:3<x ≤8. 【点睛】本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.9.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元. (1)直接写出书店销售该科幻小说时每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠(06)a a <≤元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.【答案】(1)10500(3038)y x x =-+剟;(2)2a =. 【解析】 【分析】(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w 元.根据题意得到w=(x-20-a )(-10x+500)=-10x 2+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38,则当1352x a =+时,w 取得最大值,解方程得到a 1=2,a 2=58,于是得到a=2.【详解】解:(1)根据题意得,()()2501025105003038y x x x =--=-+剟; (2)设每天扣除捐赠后可获得利润为w 元.()()()()220105001010700500100003038w x a x x a x a x =---+=-++--剟对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38, 则当1352x a =+时,w 取得最大值, ∴1135201035500196022a a x a ⎡⎤⎛⎫⎛⎫+---++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∴122,58a a ==(不合题意舍去),∴2a =. 【点睛】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.10.某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y (件)与销售单价x (元)之间的关系如图所示.(1)根据图象直接写出y 与x 之间的函数关系式.(2)设这种商品月利润为W (元),求W 与x 之间的函数关系式. (3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少? 【答案】(1)y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩;(2)W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩;(3)这种商品的销售单价定为65元时,月利润最大,最大月利润是3675. 【解析】 【分析】(1)当40≤x≤60时,设y 与x 之间的函数关系式为y=kx+b ,当60<x≤90时,设y 与x 之间的函数关系式为y=mx+n ,解方程组即可得到结论;(2)当40≤x≤60时,当60<x≤90时,根据题意即可得到函数解析式;(3)当40≤x≤60时,W=-x 2+210x-5400,得到当x=60时,W 最大=-602+210×60-5400=3600,当60<x≤90时,W=-3x 2+390x-9000,得到当x=65时,W 最大=-3×652+390×65-9000=3675,于是得到结论. 【详解】解:(1)当40≤x ≤60时,设y 与x 之间的函数关系式为y =kx +b , 将(40,140),(60,120)代入得4014060120k b k b +=⎧⎨+=⎩,解得:1180k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式为y =﹣x +180;当60<x ≤90时,设y 与x 之间的函数关系式为y =mx +n , 将(90,30),(60,120)代入得903060120m n m n +=⎧⎨+=⎩,解得:3300m n =-⎧⎨=⎩,∴y =﹣3x +300;综上所述,y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩;(2)当40≤x ≤60时,W =(x ﹣30)y =(x ﹣30)(﹣x +180)=﹣x 2+210x ﹣5400, 当60<x ≤90时,W =(x ﹣30)(﹣3x +300)=﹣3x 2+390x ﹣9000,综上所述,W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩; (3)当40≤x ≤60时,W =﹣x 2+210x ﹣5400,∵﹣1<0,对称轴x =2102--=105,∴当40≤x ≤60时,W 随x 的增大而增大,∴当x =60时,W 最大=﹣602+210×60﹣5400=3600, 当60<x ≤90时,W =﹣3x 2+390x ﹣9000,∵﹣3<0,对称轴x =3906--=65,∵60<x ≤90,∴当x =65时,W 最大=﹣3×652+390×65﹣9000=3675, ∵3675>3600,∴当x =65时,W 最大=3675,答:这种商品的销售单价定为65元时,月利润最大,最大月利润是3675. 【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.根据题意分情况建立二次函数的模型是解题的关键.11.如图,二次函数245y x x =-++图象的顶点为D ,对称轴是直线l ,一次函数215y x =+的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .(1)点D 的坐标是 ______;(2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D 、C 重合),点N 的纵坐标为n .过点N 作直线与线段DA 、DB 分别交于点P ,Q ,使得DPQ ∆与DAB ∆相似.①当275n =时,求DP 的长; ②若对于每一个确定的n 的值,有且只有一个DPQ ∆与DAB ∆相似,请直接写出n 的取值范围 ______.【答案】(1)()2,9;(2)①95DP =②92155n <<. 【解析】 【分析】(1)直接用顶点坐标公式求即可; (2)由对称轴可知点C (2,95),A (-52,0),点A 关于对称轴对称的点(132,0),借助AD 的直线解析式求得B (5,3);①当n=275时,N (2,275),可求95,DN=185,CD=365,当PQ ∥AB 时,△DPQ ∽△DAB ,5;当PQ 与AB 不平行时,5②当PQ ∥AB ,DB=DP 时,5DN=245,所以N (2,215),则有且只有一个△DPQ 与△DAB 相似时,95<n <215. 【详解】(1)顶点为()2,9D ;故答案为()2,9; (2)对称轴2x =,9(2,)5C ∴,由已知可求5(,0)2A -,点A 关于2x =对称点为13(,0)2, 则AD 关于2x =对称的直线为213y x =-+,(5,3)B ∴,①当275n =时,27(2,)5N ,DA ∴=,182DN =,365CD = 当PQ AB ∥时,PDQ DAB ∆∆:,DAC DPN ∆∆Q :,DP DN DA DC∴=,DP ∴=当PQ 与AB 不平行时,DPQ DBA ∆∆:,DNQ DCA ∴∆∆:,DP DNDB DC∴=,DP ∴=综上所述DP = ②当PQ AB ∥,DB DP =时,DB =DP DNDA DC∴=, 245DN ∴=, 21(2,)5N ∴, ∴有且只有一个DPQ ∆与DAB ∆相似时,92155n <<; 故答案为92155n <<;【点睛】本题考查二次函数的图象及性质,三角形的相似;熟练掌握二次函数的性质,三角形相似的判定与性质是解题的关键.12.已知:二次函数2432y x x a =-++(a 为常数). (1)请写出该二次函数图象的三条性质;(2)在同一直角坐标系中,若该二次函数的图象在4x ≤的部分与一次函数21y x =-的图象有两个交点,求a 的取值范围. 【答案】(1)见解析;(2)523a ≤<. 【解析】 【分析】(1)可从开口方向、对称轴、最值等角度来研究即可;(2) 先由二次函数的图象与一次函数21y x =-的图象有两个交点,即关于x 的一元二次方程26330x x a -++=有两个不相等的实数根,由此可得2a <,再根据二次函数的图象在4x ≤的部分与一次函数21y x =-的图象有两个交点,也就是说二次函数2633w x x a =-++的图象与x 轴4x ≤的部分有两个交点,画出函数2633w x x a =-++的图象,结合图象,可知当4x =时,26330x x a -++≥,将x=4代入求得a 的取值范围,由此即可求得答案. 【详解】(1)①图象开口向上;②图象的对称轴为直线2x =;③当2x >时,y 随x 的增大而增大;④当2x <时,y 随x 的增大而减小;⑤当2x =时,函数有最小值; (2)∵二次函数的图象与一次函数21y x =-的图象有两个交点, ∴243221x x a x -++=-,即26330x x a -++=,364(33)12240a a ∆=-+=-+>,解得2a <,∵二次函数的图象在4x ≤的部分与一次函数21y x =-的图象有两个交点, ∴二次函数2633w x x a =-++的图象与x 轴4x ≤的部分有两个交点, 画出二次函数2633w x x a =-++的图象,结合图象, 可知当4x =时,26330x x a -++≥,∴当4x =时,2633350x x a a -++=-≥,得53a ≥, ∴当二次函数的图象在4x ≤的部分与一次函数21y x =-的图象有两个交点时,a 的取值范围为523a ≤<. 【点睛】本题考查的是二次函数综合题,涉及了二次函数的性质,二次函数图象与一次函数图象的交点问题,二次函数的图象与x 轴交点问题,正确进行分析并运用数形结合思想、灵活运用相关知识是解题的关键.13.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P点的坐标为()1,1-,()1,11-±,()1,219--±.【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE于点F,表示△ADE的面积,运用二次函数分析最值即可;(3)设出点P坐标,分PA=PE,PA=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴16404206a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:34326abc⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以二次函数的解析式为:y=233642x x--+;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=122x--,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,233642m m--+),则点F(m,122m--),∴DF=233642m m--+﹣(122m--)=2384m m--+,∴S△ADE=S△ADF+S△EDF=12×DF×AG+12DF×EH=12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+) =23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PAPEAE=,分三种情况讨论: 当PA =PEn =1,此时P (﹣1,1); 当PA =AE=n=,此时点P 坐标为(﹣1,);当PE =AE=n =﹣2P 坐标为:(﹣1,﹣2).综上所述:P 点的坐标为:(﹣1,1),(﹣1,1,﹣2). 点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.14.某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件的新型商品在第x 天销售的相关信息如下表所示.(1)请计算第几天该商品的销售单价为35元/件? (2)求该网店第x 天获得的利润y 关于x 的函数关系式. (3)这40天中该网店第几天获得的利润最大?最大利润是多少? 【答案】(1)第10天或第35天该商品的销售单价为35元/件(2)()()21x 15x 5001x 202y {2625052521x 40x-++≤≤=-≤≤(3)这40天中该网店第21天获得的利润最大?最大利润是725元 【解析】 【分析】(1)分别将q=35代入销售单价关于x 的函数关系式,求出x 即可. (2)应用利润=销售收入-销售成本列式即可.(3)应用二次函数和反比例函数的性质,分别求出最大值比较即得所求. 【详解】解:(1)当1≤x≤20时,令1q 30x 352=+=,解得;x 10=; 当21≤x≤40时,令525q 2035x=+=,解得;x 35=. ∴第10天或第35天该商品的销售单价为35元/件.(2)当1≤x≤20时,()211y 30x 2050x x 15x 50022⎛⎫=+--=-++ ⎪⎝⎭; 当21≤x≤40时,()52526250y 202050x 525x x ⎛⎫=+--=- ⎪⎝⎭. ∴y 关于x 的函数关系式为()()21x 15x 5001x 202y {2625052521x 40x-++≤≤=-≤≤.(3)当1≤x≤20时,()2211y x 15x 500x 15612.522=-++=--+, ∵102-<,∴当x=15时,y 有最大值y 1,且y 1=612.5. 当21≤x≤40时,∵26250>0,∴26250x随着x 的增大而减小, ∴当x=21时,26250y 525x =-有最大值y 2,且226250y 52572521=-=. ∵y 1<y 2,∴这40天中该网店第21天获得的利润最大?最大利润是725元.15.如图1,抛物线2112y ax x c =-+与x 轴交于点A 和点()1,0B ,与y 轴交于点30,4C ⎛⎫⎪⎝⎭,抛物线1y 的顶点为,G GM x ⊥轴于点M .将抛物线1y 平移后得到顶点为B 且对称轴为直l 的抛物线2y .(1)求抛物线2y 的解析式;(2)如图2,在直线l 上是否存在点T ,使TAC ∆是等腰三角形?若存在,请求出所有点T 的坐标:若不存在,请说明理由;(3)点P 为抛物线1y 上一动点,过点P 作y 轴的平行线交抛物线2y 于点Q ,点Q 关于直线l 的对称点为R ,若以,,P Q R 为顶点的三角形与AMC ∆全等,求直线PR 的解析式. 【答案】(1)抛物线2y 的解析式为2111424y x x =-+-;(2)T 点的坐标为13137T +,23137T -,377(1,)8T -;(3)PR 的解析式为13y x 24=-+或1124y x =--.【解析】分析:(1)把()1,0B 和30,4C ⎛⎫ ⎪⎝⎭代入2112y ax x c =-+求出a 、c 的值,进而求出y 1,再根据平移得出y 2即可;(2)抛物线2y 的对称轴l 为1x =,设()1,T t ,已知()33,0,0,4A C ⎛⎫- ⎪⎝⎭,过点T 作TE y ⊥轴于E ,分三种情况时行讨论等腰三角形的底和腰,得到关于t 的方程,解方程即可; (3)设2113,424P m m m ⎛⎫--+ ⎪⎝⎭,则2111,424Q m m m ⎛⎫-+- ⎪⎝⎭,根据对称性得21112,424R m m m ⎛⎫--+- ⎪⎝⎭,分点P 在直线的左侧或右侧时,结合以,,P Q R 构成的三角形与AMG ∆全等求解即可. 详解:(1)由题意知,34102c a c ⎧=⎪⎪⎨⎪-+=⎪⎩, 解得14a =-, 所以,抛物线y 的解析式为21113424y x x =--+; 因为抛物线1y 平移后得到抛物线2y ,且顶点为()1,0B ,所以抛物线2y 的解析式为()22114y x =--, 即: 22111424y x x =-+-; (2)抛物线2y 的对称轴l 为1x =,设()1,T t ,已知()33,0,0,4A C ⎛⎫- ⎪⎝⎭, 过点T 作TE y ⊥轴于E ,则22221TC TE CE =+=+ 2233254216t t t ⎛⎫-=-+ ⎪⎝⎭,222TA TB AB =+= ()2221316t t ++=+,215316AC =, 当TC AC =时, 即232515321616t t -+=, 解得13137t +=或23137t -=; 当TC AC =时,得21531616t +=,无解; 当TC AC =时,得2232516216t t t -+=+,解得3778t =-; 综上可知,在抛物线2y 的对称轴l 上存在点T 使TAC ∆是等腰三角形,此时T 点的坐标为13137T ⎛+ ⎝⎭,23137T ⎛- ⎝⎭,3771,8T ⎛⎫- ⎪⎝⎭. (3)设2113,424P m m m ⎛⎫--+ ⎪⎝⎭,则2111,424Q m m m ⎛⎫-+- ⎪⎝⎭, 因为,Q R 关于1x =对称,所以21112,424R m m m ⎛⎫--+- ⎪⎝⎭, 情况一:当点P 在直线的左侧时,2113424PQ m m =--+- 21111424m m m ⎛⎫-+-=- ⎪⎝⎭,22QR m =-,又因为以,,P Q R 构成的三角形与AMG ∆全等, 当PQ GM =且QR AM =时,0m =, 可求得30,4P ⎛⎫⎪⎝⎭,即点P 与点C 重合 所以12,4R ⎛⎫-⎪⎝⎭, 设PR 的解析式y kx b =+,则有3,412.4b k b ⎧=⎪⎪⎨⎪+=-⎪⎩解得12k =-, 即PR 的解析式为1324y x =-+, 当PQ AM =且QR GM =时,无解,情况二:当点P 在直线l 右侧时,2111424P Q m m '=-+-'- 21131424m m m ⎛⎫--+=- ⎪⎝⎭,22Q R m ='-',同理可得512,,0,44P R ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝'⎭' P R''的解析式为1124y x =--,综上所述, PR的解析式为1324y x=-+或1124y x=--.点睛:本题主要考查了二次函数综合题,此题涉及到待定系数法求函数解析式、等腰三角形的判定与性质、全等三角形的性质等知识,解答(1)问的关键是求出a、c的值,解答(2)、(3)问的关键是正确地作出图形,进行分类讨论解答,此题有一定的难度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学培优卷:二次函数考点分析培优★★★二次函数的图像抛物线的时候应抓住以下五点: 开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.★★二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)一般式:y=ax 2+bx+c ,三个点顶点式:y=a (x -h )2+k ,顶点坐标对称轴顶点坐标(-2ba,244ac b a -).顶点坐标(h ,k )★★★a b c 作用分析│a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大,a ,b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=-2ba <0,即对称轴在y 轴左侧,当a ,b•异号时,对称轴x=-2ba>0,即对称轴在yc•c=0时,抛物线经过原点,c>0时,与y 轴交于正半轴;c<0时,与y•轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出.交点式:y=a(x- x 1)(x- x 2),(有交点的情况) 与x 轴的两个交点坐标x 1,x 2 对称轴为221x x h +=1个单位,所得到的图象对应的二次函数关系式是2)1(2-+=x y 则原二次函数的解析式为2.二次函数的图象顶点坐标为(2,1),形状开品与抛物线y= - 2x 2相同,这个函数解析式为________。
3.如果函数1)3(232++-=+-kx x k y k k 是二次函数,则k 的值是______4.(08绍兴)已知点11()x y ,,22()x y ,均在抛物线21y x =-上,下列说法中正确的是( )A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >5.(兰州10) 抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为A . b=2, c=2 B. b=2,c=0C . b= -2,c=-1 D. b= -3, c=2 ★6.抛物线5)43()1(22+--++=x m m x m y 以Y 轴为对称轴则。
M =7.二次函数52-+=a ax y 的图象顶点在Y 轴负半轴上。
且函数值有最小值,则m 的取值范围是8.函数245(5)21a a y a xx ++=-+-, 当a =_______时, 它是一次函数; 当a =_______时, 它是二次函数.9.抛物线2)13(-=x y 当x 时,Y 随X 的增大而增大 10.抛物线42++=ax x y 的顶点在X 轴上,则a 值为 ★11.已知二次函数2)3(2--=x y ,当X 取1x 和2x 时函数值相等,当X 取1x +2x 时函数值为12.若二次函数k ax y +=2,当X 取X1和X2(21x x ≠)时函数值相等,则当X 取X1+X2时,函数值为 13.若函数2)3(-=x a y 过(2.9)点,则当X =4时函数值Y =★14.若函数k h x y ---=2)(的顶点在第二象限则, h 0 ,k 015.已知二次函数当x=2时Y 有最大值是1.且过(3.0)点求解析式?16.将121222--=x x y 变为n m x a y +-=2)(的形式,则n m ⋅=_____。
★17.已知抛物线在X 轴上截得的线段长为6.且顶点坐标为(2,3)求解析式?(讲解对称性书写)的顶点到x 轴的距离是3,那么c 的值等于( )(A )8 (B )14 (C )8或14 (D )-8或-1419.二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( )(A )12 (B )11 (C )10 (D )920.若0<b ,则二次函数12-+=bx x y 的图象的顶点在 ( A )(A )第一象限(B )第二象限 (C )第三象限(D )第四象限21.不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是( )A.a>0,△>0B.a>0, △<0C.a<0, △<0D.a<0, △<0 ★22.已知二次函数)1(3)1(2-++-=a a x x a y 的图象过原点则a 的值为23.二次函数432--=x x y 关于Y 轴的对称图象的解析式为 关于X 轴的对称图象的解析式为 关于顶点旋转180度的图象的解析式为 24. 二次函数y=2(x+3)(x-1)的x 轴的交点的个数有__个,y 交点坐标为_______。
25.已知二次函数222--=x ax y 的图象与X 轴有两个交点,则a 的取值范围是26.二次函数y=(x-1)(x+2)的顶点为___,对称轴为 _。
27.抛物线y=(k-1)x 2+(2-2k)x+1,那么此抛物线的对称轴是直线_________,它必定经过________和____ 28.若二次函数3622+-=x x y 当X 取两个不同的值X1和X2时,函数值相等,则X1+X2=29.若抛物线22y x x a =++的顶点在x 轴的下方,则a 的取值范围是( )A.1a > B.1a < C.1a ≥ D.1a ≤30.抛物线y= (k 2-2)x 2+m-4kx 的对称轴是直线x=2,且它的最低点在直线y= -21+2上,求函数解析式。
31.已知二次函数图象与x 轴交点(2,0)(-1,0)与y 轴交点是(0,-1)求解析式及顶点坐标。
32.y= ax 2+bx+c 图象与x 轴交于A 、B 与y 轴交于C ,OA=2,OB=1 ,OC=1,求函数解析式32. ★★★★★抛物线562-+-=x x y 与x 轴交点为A ,B ,(A 在B 左侧)顶点为C.与Y 轴交于点D (1)求△ABC 的面积。
33(2)若在抛物线上有一点M ,使△ABM 的面积是△ABC 的面积的2倍。
求M 点坐标(得分点的把握) 34(3)在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.35(4)在抛物线上是否存在一点P ,使四边形PBAC 是等腰梯形,若存在,求出P 点的坐标;若不存在,请说明理由 二次函数图象与系数关系+增减性 36.二次函数c bx ax y +-= 图象如下,则a,b,c 取值范围是37已知y=ax 2+bx+c 的图象如下, 则:a____0 b___0 c___0a+b+c____0,a-b+c__0。
2a+b____0 b 2-4ac___0 4a+2b+c 038.二次函数c bx ax y ++=2的图象如图所示. 有下列结论: ①240b ac -<; ②0ab >; ③0a b c -+=; ④40a b +=;⑤当2y =时,x 等于0.⑥02=++c bx ax 有两个不相等的实数根 ⑦22=++c bx ax 有两个不相等的实数根 ⑧0102=-++c bx ax 有两个不相等的实数根 ⑨42-=++c bx ax 有两个不相等的实数根 其中正确的是( )39.(天津市)已知二次函数c bx ax y ++=2的图象如图所示,下列结论:① 0>abc ;② c a b +<;③024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( )。
A. 2个B. 3个C. 4个D. 5个40.小明从右边的二次函数c bx ax y ++=2图象中,观察得出了下面的五条信息:①0a <,②0c =,③函数的最小值为3-,④当0x <时,0y >,⑤当1202x x <<<时,12y y >.你认为其中正确的个数为( )O x yC A y xOA.2 B.3C.4 D.541.已知二次函数c bx ax y ++=2,其中a b c ,,满足0a b c ++=和930a b c -+=,则该二次函数图象的对称轴是直线 .42.直已知y=ax 2+bx+c 中a<0,b>0,c<0 ,△<0,函数的图象过 象限。
43.若),41(),,45(),,413(321y C y B y A --为二次函数245y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .123y y y << B .213y y y <<C .312y y y << D .132y y y << 44.在同一平面直角坐标系中,一次函数y ax b =+和二次函数245.二次函数c bx ax y ++=2的图象如图所示,则直线y bx c =+的图象不经过( )A.第一象限B.第二象限 C.第三象限D.第四象限46.抛物线y=ax 2+bx+c 的图象如图,OA=OC ,则 ( )(A ) ac+1=b (B ) ab+1=c (C )bc+1=a (D )以上都不是47.已知二次函数y=a 2x +bx+c,且a <0,a-b+c >0,则一定有( )A 24b ac - >0 B24b ac -=0C24b ac -<0 D24b ac -≤048.若二次函数y=ax 2+bx+c 的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c 的变化范围是 ( )(A )0<S<2 (B) S>1 (C) 1<S<2 (D)-1<S<1 49.(10包头)已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个.50.(10 四川自贡)y=x 2+(1-a )x +1是关于x 的二次函数,当x 的取值范围是1≤x ≤3时,y 在x =1时取得最大值,则实数a 的取值范围是( )。
.a =3 D .a ≥3 二次函数与方程不等式2x 轴有两个交点A (2,0)B (-1,0),则ax 2+bx+c>0的解是____________; ax 2+bx+c<0的解是____________52.已知二次函数y=x 2+mx+m-5,求证①不论m 取何值时,抛物线总与x 轴有两个交点;②当m 取何值时,抛物线与x 轴两交点之间的距离最短。