AHP(层次分析法)基础教程

合集下载

AHP(层次分析法)方法、步骤

AHP(层次分析法)方法、步骤
ii. 层次单排序 计算判断矩阵A的最大特征根λmax和其对应的经
归一化后的特征向量W= (w1, w2, …,wn) T
AW= λ W max
由此得到的特征向量W= (w1, w2, …,wn) T 就作 为对应评价单元的权重向量。 λmax和W的计算一般采用幂法、和法和方根法
2009.11
方根法
m
bn aibni i 1
2009.11
(4)评价层次总排序计 算结果的一致性
设:CI为层次总排序一致性指标: RI为层次总排序随机一致性指标。
其计算公式为:CI m aiCIi i 1
CIi为Ai相应的B层次中判断矩阵的一致性指标。 m RI ai RIi i 1
RIi为Ai相对应的B层次中判断矩阵随机一致性指标 并取 CR CI
在单层次判断矩阵A中,当
aij
aik a jk
时,称判断矩阵为一致性矩阵。
进行一致性检验的步骤如下:
(a)计算一致性指标C.I.:C.I. max n ,式中n为判断矩阵阶数。
n 1 (b)计算平均随机一致性指标R.I.
R.I.是多次重复进行随机判断矩阵特征值的计算后取算术平均数得到的 ,下表给出1~15维矩阵重复计算1000次的平均随机一致性指标:
max 4
d3 W23
d4 w24
d5 w25
C.R.=0
C1
C2
C3
d1 d2 d3 d4 d5
2009.11
(3)计算各元素的总权重
准则 权重 方案 d1 d2 d3 d4 d5
C1
0.105
0.491 0.232 0.092 0.136 0.046
C2
0.637
0 0.055 0.564 0.118 0.265

层次分析法AHP课件

层次分析法AHP课件
(计算各层元素对系统目标的合成权重,并进行排序、检验)
以例 说明
第七页,编辑于星期一:十三点 三十三分。
例. 选择旅游地
目标层
如何在3个目的地中按照景色、费 用、居住条件等因素选择.
O(选择旅游地)
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
方案层
P1 桂林
P2 黄山
P3 北戴河
第八页,编辑于星期一:十三点 三十三分。
考察完全一致的情况
W ( 1) w1, w2 ,wn
令a w / w
ij
i
j
w 1
w 1
w 1
w 2
w2
w2
A
w1
w2
w 1
w n
w2
wn
w (w , w ,w )T ~ 权向量
12
n
wn
wn
wn
w 1
w 2
w n
第十二页,编辑于星期一:十三点 三十三分。
成对比较阵和权向量
wn
wn
• A的归一化特征向量可作为权向量
对于不一致(但在允许范围内)的成对比 较阵A,建议用对应于最大特征根的 特征向量作为权向量w ,即
Aw w
第十三页,编辑于星期一:十三点 三十三分。
成对比较阵和权向量 Saaty等人提出1~9尺度——aij 取值
比较尺度aij
1,2,… , 9及其互反数1,1/2, … , 1/9
最大特征根=5.072
准则层对目标的成对比较阵
1 1/ 2
2
1
A 1/ 4 1/ 7
1/ 3
1/ 5
1/ 3 1/ 5

层次分析法AHP法ppt课件

层次分析法AHP法ppt课件
②工作收入较好(待遇好); ③生活环境好(大城市、气候等工作条件等); ④单位名声好(声誉等); ⑤工作环境好(人际关系和谐等) ⑥发展晋升机会多(如新单位或前景好)等。
18
目标层
工作选择
准则层 方案层
贡收 发 声 工 生 作活 环环
献入 展 誉 境 境
可供选择的单位P1’ P2 , Pn
19
建立层次结构模型的思维过程的归纳
1
w2
wn
wi wi wk
wj
wk w j
wn
wn
1
w1 w2
27
即 aik akj aij i, j 1,2,, n
A
但在例2的成对比较矩阵中, a23 7, a21 2, a13 4 a23 a21 a13
在正互反矩阵A中,若 aik akj aij ,(A 的元素具有 传递性)则称A为一致阵。
旅游问题的成对比较矩阵共有6个(一个5阶,5个3阶)2。6
3 层次单排序及其一致性检验
用权值表示影响程度,先从一个简单的例子看如何确 定权值。
例如 一块石头重量记为1,打碎分成n小块,各块的重
量分别记为:w1,w2,…wn
则可得成对比较矩阵
1
w1 w2
w1
wn
由右面矩阵可以看出,
w2
A
w1
层次分析法所要解决的问题是关于最低层对最高层的相 对权重问题,按此相对权重可以对最低层中的各种方案、 措施进行排序,从而在不同的方案中作出选择或形成选择 方案的原则。
20
2 构造判断(成对比较)矩阵
在建立递阶层次结构以后,上下层次之 间元素的隶属关系就被确定了。假定上一层 次 的 元 素 Ck 作 为 准 则 , 对 下 一 层 次 的 元 素 A1, …, An 有支配关系,我们的目的是在准则 Ck 之下按它们相对重要性赋予 A1, …, An 相 应的权重。

第八章 AHP 层次分析法(上课用)

第八章 AHP 层次分析法(上课用)

基本的思路
先分解后综合的系统思想, 整理和综合人们的主观判断, 先分解后综合的系统思想, 整理和综合人们的主观判断, 的系统思想 使定性分析与定量分析有机结合,实现定量化决策。 使定性分析与定量分析有机结合,实现定量化决策。 首先将所要分析的问题层次化, 首先将所要分析的问题层次化,根据问题的性质和要达到 层次化 的总目标,将问题分解成不同的组成因素, 的总目标,将问题分解成不同的组成因素,按照因素间的 相互关系及隶属关系,将因素按不同层次聚类组合, 相互关系及隶属关系,将因素按不同层次聚类组合,形成 一个多层分析结构模型 最终归结为最低层(方案、措施、 多层分析结构模型, 一个多层分析结构模型,最终归结为最低层(方案、措施、 指标等)相对于最高层(总目标) 指标等)相对于最高层(总目标)相对重要程度的权值或 相对优劣次序的问题。 相对优劣次序的问题。
3、构造判断矩阵
这一个步骤是AHP决策分析中一个关键的步骤。 决策分析中一个关键的步骤。 这一个步骤是 决策分析中一个关键的步骤 ①判断矩阵表示针对上一层次中的某元素而 判断矩阵表示针对上一层次中的某元素而 上一层次中 言,评定该层次中各有关元素相对重要性程 度的判断。假定 层中因素 层中因素A 度的判断。假定A层中因素 k与下一层次中因 素B1,B2,…,Bn有联系,则我们构造的判 , 有联系, 断矩阵如下表。 断矩阵如下表。
而言, ②其中,bij 表示对于Ak 而言,元素Bi 对Bj 的相对重要性程度的 其中, 判断值。 判断值。 一般取1, , , , 等 个等级标度 其意义为:1表示 i 个等级标度, 表示B 一般取 ,3,5,7,9等5个等级标度,其意义为:为什么采用1-9 思考: 表示 思考 :为什么采用1 级的指标比例呢? 级的指标比例呢? 同等重要; 表示 表示B 重要一点; 表示 表示B 重要得多; 与B j同等重要;3表示 i较B j重要一点;5表示 i较B j重要得多; 7表示 i较B j更重要;9表示 i较B j极端重要。 表示B 更重要; 表示 表示B 极端重要。 表示 表示相邻判断的中值, 个等级不够用时, 而2,4,6,8表示相邻判断的中值,当5个等级不够用时, , , , 表示相邻判断的中值 个等级不够用时 以上各数的倒数,表示两目标反过来比较。 可以使用这几个数。以上各数的倒数,表示两目标反过来比较。

第十四章 层次分析法(AHP法)

第十四章 层次分析法(AHP法)

B1
b11 b1n
2 ——表示Bi与Bj相比Bi比Bj稍微重要
B2
b21 b2n 3 ——表示Bi与Bj相比Bi比Bj明显重要


4 ——表示Bi与Bj相比Bi比Bj特别重要
Bn
bn1 bnn
5 ——表示Bi与Bj相比Bi比Bj极端重要
2,4,6,8 ——则表示Bi与Bj相比处于上述相邻
递阶层次结构
决策目标
目标层
准则1
准则1 …… 准则K
子目标层
子准则1
子准则K
方案1
方案m
结构可分为:网状和树状
指标层 方案层
构造两两判断矩阵
设A层的元素为AK,隶属于AK的下层指标元素分别为B1B2……Bn, 对A层元素AK的判断矩阵形式为:
AK
B1 Bn
其中:bij表示对AK而言,Bi对Bj的相对重要程度 1——表示Bi与Bj相比同样重要
W1
W1 0.405480 0.104729 Wi 3.871692
W2

2.466212 3.871692
பைடு நூலகம்
0.636986
W3

1 3.871692

0.258285
则所求向量为:
W 0.104729,0.636986,0.258295T
4°计算最大特征根λmax
1 1/ 5 1/ 30.104729 AW1 0.318221
10
11
12
13
14
15
R.I. 1.46 1.40 1.52 1.54 1.56 1.58 1.59
(3)计算一致性比例 C.I.
C.R. C.I. 当C.R<0.1时,一般认为判断矩阵一致性可以接受。 R.I .

层次分析法(AHP)ppt课件

层次分析法(AHP)ppt课件

W1 W1 W1 1 a12 , , a1n a11 W1 W2 Wn W2 W2 W2 a22 1 , , a2 n a21 W1 W2 Wn A Wi aij Wj W W W n n an1 n a a 1 n2 nn W W W 1 2 n
max n n 1
刘智勇18
因素比较方法 —— 成对比较矩阵法
• 目的
• 方法
1 A (aij ) nxn , aij 0, a ji (或aij aij 1) aij
正互反矩阵
A (aij ) , aij 0, aij 1 a ji
要比较某一层个因素对上一层因素O的影 响(例如:旅游决策解中,比较景色等5 个准则在选择旅游地这个目标中的重要 性)。
1 1 1 1 1 1 1 , , , , , , 2 3 4 5 6 7 8 9
结合计算过程来看AHP的基本思想
• 组合权向量的计算——层次总排序的权向量的计算 (1)计算出下一层每个元素对上一层每个元素的权向量 (2)并把下层每个元素对上层每个元素的权向量按列排成 以下表格形式 (3) 对层次总排序进行一致性检验:从高层到低层逐层进 行
刘智勇8
产生背景
• • • •
客观世界的复杂性 系统是最普遍存在的 许多决策问题无法定量化 思维方式需要改变
刘智勇9
层次分析法的基本原理
将一个复杂的无结构的问题分解为它的各个组成部分 ,将这些组成部分(或称为元素)整理成为一种递阶 层次的顾序,按照每个元素的相对重要性赋于其表 示主观判断的数量值;然后综合这些判断以决定到 底是哪个元素有着最大的权重和如何影响问题的最 终结果。

层次分析法分析(AHP)及实例教程

层次分析法分析(AHP)及实例教程
02
设定评价标准
根据问题背景和目标,设定合理的评价标准,如 成本、效益、风险等。
识别关键因素和指标
关键因素识别
分析影响决策目标的关键因素,如市 场需求、技术水平、资源条件等。
指标选取
针对每个关键因素,选取具体的评价 指标,如市场份额、创新能力、资源 利用率等。
构建递阶层次结构图
目标层
准则层
将决策目标作为最高层, 表示解决问题的总体目标。
层次分析法分析 (AHP)及实例教程
目录
• 层次分析法(AHP)概述 • 构建层次结构模型 • 构造判断矩阵与权重计算 • 实例教程:以某企业投资决策为例 • AHP优缺点及改进方向 • 总结与展望
01
层次分析法(AHP)概述
AHP定义与发展历程
定义
层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量相结合的、系统化、 层次化的分析方法。它通过将复杂问题分解为若干层次和因素,对各因素进行两两比较,构造 判断矩阵,进而计算各因素的权重,为决策问题提供定量依据。
对计算得到的权重进行一致性检 验,确保结果的合理性和准确性。
一致性检验与调整策略
一致性检验方法
通过计算一致性指标CI和随机一 致性指标RI,判断判断矩阵的一 致性。
调整策略
当判断矩阵不满足一致性要求时, 需要对判断矩阵进行调整,包括 调整元素值、重新构造判断矩阵 等方法,直至满足一致性要求。
注意事项
针对缺点提出改进措施
1 2
提高数据质量和数量
通过改进数据采集和处理方法,提高数据的质量 和数量,减少数据不准确和不完整对决策结果的 影响。
引入客观标准
在构建判断矩阵时,可以引入客观标准和量化指 标,减少主观判断对决策结果的影响。

层次分析法(AHP)

层次分析法(AHP)

aij
n
aij
i 1
i,j 1,2,, n
2 ) 再按行相加得和
n
wi aij j 1
3)再规范化,得权重系数:
wi
wi
n
wi
i 1
方根法
这种方法的步骤是:
1) 按行元素求积,再求1/n次幂,得
n
wi
aij i,j 1,2,, n
j 1
2)规范化,即得权重系数
wi
wi
n
wi
用ANP进行决策的基本步骤
▪ (1) 构造ANP的典型结构: A:首先是构造控制层次.将决策目标界定,将决策准则界 定,这是问题的基本,各个准则决策目标的权重用AHP方法 得到. B:再则是构造网络层次.要归类确定每一个元素,分析其 网络结构和相互影响关系,分析元素之间的关系可用多种 方法进行. 一种是内部独立的递阶层次结构,即层次之间相 互独立;一种是内部独立,元素之间存在者循环的ANP 网络层次结构;另一种是内部依存,即元素内部存在循环 的ANP网络层次结果,这几种情况都是ANP的特例情况。 在实际决策问题中面临的基本都是元素间不存在内部独立, 既有内部依存,又有循环的ANP网络层次结构。
P4:建 图书馆
P5:引进 新设备
C1对p1 p2 p3 p4 p5的权重计算
c1 P1
p2
p3
p4
p5 w
p1 1
3
5
4
7 0.491
p2 1/3 1
3
2
5 o.232
p3 1/5 1/3 1
½
3 0.092
p4 ¼ ½
2
1
3 0.138
p5 1/7 1/5 1/3 1/3 1 0.046

层次分析法(AHP法课件

层次分析法(AHP法课件

一致性检验
一致性检验是检验判断矩阵是否满足一致性的过程,即判断 矩阵中的元素是否满足传递性。
一致性检验的方法包括计算一致性指标CI和随机一致性指标 RI,通过比较CI和RI的值可以判断判断矩阵的一致性。如果 一致性不满足要求,需要对判断矩阵进行调整。
03
层次分析法的实施步骤
建立递阶层次结构
明确问题
详细描述
科研项目评估需要考虑多个指标,如项目的 创新性、可行性、预期成果等。层次分析法 可以将这些指标分为不同的层次,并确定各 指标之间的相对重要性,从而帮助科研管理 者更加科学地选择和资助科研项目。
05
层次分析法的优缺点与改进
方向
优点
01 02
系统性强
层次分析法能够将复杂的问题分解成不同的组成因素,并根据因素间的 相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多 层次的分析结构模型。
特点
简单易懂、系统性、实用性、灵活性。
应用领域
资源分配
根据资源有限性,合理 分配资源,实现资源利
用最大化。
方案选择
在多个备选方案中选出 最优方案,满足特定目
标或标准。
风险评估
对风险进行定性和定量 分析,确定风险优先级
和应对策略。
决策分析
在多准则或多目标决策 问题中,为决策者提供
决策依据。
层次分析法的发展历程
确定研究的问题,明确目标层和准则 层,将决策问题分解成不同的组成因 素。
构建层次结构
将决策问题分解成不同的组成因素, 并根据因素间的相互关联影响以及隶 属关系将因素按不同的层次聚集组合 ,形成一个多层次的分析结构模型。
构造判断矩阵
确定判断标度
根据因素间的相对重要性,确定 因素间的判断尺度。常用的判断 尺度有1-9标度法。

层次分析法(AHP)

层次分析法(AHP)

方 案(y) 层
P1
P2
P3
用于解决问题的 各种措施和方案
新余高等专科学校
数学建模教练组
20052005-08
4
Mathematical Contest in Modeling
层次分析法
构造成对比较矩阵(判断矩阵) 2 构造成对比较矩阵(判断矩阵)
要比较某一层n个因素x 要比较某一层n个因素x1,x2,…,xn对上一层一个因素Z的影响,可从x1,x2,…,xn中任取 对上一层一个因素Z的影响,可从x xi与xj,比较他们对于Z的贡献(或重要性)大小.按照如下”1~9比例尺度”给xi/xj赋值. 比较他们对于Z的贡献(或重要性)大小.按照如下”1~9比例尺度 比例尺度” 赋值.
新余高等专科学校
数学建模教练组
20052005-08
5
Mathematical Contest in Modeling
层次分析法
得到: 得到:
A=(xij), xij>0,xji=1/xij
判断矩阵
某人用上述方法得到了”假日旅游”中景色,费用,居住,饮食,旅途5个因素对于目标Z 某人用上述方法得到了”假日旅游”中景色,费用,居住,饮食,旅途5个因素对于目标Z的 比较矩阵如下: 比较矩阵如下:
一 般 的 思 维 过 程
首先,确定这些准则在你心目中各占的比重多大; 首先,确定这些准则在你心目中各占的比重多大;
其次,就每一准则将三个地点进行对比; 其次,就每一准则将三个地点进行对比;
最后,将这两个层次的比较判断进行综合,作出选择. 最后,将这两个层次的比较判断进行综合,作出选择.
层次分析法的步骤
z = w1 x1 + w2 x2 + L + wn xn

层次分析法分析AHP及实例教程-文档资料

层次分析法分析AHP及实例教程-文档资料

a jbnj bn
j 1
层次总排序的一致性检验
设 B 层 B1, B2,, Bn 对上层( A 层)中因素 Aj ( j 1,2,, m)
的层次单排序一致性指标为 CI j ,随机一致性指为 RI j ,
则层次总排序的一致性比率为:
CR
a1CI1 a1RI1
a2CI 2 a2 RI 2
amCI m am RI m
2 构造成对比较矩阵
设某层有 n个因素, X x1, x2 ,, xn
要比较它们对上一层某一准则(或目标)的影响程度,确定 在该层中相对于某一准则所占的比重。(即把 n个因素对上 层某一目标的影响程度排序)
上述比较是两两因素之间进行的比较,比较时取1~9尺度。
用 aij表示第 i 个因素相对于第 j个因素的比较结果,则
一致阵的性质:
1.
aij
1 a ji
, aii
1, i,
j
1,2,, n
2. AT也是一致阵
作业
3. A的各行成比例,则 rankA 1
4. A的最大特征根(值)为 λ n,其余n-1个
特征根均等于 0。
5. A 的任一列(行)都是对应于特征根 n 的特征向量。
若成对比较矩阵是一致阵,则我们自然会取对应于最
aij
1 a ji
a11
A
aij
nn
a21
a12
a22
a1n a2n
A则称为成对比较矩阵。
an1 an2 ann
比较尺度:(1~9尺度的含义)
尺度

3 5 7 9
含义 第i个因素与第 j 个因素的影响相同
第 i 个因素比第 j 个因素的影响稍强 第 i 个因素比第 j 个因素的影响强 第 i 个因素比第 j 个因素的影响明强

层次递进分析法详解

层次递进分析法详解

RI为层次总排序随机一致性指标。
i 1
其计算公式为: m RI ai RIi
i 1
CIi为Ai相应的B层次中判断矩阵的一致性指标。
RIi为Ai相对应的B层次中判断矩阵随机一致性指标
并取
CR
CI
RI
当 一CR致性0.。10
,认为层次总排序的结果具有满意的
➢综合重要度的计算
因素及权重
C1
C2

(1) 1
(1) 2

P1
(2)
(2)
11
12

P2
(2) 21
(2) 22

Ck
(1) k
(2) 1k
(2) 2k
组合权重 V(2)
k
v(2) 1
(1) (2) j 1j
j 1
k
v(2) 2
(1) (2) j 2j
j 1
k
Pn
(2) n1
(2) n2
按行相乘求1/n方
i'
1.442
0.275
归一处理
0.593
0.341
0.065
(二)一致性检验
• 一致性检验:只有当矩阵完全一致时,判断矩
阵A才存在 max n ,而不一致时,max n 即可用 (max n) 这个差值大小来检验一致性
的程度,一般用 C.I. 这个一致性指标表示
• C.I. 越大,表明判断矩阵偏离完全一致性的程度
(一)权重计算方法
1、和法(每一列归一化后近似权重)
第一步:A 的元素按列归一化;
a11 a21 an1
n
ai1
i 1
a12 a22

AHP层次分析法

AHP层次分析法

15
5.1 AHP方法的基本原理
四、判断矩阵求解:(1)根法
w1 a1 /
m
ai
a11
A
a21
am1
a12 a22
am2
a1m
a2m
M1 a11 a12 M2 a21 a22
amm
M
m
am1 am2
a1m
a2m
amm
a1
a2
am
m m
m
可行性 B3
发展前景 B4








C1
C2








C11
C12
课题1








C3
C4
……








C5
C6
课题N
4
5.1 AHP方法的基本原理
二、判断矩阵及其特征向量
AHP方法采用优先权重作为区分方案优劣程度的指标。
优先权重是一种相对度量数,表示方案相对优劣的程度,其数值介于0和
M1 M2
Mm
W
w2
wm
a2 / am /
i m i
m i
ai
ai
a11 a12
AW maxW ,
即: a21
a22
a1m w1
w1
a2m
w2
max
w2
am1 am2
amm
wm
wm
a11 w1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

o对向量W=( W1, W2…… Wn)t归 一化处理:
Wi=
Wi 1nWj
(i =1,2,….n)
W=( W1, W2…… Wn)t 即为所求的特征向量的近似解。
B
p1 p2
p1
p2
p3
p4
p5
p6

0.16 0.17 0.15 0.20 0.14 0.13 0.16 0.17 0.30 0.20 0.14 0.13
n RI
1 0
2 0
3
4
5
6
7
8
0.58 0.90 1.12 1.24 1.32 1.41
n
9
10
11
12
13
14
15
RI 1.46 1.49 1.52 1.54 1.56 1.58 1.59
当 n<3时,判断矩阵永远具有 完全一致性。判断矩阵一致性指标 C.I. 与同阶平均随机一致性指标 R.I. 之比称为随机一致性比率 C.R.(Consistency Ratio)。 C.R. =
(i =1,2,….n)
W=( W1, W2…… Wn)t 即为所求的特征向量的近似解。
o计算判断矩阵最大特征根max
max = 1
n
(BW)i nWi
方根法具体计算步骤:
o将判断矩阵的每一行元素相乘Mij Mij= 1nbij
(i=1,2,….n)
o计算Mi 的n 次方根W4 甲
甲 1
乙 1/3
丙 5


3
1/5
1
1/7
7
1
组织部门给三个人,甲、乙、丙对每 个目标的层性打分。
政 策 水 平
p5
B5 甲
甲 1
乙 1
丙 7


1
1/7
1
1/7
7
1
组织部门给三个人,甲、乙、丙对每 个目标的层性打分。
工 作 作 风
p6
B6 甲
甲 1
乙 7
丙 9


1/7
1/9
1
1/5
5
1
解:1 画出层次分析图
总目标
提拔一位干部担任领导工作
w1
w2 w3 w4 w5 w6
子 目 标
健 康 状 况
业 务 水 平
写 作 水 平
口 才
政 策 水 平
工 作 作 风
方案层



2 求出目标层的权数估计
用和积法计算其最大特征向量
B
p1
p1 p2 p3 p4 p5 p6
1
1 1
1
p3
p4 p5 p6
0.16 0.09 0.15 0.25 0.42 0.13
0.04 0.04 0.03 0.05 0.05 0.09 0.16 0.17 0.05 0.15 0.14 0.26 0.32 0.34 0.30 0.15 0.14 0.26
0.95 1.10 1.20 0.30 0.93 1.51
nM i
(i=1,2,….n)
o对向量W=( W1, W2…… Wn)t归 一化处理: Wi= Wi 1nWj
(i =1,2,….n)
W=( W1, W2…… Wn)t
即为所求的特征向量的近似解。
o计算判断矩阵最大特征根max
max = 1
n
(BW)i nWi
层次分析法(AHP)具体步骤:
2
1 1/5
4
5 1
1
3 1/3
1/2
1/2 1/3
(BW)=
1 1/4
1
2
1
2
1/3
2
3
3
1
1
1
1
0.16 0.25
=
1.025 1.225 1.305 0.309 1.066 1.64
p1
p2
p3
p4
p5
p6
1
1
1
1
1
2
4
4
1
1
1/2
1/2
p3
p4 p5
1
1/4 1
1/2
1/4 1
1
1/5 1/3
5
1 3
3
1/3 1
1/2
1/3 1
p6

2
6.25
2
5.75
2
6.53
3
20
1
7.33
1
3.83
B
p1
p2
p1
p2
p3
p4
p5
p6
0.16 0.17 0.15 0.20 0.14 0.13
6.25 5.75 6.53 20 7.33 3.83
o将每一列经归一化处理后的判断 矩阵按行相加为: Wi= 1nbij
(i =1,2,….n)
B
p1 p2
p1
p2
p3
p4
p5
p6

0.16 0.17 0.15 0.20 0.14 0.13 0.16 0.17 0.30 0.20 0.14 0.13
B
p1
p2
p3
p4
p5
p6
判 断 矩 阵
p1
p2 p3
1
1 1
1
1 1/2
1
2 1
4
4 5
1
1 3
1/2
1/2 1/2
p4
p5
1/4
1
1/4
1
1/5
1/3
1
3
1/3
1
1/3
1
p6
2
2
2
3
1
1
组织部门给三个人,甲、乙、丙对每 个目标的层性打分。
健 康 状 况
p1
B1 甲
甲 1
乙 1/4
丙 1/2

和积法具体计算步骤:
o将判断矩阵的每一列元素作归一 化处理,其元素的一般项为:
bij= bij 1nbij
(i,j=1,2,….n)
o将每一列经归一化处理后的判断 矩阵按行相加为: Wi= 1nbij
(i =1,2,….n)
o对向量W=( W1, W2…… Wn)t归 一化处理:
Wi=
Wi 1nWj
层次分析法(AHP) 应用这种方法,决策者通过将 复杂问题分解为若干层次和若干因 素,在各因素之间进行简单的比较 和计算,就可以得出不同方案的权 重,为最佳方案的选择提供依据。
层次分析法(AHP)基本原理: AHP法首先把问题层次化,按 问题性质和总目标将此问题分解成 不同层次,构成一个多层次的分析 结构模型,分为最低层(供决策的 方案、措施等),相对于最高层( 总目标)的相对重要性权值的确定 或相对优劣次序的排序问题。
层次总排序 利用层次单排序的计算结果, 进一步综合出对更上一层次的优劣 顺序,就是层次总排序的任务。
层次分析法实例 某单位拟从三名干部中提拔一 人担任领导工作,干部的优劣(由 上级人事部门提出),用六个属性 来衡量:健康状况、业务知识、写 作水平、口才、政策水平、工作作 风,分别用p1 、 p2 、 p3 、 p4 、 p5 、 p6 来表示。判断矩阵如下B。
判断矩阵中的bij是根据资料 数据、专家的意见和系统分析人 员的经验经过反复研究后确定。 应用层次分析法保持判断思维的 一致性是非常重要的,只要矩阵 中的bij满足上述三条关系式时, 就说明判断矩阵具有完全的一致 性。
判断矩阵一致性指标 C.I.(Consistency Index)
C.I. =

B
p1 p2
p1
p2
p3
p4
p5
p6
W
0.16
0.16 0.17 0.15 0.20 0.14 0.13 0.16 0.17 0.30 0.20 0.14 0.13
0.18 0.20
0.05 0.16 0.25
p3
p4 p5 p6
0.16 0.09 0.15 0.25 0.42 0.13
0.04 0.04 0.03 0.05 0.05 0.09 0.16 0.17 0.05 0.15 0.14 0.26 0.32 0.34 0.30 0.15 0.14 0.26
判 断 矩 阵
p1 p2 … … pn
在层次分析法中,为了使判 断定量化,关键在于设法使任意 两个方案对于某一准则的相对优 越程度得到定量描述。一般对单 一准则来说,两个方案进行比较 总能判断出优劣,层次分析法采 用1-9标度方法,对不同情况的 评比给出数量标度。
标 度
1 3
定义与说明 两个元素对某个属性具有同样重要性 两个元素比较,一元素比另一元素稍微重要
max - n n-1
一致性指标C.I.的值越大, 表明判断矩阵偏离完全一致性的 程度越大, C.I.的值越小,表明 判断矩阵越接近于完全一致性。 一般判断矩阵的阶数n越大,人为 造成的偏离完全一致性指标C.I. 的值便越大;n越小,人为造成的 偏离完全一致性指标C.I.的值便 越小。
对于多阶判断矩阵,引入平 均随机一致性指标 R.I.(Random Index),下表给出了1-15阶正互反矩 阵计算1000次得到的平均随机一致 性指标 。
5
7 9
两个元素比较,一元素比另一元素明显重要
两个元素比较,一元素比另一元素重要得多 两个元素比较,一元素比另一元素极端重要
2,4,6,8 表示需要在上述两个标准之间拆衷时的标度
1/bij 两个元素的反比较
判断矩阵B具有如下特征: o bii = 1 o bji = 1/ bij o bij = bik/ bjk (i,j,k=1,2,….n)
相关文档
最新文档