高中数学 必修三 古典概型 课件

合集下载

人教A版数学必修3 3.2.1 古典概型 课件(79张)

人教A版数学必修3 3.2.1 古典概型 课件(79张)
n 10
(2)因为事件B={(1,2,3),(1,2,4),(1,2,5),(1,3,4), (1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5)}, 所以事件B包含的基本事件数m=9. 所以P(B)= m 9 .
n 10
【素养·探】 本题主要考查计算古典概型的概率问题,突出考查了数 学抽象与数学运算的核心素养. 本例条件不变,若事件C={三个数字的和不小于10},求 事件C的概率.
12
概率.
(2)若甲、乙两人每人停车的时长在每个时段的可能
性相同,求甲、乙两人停车费之和为28元的概率.
【思维·引】(1)利用互斥事件的概率公式求解. (2)利用古典概型的概率公式求解.
【解析】(1)设“一次停车不超过1小时”为事件
A,“一次停车1到2小时”为事件B,“一次停车2到3小
时”为事件C,“一次停车3到4小时”为事件D.
(3)某人买彩票,是否中奖是古典概型. ( )
(4)一个古典概型的基本事件数为n,则每一个基本事件
出现的概率都是 1 . ( )
n
提示:(1)×.区间[0,6]上的有理数有无数个. (2)√.基本事件为(甲、乙),(甲、丙),(乙、丙),共3个. (3)×.中奖、不中奖的可能性不相同,不中奖的可能性 较大. (4)√.古典概型中每个基本事件出现的概率相同.
由已知得P(B)= 1 ,P(C+D)= 5 .
3
12
又事件A,B,C,D互斥,所以P(A)=1-1- 5 =1 .
3 12 4
所以甲的停车费为6元的概率为 1 .
4
(2)易知甲、乙停车时间的基本事件有(1,1),(1,2), (1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3, 2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个. 而“停车费之和为28元”的事件有(1,3),(2,2),(3,1), 共3个,所以所求概率为 3.

高中数学必修三课件:古典概型(共34张PPT)

高中数学必修三课件:古典概型(共34张PPT)
法就是把所有的基本事件一一列举出来,再逐个数出.
例如,把从 4 个球中任取两个看成一次试验,那么一次试验共有
多少个基本事件?为了表述方便,对这四个球编号为 1,2,3,4.把每次
取出的两个球的号码写在一个括号内,则有
(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),所以共有 6 个基本事件.用数对来表
(3)记“至少摸出 1 个黑球”为事件 B,
则事件 B 包含的基本事件为 ab,ac,ad,ae,bc,bd,be,共 7 个基本事
件,
所以
7
P(B)=10=0.7,
即至少摸出 1 个黑球的概率为 0.7.
求古典概型概率的计算步骤是:
①确定基本事件的总数 n;
②确定事件 A 包含的基本事件的个数 m;
标注的数字外完全相同,现从中随机取出两个小球,则取出的小球上
标注的数字之和为 5 或 7 的概率是(
)
3
A. 5
2
B. 5
3
C. 10
4
D. 5
解析:从中随机取出两个小球有
(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(
要求证明),在选择题或填空题中可以直接应用.
题型一
判断古典概型
【例题 1】(1)袋中有除颜色外其他均相同的 5 个白球,3 个黑球和 3
个红球,每球有一个区别于其他球的编号,从中摸出一个球.有多少种
不同的摸法?如果把每个球的编号看作一个基本事件,是否为古典概
型?
(2)将一粒豆子随机撒在一张桌子的桌面上,将豆子所落的位置看作

课件_人教版高中数学必修三古典概型课件PPT课件_优秀版

课件_人教版高中数学必修三古典概型课件PPT课件_优秀版

择A,B,C,D的可能性是相等的.所以这是一个
古典概型,
P(答对)
答对包含的基本数 事件1个 基本事件总数 4
变式探究
考试中的不定向选择题是从A,B,C,D四个选项 中选出所有正确的答案.同学们可能有一种感觉,如 果不知道正确答案,不定向选择题更难猜对,试求不定 向选择题猜对的概率. 解:基本事件为(A),(B),(C),(D), (A,B),(A,C),(A,D),(B,C),(B,D),(C,D), (A,B,C),(A,B,D),(A,C,D),(B,C,D), (A,B,C,D).
牛刀小试
依次不放例回抽取12听从饮料,字则(母x,y)a表,示一b次抽,到的c结,果. d中任意取出两个不同字母
我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.
试试看:的请举一试个古验典概中型的例,子.有哪些基本事件?
假设有一题我们不会做,随机地选择一个答案,那么答对的概率是多少?
树状图 现有一张《霍比特人3》的电影票,小志和小熊熊两人都想要.为了公平起见,他们约定规则:两人同时各抛一枚质地均匀的骰子,点
如:掷一颗均匀的骰子一次,事件A为“出现偶数点”,请问事件A的概率是多少?
(2)点数之和为5的概E率{b,d},F是{c,d多}. 少? E{b,d},F{c,d}. E{b,d},F{c,d}. E{b,d},F{c,d}.
新课探究1
问题2:观察对比找出抛硬币、掷骰子试验的共同特征.
每个基本事件的概率都 是1/2
3
45
6
7
数学方法:列举法(树状图、列表格或按某种顺序列举等),做到不重不漏.
2点 3 4 5 6 解:基本事件共有4个.随机地选择一个答案,选择A,B,C,D的可能性是相等的.

高中数学人教A版必修三课件3.2.2古典概型 (整数值)随机数的产生2

高中数学人教A版必修三课件3.2.2古典概型 (整数值)随机数的产生2
模拟实验最终得到的概率值不一定是相同的.
课堂篇探究学习
探究一
探究二
探究三
思维辨析
当堂检测
变式训练2从甲、乙、丙、丁4人中,任选3人参加志愿者活动,请
用随机模拟的方法估计甲被选中的概率.
解:用1,2,3,4分别表示甲、乙、丙、丁四人.
利用计算器或计算机产生1到4之间的随机数,每三个一组,每组
中数不重复,得到n组数,统计这n组数中含有1的组数m,则估计甲被
机产生的0或1,这样我们就很快就得到了100个随机产生的0,1,相当
于做了100次随机实验.
4.如果需要统计抛掷一枚质地均匀的骰子30次时各面朝上的频
数,但是没有骰子,你有什么办法得到实验的结果?
提示由计算器或计算机产生30个1~6之间的随机数.
课前篇自主预习
5.一般地,如果一个古典概型的基本事件总数为n,在没有实验条
321230
就相当于做了25次实验,在每组数中,如果恰有3个或3个以上的
数是0,则表示至少答对3道题,它们分别是
001003,030032,210010,112000,共有4组数,由此可得该同学6道选择
4
题至少答对3道的概率近似为 =0.16.
25
课堂篇探究学习
探究一
探究二
探究三
思维辨析
当堂检测
反思感悟如果事件A在每次实验中产生的概率都相等,那么可以

③则任取一球,得到白球的概率近似为 .
(2)步骤:
①利用计算器或计算机产生1到7之间的整数随机数,每三个数一
组(每组中数不重复),统计组数为n';
②统计这n组数中,每组三个数字均小于6的组数m';

③则任取三球,都是白球的概率近似为 .

高中数学《古典概型》(47张) 新人教A版必修3PPT课件

高中数学《古典概型》(47张) 新人教A版必修3PPT课件
n
我们把可以作古典概型计算的概率称为古典概率.
注: A即是一次随机试验的样本空间的一个子集, 而m是这个子集里面的元素个数;n即是一次随机 试验的样本空间的元素个数.
古典概率
3、概率的性质 (1) 随机事件A的概率满足
0<P(A)<1
(2)必然事件的概率是1,不可能的事件的概率是0,

P(Ω) =1 , P(Φ) =0.
• (1)试问:一共有多少种不同的结果?请
•思维点拨:用空间坐标(a,b,c)的形式列出 所有可能结果,再把事件“3次摸球所得总分 为5分”的个数列出,根据古典概型概率公式 可求. •解答:(1)一共有8种不同的结果,列举如下: •(红、红、红)、(红、红、黑)、(红、黑、红)、
• 思维点拨:用空间坐标(a,b,c)的形式列 出所有可能结果,再把事件“3次摸球所得 总分为5分”的个数列出,根据古典概型概 率公式可求.
【答题模板】
•解析:基本事件有20个,只要通过枚举的方法 找到随机事件“卡片上两个数的各位 •数字之和不小于14”所包含的基本事件的个数, 再按照等可能性事件的概率公式计 •算.大于14的点数的情况通过列举可得,有5
【分析点评】
• 1. 本题中,当两个数字k,k+1是一位数时, 只有k≥7时,才会使两个数的各位数字之和 不小于14;当k,k+1是两位数时,只有当 第一个两位数的数字之和不小于7才有可 能.这类题目也曾出现在高考中,如2008年 江西卷中:电子钟一天显示的时间是从
(1)两枚硬币都出现正面的概率是 0.25 (2)一枚出现正面,一枚出现反面的概率是 0.5
4、在一次问题抢答的游戏,要求答题者在问题所列出的 4个答案中找出唯一正确答案。某抢答者不知道正确答案 便随意说出其中的一个答案,则这个答案恰好是正确答

度高中数学新课标人版A版必修三 3.2.1古典概型 课件(共29张PPT)

度高中数学新课标人版A版必修三 3.2.1古典概型 课件(共29张PPT)
4.利用古典概率的公式计算其概率 当结果有限时,列举法是很常用的方法
1.储蓄卡上的密码是一种四位数字号码,位上的数字 可在0到9这十个数字中选取.
(l)使用储蓄卡时,如果随意按下一个四位数字号码, 正好按对这张储蓄卡的密码的概率只有多少?
(2)某人未记准储蓄卡的密码的最后一位数字,他在 使用这张卡时如果前三位号码仍按本卡密码,而随意 按下密码的最后一位数字,正好按对密码的概率是多 少?
解:
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)
(2,1)(2,2)(2,3)(2,4)(2,5)(2,6) (1)两个骰子的基本事件有: (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)
(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)
(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)
对于古典概型,由于每个样本事件发生的可能 性是一样的,因此也叫等可能概型,在计算古 典概型的概率时,基本事件发生的概率我们可 以利用列举法来计算概率,考虑基本事件的方 式不同得到的概率也不一样。但是对于基本事 件很多时,列出所有的事件是很困难的
对于这类问题,我们可以根据不同的 需要,利用计算机建立适当的概率模 型来模拟实验,只要设计的概率模型 满足古典概型的两个特点即可。其中 利用产生随机数法是经常用到的
我们来分析以下下列事件的构成: 1.掷一枚质地均匀的硬币的试验 2.掷一枚质地均匀地骰子的试验
1
2的试验结果:
1°任何两个基本事件是互斥的 基 本 事 件 2°任何事件可以表示成基本事件的和
例1、从字母a、b、c、d中任意取出两个不 同的字母的试验中,有哪些基本事件? A={a、b} ;B={a、c};C={a、d};

高中数学必修3 3.2.1 古典概型优秀课件

高中数学必修3 3.2.1 古典概型优秀课件
不是古典概型.虽然试验的所有可能结果 只有7个,但命中10环、命中9环……命中5环和 不中环的出现不是等可能的,即不满足古典概 型的第二个条件。
在古典概型下,每个根本领件出现的概率是多少?
在掷一颗骰子的实验中:
根本领件有“出现1点〞, “出现2点
〞 ...共6个.
P(“出现1点〞)=P(“出现2点〞)=……=1/6
错解:基本事件为“2 枚正面”、“2 枚反面”、“一枚正面、一枚反面”共 3 个,设事件
A=“一枚正面、一枚反面”,则事件 A 包含 1 个基本事件, P A 1 。
3
思考:设袋中有 4 只白球和 2 只黑球,现从袋中无放回 的依次摸出 2 只球,求这两只球都是白球的概率。
错解:依次摸出 2 个球,共有“白白”、“白黑”、“黑黑”3 个基本事件。设事件 A=“两
问题2:在标准化考试中既有单项选择题又 有多项选择题,多项选择题是从A,B,C,D四个选 项中选出所有正确的答案,同学们可能有一种感 觉,如果不知道正确答案,多项选择题更难猜对, 这是为什么?
备选 例1(2).同时掷两个骰子,向上的点数之和 是5的概率是多少?
变式:先后抛掷 2 枚均匀的硬币,求出现“一枚正面、 一枚反面”的概率。
概率的加法公式的推广
如果事件A与事件B互斥,那么P (A B)=P (A) +P (B)
注意:1.利用上述公式求概率是,首先要确定 两事件是否互斥,如果没有这一条件,该公式 不能运用。即当两事件不互斥时,应有:
P (A B)= P (A) + P (B) - P()
2.上述公式可推广,即如果随机事件A1,A2, ……,An中任何两个都是互斥事件,那么有
P(A)=
1 基本事件的总数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P(方片A)= P(方片2)=…… =P(方片K) =P(梅花A)=…… =P(黑心K)
P(方片A)= P(方片2)=…… =P(方片K)1 52
新课引入 方方法法探探究究 典型例题 课堂训练 课堂小结
问题: 随机抽取一张扑克牌,记取到红心为事件A,P(A)=?
解:这是一个古典概型,因为试验的可能结果只有4
个:选择A、选择B、选择C、选择D,即基本事件共
有4个,考生随机地选择一个答案是选择A,B,C,
D的可能性是相等的。从而由古典概型的概率计算公
式得:
P(“答对”)=“答对”所包含的基本事件的个数 =1=0.25
基本事件的总数
4
新课引入 方法探究 典型例题 课课堂堂训训练练 课堂小结
任何事件(除不可能事件)都可以表示成基本事件的和
新基课本引概入念 方法探究 典型例题 课堂训练 课堂小结
一次试验可能出现的每一个结果 称为一个 基本事件
试验1掷一枚质地均匀的硬币一次,结果哪几个基本事件?
2个基本事件,正面朝上,反面朝上。
试验2掷一颗均匀的骰子一次,结果有哪几个基本事件?
6个基本事件,1点,2点,3点,4点,5点,6点。
有限性
等可能性
新基课本引概入念 方法探究 典型例题 课堂训练 课堂小结
辨析2:某同学随机地向一靶心进行射击,这一试验
的结果有:“命中10环”、“命中9环”、“命中8
环”、“命中7环”、“命中6环”、“命中5环”和
“不中环”。
你认为这是古典概型吗?
5 6
为什么?
7
有限性 等可能性
8 9 5 6 7 8 9109 8 7 6 5 9 8
变式1假设有20道单选题,如果有一个考生答对了 17道题,他是随机选择的可能性大,还是他掌握了 一定知识的可能性大?
练习1 储蓄卡上的密码由6个数字组成,每个数字可 以是0~9十个数字中的任意一个,假设一个人完全 忘记了自己的储蓄卡密码,问他能到自动取款机上 随机试一次密码就能取到钱的概率是多少?
练习2 某种饮料每箱装6听,如果其中有2听不合格, 问质检人员从中随机抽出2听,检测出不合格产品 的概率有多大?
P(A)
A包含的基本事件的个数 m
基本事件的总数 n
在使用古典概型的概率公式时,应该注意: 要判断所用概率模型是不是古典概型(前提)
新课引入 方法探究 典型例题 课堂训练 课堂小结
例2 单选题是标准化考试中常用的题型,一般 是从A,B,C,D四个选项中选择一个正确答 案。如果考生掌握了考察的内容,他可以选择 唯一正确的答案。假设考生不会做,他随机的 选择一个答案,问他答对的概率是多少?
基本事件总数:52 A事件包含的基本事件个数:13
P(A)= P(红心A)+ P(红心2)+…… +P(红心K)
=
1 52
+
1 52
++
1 52
= 13
52
13个
=
1 4
新课引入 方方法法探探究究 典型例题 课堂训练 课堂小结
在古典概率模型中,如何求随机事件出现的概率?
古典概型的概率计算公式:
新基课本引概入念 方法探究 典型例题 课堂训练 课堂小结
(1)所有可能出现的基本事件的个数 有限 (2)每个基本事件出现的可能性 相等 我们将具有这两个特点的概率模型称为 古典概率模型
简称:古典概型
新基课本引概入念 方法探究 典型例题 课堂训练 课堂小结
辨析1:向一个圆面内随机地投射一个点,如 果该点落在圆内任意一点都是等可能的,你认 为这是古典概型吗?为什么?
新基课本引概入念 方法探究 典型例题 课堂训练 课堂小结
问题: (1)在一次试验中,会同时出现 红心A 与 方片2
这两个基本事件吗?
不会
任何两个基本事件是互斥的
(2)事件“抽到2”包含哪几个基本事件?
方片2,梅花2,红心2,黑桃2,4个基本事件
(3)事件“抽到红心”包含哪几个基本事件? 红心A,红心2,红心3,红心4,红心5,红心6, 红心7,红心8,红心9,红心10,红心J,红心Q, 红心K。总共13个基本事件。
新课引入 方法探究 典型例题 课堂训练 课课堂堂小小结结
1.知识点:
(1)基本事件的定义和特点: ①任何两个基本事件是互斥的;
②任何事件(除不可能事件) 都可以表示成基本事件的和。 (2)古典概型的定义和特点 ①有限性;
②等可能性。
(3)古典概型计算任何事件A的概率计算公式
A所包含的基本事件的个数m
P(A)= 基本事件的总数n 2.思想方法:树状图(列举法) 数学建模
新课引入 方法探究 典型例题 课堂训练 课堂小结
(必做)课本135页练习第1,2题 课本140页习题3.2A组第4题
(选做)课本140页习题B组第1题
试验3从字母a、b、c、d任意取出两个不同字母的试验中, 有哪些基本事件?
树状图
a
bc b d
c d
c
d
解:所求的基本事件共有6个:
A {a, b} B {a, c} C {a, d}
D {b, c} E {b, d} F {c, d}
新基课本引概入念 方法探究 典型例题 课堂训练 课堂小结
选自人教版高中数学必修3 第三章第二节(第一课时)
新新课课引引入入 方法探究 典型例题 课堂训练 课堂小结
• 上节课例题P126
• 已知,如果从不包括大小王的52张扑克牌中

随机抽取一张,记取到红心为事件A,P(A)=
1 4
新基课本引概入念 方法探究 典型例题 课堂训练 课堂小结
一次试验可能出现的每一个结果称为一个 基本事件
7 6
5
新课引入 方方法法探探究究 典型例题 课堂训练 课堂小结
问题: 随机抽取一张扑克牌,记取到红心为事件A,P(A)=?
基本事件总数:52 A事件包含的基本事件个数:13
P (方片AU方片2U……U黑心K)=
P(方片A)+ P(方片2)+…… +P(方片K)+ P (梅花A)+……+ P(黑心K)=P(必然事件)=1
问题:观察对比,找出试验1和试验2的共同特点:
基本事件
基本事件出现的可能性
试 “正面朝上”
验 1
“反面朝上”
试 “1点”、“2点”
验 “3点”、“4点” 2 “5点”、“6点”
两个基本事件
的可能性都是
1 2
六个基本事件
的可能性都是
1 6
(1) 试验中所有可能出现的基本事件的个数 有限
(2) 每个基本事件出现的可能性 相等
相关文档
最新文档