函数信号发生器设计

合集下载

基于单片机和DAC0832的函数信号发生器的设计

基于单片机和DAC0832的函数信号发生器的设计

基于单片机和DAC0832的函数信号发生器的设计引言函数信号发生器是一种能够产生可调频率、可调振幅、可调相位和可调形状的电信号的设备。

它广泛应用于电子实验、通信、音频设备等领域。

本文介绍了一种基于单片机和DAC0832的函数信号发生器的设计方案。

单片机是一种集成电路,具有处理能力和存储能力,能够控制外围设备的工作。

DAC0832是一种数字模拟转换器,能够将数字信号转换为模拟信号。

设计原理函数信号发生器主要由脉冲发生单元、频率调节单元、振幅调节单元、相位调节单元和输出单元组成。

脉冲发生单元负责产生基础脉冲信号,频率调节单元负责调节脉冲信号的频率,振幅调节单元负责调节脉冲信号的振幅,相位调节单元负责调节脉冲信号的相位,输出单元负责将脉冲信号输出。

本设计采用了AT89C51单片机作为控制核心,DAC0832作为模拟输出芯片。

AT89C51是一种8位微控制器,具有强大的IO能力和丰富的外设接口。

DAC0832是一种8位DAC,具有较高的精度和稳定性。

设计步骤1.硬件设计硬件设计包括电路原理图的绘制和元器件的选型。

根据设计要求,确定电路中需要使用的电阻、电容、稳压器等元器件,并通过计算和选型手册选取合适的数值和型号。

2.软件设计软件设计包括单片机程序的编写和功能实现。

根据硬件设计的需求,编写控制程序,实现基础脉冲信号的生成和频率、振幅、相位的调节。

3.调试和测试将硬件组装完成后,使用示波器和信号发生器进行信号的调试和测试。

通过观察输出信号的频率、振幅、相位以及波形形状是否满足设计要求,对硬件和软件进行优化和调整。

4.功能扩展通过增加控制接口和调节电路,可以实现更多功能的拓展。

例如,通过添加旋钮、按键和显示屏等元件,实现手动调节和参数显示功能。

通过添加USB或无线通信模块,实现远程控制和数据传输。

结论本设计基于单片机和DAC0832的函数信号发生器,通过控制单片机和DAC芯片,实现了可调频率、可调振幅、可调相位和可调形状的信号输出。

函数信号发生器的设计

函数信号发生器的设计

6
R3
2k
Rp
10k
-12v
12v
7
U2
2
R2 20k
3
D1
1N5235B
迟滞比较 器 R1
10k
D2
1N5235B
12v
积分电路
7
4 1 5
UA741
单元电路
用差分放大器做三角波/正弦波变换电路
三角波/正弦波变换原理: 用差分对管的饱和与截止特性进行变换:差分放大器电流恒 定并要求:传输特性对称线性区尽可能窄;三角波的幅值Vm 应使输出接近晶体管的截止电压;
v O VO 3 VO 2 T / 14 v I
VIm 0.78 T /4
在T/7~3T/14区段内
VIm 0.42 T /4
在3T/14~T/4区段内
v O VOm VO 3 T / 28 v I VIm 0.13 T /4
正弦函数 转换方案1
基本结构是比例放 大器。只是使运放在不 同的时间区段(或输出 电平区段)内,具有不 同的比例系数。对不同 区段内比例系数的切换, 是通过二极管网络来实 现的。 vi vo
模拟电路的实现方案,是指全部采用模拟电 路的方式,以实现信号产生电路的所有功能。由 于教学安排及课程进度的限制,本实验的信号产 生电路,推荐采用全模拟电路的实现方案。 模拟电路实现信号产生电路的多种方式
方案一
RC文氏电桥振荡器产生正弦波,方波-三角波产生电路可正 弦波振荡器采用波形变换电路, 通过迟滞比较器变换为方波, 经积分器获得三角波输出。此电路的输出频率就是就是RC文 氏电桥振荡器的振荡频率.
有源正弦函数转换电路的转换原理如图 所示。
若设正弦 波在过零点处 的斜率与三角 波斜率相同, 即

函数信号发生器的设计

函数信号发生器的设计

函数信号发生器的设计函数信号发生器是一种电子测试仪器,用于产生各种波形信号,如正弦波、方波、三角波、锯齿波等。

它广泛应用于电子、通信、计算机、自动控制等领域的科研、教学和生产中。

本文将介绍函数信号发生器的设计原理和实现方法。

一、设计原理函数信号发生器的设计原理基于信号发生器的基本原理,即利用振荡电路产生一定频率和幅度的电信号。

振荡电路是由放大器、反馈电路和滤波电路组成的。

其中,放大器负责放大电信号,反馈电路将一部分输出信号反馈到输入端,形成正反馈,使电路产生自激振荡,滤波电路则用于滤除杂波和谐波,保证输出信号的纯度和稳定性。

函数信号发生器的特点是可以产生多种波形信号,这是通过改变振荡电路的参数来实现的。

例如,正弦波信号的频率和幅度可以通过改变电容和电阻的值来调节,方波信号的占空比可以通过改变开关电路的工作方式来实现,三角波信号和锯齿波信号则可以通过改变电容和电阻的值以及反馈电路的参数来实现。

二、实现方法函数信号发生器的实现方法有多种,其中比较常见的是基于集成电路的设计和基于模拟电路的设计。

下面分别介绍这两种方法的实现步骤和注意事项。

1. 基于集成电路的设计基于集成电路的函数信号发生器设计比较简单,只需要选用合适的集成电路,如NE555、CD4046等,然后按照电路图连接即可。

具体步骤如下:(1)选择合适的集成电路。

NE555是一种常用的定时器集成电路,可以产生正弦波、方波和三角波等信号;CD4046是一种锁相环集成电路,可以产生锯齿波信号。

(2)按照电路图连接。

根据所选集成电路的电路图,连接电容、电阻、电感等元器件,形成振荡电路。

同时,根据需要添加反馈电路和滤波电路,以保证输出信号的稳定性和纯度。

(3)调节参数。

根据需要调节电容、电阻等参数,以改变输出信号的频率和幅度。

同时,根据需要调节反馈电路和滤波电路的参数,以改变输出信号的波形和稳定性。

(4)测试验证。

连接示波器或万用表,对输出信号进行测试和验证,以确保输出信号符合要求。

函数信号发生器(三角波,梯形波,正弦波)

函数信号发生器(三角波,梯形波,正弦波)

电子课程设计题目:函数信号发生器的设计学院:机械工程学院班级:测控技术与仪器071班作者:学号:指导教师:2010年7月7日摘要:该函数发生器采用AT89S51 单片机作为控制核心,外围采用数字/模拟转换电路(DAC0832)、运放电路(1458N)等。

电路采用AT89S51单片机和一片DAC0832数模转换器组成函数信号发生器,在单片机的输出端口接DAC0832进行DA转换,再通过运放进行波形调整,最后输出波形接在示波器上显示。

它具有价格低、性能高和在低频范围内稳定性好、操作方便、体积小、耗电少等特点。

由于采用了1458N运算放大器,使其电路更加具有较高的稳定性能,性能比高。

此电路清晰,出现故障容易查找错误,操作简单、方便。

本设计主要应用AT89S51作为控制核心。

硬件电路简单,软件功能完善,控制系统可靠,性价比较高等特点,具有一定的使用和参考价值。

关键词:AT89S51、DAC0832、波形调整【Abstract】: For special requirement the function generator usingAT89S51 microcontroller as the control, external analog / digital conversion circuit (DAC0832), op-amp circuit (1458C) and so on. AT89S51 microcontroller circuit and an integral function DAC0832 digital-signal generator, the microcontroller output port connected to DA converter DAC0832, and then wave through the op amp to adjust the final output connected to the oscilloscope waveform display. It has a low cost, high performance and low frequency range, good stability, easy operation, small size, low power consumption and so on. As a result of 1458G operational amplifier circuit to a more stable performance with high performance is high. The circuit clear, easy to find failure error, simple and convenient.The design of the main application AT89S51 as the control center. Simple hardware circuit, software, functional, and reliable control system, high cost performance characteristics, has some use and reference.Key words:AT89S51, DAC0832, waveform adjust目录1、设计概述1.1、设计任务----------------------------------4 1.2、方案选择与论证----------------------------41.3、系统设计框图------------------------------52、硬件电路设计--------------------------------53、软件系统设计3.1、阶梯波设计思想及流程图--------------------133.3、三角波和正弦波设计思想--------------------144、系统软件仿真4.1、protues仿真原理图------------------------154.2、仿真波形图--------------------------------165、课程设计心得体会---------------------------176、参考文献------------------------------------177、附录附录一:protel原理图----------------------------18 附录二:PCB图 ----------------------------------18 附录三:焊接后的电路板实物图---------------------19 附录四:实际电路板调试后发生阶梯波图-------------19附录五:实验源程序-------------------------------191.1设计任务与要求:1采用AT89S51及DAC0832设计函数信号发生器;2输出信号为正弦波或三角波或阶梯波;3输出信号频率为100Hz,幅度-5V—+5V可调;4必须具有信号输出及外接电源、公共地线接口,程序在线下载接口。

函数信号发生器课程设计

函数信号发生器课程设计

信号发生器一、设计目的1.进一步掌握模拟电子技术的理论知识,培养工程设计能力和综合分析问题、解决问题的能力。

2.基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。

3.学会运用Multisim10仿真软件对所作出的理论设计进行仿真测试,并能进一步完善设计。

4.掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法。

二、设计内容与要求1.设计、组装、调试函数信号发生器2.输出波形:正弦波、三角波、方波3.频率范围:10Hz-10KHz范围内可调4.输出电压:方波V PP<20V, 三角波V PP=6V, 正弦波V PP>1V三、设计方案仿真结果1.正弦波—矩形波—三角波电路原理图:首先产生正弦波,再由过零比较器产生方波,最后由积分电路产生三角波。

正弦波通过RC串并联振荡电路(文氏桥振荡电路)产生,利用集成运放工作在非线性区的特点,由最简单的过零比较器将正弦波转换为方波,然后将方波经过积分运算变换成三角波。

正弦—矩形波—三角波产生电路:总电路中,R5用来使电路起振;R1和R7用来调节振荡的频率,R6、R9、R8分别用来调节正弦波、方波、三角波的幅值。

左边第一个运放与RC 串并联电路产生正弦波,中间部分为过零比较器,用来输出方波,最好一个运放与电容组成积分电路,用来输出三角波。

仿真波形:调频和调幅原理调频原理:根据RC 振荡电路的频率计算公式RCfoπ21=可知,只需改变R 或C 的值即可,本方案中采用两个可变电阻R1和R7同时调节来改变频率。

调幅原理:本方案选用了最简单有效的电阻分压的方式调幅,在输出端通过电阻接地,输出信号的幅值取决于电阻分得的电压多少。

其最大幅值为电路的输出电压峰值,最小值为0。

RC 串并联网络的频率特性可以表示为)1(31111212RCRC j RC j R C j R RCj Rf Z Z ZUU F ωωωωω-+=++++=+==∙∙∙令,1RCo =ω则上式可简化为)(31ωωωωOOjF -+=∙,以上频率特性可分别用幅频特性和相频特性的表达式表示如下:|F∙|)(3122ωωωωo o -+=)(3arctanωωωωϕooF--=,根据上式可以分别画出RC 串并联网络的幅频特性和相频特性:1.正弦波振荡电路的原理如下图a 、b 所示:由上图得出正弦波振荡的条件为:根据RC 串并联网络的选频特性及上述平衡条件容易得到RC 正弦波振荡电路的振荡频率为:RCfoπ21=; 振荡的幅度平衡条件|F A ∙∙|1=是表示振荡电路已达到稳幅振荡时的情况。

简易函数信号发生器设计报告

简易函数信号发生器设计报告

简易函数信号发生器设计报告一、引言信号发生器作为一种测试设备,在工程领域具有重要的应用价值。

它可以产生不同的信号波形,用于测试和调试电子设备。

本设计报告将介绍一个简易的函数信号发生器的设计方案。

二、设计目标本次设计的目标是:设计一个能够产生正弦波、方波和三角波的函数信号发生器,且具有可调节频率和幅度的功能。

同时,为了简化设计和降低成本,我们选择使用数字模拟转换(DAC)芯片来实现信号的输出。

三、设计原理1.信号产生原理正弦波、方波和三角波是常见的函数波形,它们可以通过一系列周期性的振荡信号来产生。

在本设计中,我们选择使用集成电路芯片NE555来产生可调节的方波和三角波,并通过滤波电路将其转换为正弦波。

2.幅度调节原理为了实现信号的幅度调节功能,我们需要使用一个可变电阻,将其与输出信号的放大电路相连。

通过调节可变电阻的阻值,可以改变放大电路的放大倍数,从而改变信号的幅度。

3.频率调节原理为了实现信号的频率调节功能,我们选择使用一个可变电容和一个可变电阻,将其与NE555芯片的外部电路相连。

通过调节可变电容和可变电阻的阻值,可以改变NE555芯片的工作频率,从而改变信号的频率。

四、设计方案1.正弦波产生方案通过NE555芯片产生可调节的方波信号,并通过一个电容和一个电阻的RC滤波电路,将方波转换为正弦波信号。

2.方波产生方案直接使用NE555芯片产生可调节的方波信号即可。

3.三角波产生方案通过两个NE555芯片,一个产生可调节的方波信号,另一个使用一个电容和一个电阻的RC滤波电路,将方波转换为三角波信号。

五、电路图设计设计的电路图如下所示:[在此插入电路图]六、实现效果与测试通过实际搭建电路,并连接相应的调节电位器,我们成功地实现了信号的幅度和频率调节功能。

在不同的调节范围内,我们可以得到稳定、满足要求的正弦波、方波和三角波信号。

七、总结通过本次设计,我们成功地实现了一个简易的函数信号发生器,具有可调节频率和幅度的功能。

函数发生器设计

函数发生器设计

函数发⽣器设计多功能信号发⽣器设计⼀、设计任务设计⼀个多功能信号发⽣器,要有如下:1、输出信号波形的形式:正弦波、三⾓波、⽅波、单次脉冲。

2、输出信号的频率:20Hz~2kHz,连续可调。

3、输出信号的幅度:1V P-P~10V P-P,连续可调;单次脉冲:低电平≤0.4V,⾼电平3.5~5V。

4、输出信号直流电平调节范围:-5V~+5V。

5、输出信号波形精度:正弦波失真度≤2%;三⾓波的线性度≤1%;⽅波信号的上(下)升沿时间≤2µS。

⼆、设计⽅案分析信号发⽣器在科学实验、电⼦测量、⾃动控制、设备检测、⽆线通讯等领域有着⼴泛的应⽤。

信号发⽣器的基本功能是可以提供符合⼀定技术指标要求的电信号,其波形、频率、幅值均可以调节。

实现信号发⽣器电路的⽅案很多,其特点也不同,主要有模拟电路实现⽅案、数字电路实现⽅案和模数混合实现的⽅案。

1、采⽤单⽚机控制技术实现的信号发⽣器该⽅案的主要思路是采⽤编程的⽅法来产⽣希望得到的波形,⽤户将要输出的波形预先存储在半导体存储器中,在需要某种波形时将储存在存储器中的数据依次读出来,经过数模转换、滤波等处理后,输出该波形的信号。

该⽅案优点是输出信号的频率稳定,抗⼲扰能⼒强,实现任意波形的信号容易,可通过外置按键或键盘来设定所需要产⽣信号源的类型和频率,还可以通过显⽰器显⽰出波形的相关信息。

不⾜之处是由于单⽚机的处理数据的速度有限,当产⽣频率⽐较⾼的信号时,输出波形的质量将下降。

2、利⽤直接数字频率合成(DDS)集成芯⽚实现的信号发⽣器随着⼤规模集成电路制作技术的发展,采⽤直接数字频率合成技术实现的信号产⽣集成芯⽚应⽤越来越⼴泛。

DDS集成芯⽚内部主要由相位累加器、波形存储器、⾼速D/A转换器等环节组成,在时钟脉冲的控制下,相位累加器对输⼊的频率控制字不断进⾏累加得到相应的相位码,同时相位码序列作为地址信号去寻址波形存储器进⾏相位码到幅度码的转换,并输出不同的幅度编码。

简单函数发生器的设计

简单函数发生器的设计

简单函数发生器的设计函数发生器(function generator)是一种能生成不同函数形式输出信号的仪器。

它广泛应用于电子、通信、自动控制等领域,用于测试、仿真、教学以及其他各种应用。

函数发生器通常由以下几个组成部分组成:信号源、波形形状选择电路、频率选择电路和幅度控制电路。

下面将分别对这些部分进行设计。

首先是信号源。

在函数发生器中,常用的信号源有信号发生器和稳压电源。

信号发生器产生正弦、方波、三角波等各种波形信号。

稳压电源用于提供稳定的电压输出。

这里我们选择使用信号发生器作为信号源。

接下来是波形形状选择电路。

波形形状选择电路用于选择输出信号的波形形状,包括正弦波、方波、三角波等。

这里我们采用多路开关电路来实现波形形状的选择。

多路开关电路可以通过切换不同的开关状态来选择不同的波形形状。

然后是频率选择电路。

频率选择电路用于选择输出信号的频率。

一种常见的频率选择电路是使用可变频率振荡器(VFO)。

可变频率振荡器可以通过调节电路中的电阻、电容或电感等参数来改变输出信号的频率。

最后是幅度控制电路。

幅度控制电路用于控制输出信号的幅度大小。

一种常用的幅度控制电路是使用可变增益放大器。

可变增益放大器可以通过调节放大器的增益来改变输出信号的幅度。

综上所述,一个简单函数发生器的设计包括信号源、波形形状选择电路、频率选择电路和幅度控制电路四个部分。

其中信号源使用信号发生器,波形形状选择电路使用多路开关电路,频率选择电路使用可变频率振荡器,幅度控制电路使用可变增益放大器。

通过调节这些电路的参数,我们可以生成不同形式的函数输出信号。

函数发生器在电子、通信、自动控制等领域具有广泛的应用。

它可以用于测试电路的频率响应、幅度响应等性能指标,也可以用于信号仿真和教学实验。

由于函数发生器的灵活性和可调节性,它成为了各种实验和应用中不可或缺的仪器之一。

函数信号发生器设计方案

函数信号发生器设计方案

函数信号发生器设计方案设计一个函数信号发生器需要考虑的主要方面包括信号的类型、频率范围、精度、输出接口等等。

下面是一个关于函数信号发生器的设计方案,包括硬件和软件两个方面的考虑。

硬件设计方案:1.信号类型:确定需要的信号类型,如正弦波、方波、三角波、锯齿波等等。

可以根据需求选择合适的集成电路或FPGA来实现不同类型的信号生成。

2.频率范围:确定信号的频率范围,例如从几Hz到几十MHz不等。

根据频率范围选择合适的振荡器、计数器等电路元件。

3.精度:考虑信号的精度要求,如频率精度、相位精度等。

可以通过使用高精度的时钟源和自动频率校准电路来提高精度。

4.波形质量:确定信号的波形质量要求,如波形畸变、谐波失真等。

可以使用滤波电路、反馈电路等技术来改善波形质量。

5.输出接口:确定信号的输出接口,如BNC接口、USB接口等,并考虑电平范围和阻抗匹配等因素。

软件设计方案:1.控制界面:设计一个易于操作的控制界面,可以使用按钮、旋钮、触摸屏等各种方式来实现用户与信号发生器的交互。

2.参数设置:提供参数设置功能,用户可以设置信号的频率、幅度、相位等参数。

可以通过编程方式实现参数设置,并通过显示屏或LED等方式来显示当前参数值。

3.波形生成算法:根据用户设置的参数,设计相应的波形生成算法。

对于简单的波形如正弦波可以使用数学函数来计算,对于复杂的波形如任意波形可以使用插值算法生成。

4.存储功能:可以提供存储和读取波形的功能,这样用户可以保存和加载自定义的波形。

存储可以通过内置存储器或外部存储设备实现,如SD卡、U盘等。

5.触发功能:提供触发功能,可以触发信号的起始和停止,以实现更精确的信号控制。

总结:函数信号发生器是现代电子测量和实验中常用的仪器,可以产生各种不同的信号类型,提供灵活的信号控制和生成能力。

在设计过程中,需要综合考虑信号类型、频率范围、精度、波形质量、输出接口等硬件方面的因素,以及控制界面、参数设置、波形生成、存储和触发等软件方面的功能。

电设ICL8038

电设ICL8038

函数信号发生器的设计摘要函数信号发生器亦称为波形发生器,是一种能够产生多种波形,如三角波、锯齿波,方波,正弦波等波形电路。

本次设计是以ICL8038集成块为核心器件,制作一种函数信号发生器,该芯片是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从0.001HZ~30KHZ的低失真正弦波、三角波、矩形波等脉冲信号。

通过振荡电路产生正弦波,然后通过变化电路产生其他波形,再通过功率放大电路达到所需的波形。

输出的频率和占空比还可以由电流和电阻控制。

关键字:ICL8038 信号发生器方波三角波正弦波Function signal generator design AbstractFunction signal generator also called waveform generator, is a kind of can producevarious waveform, such as triangle wave, sawtooth wave, such as pulse waveform circuit,sine wave. This design is the core component integrated blocks ICL8038, making for afunction signal generator. This chip is one kind has the various waveform output precisionoscillation integrated circuits, need only individual external components can produce the30KHZ~from 0.001 low distortion sinusoidal, triangle wave, rectangle wave etc pulsesignal. Through the oscillating circuit produce sine wave, then through other waveform,produce change circuit through power amplifier circuit again already achieve desired waveform. The output waveform of frequency and occupies emptiescompared to still cancontrol by current or resistance.Key word:ICL8038 function signal generator rectangle wavetriangle wave sine wave目录1.课题方案的设计与选择------------------------------------41.1 方案一---------------------------------------------------------------------------------41.2 方案二---------------------------------------------------------------------------------41.3 方案三---------------------------------------------------------------------------------------------52.电路的设计过程和分析-----------------------------------------6 2.1 ICL8038概述------------------------------------------------------------------------------------6 2.2 ICL8038特点--------------------------------------------------------------------------72.3 ICL8038芯片封装与引脚功能—————————————————-72.4 ICL8038内部结构与工作原理————————————————---93.ICL8038应用电路及元器件的选择计算----------------------114.proteus仿真验证--------------------------------------------------------------------------------135.制作与调试---------------------------------------------156.心得体会-----------------------------------------------167.参考文献-----------------------------------------------168.附录---------------------------------------------------171.课题方案的设计与选择1.1方案一采用由集成运算放大器与晶体管差分放大器共同组成的方波-三角波-正弦波函数信号发生器。

【精品】函数信号发生器课程设计报告

【精品】函数信号发生器课程设计报告

【精品】函数信号发生器课程设计报告函数信号发生器课程设计报告摘要:本课程设计主要是设计一台函数信号发生器,它在从低频(如Sine)到较高频(如Square)常用波形之间能够进行切换,常用于电子仪器和测量检测中,用来给装置注入一定形态的信号,以辅助检测装置的有效性,稳定性,精度等特性。

该设备采用STM32F030F4P6单片机,使用1602液晶屏显示函数状态,用HD74HC4040电路分频输出指定期望频率,使用R-2R电路控制EPWM波形从正弦波到脉冲波,满足多种测试状况下的需求。

本系统实现调整频率的功能,使用户可以设置函数发生器的频率,因此满足用户的不同要求。

关键词: STM32F030F4P6; 1602液晶屏; HD74HC4040 电路; R-2R 电路; PWM 波形一、简介函数信号发生器是一种常用的信号发生器,可以产生多种类型的波形。

包括正弦波、三角波、方波、脉冲波和梯形波等等,其应用广泛,比如在检测仪表中,可以用来观察测量仪表的工作状态,以便于分析测量仪表的特性,进而排除故障。

此外,函数信号发生器通常也可以用在动态信号检测中,对电机、变压器和泵等,进行性能检测和控制应用,也可用来做为一种测试应用,来控制和验证电子设备性能,在现在的电子技术发展中,函数信号发生器扮演重要的作用。

二、设计实现设计本次函数信号发生器主要任务是实现指定期望频率信号的输出,并对多种波形满足需求。

主要设备相关技术如下:(一)STM32F030F4P6单片机STM32F030F4P6单片机,采用ARM 32位内核设计,使用Cortex-M0指令集,配备有SYSTICK时钟,PWM波形输出,I2C接口,满足调整函数信号发生器指定频率和波形的要求。

(二)1602液晶屏它的主要功能是显示函数发生器的状态,如频率,波形,用户可以通过屏幕上的提示,清楚的了解函数发生器当前的实时状态,使用比较简单。

(三) HD74HC4040 电路使用 HD74HC4040 电路进行分频输出,可以实时调整输出信号的频率。

北邮电子电路实验-函数信号发生器-实验报告

北邮电子电路实验-函数信号发生器-实验报告

北京邮电大学电子电路综合设计实验实验报告实验题目:函数信号发生器院系:信息与通信工程学院班级:姓名:学号:班内序号:一、课题名称:函数信号发生器的设计二、摘要:方波-三角波产生电路主要有运放组成,其中由施密特触发器多谐振荡器产生方波,积分电路将方波转化为三角波,差分电路实现三角波-正弦波的变换。

该电路振荡频率由第一个电位器调节,输出方波幅度的大小由稳压管的稳压值决定;正弦波幅度和电路的对称性分别由后两个电位器调节。

关键词:方波三角波正弦波频率可调幅度三、设计任务要求:1.基本要求:设计制作一个方波-三角波-正弦波信号发生器,供电电源为±12V。

1)输出频率能在1-10KHZ范围内连续可调;2)方波输出电压Uopp=12V(误差<20%),上升、下降沿小于10us;3)三角波输出信号电压Uopp=8V(误差<20%);4)正弦波信号输出电压Uopp≥1V,无明显失真。

2.提高要求:1)正弦波、三角波和方波的输出信号的峰峰值Uopp均在1~10V范围内连续可调;2)将输出方波改为占空比可调的矩形波,占空比可调范围30%--70%四、设计思路1. 结构框图实验设计函数发生器实现方波、三角波和正弦波的输出,其可采用电路图有多种。

此次实验采用迟滞比较器生成方波,RC积分器生成三角波,差分放大器生成正弦波。

除保证良好波形输出外,还须实现频率、幅度、占空比的调节,即须在基本电路基础上进行改良。

由比较器与积分器组成的方波三角波发生器,比较器输出的方波信号经积分器生成三角波,再经由差分放大器生成正弦波信号。

其中方波三角波生成电路为基本电路,添加电位器调节使其频率幅度改变;正弦波生成电路采用差分放大器,由于差分放大电路具有工作点稳定、输入阻抗高、抗干扰能力较强等优点,特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

2.系统的组成框图五、分块电路与总体电路的设计1.方波—三角波产生电路如图所示为方波—三角波产生电路,由于采用了运算放大器组成的积分电路,可得到比较理想的方波和三角波。

函数信号发生器的设计

函数信号发生器的设计

函数信号发生器的设计
函数信号发生器是一种用于产生各种常用电信号和波形的多功能信号产生器。

它也可
以产生各种频率、幅度范围可调的宽带或窄带信号。

在科学研究,工程设计和信号测量领
域中,函数信号发生器发挥着重要作用。

函数信号发生器的设计一般包括信号控制模块、信号发生模块和信号监控模块三部分。

信号控制模块用于控制信号的产生以及信号的参数,如波形、频率、幅度等。

它根据
外部控制信号的指令,通过把信号控制参数转换成相应的电气量并输出至发生模块。

常用
的参数控制方法有时序逻辑控制、数字逻辑控制和模拟控制,各司其职。

信号发生模块经过控制模块传来控制信号后,将其转换成相应的电信号或波形及参数,完成发生功能,输出至信号检测模块。

信号发生模块的选择取决于所要求的发生的信号的
频率、波幅和类型等参数,如果只是产生低频、幅度小的信号,可以使用简单的开关电路;对于需要产生宽带信号和高频信号,则可采用电声变换器、振荡器、综合器或调制器等元
件辅以专用外围电路实现。

信号监控模块起到信号检测、监测和放大作用,其主要功能是通过增益放大信号,而
其增益可以由控制模块实现调节,具体实现方案取决于信号的类型,对于数字信号可以采
用数字信号处理技术,而对于模拟信号可以采用模拟信号放大器。

函数信号发生器的设计实际上是信号生成、控制、测量和监测的一整套系统,是通过
控制仪表发送信号,然后把发出的信号放大,然后利用函数信号发生器产生恒定频率和恒
定幅度的信号,以及根据外部控制指令动态调整频率、幅度等信号参数,从而实现测量结
果的视觉化和长期信号测量自动化等功能。

波形发生器函数信号发生器设计课程设计

波形发生器函数信号发生器设计课程设计

目录一、设计要求------------------------------------------------2二、设计的作用与目的------------------------------------2三、波形发生器的设计------------------------------------31、函数波形发生器原理和总方案设计-------------------32、方案选择及单元电路的设计---------------------------53、仿真与分析----------------------------------------------94、PCB版电路制作-----------------------------------------13四、心得体会-----------------------------------------------15五、参考文献-----------------------------------------------16附录波形发生器的设计电路函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。

函数信号发生器在电路实验和设备检测中具有十分广泛的用途。

通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。

一、设计要求设计一台波形信号发生器,具体要求如下:1.该发生器能自动产生正弦波、三角波、方波。

2.指标:输出波形:正弦波、三角波、方波。

频率范围:1Hz~10Hz,10Hz~100Hz ,100Hz~1KHz,1KHz~10KHz。

输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V;3.频率控制方式:通过改变RC时间常数手控信号频率。

4.用分立元件和运算放大器设计的波形发生器要求用EWB进行电路仿真分析,然后进行安装调试。

二、设计的作用与目的1.通过这次课程设计从而掌握方波——三角波——正弦波函数发生器的原理及设计方法。

基于单片机的函数信号发生器设计

基于单片机的函数信号发生器设计

基于单片机的函数信号发生器设计引言函数信号发生器是一种能够产生各种类型的电信号的仪器。

在电子学、通信工程等领域,函数信号发生器被广泛应用于信号测试、频率测量、波形生成等实验和工程应用中。

本文将介绍一种基于单片机的函数信号发生器设计方案。

一、设计目标本设计的目标是实现一个功能齐全、稳定可靠的函数信号发生器。

主要功能包括产生常见的波形,如正弦波、方波、三角波等;能够调节频率和幅度,以满足不同的实验需求;具备稳定性好、误差小等特点。

二、硬件设计1.单片机选择单片机作为该设计的核心,需要选择性能稳定、功能强大的型号。

常用的单片机型号有AT89C51、ATmega328P等。

选择单片机时,需要考虑到其定时器、ADC等外设功能是否满足要求,以及是否能够方便地编程和调试。

2.信号输出电路设计信号输出电路是函数信号发生器的重要组成部分。

一种常见的设计方案是使用DAC芯片将数字信号转换为模拟信号输出。

选择合适的DAC芯片时,需要考虑其分辨率、采样率、失真度等参数,以及是否支持SPI或I2C等通信接口。

除此之外,还需要考虑输出电路的放大和滤波设计,以确保信号质量。

3.控制电路设计函数信号发生器需要能够通过按键或旋钮控制参数,如频率、幅度等。

因此,设计中需要考虑如何选择合适的控制器件,如按钮开关、数码旋钮或触摸屏等,并设计相应的电路以实现参数调节功能。

4.电源设计函数信号发生器需要一个稳定可靠的电源供电。

一种常见的选择是使用交流电源适配器提供稳定的直流电源。

此外,还需要考虑到功耗问题,选择适当的电源容量以满足整个系统的工作需求。

三、软件设计1.程序框架设计函数信号发生器的软件设计需要考虑到以下几个方面:初始化、参数设置、波形生成和输出等。

程序的框架设计可以遵循一般的流程,如初始化硬件、获取用户输入、生成波形、输出信号等。

2.参数设置功能函数信号发生器需要具备参数设置功能,用户可以通过按键或旋钮调节频率、幅度等参数。

因此,在软件设计中需要考虑到相应的数值输入和显示界面设计。

北邮模电实验报告 函数信号发生器的设计

北邮模电实验报告 函数信号发生器的设计

北京邮电大学电子电路综合设计实验报告课题名称:函数信号发生器的设计学院:班级:姓名:学号:班内序号:课题名称:函数信号发生器的设计摘要:采用运算放大器组成的积分电路产生比较理想的方波-三角波,根据所需振荡频率和对方波前后沿陡度、方波和三角波幅度的要求,选择运放、稳压管、限流电阻和电容。

三角波-正弦波转换电路利用差分放大器传输特性曲线的非线性实现,选取合适的滑动变阻器来调节三角波的幅度和电路的对称性,同时利用隔直电容、滤波电容来改善输出正弦波的波形。

关键词:方波三角波正弦波一、设计任务要求1.基本要求:设计制作一个函数信号发生器电路,该电路能够输出频率可调的正弦波、三角波和方波信号。

(1) 输出频率能在1-10KHz范围内连续可调,无明显失真。

(2) 方波输出电压Uopp=12V(误差小于20%),上升、下降沿小于10us。

(3) 三角波Uopp=8V(误差小于20%)。

(4) 正弦波Uopp1V,无明显失真。

2.提高要求:(1) 输出方波占空比可调范围30%-70%。

(2) 三种输出波形的峰峰值Uopp均可在1V-10V内连续可调。

二、设计思路和总体结构框图总体结构框图:设计思路:由运放构成的比较器和反相积分器组成方波-三角波发生电路,三角波输入差分放大电路,利用其传输特性曲线的非线性实现三角波-正弦波的转换,从而电路可在三个输出端分别输出方波、三角波和正弦波,达到信号发生器实验的基本要求。

将输出端与地之间接入大阻值电位器,电位器的抽头处作为新的输出端,实现输出信号幅度的连续调节。

利用二极管的单向导通性,将方波-三角波中间的电阻改为两个反向二极管一端相连,另一端接入电位器,抽头处输出的结构,实现占空比连续可调,达到信号发生器实验的提高要求。

三、分块电路和总体电路的设计过程1.方波-三角波产生电路电路图:设计过程:①根据所需振荡频率的高低和对方波前后沿陡度的要求,选择电压转换速率S R合适的运算放大器。

函数信号发生器课程设计报告

函数信号发生器课程设计报告

《模拟电子技术》课程设计函数信号发生器姓名:学号:系别:专业:年级:指导教师:年月日函数信号发生器摘要利用集成电路LM324设计并实现所需技术参数的各种波形发生电路。

根据电压比较器可以产生方波,方波再继续经过基本积分电路可产生三角波,三角波经过低通滤波可以产生正弦波。

经测试,所设计波形发生电路产生的波形与要求大致相符。

关键词:波形发生器;集成运放;RC充放电回路;滞回比较器;积分电路目录中文摘要 ............................................................. 错误!未定义书签。

1.系统设计 (4)1.1设计指标 (4)1.2方案论证与比较 (4)2.单元电路设计 (5)2.1方波的设计 (5)2.2三角波的设计 (8)2.3正弦波的设计 (7)3.参数选择 (11)3.1方波电路的元件参数选择 (11)4.结果分析 (11)5.工作总结 (12)6.附录 (12)1.系统设计1.1设计指标1.1.1 电源特性参数 ①输入:双电源 12V②输出:正弦波pp V >1V ,方波pp V ≈12 V ,三角波pp V ≈5V ,幅度连续可调,线性失真小。

1.1.2工作频率工作频率范围:10 HZ ~100HZ ,100 HZ ~1000HZ1.2方案论证与比较1.2.1 方案1:采用集成运放电路设计方案产生要求的波形主要是应用集成运放LM324,其芯片的内部结构是由4个集成运放所组成的,通过RC 文氏电桥可产生正弦波,通过滞回比较器能调出方波,并再次通过积分电路就可以调试出三角波,此电路方案能实现基本要求和扩展总分的功能,电路较简单,调试方便,是一个优秀的可实现的方案。

1.2.2 方案2:采用集成运放电路设计方案产生要求的波形主要是应用集成运放LM324,其芯片的内部结构是由4个集成运放所组成的, 通过电压比较器可以形成方波,方波经过积分之后可以形成三角波,三角波再经过低通滤波可以形成正弦波,此电路方案能实现基本要求和扩展总分的功能,电路较简单,调试方便,相比第一方案,其操作成功率较低.2.单元电路设计2.1方波的设计2.1.1原理图2.1.2工作原理矩形波发生电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要成分;因为产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈,因为输出状态应按一定时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间.图所示的矩形波放生电路,它由反相输入的滞回比较器和RC电路组成.RC回路既作为延迟环节,又作为反馈网络,通过RC充放电实现输出状态的自动转换.设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+Ut。

函数信号发生器设计总结

函数信号发生器设计总结

三.电路设计的步骤。
1.课题分析 2.总体方案的设计与选择 3.单元电路的设计和选择 4.电子元器件的选用 5.电路的参数计算 6.总电路图的设计 7.审图 8.产品设计报告
函数信号发生器系统框图
正弦波 放大器 输出 方波 直流稳压 电源12V 三角波
第二章 模块电路设计
一.正弦波产生电路。
利用RC桥式正弦波振荡电路结构简单,性能可靠, 用来产生几十KHz以下的低频正弦信号。 设计要求输出频率范围:200Hz—50KHz,分两段可 调。一般情况下,采用波段开关切换电容的方式实现频段 的粗调,在每一频段内用双联电位器完成本波段内频率的 细调。
三.三角波产生电路的设计。
频率输出范围:250Hz--33KHz,分两段连续可调,输出电压范围 (0-10)Vp-p。
1 u0 u 01 dt RC
四.直流稳压电源设计。
第三章 PCB设计
一.基本要求。
1.PCB的尺寸要求:150mm×100mm,要求元器件 有规则的排布在PCB板上,且是单层布线。 2.布线方式:自动布线的布通率,依赖于良好的布局, 布线规则可以预先设定, 包括走线的弯曲次数、导通孔 的数目、步进的数目等。一般先进行探索式布经线,快速 地把短线连通, 然后进行迷宫式布线,再把要布的连线 进行全局的布线路径优化。在自动布线的基础上,再进行 手动的调整。
二.方波产生电路。
采用过零比较器使正弦波得到同频的方波。工作原 理如下: 将输入电压与0比较,当Ui>0时,运放处于负饱和态, 输出电压Uo=Uol(低电平);当Ui<0时,运放处于正饱 和态,输出电压Uo=Uoh(高电平)。 当输出高、低电平时,加入稳压管VD3、VD4,使得 方波输出范围是-5Vp-p——+5Vp-p。

函数信号发生器实验报告

函数信号发生器实验报告

函数发生器设计(1)一、设计任务与指标要求1、可调频率范围为10Hz~100Hz。

2、可输出三角波、方波、正弦波。

3、三角波、方波、正弦波信号输出得峰-峰值0~5V可调.4、三角波、方波、正弦波信号输出得直流电平-3V~3V可调。

5、输出阻抗约600Ω。

二、电路构成及元件参数得选择1、振荡器由于指标要求得振荡频率不高,对波形非线性无特殊要求。

采用图1所示得电路。

同时产生三角波与方波。

图1 振荡电路根据输出口得信号幅度要求,可得最大得信号幅度输出为:VM=5/2+3=5、5V采用对称双电源工作(±V CC),电源电压选择为:V CC≥VM+2V=7、5V 取VCC=9V选取3、3V得稳压二极管,工作电流取5mA,则:VZ=V DZ+V D=3、3+0、7=4V为方波输出得峰值电压。

取680Ω.取8、2KΩ。

R1=R2/3=8、2/1、5=5、47(KΩ)取5、1KΩ.三角波输出得电压峰值为:VOSM=VZ R1/R2=4×5、1/8、2=2、489(V)R 4=R 1∥R 2=3、14 K Ω取3K Ω。

取10K Ω。

R 6=RW/9=10/9=1、11(K Ω)取1K Ω.积分时间常数:取C=0、1uF ,则:R5=4、019/0、1=40、19K Ω取39K Ω.取R 7=R 5= 39K Ω.转换速率Z 1max OSM max 24V R f 44 5.1100SR 4V f =0.995mS R 8.2⨯⨯⨯≥==(V/)一般得集成运算放大电路都能满足要求。

兼顾波形转换电路集成电路得使用。

集成电路选用四运放LM 324。

LM324内含四个相同得运算放大器,其中两个用于振荡器,两个用于波形变换。

三、振荡电路工作原理利用集成运算放大电路也可实现产生方波与三角波得信号发生器,电路主要由比较器与积分器构成.电路中,有源积分器由运算放大器2A 及其外围电路积分电容C 与电阻R 5、R 7组成。

函数信号发生器设计实验报告

函数信号发生器设计实验报告

函数信号发生器的设计实验报告院系:电子工程学院班级:2012211209**:***班内序号:学号:实验目的:设计一个设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。

1,输出频率能在1—10KHz范围内连续可调,无明显失真;2,方波输出电压Uopp = 12V,上升、下降沿小于10us(误差<20%);3,三角波Uopp = 8V(误差<20%);4,正弦波Uopp≥1V。

设计思路:1,原理框图:2,系统的组成框图:分块电路和总体电路的设计:函数发生器是指能自动产生方波、三角波和正弦波的电压波形的电路或者仪器。

电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。

根据用途不同,有产生三种或多种波形的函数发生器,本课题采用由集成运算放大器与晶体差分管放大器共同组成的方波—三角波、三角波—正弦波函数发生器的方法。

本课题中函数信号发生器电路组成如下:第一个电路是由比较器和积分器组成方波—三角波产生电路。

单限比较器输出的方波经积分器得到三角波;第二个电路是由差分放大器组成的三角波—正弦波变换电路。

差分放大器的特点:工作点稳定,输入阻抗高,抗干扰能力较强等。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波波形变换的原理是利用差分放大器的传输特性曲线的非线性。

传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。

Ⅰ、方波—三角波产生电路设计方波输出幅度由稳压管的稳压值决定,即限制在(Uz+UD)之间。

方波经积分得到三角波,幅度为Uo2m=±(Uz+UD)方波和三角波的震荡频率相同,为f=1/T=āRf/4R1R2C,式中ā为电位器RW 的滑动比(即滑动头对地电阻与电位器总电阻之比)。

即调节RW可改变振荡频率。

根据两个运放的转换速率的比较,在产生方波的时候选用转换速率快的LM318,这样保证生成的方波上下长短一致,用LM741则会不均匀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川师范大学成都学院广播电视方向课程设计函数信号发生器设计学生姓名杨媛媛学号**********所在学院通信工程学院专业名称通信工程班级2012级广电班指导教师周永强成绩四川师范大学成都学院二○一五年六月函数信号发生器设计学生:杨媛媛指导教师:周永强内容摘要:在现代电子学的各个领域,常常需要高精度且频率可方便调节的信号发生器。

种波形曲线均可以用三角函数方程式来表示。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路称为函数信号发生器,又名信号源或振荡器。

函数信号发生器与正弦波信号发生器相比具有体积小、功耗少、价格低等优点, 最主要的是函数信号发生器的输出波形较为灵活, 有三种波形(方波、三角波和正弦波)可供选择,在生产实践,电路实验,设备检测和科技领域中有着广泛的应用。

该函数信号发生器可产生三种波形,方波,三角波,正弦波,具有数字显示输出信号频率和电压幅值功能,其产生频率信号范围1HZ~100kHZ,输出信号幅值范围0~10V,信号产生电路由比较器,积分器,差动放大器构成,频率计部分由时基电路、计数显示电路等构成。

幅值输出部分由峰值检测电路和芯片7107等构成。

关键词:信号发生器比较器积分器 ADC芯片Design of function signal generatorAbstract: In all areas of modern electronics, often requiring high accuracy and frequency of the signal generator can be easily adjusted. Waveforms curve can use trigonometric equation to represent. It can produce a variety of waveforms, such as triangular wave, sawtooth wave, square wave (including square), the circuit is called a sine function signal generator, also known as the signal source or oscillator. Function signal generator with sine wave signal generator, compared with small size, less power consumption, and low price, the most important function of the output waveform signal generator is more flexible, there are three waveforms (square, triangle wave and sine ) to choose from, with a wide range of applications in production practice, circuit test, test equipment and technology fields.The function generator can produce three waveform, square wave, triangle wave, sine wave, with a digital display output signal frequency and voltage amplitude function, which generates a frequency signal range of 1HZ ~ 100kHZ, the output signal amplitude range of 0 ~ 10V, signal generating circuit consists of a comparator, an integrator, a differential amplifier, frequency meter part by the time base circuit, counting display circuit and the like. Amplitude of the output section consists of a peak detector circuit and chip 7107 and so on.Keywords:signal generator comparator integrator ADC chip目录一信号发生器 (1)1.1 信号发生器的简介 (1)1.2 工作原理 (2)1.3 信号发生器的分类 (2)1.4 信号器的应用及作用 (5)1.4.1 应用 (5)1.4.2 作用 (5)2 函数信号发生器 (5)2.1 实现方法 (5)3 函数信号器的方案设计,并对其比较 (7)3.1 概述 (7)3.2 方案一 (8)3.3 方案二 (8)3.4 方案比较与选择 (8)4 各组成部分的工作原理 (9)4. 1 方波发生电路 (9)4.2 三角波发生电路 (10)4.3 正弦波发生电路 (12)4.4 方波---三角波转换电路的工作原理 (14)4.5 方波—正弦波转换原理 (17)5 总原理图及元器件清单 (17)5.1 总原理图 (17)5.2 元器件清单 (19)6 结束语 (20)函数信号发生器设计一信号发生器1.1 信号发生器的简介信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。

在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。

信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

各种波形曲线均可以用三角函数方程式来表示。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。

凡是产生测试信号的仪器,统称为信号源。

也称为信号发生器,它用于产生被测电路所需特定参数的电测试信号。

在测试、研究或调整电子电路及设备时,为测定电路的一些电参量,如测量频率响应、噪声系数,为电压表定度等,都要求提供符合所定技术条件的电信号,以模拟在实际工作中使用的待测设备的激励信号。

当要求进行系统的稳态特性测量时,需使用振幅、频率已知的正弦信号源。

当测试系统的瞬态特性时,又需使用前沿时间、脉冲宽度和重复周期已知的矩形脉冲源。

并且要求信号源输出信号的参数,如频率、波形、输出电压或功率等,能在一定范围内进行精确调整,有很好的稳定性,有输出指示。

信号源可以根据输出波形的不同,划分为正弦波信号发生器、矩形脉冲信号发生器、函数信号发生器和随机信号发生器等四大类。

正弦信号是使用最广泛的测试信号。

这是因为产生正弦信号的方法比较简单,而且用正弦信号测量比较方便。

正弦信号源又可以根据工作频率范围的不同划分为若干种。

内部带有扫频输出功能(全频段扫频时间小于5秒)是指低频信号发生器具有从低频开始到高频(或反之)自动变化的功能即100Hz——20KHZ 中间所有频率的低到高或高到低的变化过程,而这一次过程的时间为5秒。

带有外部扫频控制输入接口(控制信号为电压0-5V,控制电流小于1mA)是指低频信号发生器所输出的频率可以由外部进行控制(有外部控制接口),外部控制频率变化的电压是0-5V,控制电流小于1mA。

当外部控制电压在0-5V变化时,低频信号发生器可以输出可以在100HZ到20KHZ之间变化。

1.2 工作原理信号发生器用来产生频率为20Hz~200kHz的正弦信号(低频)。

除具有电压输出外,有的还有功率输出。

所以用途十分广泛,可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。

另外,在校准电子电压表时,它可提供交流信号电压。

低频信号发生器的原理:系统包括主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。

主振级产生低频正弦振荡信号,经电压放大器放大,达到电压输出幅度的要求,经输出衰减器可直接输出电压,用主振输出调节电位器调节输出电压的大小。

1.3 信号发生器的分类正弦信号发生器正弦信号主要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。

按频率覆盖范围分为低频信号发生器、高频信号发生器和微波信号发生器;按输出电平可调节范围和稳定度分为简易信号发生器(即信号源)、标准信号发生器(输出功率能准确地衰减到-100分贝毫瓦以下)和功率信号发生器(输出功率达数十毫瓦以上);按频率改变的方式分为调谐式信号发生器、扫频式信号发生器、程控式信号发生器和频率合成式信号发生器等。

低频信号发生器包括音频(200~20000赫)和视频(1赫~10兆赫)范围的正弦波发生器。

主振级一般用RC式振荡器,也可用差频振荡器。

为便于测试系统的频率特性,要求输出幅频特性平和波形失真小。

高频信号发生器频率为 100千赫~30兆赫的高频、30~300兆赫的甚高频信号发生器。

一般采用 LC调谐式振荡器,频率可由调谐电容器的度盘刻度读出。

主要用途是测量各种接收机的技术指标。

输出信号可用内部或外加的低频正弦信号调幅或调频,使输出载频电压能够衰减到1微伏以下。

微波信号发生器从分米波直到毫米波波段的信号发生器。

信号通常由带分布参数谐振腔的超高频三极管和反射速调管产生,但有逐渐被微波晶体管、场效应管和耿氏二极管等固体器件取代的趋势。

仪器一般靠机械调谐腔体来改变频率,每台可覆盖一个倍频程左右,由腔体耦合出的信号功率一般可达10毫瓦以上。

简易信号源只要求能加1000赫方波调幅,而标准信号发生器则能将输出基准电平调节到1毫瓦,再从后随衰减器读出信号电平的分贝毫瓦值;还必须有内部或外加矩形脉冲调幅,以便测试雷达等接收机。

扫频和程控信号发生器扫频信号发生器能够产生幅度恒定、频率在限定范围内作线性变化的信号。

在高频和甚高频段用低频扫描电压或电流控制振荡回路元件(如变容管或磁芯线圈)来实现扫频振荡;在微波段早期采用电压调谐扫频,用改变返波管螺旋线电极的直流电压来改变振荡频率,后来广泛采用磁调谐扫频,以YIG铁氧体小球作微波固体振荡器的调谐回路,用扫描电流控制直流磁场改变小球的谐振频率。

扫频信号发生器有自动扫频、手控、程控和远控等工作方式。

频率合成式信号发生器这种发生器的信号不是由振荡器直接产生,而是以高稳定度石英振荡器作为标准频率源,利用频率合成技术形成所需之任意频率的信号,具有与标准频率源相同的频率准确度和稳定度。

相关文档
最新文档