第十章小角激光散射.ppt
小角X射线散射 PPT课件
为轴比
纪尼叶近似律(一个粒子散射的近似表达式)
2 h I ( h) [ I ( h)] I e n 2 (1 R 2 c ...) 3
Ien e
注:适用于任何形状粒子,但不适用于散射曲线的高角部分
N个粒子的单散射体系,纪尼叶近似律
I ( H ) I e Nn 2 e
a单散系 b稀疏取向系 c多分散系 d稠密粒子系 e密度不均匀粒子系 f任意系 g长周期结构
以单散系为例讲解散 射强度的几个公式
单散系散射强度
X射线是一种电磁波,
X射线散射和衍射都是 由于当X射线照到物体上时,物体的电子作受 迫振动所辐射的电磁波互相干涉引起的物理 现象。
一个电子的散射强度
X射线在晶体中衍射的基本原理
射入晶体的X射线使晶体内原子的电子发生频率相 等的强制振动,因此每个原子可作为一个新的X射 线源向四周发射波长和入射线相同的次生X射线。 他们波长相同,但强度非常弱。但在晶体中存在按 一定周期重复的大量原子,这些原子产生的次生X 射线会发生干涉现象。当次生X射线之间的光程差 等于波长的整数倍时光波才会相互叠加,从而被观 察到。
为电子云密度
对于球形粒子
sinh R hR cosh R 2 I ( h) [ I ( h)] I e n [3 ] 2 ( hR )
2
R为离子半径
球形粒子散射强度图
对于半轴为a,a,wa的回转椭球形粒子
I(h) I n
e 2
0
2
(ha
2
cos a sin a ) cos ada
产生小角X射线散射的情况
小角激光散射法
实验七 小角激光光散射法测定 全同立构聚丙烯球晶半径小角激光光散射(Small Angle Laser Scattering ,以下简称SALS )法被广泛地用来研究聚合物薄膜、纤维中的结构形态及其拉伸取向、热处理过程结构形态的变化、液晶的相态转变等,已成为研究聚合物结构与性能关系的重要方法。
SALS 表征的聚合物结构单元的大小在10-10m 到10-8m 之间。
一、实验目的:用小角激光光散射法研究聚合物的球晶,并了解有关原理。
二、基本原理:根据光散射理论,当光波进入物体时,在光波电场作用下,物体产生极化现象, 出现由外电场诱导而形成的偶极矩。
光波电场是一个随时间变化的量,因而诱导偶极矩也就随时间变化而形成一个电磁波的辐射源,由此产生散射光。
光波在物体中的散射,根据谱频的3个频段,可分为瑞利(Rayleigh )散射,拉曼(Raman )散射和布里渊(Brillouin )散射等。
而SALS 方法是可见光的瑞利散射。
它是由于物体内极化率或折射率的不均一性引起的弹性散射,即散射光的频率与入射光的频率完全相同(拉曼散射和布里渊散射都涉及到频率的改变)。
图7-1为SALS 法原理示意图。
当在起偏镜和检偏镜之间放入一个结晶聚合物样品时,入射偏振光将被样品散射成某种花样图。
图中的θ角为入射光方向与被样品散射的散射光方向之间的夹角,简称为散射角,μ角为散射光方向在YOZ 平面(底片平面)上的投影与Z 轴方向的夹角,简称方位角。
当起偏镜与检偏镜的偏振方向均为垂直方向时,得到的光散射图样叫做V V 散射,当两偏光镜正交时,得到的光散射图叫做V H 散射。
图7-1所示即V H 散射。
对SALS 散射图形的理论解释目前有模型法和统计法两种。
所谓模型法,是斯坦和罗兹(Rhodes )从处于各向同性介质中的均匀的各向异性球的模型出发来描述聚合物球晶的光散射,根据瑞利-德拜-甘斯(Rayleigh-Debye-Gans )散射的模型计算法可以得到如下的V V 和V H 散射强度公式:图7-1()()()()22033[2sin cos sin V V i s r s I AV a a U U U SiU a a SiU U U ⎛⎫=---+-- ⎪⎝⎭()()222cos cos 4sin cos 3]2r i a a U U U SiU θμ+-⨯-- ---------------(1)()()2222033[cos sin cos 4sin cos 3]2V H i r I AV a a U U U SiU U θμμ⎛⎫=-⨯-- ⎪⎝⎭(2)式中I 为散射光强度;V 0为球晶体积;i a 和r a 分别为球晶在切向和径向的极化率;s a 为环境介质的极化率;θ为散射角;μ为方位角;A 为比例常数。
第十章小角激光散射-课件
第一节 激光和小角X射线散射的产生
一、 自发辐射和受激辐射 处于基态的原子吸收外来的能量后,被激发到
高能态。当在短暂的时间内跃回至基态时,可能以光 的形式释放其能量。这种光辐射称为自发辐射。
由于许多原子各自地进行自发辐射,所以发出的 光,方向不同,初相位也不相同,相干性很差。
如果处于激发态的原子受到与其它发射光子的 方向、频率、相位、偏振特性完会相同的入射光的光 照射,就会辐射出具有完会相同特征的光子。这种辐 射称为受激辐射。
11
四、小角X射线散射的产生及其与粉末粒度的关系 当一束极细的X射线光波穿过一纳米粉末层时,经颗
粒内电子的散射,就在原光束附近的极小角域内分散开来, 这种现象叫X射线小角散射。其散射强度分布与粉末的粒 度及其分布密切相关。
12
第二节 光的散射和X光散射物理
Rayleigh在世界上首先以太阳光在大气中的散射现象 揭示了天空的颜色及散射光的行为。然后(1881、1889年) 他从Maxwell’s电磁波理论推导出相同结果,并发现对无 相互作用、无吸收的光学各向同性粒子,当其尺寸与入射 光波长相比是非常小时(d<<1/20l),散射光量应正比于波 长四次方的倒数,这被称为有名的瑞利(Rayleigh)定律。
方式称为光激发。常用的工作物质有红宝石、铷玻璃、 钇铝石榴石(掺铷)三种。工作物质由激活离子和基质 两部分组成。
E3
无辐射跃迁
光激发过程
E2 受激辐射跃迁
h
h 光照
h
E1
图10-2 固体激光产生原理
9
3.半导体激光器 半导体激光器的体积小,效率高。常用的半导体激 光器有砷化镓(GaAs),磷化铟(InP),及某些三元合金 (例如GaAsxP1-x)等。激励方式有:电子束照射、光 激发以及向激光二极管的p-n结注入电流等。 半导体激光器多为脉冲式的,峰值功率可达几十瓦。 它可在0.32mm ~45mm范围内获得可调协的激光输出。
最新2019-小角X射线散射原理与应用ppt课件-PPT课件
Characterisation of the LDL-MOT drug complexes with SAXS
L D L n a tiv e L D L c o n tro l L D L -M O T (5 0 M O T m o le c u le s p e r L D L )
L D L n a tiv e L D L re c o n s titu te d L D L -M O T (5 0 M O T m o le c u le s p e r L D L )
400 600 800 1000
d
0 200
# d e te c to r c h a n n e l
q : q : q 1 : 2 : 3 1 2 3
Sketch model of lyotropic lamellar liquid crystal
lyotropic Hexagonal liquid crystal
Solution SAX-Scattering of Ag nanoparticles
X-ray power: 2kW (CuKα), exposure-time: 1000 s
Background-subtracted raw-data
1400 1200
Guinier-Plot
3
Intensity (counts)
E 2
比表面
• Porod定理主要提示了散射强度随散射角度变化的渐 近行为。 • 它可用于判断散射体系的理想与否,以及计算不变量 Q和比表面SP等结构参数。
Fractal Systems
Characterization of Fractal System
ln[I(h)h-1]
生物小角散射 课件
Background subtraction
Solution minus Solvent
sample buffer
Log I(s), a.u.
sample – buffer
(subtracted)
s, nm-1
Looking for protein signals less than 5% above background level…
Exposure
beamstop
Beam
lower angle
Beam higher angle
X-ray detector
Small Angle X-ray Scattering
Exposure
X-ray detector
Small Angle X-ray Scattering
Radial averaging
s, nm-1
Merging data
Log I(s)
Low and High Concentration
1 mg/ml 10 mg/ml
s, nm-1
Merging data
Log I(s)
Low and High Concentration
s, nm-1
Merging data
Log I(s)
Small Angle X-ray Scattering
Experiment Setup
solution
Synchrotron Radiation →
2θ
Homogeneous and Monodisperse solution
solvent
s
X-ray detector
1-2 mg purified material concentration from 0.5 mg/ml, exposure times: a few seconds/minutes
小角激光散射法
实验七 小角激光光散射法测定 全同立构聚丙烯球晶半径小角激光光散射(Small Angle Laser Scattering ,以下简称SALS )法被广泛地用来研究聚合物薄膜、纤维中的结构形态及其拉伸取向、热处理过程结构形态的变化、液晶的相态转变等,已成为研究聚合物结构与性能关系的重要方法。
SALS 表征的聚合物结构单元的大小在10-10m 到10-8m 之间。
一、实验目的:用小角激光光散射法研究聚合物的球晶,并了解有关原理。
二、基本原理:根据光散射理论,当光波进入物体时,在光波电场作用下,物体产生极化现象, 出现由外电场诱导而形成的偶极矩。
光波电场是一个随时间变化的量,因而诱导偶极矩也就随时间变化而形成一个电磁波的辐射源,由此产生散射光。
光波在物体中的散射,根据谱频的3个频段,可分为瑞利(Rayleigh )散射,拉曼(Raman )散射和布里渊(Brillouin )散射等。
而SALS 方法是可见光的瑞利散射。
它是由于物体内极化率或折射率的不均一性引起的弹性散射,即散射光的频率与入射光的频率完全相同(拉曼散射和布里渊散射都涉及到频率的改变)。
图7-1为SALS 法原理示意图。
当在起偏镜和检偏镜之间放入一个结晶聚合物样品时,入射偏振光将被样品散射成某种花样图。
图中的θ角为入射光方向与被样品散射的散射光方向之间的夹角,简称为散射角,μ角为散射光方向在YOZ 平面(底片平面)上的投影与Z 轴方向的夹角,简称方位角。
当起偏镜与检偏镜的偏振方向均为垂直方向时,得到的光散射图样叫做V V 散射,当两偏光镜正交时,得到的光散射图叫做V H 散射。
图7-1所示即V H 散射。
对SALS 散射图形的理论解释目前有模型法和统计法两种。
所谓模型法,是斯坦和罗兹(Rhodes )从处于各向同性介质中的均匀的各向异性球的模型出发来描述聚合物球晶的光散射,根据瑞利-德拜-甘斯(Rayleigh-Debye-Gans )散射的模型计算法可以得到如下的V V 和V H 散射强度公式:图7-1()()()()22033[2sin cos sin V V i s r s I AV a a U U U SiU a a SiU U U ⎛⎫=---+-- ⎪⎝⎭()()222cos cos 4sin cos 3]2r i a a U U U SiU θμ+-⨯-- ---------------(1)()()2222033[cos sin cos 4sin cos 3]2V H i r I AV a a U U U SiU U θμμ⎛⎫=-⨯-- ⎪⎝⎭(2)式中I 为散射光强度;V 0为球晶体积;i a 和r a 分别为球晶在切向和径向的极化率;s a 为环境介质的极化率;θ为散射角;μ为方位角;A 为比例常数。
小角X射线散射简介(课堂PPT)
9
准直系统
小角X射线散射
Gobel Mirror 线平行汇聚光镜
单色性 高强度 准直光束
抛物线型多层膜,利用不同层面材料的晶面间距值不同, 使所有层面的衍射线变为发散度为0.04°的单色平行光。
Lens 点平行汇聚光镜
电光源的发散光经过Lens的数万条异形光导毛细管后, 将:
a. 研究溶液中的微粒;
b. 动态过程研究;
c. 研究高分子材料;
d. 电子显微镜方法不能确定颗粒内部密闭的微孔,SAXS可以;
e. 小角X射线散射可以得到样品的统计平均信息;
f. 小角X射线散射可以准确地确定两相间比内表面和颗粒体积百分数等
参数,而TEM方法往往很难得到这些参量的准确结果,因为不是全部颗
衍射角度:4-170°
由晶格点阵产生的相干散射
样品
小角X射线散射(SAXS) 散射角: 0-4° 由电子密度变化引起的散射
5
小角X射线散射
小角 X射线散射(Small-Angle X-ray Scattering)是一种用 于纳米结构材料的可靠而且经济的无损分析方法。SAXS能 够给出1-100纳米范围内的颗粒尺度和尺度分布以及液体、 粉末和块材的形貌和取向分布等方面的信息。
•在样品颗粒不对称或 表现有择优取向的情 况下分析样品
•HI-STAR探测器是一 种真正意义上的具有 光子计数能力的无噪 实时二维探测器
15
Nanography
新型小角X射线散射技术简介
Nanography 可以得到样品 具有µm量级 SAXS分辨率 的实空间图像。
16
分析软件
新型小角X射线散射技术简介
X射线衍射和小角X射线散射PPT课件
WAXS应用实例之取向度测定
• 冷拉不同倍数的全同聚丙烯薄膜的WAXS平板照片
第35页/共45页
WAXS应用实例之取向度测定
• X射线法常用取向指数来表征结晶的取向程度。例如尼龙6拉伸后,衍射环退化为赤道弧,在方位角上扫描 得峰,求得半峰宽,定义取向指数(R)
R 180 W 100% 180
第18页/共45页
粉末衍射光锥及条纹摄制
[Introduction to X-Ray Powder Diffractometry, p. 60] [X-Ray Analysis of Crystals, p.5]
第19页/共45页
粉末衍射条纹摄制及处理
[Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd Edition, p. 265]
[X-Ray Diffraction by Macromolecules, p. 19]
第6页/共45页
不同光程差的X射线叠加
• 当光程差等于X射线波 长的整数倍时次生X射 线互相叠加而加强;
• 当光程差等于半波长 时,次生X射线相互完 全抵消。
• 只有相互叠加的光波 才能有足够的强度被
观察到。 [Crystal Structure Analysis, 3rd Edition, p. 28] 第7页/共45页
[Methods of Experimental Physics Volume 16 Polymers, Part B Crystal Structure and Morphology, p. 53]
第15页/共45页
X射线衍射测定
X射线专业知识研究-小角散射详细图文介绍培训课程
第10章X射线小角散射1. Introdu1ction2. Models3.Theoretical Background4. NanoFit Tutorial1. Introdu1ctionDIFFRAC plus NanoFit is an interactive graphics-based, non-linear least-squares data analysis programfor one-dimensional small angle X-ray scattering (SAXS)data.NanoFit is characterized by the following key properties: Set of built-in nano-particle models• Basic geometrical models (spherical, ellipsoidal,cylindrical)• Polymer models (flexible and semi-flexible chains, Gaussian star, spherical block copolymer micelle)• Polydispersity (Gaussian or Schultz size distribution)• Concentration effects (Hard Sphere or RPA structure factor)Graphical evaluation of one-dimensional data sets • Display and comparison of measured and simulated data • Simple, interactive evaluation of SAXS measurements • Easy interactive adjustment of all available model parameters.• Wide selection of commonly used axis scaling cally saved for later useEasy reporting• Report contains textual and graphic elements.• Output is customizable (address, company logo)• Reports can be printed or saved as PDF filesWindows 2000 or Windows XP are required for operation.Automatic Fitting• Refinement methods for automatic evaluation:o Levenberg-Marquardt o Simplex• Online display of intermediate results and changes of the χ2 cost function• Adjustable fit regionOutput and documentation of results• Graphics can be saved, printed or copied to other applications in a variety of file formats• Complete evaluation can be saved in a project file and continued at a later time• Common program settings are automati2.Theoretical Background1. Introduction•The small-angle x-ray scattering (SAXS) technique is a low-resolution method for determining structures on a length scalefrom several thousand Å to five to ten Å.•SAXS experiments result in an intensity distribution in reciprocal space. A considerable effort has to be invested in the data analysis in order to obtain the corresponding real-space structure.•This data evaluation software concerns modelling of small-angle scattering data from systems showing short-range order only and isotropic scattering spectra, so that the scattering intensity is onlya function of the modulus of the scattering vector.•The NanoSTAR provides a 2D intensity distribution in reciprocal space. It is assumed that these frames have been sphericallyaveraged and the background subtraction has been performedproperly.•Analysis of small-angle scattering data is usually performed by either model-independent approaches or by directmodelling.•Both approaches require the application of least-squares methods. A detailed discussion of these methods withemphasis on the application of small-angle scattering data can be found in Pedersen (1997).•For polydisperse systems, the aim of the analysis is to extract the size distribution of the particles when a particular shape of the particle is assumed. This analysis can be performed by choosing either a Gaussian or a Schultz distribution.•This manual describes the available model expressions for form factors and structure factors implemented in theNanoFit software.2. Models•The differential scattering cross section dσ(q)/dΩ of a sample can be defined as the number of scatteredphotons per unit time, relative to the incident flux ofphotons, per unit solid angle at q per unit volume of thesample. The flux is the number of photons per unit timeand per unit area.•This is a convenient method of expressing the scattering of a sample, since it does not depend on the form ortransmission of the sample. Further, this method isadvantageous since olecular constraints can beemployed. For a monodisperse collection of sphericallysymmetric particles the scattering crosssection can bewritten as•where n is the number density of particles,•Δρ is the difference in scattering length density between •the particles and the solvent/matrix,•V is the volume of the particles,•P(q) is the particle form factor and•S(q) is the structure factor.•An alternative approach is to express the excess scattering contrast as excess scattering length per unit mass, Δρm.Using this property, (1) becomes(2)where M is the molecular mass of a particle andc is the concentration of solute.Note that n = c/M.where D(R) is the number size distribution,V (R) is the volume of a particle with radius Rand form factor P(q, R).Polydispersity can be included for a fixed size distribution (as long as the integral is convergent) by performing the integration numerically. The normalized (0∫∞D(x)dx = 1) Schulz–Zimm distribution (Schulz, 1939; Zimm, 1948)allows polydispersity to be included analytically for many form factors (see, e.g., Sheu, 1992; Greschner,1973).•This size distribution has the further advantage of being a realistic approximation of theoretical size distributions as derived, for example, from thermodynamic theories. Note that the first moment of the distribution is xav and thevariance of the distribution is σ2/x2av = 1/(1+z). Highermoments of the distribution can be easily calculated.•The second available size distribution is the normalized Gauss distributionThe expressions (1) and (2) assume spherical symmetry of the particle shape and the interactions. For anisotropic identical particles the cross section iswhere the sums are over all particles in the sample and Fi (q, ei ) is the amplitude of the form factor for the i th particle with orientation given by the unit vector ei.The Si , j (q, ei , ej ) functions are the partial structure factors which depend on orientations.N is the number of particles.14and S(q) are the structure factors calculated for the average particle size defined as Rav = [3V/(4π)]1/3, where V is the particle volume.For particles with a random character, such as block copolymer micelles with a compact core surrounded by a corona of dissolved chains, an expression similar to (eq. 7) remains valid. (Pedersen, 2001).Note that for particles with a spherical core, the potential is to a very good approximation inde pendent of particle orientations. Thus, the structure factor refers to the effective interaction potential between the particles. The expression for random structures is (Pedersen, 2001):where P(q) is an ensemble average of the form factor over the conformations (and, therefore, also an average over orientations). A(q) is the normalized (A(q=0) = 1) Fourier transform of the ensembleaveraged radial excess scattering length density distribution. For polydisperse systems it is not possible to write the scattering crosswhere D(R) is the number size distribution, and V (R) the volume of a particle with radius R. F(q, R) is the form factor amplitude, and S(R, R’, q) are partial structure factors. N is the number of particles and is given by:For systems with small polydispersity, a decoupling approach similar to the one for anisotropic particles (Kotlarchyk and Chen, 1984) can be used. It is assumed that interactions are independent of size. Using this approach one obtains:Note that (eq. 10) and (eq. 12) can also be used for slightly anisotropic particles, if Fi (q, R) is replaced by 〈Fi(q,R)〉0 and Fi(q, R)2 is replaced by 〈Fi(q,R)2〉0. This approach can also be used for particles with randomness due to internal degrees of freedom, such as block copolymer micelles with Fi (q, R) replaced by A(q, R) and Fi(q, R)2 replaced by P(q, R), where the dependence of R is explicitly written. The opposite limit of the approximations as used for the decoupling approximation is used in the local monodisperse approximation (Pedersen, 1994). In this approach it is assumed that a particle of a certain size is always surrounded by particles with the same size. Following this approach the scattering is approximated by monodisperse sub-systems, which are weighted by the size distribution:in which it has been indicated that the structure factor is valid for particles of size R. This approach works better than the decoupling approximation (16) for systems with larger polydispersities and203. Form factorsIn the following it will be assumed that the particles are randomly oriented in the sample so that the theoretical formfactors for anisotropic particles must be averaged overorientation.Note that for spherically symmetrical objects the form factor can be written as P(q) = F2(q), where F(q) is theamplitude of the form factor.•Sphere The form factor amplitude of a homogeneous sphere was initially calculated in 1911 by Lord Rayleigh. For a sphere with radius R:•Ellipsoid This expression was determined by Guinier (1939). The averaging over orientations has to be done numerically. For the semi-axes R, R, εR:•Gaussian PolymerFlexible polymer chains are not self-avoiding and obey Gaussian statistics. Debye (1947) has calculated the form factor of such chains:with u=<Rg2>q2, where <Rg2> is the ensemble average radius of gyration squared: <Rg2> = (Lb)/6, where L is the contourlength and b is the statistical (Kuhn) segment length.•Semi-flexible polymers with self-avoidanceNumerical interpolation formulas have been given by Pedersen and Schurtenberger (1996a). The results aregiven for R/b = 0.1, where R is the cross section radius andb is the Kuhn length. This corresponds to a reduced binarycluster integral of 0.3, which is similar to the value found for polystyrene in a good solvent.•5.3.7 Flexible self-avoiding polymers:Empirical expressions have been given by Utiyama et al. (1971). The parameters should be taken as ε = 0.176, t = 2/(1− ε), and s = 2.90 (see Pedersen and Schurtenberger (1996a) which contain a simple approximation).•Semi-flexible polymers without self-avoidance: The formula for numerical interpolation has beeneveloped by Yoshizaki and Yamakawa (1981) for the Kratky–Porod model (1949b). The model has beencorrected recently using results from Monte Carlosimulations (Pedersen and Schurtenberger, 1996a).•5.3.9 Spherical Block Copolymer Micelle:The expressions have been derived by Pedersen and Gerstenberg (1996) (see also Pedersen, 2000, 2001).For a sphere with radius R and total excess scattering length ρs with Nc attached chainswithWhere Rg is the root-mean-square radius of gyration of a chain. The scattering mass is: Mmic = ρs + Ncρc, where4. NanoFit Tutorial•IntroductionThis chapter describes the user operation of NanoFit. Asimple example has been evaluated to show the typicalsoftware performance.NanoFit includes a number of calculated demonstration data which is located in the “Data” subfolder of theinstallation folder.•LayoutThe program begins by displaying the main window (shown below). The window contains a menu and a toolbar on top.The main area below the toolbar is covered by a frame for displaying the data to be analyzed (main chart). An overview of the layout is shown in the next figure.third area with a smaller chart to display the Χ² valuesdependent on the iteration step number (chichart) on the right hand side.•First StepsA modeling process begins with importing the measured data.Click the “Import” button (3rd from left: ) on the toolbar and select the data file to be analyzed (here “SphereSharpNoSFNoPD.ped” from the tutorial data set):Fig. 3-2: NanoFit’s main window after raw data import.The display is not informative due to the linear scale ofthe Y axis.To get a better display of the data fine structure,switch to logarithmic Y axis ( ):Fig. 3-3: NanoFit’s main window after switching to a logarithmic y-axis.The curve displays its fine structure with well defined minima and maxima. In the next step the model function must be selected. There is a combo box with all available model functions on the right hand side of the toolbar. The sphere model is selected by default. Therefore, no action is required because the loaded data belong to spherical particles.After selecting the model the parameters to be refined must to be selected. All available parameters, which are dependent on the model, are displayed in the lower frame on the left hand side of the program window.The form parameters such as radius or length and scale and background parameters are selected for refinement by default.If the range of a parameter is already known its mean value can be entered as a start value (first edit field) and the lower and upper limits can be entered in the following two fields.The lowest possible parameter value (usually zero) is automatically entered into the “min” field. If all parameter start values are correctly entered, the refinement can be started. There are two possibilities for performing a refinement: running all steps automatically (Start: ) and running the refinementstep by step (Step: ). These buttons are part of the main toolbar on top of the program window and are also part of the fit toolbar at the bottom of the program window on the right hand side. Above the fit toolbar a chart is displayed with the Χ² values over the iteration step number. This diagram is empty before a calculation is made but it displays a stylized picture of the currently selected particle model.A click on the start button performs the calculation. While the calculation is running its status is displayed in the status bar at the bottom of the program window. The iteration step, the current Χ² value, the actual status of the refinement and the refinement method, is displayed. Between the refinement status and the method display the current x and y values of the mouse position are shown.While the data is being calculated, the changed parameter values and the actual calculated diagram (in red) are being displayed:During the calculation the status of the fit buttons is changed. The Start and Step buttons are disabled but the Stop button ( ) becomes active. By pressing Stop the refinement can be cancelled.Due to the positioning of the mouse over the main chart during the screenshot process, the text is displayed on the right of the status bar.The diagram as well as the Χ² diagram is displayed in red while being calculated. The refinement can be accelerated by off the live diagram display with a button on the fit toolbar ( ).After the refinement has been finished the program window displays the final calculation of the curve and the refined parameters:。
激光小角散射
25
SALS 在高分子结构分析中的应用
四、带消光环球晶的大角光散射
聚酯在一定的结晶条件下产生带 消光环 球晶 ,能观 察到大 角散 射环。
SALS 在高分子结构分析中的应用
四、带消光环球晶的大角光散射
根据大角散射环的宽度和清晰程度,可定性地评价晶片扭转 周 期 的 分 布 宽 度 和 晶 片 的 有 序程 度 。 随结晶温度的降低,结晶速度加快,晶片结构的规整性较差。
2 ρ sin( θ m /2)= λ
ρ 平均环间距, 等于晶片扭转 周期的一半
SALS 在高分子结构分析中的应用
三、形变球晶的测定
聚丙烯卷烧丝的测定 (又称作初纺纤维)
SALS 在高分子结构分析中的应用
四、带消光环球晶的大角光散射
由于球晶中晶片周期性扭 转, 而在偏 光显微 镜下 可以 看到周期性同心消光环的球晶, 它们除 了有 通常的 小角散 射外,在大角处还可看到一散射 极大值 。
具削光环的截顶聚乙烯球晶 正交偏光显微照片( 720x )
SALS 在高分子结构分析中的应用
四、带消光环球晶的大角光散射
大角散射环分裂成四段弧。对聚乙烯,它们与小角散射一 致,在 45 o 方向上,说明是 正常球晶 ,即 球晶内分子链取半径方 向或切向 。
SALS 在高分子结构分析中的应用
四、带消光环球晶的大角光散射
3
激光小角光散射
(Small Angle Laser Light Scattering) ( SALS 或 SALLS ) 20 世纪 60 年代发展起来的高分子结构分析方法。 主要应用于结晶性高分子的亚微观结构研究。 SALS 能表征 的高分子结构单元的大小在数百 纳米到 几十 微米之 间。 下限弥补了光学显微镜的不足。 仪器简单、操作方便、测定快速而且不破坏试样,在 面优于设备复杂、测定费时且对 样品有 破坏 性的电 子显微 镜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1944年Debye将Einstein的涨落理论应用到高分子溶 液,建立了理论,测定了橡胶的相对分子质量,并得到很 快发展。1948年Zimm提出有名的作图法。目前,光散射 技术已经成为测定相对分子质量和研究高分子溶液性质的 重要方法之一。
处于粒子数反转分布的工作物质称为增益介质。当光 通过增益介质时,光就被放大。这一放大作用可用下列公 式表示
I = I0exp(GL)
式中 I0为初始光强,I为光通过距离L的增益物质后的 光强,G为增益系数(经过单位长度工作物质后,光增强的 百分率),L为工作物质长度。
4
三 激光振荡、激光特性和激光器
11
四、小角X射线散射的产生及其与粉末粒度的关系 当一束极细的X射线光波穿过一纳米粉末层时,经颗
粒内电子的散射,就在原光束附近的极小角域内分散开来, 这种现象叫X射线小角散射。其散射强度分布与粉末的粒 度及其分布密切相关。
12
第二节 光的散射和X光散射物理
Rayleigh在世界上首先以太阳光在大气中的散射现象 揭示了天空的颜色及散射光的行为。然后(1881、1889年) 他从Maxwell’s电磁波理论推导出相同结果,并发现对无 相互作用、无吸收的光学各向同性粒子,当其尺寸与入射 光波长相比是非常小时(d<<1/20l),散射光量应正比于波 长四次方的倒数,这被称为有名的瑞利(Rayleigh)定律。
通过受激辐射而引起光放大作用,是激光产生 的原因。
3
二、粒子数反转 欲使受激辐射占优势,就必须利用某种方法,使原gt;激发态原子 数)倒转过来(激发态原子数>基态原子数)。这种现象 称为粒子数反转分布。
常用的方法称为光抽运或激励,例如用光束来照射工 作物质,或用电能和化学能来激励工作物质等。
方式称为光激发。常用的工作物质有红宝石、铷玻璃、 钇铝石榴石(掺铷)三种。工作物质由激活离子和基质 两部分组成。
E3
无辐射跃迁
光激发过程
E2 受激辐射跃迁
h
h 光照
h
E1
图10-2 固体激光产生原理
9
3.半导体激光器 半导体激光器的体积小,效率高。常用的半导体激 光器有砷化镓(GaAs),磷化铟(InP),及某些三元合金 (例如GaAsxP1-x)等。激励方式有:电子束照射、光 激发以及向激光二极管的p-n结注入电流等。 半导体激光器多为脉冲式的,峰值功率可达几十瓦。 它可在0.32mm ~45mm范围内获得可调协的激光输出。
7
1.气体激光器 气体激光器是采用气体作为工作物质,以电能作为 激励能源,通过气体放电使电子与原子(离子或分子) 互相碰撞而产生激光的。常用的气体有He、Ne、Ar、 Kr、Xe、CO2等。
反射镜 钼筒 玻璃管 毛细管 工作气体
激光
激光
-直流电源
图10-1 氦-氖气体激光器结构示意图
8
2.固体激光器 固体激光器多以脉冲氙灯作为激励能源。这种激励
(一)激光振荡 在激光工作物质的两端装上反光镜,光就在反光
镜间多次来回反射。由于光程增长很大,使受激发射 光强急剧增大。这种现象称为激光振荡。
产生激光振荡的条件是两个反射镜之间的光必须 是驻波,波节在两个反射镜处。
此外,放大的增益必须超过由于偏离光轴、反射 镜的漫反射和吸收等造成的损失。
能使光放大的装置称为光学谐振腔。
13
在动态光散射方面,1934年Landau和Placzck以不传 播的局部温度涨落来解释“中心成分”,但由于缺乏强的 单色光源及高分辨的频谱仪,所以Landau-Plczck理论直到 1965年才得到精确的实验测定。
Ford ,BenedekheCummins等分别于1965、1964年 将光学混频技术首先成功地用于测定这种已被展宽但仍很 窄的中心成分,随后动态光散射迅速发展。1972年Pecora 和1974年Chu先后撰写了有关专著,因而从理论到实验技 术上逐渐形成了较为完整的动态光散射技术,在物理、化 学、生物、医学等领域探讨亚微观世界自然规律发挥了重 要作用。
10
4.染料激光器 染料激光器具有增益大、效率高、输出激光可在很 宽的波段范围内调谐等特点。染料激光器以染料作为工 作物质。 染料激光器采用光激励方式,常用的激励光源有: 单脉冲红宝石激光器,脉冲氮分子激光器,氩离子激光 器和特殊闪光灯等。他们可以激发出不同波长的染料激 光。输出功率亦可从1毫瓦至几百兆瓦。
5
(二)激光特性 1. 单色性好 2.相位一致 3.方向性好 4.亮度高
6
(三) 激光器 能够发射激光的装置称为激光器。一般激光器都具有 三个基本组成部分:激励能源(或称泵浦源)、工作物质 和光学谐振腔。 激励能源的种类很多。有光能如氙灯闪光、氮分子激 光器等,也可采用电能、化学能、热能、电子束等。 工作物质是实现粒子数反转分布的增益介质。它可以 是固体,如晶体、半导体、铷玻璃等;也可以是液体或气 体。 光学谐振腔是两块相互平行的反光镜,置于工作物质 的两端,这两块反射镜相对的面上镀有多层介质膜,一块 是全反射的,另一块是部分反射的。谐振腔的两块反射镜 使受激辐射的光在平行于腔轴的方向上进行反馈和振荡, 从而使光反复的放大。并通过部分反射镜,输出激光。
2
第一节 激光和小角X射线散射的产生
一、 自发辐射和受激辐射 处于基态的原子吸收外来的能量后,被激发到
高能态。当在短暂的时间内跃回至基态时,可能以光 的形式释放其能量。这种光辐射称为自发辐射。
由于许多原子各自地进行自发辐射,所以发出的 光,方向不同,初相位也不相同,相干性很差。
如果处于激发态的原子受到与其它发射光子的 方向、频率、相位、偏振特性完会相同的入射光的光 照射,就会辐射出具有完会相同特征的光子。这种辐 射称为受激辐射。
聚合物结构分析
第十章 小角激光散射 和小角X射线散射
光散射现象普遍存在于大自然中。
激光散射与一般光的散射在原理上是相同的,但由于 这种光源的强度高,单色性和方向性强,为光散射技术带 来革命性的进步。
激光具有单色性好、方向性强、亮度高、相干性好等 优点。因此可以用来解决分析化学中存在的困难问题,如 单原子和单分子的探测,特高灵敏度的超痕量分析,快速 反应的高速分析,结构和状态分析,生物活性物质的分析 等。