高二高考文科数学知识点

合集下载

有关高考文科生数学复习的知识点

有关高考文科生数学复习的知识点

有关高考文科生数学复习的知识点高考数学是文科生必须要考的一门科目,理解数学知识点的重要性不言而喻。

今天,我们将会详细地讲解有关数学复习中常见的知识点和方法,给文艺生数学考试加油打气!一、函数函数是文科生高考数学中的一个必考点,也是本科阶段的重中之重。

函数是一种关系,它可以有效地描述两种变量之间的依赖关系。

简单来说,函数就是将一个输入映射到唯一的输出的过程。

数学函数可分为一次函数、二次函数、三次函数、正弦函数、余弦函数、幂函数、指数函数等。

在考试前我们需要掌握的知识点:1.定义域和值域的概念。

2.函数的基本性质,如奇偶性、单调性、增减性等。

3.函数的图像表示及其分析。

4.复合函数和反函数的概念及性质。

5.函数的极值点和最大值、最小值等。

二、三角函数三角函数是文科生高考数学复习的另一个重要领域。

三角函数的概念涉及到三角函数的定义、三角函数的分析和三角函数的应用,我们需要对这些知识点进行掌握。

三角函数中,最常见的三个函数是正弦函数、余弦函数和正切函数。

其中正弦函数和余弦函数具有周期性并且都是连续函数,而正切函数是一个间断函数。

在考试前我们需要掌握的知识点:1.正弦函数和余弦函数在不同象限中的正负值。

2.正弦函数和余弦函数的图像特征和图像变换。

3.如何利用三角函数来解决各种数学问题。

4.如何通过反三角函数求解三角形各角度的值。

三、导数导数是文科生复习数学的又一重难点。

在考试中,导数是一个关键概念,因为它是每个高中生的基本数学能力之一。

掌握导数概念、性质、公式和定理,能够给我们带来极大的帮助。

导数是函数的变化速率,表示函数在某个点的斜率。

我们需要掌握导数的基本概念和定义、导数的求法、导数的性质、导数的意义以及相关的计算方法。

在考试前我们需要掌握的知识点:1.导数的概念和定义。

2.导数的求法:基本公式、求导规则等。

3.理解导数在不同表达式下的实际含义和方法,如曲率、加速度等。

4.掌握导数的应用,如求最大值和最小值、优化问题,以及曲线的切线方程。

2024年高考数学知识点及公式整理汇总.doc

2024年高考数学知识点及公式整理汇总.doc

2024年高考数学知识点及公式整理汇总高中数学重点知识点全总结1、命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

2、对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。

)3、函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)4、反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②互换x、y;③注明定义域)5、反函数的性质有哪些?①互为反函数的图象关于直线y=x对称;②保存了原来函数的单调性、奇函数性;6、函数f(x)具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)1、抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。

2、对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。

3、向量——既有大小又有方向的量。

在此规定下向量可以在平面(或空间)平行移动而不改变。

4、并线向量(平行向量)——方向相同或相反的向量。

规定零向量与任意向量平行。

1、三类角的求法:①找出或作出有关的角。

②证明其符合定义,并指出所求作的角。

③计算大小(解直角三角形,或用余弦定理)。

2、正棱柱——底面为正多边形的直棱柱正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

正棱锥的计算集中在四个直角三角形中:3、怎样判断直线l与圆C的位置关系?圆心到直线的距离与圆的半径比较。

直线与圆相交时,注意利用圆的“垂径定理”。

高考文科数学所有知识点总结

高考文科数学所有知识点总结

高中数学 必修1知识点 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A (2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A ) B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集) (2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂BA集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)A B A ⊆ AB B ⊆BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ A B B ⊇BA补集 U A ð{|,}x x U x A ∈∉且1()U A A =∅ð 2()U A A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<<||(0)x a a >> |x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )()()()U U U A B A B =痧?()()()U U U A B A B =痧?叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数yxo 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象 判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴 ()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0)nn a a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m n m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数 函数名称指数函数定义函数(0xy a a =>且1)a ≠叫做指数函数图象1a > 01a <<xa y =xy(0,1)O1y =x a y =xy(0,1)O 1y =定义域 R值域 (0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对 图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且【2.2.2】对数函数及其性质(5)对数函数函数名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响 在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a ∆=-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0)(<k f xy1x 2x 0>a O∙kx y1x 2x O∙k<a 0)(>k f④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f ab x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2bm f a=- ③若2b q a ->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2bM f a=- ③若2b q a ->,则()M f q =x>O-=f(p) f (q)()2b f a-x>O-=f (p)f (q)()2bf a-x>O-=f (p)f (q)()2bf a-x>O-=f (p) f (q)()2b f a-0x x>O -=f(p) f(q)()2b f a-0x x<O-=f (p) f (q)()2bf a-x<O-=f (p)f(q)()2bf a-x<O-=f (p)f(q)()2bf a-①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

高二文科数学知识点整理

高二文科数学知识点整理

高二文科数学知识点整理(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高二文科数学知识点整理本店铺为各位同学整理了《高二文科数学知识点整理》,希望对你的学习有所帮助!1.高二文科数学知识点整理篇一解决不等式的有关问题:(1)不等式恒成立问题(绝对不等式问题)可考虑值域。

高考文科数学总知识点

高考文科数学总知识点

高考文科数学总知识点高考文科数学是高中毕业生参加高考时必须考察的科目之一,它的考察对象包括数学的基本概念、运算规则、解题方法等等。

下面是高考文科数学的总知识点。

1.数与代数1.1 数的性质与运算1.2 代数运算与因式分解1.3 一元一次方程与一元一次不等式1.4 二次根式与二次方程1.5 高次方程与不等式1.6 数列的概念与性质2.函数2.1 函数的性质与图像2.2 一次函数与二次函数2.3 指数函数与对数函数2.4 三角函数3.几何3.1 点、直线和平面3.2 各种角的概念与性质3.3 三角形的概念与性质3.4 四边形的概念与性质3.5 圆的概念与性质3.6 空间几何4.概率与统计4.1 随机事件与概率4.2 统计的基本概念和方法4.3 相关系数与回归直线5.数学推理与证明5.1 几何证明5.2 数学归纳法5.3 数论证明以上是高考文科数学的总知识点,通过对这些知识点的掌握,考生能够在高考中取得较好的成绩。

高考数学的重点在于对基本概念的理解和解题能力的培养,所以考生在备考过程中要注重理论的学习和题目的练习。

同时,考生还要注重方法的灵活运用,多思考、多总结,提高解题的效率和准确性。

为了高效地备考数学,考生可以采取以下方法:首先,理论学习要扎实。

要充分理解并掌握每一个知识点,掌握其内在的联系和运用方法。

其次,进行大量的习题训练。

通过大量的练习,逐步提高解题的技巧和速度。

再次,注重错题的总结和订正。

对于做错的题目,要找出错因,加以总结和订正,避免同样的错误再次出现。

最后,要有计划地进行复习。

将所有的知识点进行系统的梳理,进行有针对性的复习,强化薄弱环节。

总之,高考文科数学是一门理论与实践相结合的学科,需要灵活运用所学知识进行解题。

通过系统的学习和大量的练习,考生一定能够取得令人满意的成绩。

希望大家都能在高考中取得优异的成绩,实现自己的理想!。

高考文科数学知识点

高考文科数学知识点

高考文科数学知识点高考文科数学知识点是指在高考中,文科生需要掌握的数学知识点。

这些知识点包括数与代数、平面几何、立体几何、概率与统计、数理逻辑等内容。

下面将对这些知识点进行详细介绍:一、数与代数:1. 整式的加减乘除运算:包括整式的加减法和乘除法的运算规则。

2. 分式的加减乘除运算:包括分式的加减法和乘除法的运算规则,以及分式方程的解法。

3. 一元二次方程:包括一元二次方程的解的判别式、求根公式以及应用问题的解法。

4. 不等式:包括一元一次不等式、一元二次不等式的求解方法,以及应用问题的解法。

5. 函数与方程:包括函数的定义、性质,以及一元函数的图像与性质;方程与不等式的解法,包括代入法、消元法、配方法、换元法等。

二、平面几何:1. 直线和曲线:包括直线的定义、性质,曲线的类型与特点,以及直线和曲线之间的位置关系。

2. 三角形:包括三角形的定义、性质,以及三角形的内部和外部角度关系、边长关系等。

3. 四边形:包括四边形的定义、性质,以及各种特殊四边形的性质。

4. 圆和圆锥曲线:包括圆的定义、性质,以及圆周角和弧长的关系;圆锥曲线的类型和性质,以及其方程和参数方程的解法。

5. 向量:包括向量的定义、性质,向量的加法、减法、数乘运算,以及向量的数量积和向量积的计算方法和应用。

三、立体几何:1. 空间几何体的表面积与体积:包括各种几何体(如长方体、正方体、棱柱、棱锥、球体等)表面积和体积的计算公式。

2. 空间点、直线、平面:包括空间点、直线和平面的定义、性质,以及它们之间的位置关系和夹角关系。

3. 空间向量:包括空间向量的定义、性质,向量的坐标表示和运算,空间向量的数量积和向量积的计算方法和应用。

四、概率与统计:1. 概率:包括概率的基本概念、性质和计算方法,以及事件的互斥性等概念和判断方法。

2. 统计:包括数据的收集、整理、描述和分析方法,以及统计指标的计算和应用。

五、数理逻辑:1. 命题与命题关系:包括命题的基本概念和性质,命题的逻辑运算(如与、或、非、异或等),以及命题的真值表和命题关系的判定方法。

高考文科数学40个必考点一览表(课标版)

高考文科数学40个必考点一览表(课标版)
由观察到归纳总结的过程
20
基本不等式及应用
三种用法:直接用、变形用、凑配用
一正二定三相等
观察发现使用基本不等式的时机
21
线性规划问题的求解
四种目标函数最优解、无数多种最优解情形
理解目标函数中Z的几何意义、合理地将相关不等式问题转化为规划问题
含参讨论、根据几何意义转化求解
22
一元二次不等式的解法及应用
对称轴、开口、横轴交点个数与△
对称(轴)性、开口、横轴交点个数与△、单调性
含参讨论、轴与区间的关系
23
不等式恒成立问题的求解
恒成立问题与存在性问题中的变(式)量与最值的关系,
存在性、恒成立问题的转化与求解
存在性与恒成立问题转化为ቤተ መጻሕፍቲ ባይዱ值的过程
24
绝对值不等式的解法及应用
分区间和几何意义去绝对值、绝对值的常数放缩、分段函数及图像、图像的交点两侧函数值(式)的大小关系
特殊的锥、柱体与球的内接与外切关系、球半径的计算
三种锥体、直棱柱与球体的相关运算
割补法,等体积转化法、垂径定理的推广及应用
29
直线与圆
直线方程求法及几种形式及互相转化,根据相关参数或位置关系求解直线与圆方程、从圆方程中提取相关参数、参数方程
直线方程、圆标准方程、相切与相交问题
与切线方程、弦长相关问题的解答
34
抽样方法
简单随机抽样、系统抽样、分层抽样、等可能性
分层抽样
每个个体被抽到的概率=抽样比=n/N
35
用样本估计总体
用样本的数字特征估计总体的数字特征、频率与概率的区别与联系
常见数字特征的计(估)算与使用、两图一表的制作与使用
常见数字特征的计(估)算与使用、两图一表的制作与使用

文科数学高考必考的知识点

文科数学高考必考的知识点

文科数学高考必考的知识点高考是每位高中生都需要经历的重要时刻,对于文科生而言,数学是必考的科目之一。

在高考数学中,有一些知识点是必考的,掌握这些知识点可以在考试中取得不错的成绩。

本文将深入探讨文科数学高考必考的知识点,希望能够为广大考生提供一些帮助。

一、函数函数作为数学中的重要概念,在高考中占据着重要的地位。

考生需要熟悉函数的定义、性质以及基本函数的图像和性质。

其中,一次函数、二次函数、指数函数和对数函数是必考的知识点。

考生需要掌握它们的定义、图像、性质和应用等方面的知识。

二、数列数列是高考数学中另外一个必考的知识点。

考生需要了解数列的定义、性质以及基本数列的求和公式和通项公式。

在考试中,常见的数列有等差数列和等比数列。

考生需要熟练掌握它们的定义、性质以及求和公式和通项公式等内容。

三、三角函数三角函数作为数学中的重要概念,同样也是高考数学中必考的知识点。

考生需要掌握正弦函数、余弦函数和正切函数的定义、性质以及图像。

此外,考生还需要了解三角函数的基本关系式以及它们在几何问题和物理问题中的应用。

四、立体几何立体几何是高考数学中不可忽视的一个知识点。

考生需要了解几何体的基本性质、表面积和体积的计算。

在考试中,常见的几何体有圆柱、球体、锥体和棱柱等。

考生需要掌握它们的基本公式和相关的性质,能够灵活运用于实际问题的求解。

五、概率与统计概率与统计是高考数学中的另外一个必考的知识点。

考生需要了解基本的概率计算方法,包括事件的概率计算和条件概率的计算等。

此外,考生还需要了解统计学中的基本概念和统计量的计算方法。

在考试中,常见的统计量有平均数、中位数、众数和标准差等。

综上所述,文科数学高考必考的知识点包括函数、数列、三角函数、立体几何以及概率与统计等。

掌握这些知识点是取得高分的关键。

在备考过程中,考生需要加强对于相关知识点的巩固和理解,通过大量的练习来提高解题的能力。

同时,考生需要注重归纳总结,掌握一些常见的解题方法和技巧,为考试中的复杂问题提供解决的思路和方法。

高考文科数学最全知识点

高考文科数学最全知识点

高考文科数学最全知识点导语:数学是文科生高考的一门重要科目,掌握好数学知识对于取得理想的高考成绩至关重要。

本文将为文科生总结整理高考文科数学的最全知识点,帮助大家更好地备考。

一、函数与方程1. 基础函数:包括一次函数、二次函数、指数函数、对数函数、幂函数等的定义、性质和图像。

2. 基本图像的变换:平移、对称、伸缩等基本图像变换。

3. 方程与不等式:一元一次方程、一元二次方程、一元一次不等式、一元二次不等式等的解法和性质。

4. 函数的性质和应用:奇偶性、周期性、最值、增减性等函数的基本性质及其在实际问题中的应用。

二、概率与统计1. 基本概念:样本空间、随机事件、概率等基本概念的定义和性质。

2. 事件的运算:包括事件的并、交、差与对立等运算规则。

3. 条件概率与独立事件:条件概率的定义与性质,独立事件的判定与性质。

4. 离散型随机变量:离散型随机变量的期望、方差等基本概念和性质。

5. 统计图与统计量:包括直方图、折线图、饼图等统计图的绘制和解读,以及平均数、中位数等统计量的计算和应用。

三、数列与数列极限1. 等差数列与等比数列:等差数列的通项公式、求和公式以及等比数列的通项公式、求和公式的推导与应用。

2. 数列极限:数列极限的定义、性质以及常见数列的极限值计算方法。

四、函数的导数与微分1. 导数定义与基本性质:导数的定义、可导条件、导数的性质、基本导数公式及其推论。

2. 导数的运算:和差积商的导数运算法则、复合函数的导数、反函数的导数等导数的运算规则和方法。

3. 微分:微分的定义及其与导数的关系,微分的应用与求法。

五、三角函数与解三角形1. 三角比的定义与性质:正弦、余弦、正切等三角比的定义、性质及其补角关系。

2. 三角函数的图像与性质:三角函数图像的绘制、奇偶性、周期性、单调性等性质。

3. 解三角形:利用三角函数的基本关系式求解三角形的边长与角度。

六、导数与函数的应用1. 函数的极值与单调性:函数驻点、极值点的判定与性质,函数单调性的判定与性质。

高考文科数学知识点总结

高考文科数学知识点总结

原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互集合与简易逻辑知识回顾:(一)集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性.3⑴①一个命题的否命题为真,它的逆命题一定为真.否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真.原命题⇔逆否命题. 二含绝对值不等式、一元二次不等式的解法及延伸1.含绝对值不等式的解法1公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. 2定义法:用“零点分区间法”分类讨论.3几何法:根据绝对值的几何意义用数形结合思想方法解题. 特例①一元一次不等式ax>b 解的讨论;21、命题的定义:可以判断真假的语句叫做命题; 2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题; 构成复合命题的形式:p 或q 记作“p ∨q ”;p 且q 记作“p ∧q ”;非p 记作“┑q ”;3、“或”、“且”、“非”的真值判断 1“非p ”形式复合命题的真假与F 的真假相反; 2“p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假; 3“p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真.4、四种命题的形式:原命题:若P 则q ;逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p;6、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件; 若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为pq.函数知识回顾:(一)映射与函数 1. 映射与一一映射 2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 二函数的性质 ⒈函数的单调性定义:对于函数fx 的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1<x 2时,都有fx 1<fx 2,则说fx 在这个区间上是增函数; ⑵若当x 1<x 2时,都有fx 1>fx 2,则说fx 在这个区间上是减函数.若函数y=fx 在某个区间是增函数或减函数,则就说函数y=fx 在这一区间具有严格的单调性,这一区间叫做函数y=fx 的单调区间.此时也说函数是这一区间上的单调函数. 2.函数的奇偶性4.判断函数单调性定义作差法:对带根号的一定要分子有理化,例如:指数函数与对数函数指数函数及其性质y=a x a>0,a≠122122212122222121)()()(b x b x x x x x b x b x x f x f x ++++-=+-+=-)(1)(.............*∈⋅⋅=N n a a a a a nn2)0(10≠=a a 3).0(1*∈≠=-N p a aa p p 4)1,,,0(>*∈>=n N n m a a a n m nm且5nm nm aa1=-)1,,,0(>*∈>n N n m a 且60的正分数指数幂等于0,0的负分数指数幂无意义 9),0,0(,)(Q r b a a a ab s r r ∈>>⋅= 对数函数及其性质y=log a x a>0,a≠1的定义域.常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义等..函数值域的求法:①配方法二次或四次;②“判别式法”;③换元法;④不等式法;⑤函数的单调性法.数列①),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a 2≥n⑶看数列是不是等比数列有以下方法: ①,,2(1≠≥=-且为常数q n q a a n n ②112-+⋅=n n n a a a 2≥n ,011≠-+n n n a a a ①在等差数列{n a }中,有关S n 的最值问题:1当1a >0,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得m s 取最大值.2当1a <0,d>0时,满足⎩⎨⎧≥≤+01m m a a 的项数m 使得m s 取最小值;三、数列求和的常用方法1.公式法:适用于等差、等比数列或可转化为等差、等比数列的数列;2.裂项相消法:适用于⎭⎬⎫⎩⎨⎧+1n n a a c 其中{n a }是各项不为0的等差数列,c 为常数; 3.错位相减法:适用于{}n n b a 其中{n a }是等差数列,{}n b 是各项不为0的等比数列; 4.倒序相加法:类似于等差数列前n 项和公式的推导方法.5.常用结论111)1(1+-=+n n n n )211(21)2(1+-=+n n n n三角函数2、同角三角函数的基本关系式:αααtan cos sin =1cos sin 22=+αα3、诱导公式:2k παα±把的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限” 三角函数的公式:一基本关系②)sin(ϕω+=x y 或)cos(ϕω+=x y 0≠ω的周期ω2=T .④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x Zk ∈,对称中心0,πk ;)cos(ϕω+=x y 的对称轴方程是πk x =Zk ∈,对称中心0,21ππ+k ;)tan(ϕω+=x y 的对称中心0,2πk . 奇偶性的两个条件:一是定义域关于原点对称奇偶都要,二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-奇偶性的单调性:奇同偶反.例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.定义域不关于原点对称奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .x ∉0的定义域,则无此性质⑨x y sin =不是周期函数;x y sin =为周期函数π=T x y cos =是周期函数如图;xy cos =为周期函数π=T 212cos +=x y 的周期为π如图,并非所有周期函数都有最小正周期,例如:y=|cos2x +1/2|图象R k k x f x f y ∈+===),(5)(.三角函数图象的作法:1、描点法及其特例——五点作图法正、余弦曲线,三点二线作图法正、余切曲线.2、利用图象变换作三角函数图象.平面向量向量的概念1向量的基本要素:大小和方向.2向量的表示:几何表示法AB ;字母表示:a ;坐标表示法a =xi+yj =x,y. 3向量的长度:即向量的大小,记作|a |. 4特殊的向量:零向量a =O ⇔|a |=O .单位向量a O 为单位向量⇔|a O |=1.5相等的向量:大小相等,方向相同x1,y1=x2,y2⎩⎨⎧==⇔2121y y x x6相反向量:a =-b ⇔b =-a ⇔a +b =07平行向量共线向量:方向相同或相反的向量,称为平行向量.记作a ∥b .平行向量也称为共线向量.运算类型 几何方法 坐标方法 运算性质 向量的 加法 1.平行四边形法则 2.三角形法则向量的 减法三角形法则AB BA =-,AB OA OB =-数 乘 向 量1.a λ是一个向量,满足:||||||a a λλ= 2.λ>0时,a a λ与同向;λ<0时,a a λ与异向;λ=0时,0a λ=.向 量 的 数 量 积a b •是一个数1.00a b ==或时,0a b •=.2.00||||cos(,)a b a b a b a b ≠≠=且时,4.重要定理、公式1平面向量基本定理e 1,e 2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1, λ2,使a =λ1e 1+λ2e 2.2两个向量平行的充要条件a ∥b ⇔a =λbb ≠0⇔x 1y 2-x 2y 1=O. 3两个向量垂直的充要条件a ⊥b ⇔a ·b =O ⇔x 1x 2+y 1y 2=O.中点公式OP =211OP +2OP 或⎪⎪⎩⎪⎪⎨⎧+=+=.2,22121y y y x x x 正、余弦定理:a /sinA=b /sinB=c /sinC=2R 其中R 为三角形外接圆的半径余弦定理:a 2=b 2+c 2-2bc cos A ,b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C . 三角形面积计算公式:1S =ah/22.已知三角形三边a,b,c,则S=√pp -ap-bp-c=1/4√a+b+ca+b -ca+c-bb+c-ap=a+b+c/23.已知三角形两边a,b,这两边夹角C,则S =1/2absinC4.设三角形三边分别为a 、b 、c,内切圆半径为rS=a+b+cr/25.设三角形三边分别为a 、b 、c,外接圆半径为RS=abc/4R6.根据三角函数求面积:S=absinC/2a/sinA=b/sinB=c/sinC=2R 注:其中R 为外切圆半径;不等式知识要点1. 不等式的基本概念不等等号的定义:.0;0;0b a b a b a b a b a b a <⇔<-=⇔=->⇔>- 2.不等式的基本性质1a b b a <⇔>对称性2c a c b b a >⇒>>,传递性3c b c a b a +>+⇒>加法单调性4d b c a d c b a +>+⇒>>,同向不等式相加5d b c a d c b a ->-⇒<>,异向不等式相减6bc ac c b a >⇒>>0,.7bc ac c b a <⇒<>0,乘法单调性8bd ac d c b a >⇒>>>>0,0同向不等式相乘(9)0,0a b a b c d c d>><<⇒>异向不等式相除11(10),0a b ab ab>>⇒<倒数关系11)1,(0>∈>⇒>>n Z n b a b a n n 且平方法则12)1,(0>∈>⇒>>n Z n b a b a n n 且开方法则 3.几个重要不等式10,0||,2≥≥∈a a R a 则若2)2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若当仅当a=b 时取等号3如果a ,b 都是正数,.2a b +当仅当a=b 时取等号极值定理:若,,,,x y R x y S xy P +∈+==则:如果P 是定值,那么当x=y 时,S 的值最小; 如果S 是定值,那么当x =y 时,P 的值最大.利用极值定理求最值的必要条件:一正、二定、三相等.,3a b c a b c R +++∈(4)若、、则a=b=c 时取等号0,2b aab a b>+≥(5)若则当仅当a=b 时取等号不等式证明的几种常用方法比较法、综合法、分析法、换元法、反证法、放缩法、构造法.不等式的解法直线和圆的方程一、直线方程.1.直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是)0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2.直线方程的几种形式:点斜式、截距式、两点式、斜切式. 3.⑴两条直线平行:1l ∥212k k l =⇔两条直线平行的条件是:①1l 和2l 是两条不重合的直线.②在1l 和2l 的斜率都存在的前提下得到的.因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则1l ∥212k k l =⇔,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条件,且21C C ≠ 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=⇔l . ⑵两条直线垂直:两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=⇔⊥k k l l 这里的前提是21,l l 的斜率都存在.②0121=⇔⊥k l l ,且2l 的斜率不存在或02=k ,且1l 的斜率不存在.即01221=+B A B A 是垂直的充要条件 .点到直线的距离:⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200BA C By Ax d +++=.注:1. 两点P 1x 1,y 1、P 2x 2,y 2的距离公式:21221221)()(||y y x x P P -+-=.特例:点Px,y 到原点O 的距离:||OP =2. 直线的倾斜角0°≤α<180°、斜率:αtan =k 3. 过两点1212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:.12()x x ≠当2121,y y x x ≠=即直线和x 轴垂直时,直线的倾斜角α=︒90,没有斜率⑵两条平行线间的距离公式:设两条平行直线)(0:,0:212211C C C By Ax l C By Ax l ≠=++=++,它们之间的距离为d ,则有2221BA C C d +-=.7.关于点对称和关于某直线对称:⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.⑵关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线. ⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上方程①,过两对称点的直线方程与对称直线方程垂直方程②①②可解得所求对称点. 二、圆的方程.如果曲线C 的方程是fx,y=0,那么点P 0x 0,y 线C 上的充要条件是fx 0,y 0=02.圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-.特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 3.圆的一般方程:022=++++F Ey Dx y x .当0422F E D -+时,方程表示一个圆,其中圆心⎪⎭⎫⎝⎛--2,2E D C ,半径2422FE D r -+=.当0422=-+F E D 时,方程表示一个点⎪⎭⎫⎝⎛--2,2E D . 当0422F E D -+时,方程无图形称虚圆.4.点和圆的位置关系:给定点),(00y x M 及圆222)()(:r b y a x C =-+-.①M 在圆C 内22020)()(r b y a x -+-⇔②M 在圆C 上22020)()r b y a x =-+-⇔( ③M 在圆C 外22020)()(r b y a x -+-⇔ 5.直线和圆的位置关系:设圆圆C :)0()()(222 r r b y a x =-+-;直线l :)0(022≠+=++B A C By Ax ; 圆心),(b a C 到直线l 的距离22BA C Bb Aa d +++=.①r d =时,l 与C 相切;附:若两圆相切,则⇒⎪⎩⎪⎨⎧=++++=++++02222211122F y E x D y x F y E x D y x 相减为公切线方程.②r d 时,l 与C 相交;附:公共弦方程:设有两个交点,则其公共弦方程为0)()()(212121=-+-+-F F y E E x D D . ③r d 时,l 与C 相离.由代数特征判断:方程组⎪⎩⎪⎨⎧=++=-+-0)()(222C Bx Ax r b y a x 用代入法,得关于x 或y 的一元二次方程,其判别式为∆,则:l ⇔=∆0与C 相切; l ⇔∆0 与C 相交; l ⇔∆0 与C 相离.一般方程若点x 0,y 0在圆上,则x –a x 0–a+y –b y 0–b=R 2.特别地,过圆222r y x =+上一点),(00y x P 的切线方程为200r y y x x =+.圆锥曲线方程:0:222222111221=++++=++++F y E x D y x C F y E x D y x C一、椭圆方程.1.椭圆方程的第一定义: ⑴①椭圆的标准方程:i.中心在原点,焦点在x 轴上:)0(12222 b a by ax =+.ii.中心在原点,焦点在y 轴上:)0(12222 b a bx ay=+.②一般方程:)0,0(122 B A By Ax =+.⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:c a x 2±=或c a y 2±=.⑥离心率:)10( e ace =. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(2222a b c a b d -=和),(2ab c二、双曲线方程.1.双曲线的第一定义: ⑴①双曲线标准方程:)0,(1),0,(122222222 b a bx ay b a by ax =-=-.一般方程:)0(122 AC Cy Ax =+.⑵①i.焦点在x 轴上:顶点:)0,(),0,(a a -焦点:)0,(),0,(c c -准线方程c a x 2±=渐近线方程:0=±b ya x 或02222=-by a x②轴y x ,为对称轴,实轴长为2a ,虚轴长为2b ,焦距2c.③离心率ace =.④通径a b 22.⑤参数关系a ce b a c =+=,222.⑥焦点半径公式:对于双曲线方程12222=-by a x 21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点⑶等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . 三、抛物线方程.3.设0 p ,抛物线的标准方程、类型及其几何性质:注:通径为2p,这是过焦点的所有弦中最短的.四、圆锥曲线的统一定义..:立体几何平面.1.经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2.两个平面可将平面分成3或4部分.①两个平面平行,②两个平面相交3.过三条互相平行的直线可以确定1或3个平面.①三条直线在一个平面内平行,②三条直线不在一个平面内平行一、空间直线.1.空间直线位置分三种:相交、平行、异面.相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内2.异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.不在任何一个平面内的两条直线3.平行公理:平行于同一条直线的两条直线互相平行.4.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等如下图.二面角的取值范围[) 180,0∈θ 直线与直线所成角(] 90,0∈θ斜线与平面成角() 90,0∈θ 直线与平面所成角[] 90,0∈θ向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角或直角相等.二、 直线与平面平行、直线与平面垂直.1.空间直线与平面位置分三种:相交、平行、在平面内.2.直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.“线线平行,线面平行”注:①直线a 与平面α内一条直线平行,则a ∥α.×平面外一条直线 ②直线a 与平面α内一条直线相交,则a 与平面α相交.×平面外一条直线③若直线a 与平面α平行,则α内必存在无数条直线与a 平行.√不是任意一条直线,可利用平行的传递性证之④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面.×可能在此平面内 ⑤平行于同一直线的两个平面平行.×两个平面可能相交⑥平行于同一个平面的两直线平行.×两直线可能相交或者异面 ⑦直线l 与平面α、β所成角相等,则α∥β.×α、β可能相交3.直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.“线面平行,线线平行”直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.注:①垂直于同一平面....的两个平面平行.×可能相交,垂直于同一条直线.....的两个平面平行 ②垂直于同一直线的两个平面平行.√一条直线垂直于平行的一个平面,必垂直于另一个平面③垂直于同一平面的两条直线平行.√ 三、 平面平行与平面垂直.1.空间两个平面的位置关系:相交、平行.2.平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.“线面平行,面面平行”推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. 注:一平面间的任一直线平行于另一平面.3.两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.“面面平行,线线平行”12方向相同12方向不相同4.两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.“线面垂直,面面垂直” 四. 空间几何体.异面直线所成角的求法:1平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系; .直线与平面所成的角 .二面角的求法.空间距离的求法求点到直线的距离转化为求三棱锥的高,利用等体积法列方程求解; 正方体和长方体的外接球的直径等于其体对角线长;概率知识要点1.概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.2.等可能事件的概率:如果一次试验中可能出现的结果有年n 个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是n1,如果某个事件A 包含的结果有m 个,那么事件A 的概率nm P(A)=. 3.①互斥事件:不可能同时发生的两个事件叫互斥事件.如果事件A 、B 互斥,那么事件A+B 发生即A 、B 中有一个发生的概率,等于事件A 、B 分别发生的概率和,即PA+B=PA+PB,推广:)P(A )P(A )P(A )A A P(A n 21n 21+++=+++ .②对立事件:两个事件必有一个发生的互斥事件...............叫对立事件. 注意:i.对立事件的概率和等于1:1)A P(A )A P(P(A)=+=+.ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A 或B 是否发生对事件B 或A 发生的概率没有影响.这样的两个事件叫做相互独立事件.如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即PA·B=PA·PB.回归分析和独立性检验第一步:提出假设检验问题 H 0:吸烟与患肺癌没有关系↔H 1:吸烟与患肺癌有关系第二步:选择检验的指标 22()K ()()()()n ad bc a b c d a c b d -=++++它越小,原假设“H 0:吸烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H 1:吸烟与患肺癌有关系”成立的可能性越大.回归直线方程的求法:1221()ni i i ni i x y nx y b x n x a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑导数互斥对立1.导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 2.求导数的四则运算法则:''''''')()(cv cv v c cv u v vu uv =+=⇒+=c 为常数注:v u ,必须是可导函数. 4.函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数. 零点定理⑴零点定理:设函数)(x f 在闭区间],[b a 上连续,且0)()( b f a f ⋅.那么在开区间),(b a 内至少有函数)(x f 的一个零点,即至少有一点ξa <ξ<b 使0)(=ξf .注:①0)( x f 是fx 递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时fx =0,同样0)( x f 是fx 递减的充分非必要条件.②一般地,如果fx 在某区间内有限个点处为零,在其余各点均为正或负,那么fx 在该区间上仍旧是单调增加或单调减少的. 6.极值的判别方法:注①:若点0x 是可导函数)(x f 的极值点,则)('x f =0.但反过来不一定成立.对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8.极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9.几种常见的函数导数: 复数1.⑴复数的单位为i,它的平方等于-1,即1i 2-=. ⑵常用的结论:。

四川高考数学知识点归纳总结文科

四川高考数学知识点归纳总结文科

四川高考数学知识点归纳总结文科在四川高考数学考试中,文科生需要掌握的数学知识点主要包括代数、函数、几何、概率与统计等方面。

以下是对这些知识点的归纳总结:一、代数1. 整式与分式- 整式的加减乘除运算法则- 分式的加减乘除运算法则2. 方程与不等式- 一元一次方程与一元一次不等式- 二次方程与二次不等式- 绝对值方程与绝对值不等式- 一元高次方程- 模拟与建立方程或不等式3. 函数与方程- 函数的定义及性质- 一次函数与二次函数- 反函数与复合函数- 一次函数与线性规划- 二次函数与二次曲线的性质4. 数列与数列的极限- 等差数列与等差数列的通项公式- 等比数列与等比数列的通项公式- 递推数列- 数列的和与数列极限二、几何1. 平面几何- 平面上点、线、面的相关性质- 直线与平面的位置关系- 平面图形(如三角形、四边形、圆等)的性质与求解- 勾股定理与正弦定理、余弦定理2. 空间几何- 空间直线与平面的相关性质- 空间图形(如棱柱、棱锥、球等)的性质与求解- 空间几何问题的解法及应用三、概率与统计1. 排列与组合- 排列与组合的基本概念- 乘法原理与加法原理的应用- 基本的计数原理2. 概率- 随机事件及其概率- 概率的加法与乘法定理- 条件概率与独立性- 排列与组合的概率3. 统计- 统计基本概念与应用- 随机变量及概率分布- 参数估计与假设检验总结:文科生在四川高考数学考试中需全面掌握代数、几何和概率统计等知识点。

代数知识包括整式与分式、方程与不等式、函数与方程、数列与数列的极限等内容。

几何方面需要掌握平面几何和空间几何的相关性质,应熟练运用各种定理求解问题。

概率与统计知识包括排列与组合、概率、统计三个方面,在解题过程中需要运用概率计算公式和统计分析方法。

希望同学们通过对这些知识点的归纳总结,能够更好地备战四川高考数学考试,取得优异的成绩。

高考数学(文科)考试大纲

高考数学(文科)考试大纲

高考数学(文科)考试大纲以下是高考数学(文科)考试大纲:一、考试内容本科目考试内容分为数与式、函数与方程、三角函数与解三角形、解析几何、数列与数学归纳法、概率与统计和数学思想方法等七个部分。

二、考试形式本科目考试采取笔试形式。

三、考试时间考试时间为 120 分钟。

四、知识点1.数与式1.1 数的基本概念1.2 数的运算与性质1.3 数的应用1.4 算式的基本概念1.5 算式的运算1.6 算式的应用2.函数与方程2.1 函数的基本概念2.2 常用函数的性质2.3 函数的图像与性质2.4 函数的应用2.5 方程的基本概念2.6 一元一次方程及应用2.7 一元二次方程及应用2.8 二元一次方程组及图像2.9 其他代数方程及应用3.三角函数与解三角形3.1 角的基本概念3.2 三角函数的定义与性质3.3 三角函数的图像与性质3.4 解三角形4.解析几何4.1 解析几何基本概念4.2 二维坐标系与图形4.3 三维坐标系与图形4.4 平面解析几何4.5 空间解析几何5.数列与数学归纳法5.1 数列的基本概念5.2 数列的通项公式和递推公式5.3 数列的分类5.4 数学归纳法6.概率与统计6.1 概率的基本概念6.2 概率的计算方法6.3 统计的基本概念6.4 统计的数据处理方法7.数学思想方法7.1 数学证明的基本方法7.2 数学建模的基本方法7.3 数学探究的基本方法7.4 数学推理的基本方法以上是高考数学(文科)考试大纲的全文。

文科高考数学必考知识点

文科高考数学必考知识点

文科高考数学必考知识点高考对数学的要求并不像理科那样严苛,但作为一个文科生,熟练掌握数学知识也是非常重要的。

下面将介绍文科高考数学必考的知识点。

一、代数与函数代数与函数是文科高考数学中最基础也是最重要的知识点之一。

在代数方面,需要熟练掌握各类代数式的展开与因式分解,以及一些常见的代数运算法则。

在函数方面,需要理解函数的定义与性质,并能够应用在各种实际问题中。

二、数列与数与等差数列、等比数列和特殊数列是文科高考数学中常见的数列。

必须掌握它们的定义、性质和一些典型的应用题。

另外,需要再了解二项式定理、排列组合和概率,这些内容有时也会涉及到数列的概念。

三、几何几何是文科高考数学中相对困难的部分,但也是必考的知识点。

重点在于掌握各种几何图形的性质,如三角形、四边形和圆的性质等。

此外,需要掌握各种几何定理的证明方法。

在解题中,还需要熟练运用几何知识解决实际问题。

四、概率与统计概率与统计是文科高考数学中相对简单的部分。

概率方面,需要了解事件的定义,熟练掌握概率计算的方法,并能够应用到实际问题中。

统计方面,需要熟悉统计数据的处理和分析方法,能够计算各种统计指标,并能够对实际问题进行统计推断。

五、数论数论在文科高考数学中比较偏重理论,但也是必考的知识点。

数论是研究整数的性质和规律的学科,在高考中常涉及到素数、因子、最大公约数、最小公倍数等概念。

需要理解和掌握这些概念的定义、性质和应用。

六、不等式不等式在文科高考数学中的地位也非常重要。

需要熟练掌握各种不等式的性质和解法,能够运用自己的知识解决实际问题。

总之,文科高考数学必考知识点包括代数与函数、数列与等差数列、几何、概率与统计、数论和不等式等内容。

熟练掌握这些知识点对于提高数学成绩至关重要。

在备考过程中,建议多做一些相关的习题,通过反复练习来巩固知识。

此外,还要灵活运用数学知识解决实际问题,提高自己的应用能力。

只有在理论与实践相结合的基础上,才能取得理想的成绩。

高考文科数学必考知识点归纳

高考文科数学必考知识点归纳

高考文科数学必考知识点归纳精选全国高考文科数学必考知识点一、基本概念1.函数与曲线:定义函数与曲线,二次函数方程;二次曲线函数表达式;参数方程的图形;定义域和值域;一次函数与l2函数的性质;反函数的求解;函数和曲线变换;极坐标函数图形;求值点;联系函数和曲线。

2.三角函数:三角函数基本性质;弧度和角度的关系;周期性特点;正弦定理、余弦定理及其应用;正弦曲线以及余弦曲线的性质;三角函数变换;三角函数的值的计算。

3.解析几何:定义几何图形,平面直角坐标系;圆的性质;椭圆及其性质;双曲线的特点;点、直线、圆及其几何关系;不等式的图形表示;空间几何图形;解析几何方法解决几何问题;锐角三角形内角和外角的关系;三角函数与角度;等腰三角形及其特殊性质;空间三角形和其内角和外角关系;四边形面积;六边形面积;新结构和性质;特殊定点定理和性质。

4.统计:统计的基本概念;概率的含义;概率的计算;分类资料的相互关系;抽样分析;概率的判断;统计数据的分类;统计数据的计算;统计图的制作及其应用;回归分析;误差估计。

二、代数与方程1.代数:定义多项式;解题步骤和算法;系数;根;因式分解;乘法定理;互异因数;无穷序列求和;除号自由把法;十二项式;因式定理;求取代数方程的根;多项式的因式分解;代数的性质;多项式的奇偶性;分数的运算;平方根运算。

2.方程:定义方程;一元二次方程的求解;整式化简;同余方程;不等式及其解法;定义不等式;不等式解法;二元一次方程组;合并算法;解法及应用;三元一次方程组;连立方程解法;恒等变换;解三元一次方程组。

三、推理与证明1.数学推理:数学推理的基本概念;式子、条件、命题、证明;直觉猜想;演绎推理;证明方式和思路;言语推理;判断推理;数列的构造;数列的求和及其性质;模式推理;推理与逻辑;数学归纳法;归纳证明;归纳定理;反证法的应用;数论。

2.证明方法:数论的基本概念;数论的证明方法;数学分析的基本任务;证明的步骤和思路;数学初步证明;假设证明法;特例法;反证法;常数项法;例证法;椭圆函数的性质;变量分离法。

山西高考文科数学知识点

山西高考文科数学知识点

山西高考文科数学知识点数学作为高考文科科目的一部分,对于山西的高中生来说,是必须要重点掌握的内容之一。

下面将整理和梳理山西高考文科数学知识点,以帮助学生更好地备考。

一、数与代数1. 整式与分式- 整式的概念与运算法则- 分式的概念与运算法则- 分式方程与分式不等式2. 一元一次方程与一元一次不等式- 一元一次方程与一元一次方程组的概念与解法- 一元一次不等式与一元一次不等式组的概念与解法- 关于线性方程和线性不等式的实际问题3. 二次函数与二次方程- 二次函数的概念、图像与性质- 二次函数与二次方程的关系- 二次方程的解法及实际应用4. 等差数列与等比数列- 等差数列与等比数列的概念与性质- 等差数列与等比数列的求和公式- 等差数列与等比数列在实际问题中的应用二、几何与图形1. 直线与曲线- 直线与曲线的基本概念与性质- 直线与曲线的方程与图像2. 三角形与三角函数- 三角形的分类与性质- 三角函数的概念与性质- 三角函数图像的性质与变换3. 平面向量与坐标平面- 平面向量的概念与运算法则- 坐标平面及直角坐标系的概念- 向量的几何应用4. 平面几何的证明与计算- 平面几何证明方法和常用定理- 平面几何计算方法及实际问题三、概率与统计1. 概率的基本概念与计算- 概率实验与样本空间的概念- 概率的计算公式与性质- 概率在现实生活中的应用2. 统计与统计图- 统计的基本概念与方法- 统计图的绘制与分析- 统计学在实际问题中的应用以上是山西高考文科数学的主要知识点概述,希望学生们能在备考过程中集中精力,有针对性地复习这些知识点。

通过系统、深入的学习,相信在高考中取得优异的成绩将不再是难题!加油!。

高考文科数学知识点

高考文科数学知识点

高考文科数学知识点【导语】在高考复习进程中,文科的学生要怎样做好数学知识点的复习准备呢?下面是作者收集整理的高考文科数学知识点以供大家学习。

高考文科数学知识点:导数一、综述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)运用问题(初等方法常常技能性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特点,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引发注意。

二、知识整合1.导数概念的知道。

2.利用导数判别可导函数的极值的方法及求一些实际问题的值与最小值。

复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3.要能正确求导,必须做到以下两点:(1)熟练掌控各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

高考文科数学知识点:不等式不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的运用。

因此不等式运用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的增进作用。

在解决问题时,要根据题设与结论的结构特点、内在联系、挑选适当的解决方案,终究归结为不等式的求解或证明。

不等式的运用范畴十分广泛,它始终贯串在全部中学数学当中。

诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的肯定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,终究都可归结为不等式的求解或证明。

文科数学高考知识点概率

文科数学高考知识点概率

文科数学高考知识点概率概率是数学中的一个重要分支,也是文科数学高考中的一个重要考点。

概率可以说是一种描述随机性的工具,它可以帮助我们分析和预测各种事件的发生可能性。

在高考中,概率常常和统计一起出现,共同构成了数学的一大门类。

一、概率的基本概念在学习概率之前,我们首先需要了解一些基本的概念。

概率的基本单位是事件,而事件是指某件事情发生或者不发生。

在概率的计算中,我们通常使用事件发生的可能性大小来描述概率的大小。

概率的取值范围是0到1之间,其中0表示不可能事件,而1表示必然事件。

二、概率的计算方法1.古典概型古典概型是最简单的概率计算方法之一。

在古典概型中,我们假设每个样本点出现的机会是相等的,然后通过计算有利事件出现的样本点数目与总样本点数目的比值来计算概率。

2.频率概率频率概率是根据事件发生的频率来计算概率。

通过大量的实验或观察,我们可以统计出事件发生的次数,然后计算事件发生的频率作为概率的近似值。

3.几何概型在几何概型中,我们通常是通过计算几何图形的面积或者长度来求解概率。

几何概型常常应用在正方形、圆形、三角形等几何图形的计算中。

4.条件概率条件概率是指在已知某个事件发生的前提下,另一个事件发生的概率。

条件概率的计算对于解决一些实际问题非常有用,它能够帮助我们预测在特定条件下事件发生的可能性。

5.全概率全概率是利用分区思想来计算概率的一种方法。

通过将一个事件分解成若干个互斥且穷尽的事件,然后计算各个事件发生的概率并相加,就可以得到整个事件发生的概率。

三、概率的应用概率在现实生活中有着广泛的应用。

在商业领域中,概率可以用于市场调研、销售预测等方面。

在医学领域中,概率可以帮助医生分析疾病的风险和预后。

在金融领域中,概率可以用于投资决策和风险控制。

在运输和物流领域中,概率可以帮助我们进行货物运输和交通流量的规划。

总之,概率在各个领域中都发挥着重要的作用。

结语概率作为一门重要的数学学科,是文科数学高考中的重要考点之一。

高考数学文科个知识点分值

高考数学文科个知识点分值

高考数学文科个知识点分值高考是每个学生都非常重要的一次考试,对于学生而言,高考的每一个知识点都至关重要。

数学是高考文科的一门重要科目,包含多个知识点,每个知识点的分值也不同。

本文将就高考数学文科各知识点的分值进行探讨,并对每个知识点的重要性进行分析。

1. 函数与方程组(40分)函数与方程组是高考数学文科中的重要知识点,也是分值最高的部分,共占高考数学文科的40分。

这一部分主要包括函数的定义、性质,方程组的解法和应用,二次函数、指数函数、对数函数等相关内容。

在这一部分的学习中,学生需要掌握函数的图像、性质及其应用,方程组的解法和应用技巧,对于提高解题能力和分数的获取非常关键。

2. 解析几何(30分)解析几何是高考数学文科中另一个关键的知识点,总分为30分。

这一部分主要涉及平面直角坐标系、向量及其运算、几何图形的性质等内容。

对于解析几何的学习,学生需要熟练掌握直线、圆的相关性质,能够通过坐标系和向量进行几何问题的解答。

这些知识点在高考题中经常出现,对于提高数学分数至关重要。

3. 概率与统计(25分)概率与统计是高考数学文科中的另一个重要部分,总分为25分。

这一部分主要包括概率的基本概念、概率计算、统计分析等内容。

学生需要熟练掌握概率的计算方法,包括基本概率、条件概率、独立事件的概率等。

同时,还需要了解统计的基本概念和分析方法,包括样本调查、频率分布、统计图表等。

掌握这些知识点对于解答概率和统计相关的题目非常重要。

4. 数列与数列的和(20分)数列与数列的和是高考数学文科中的一个基础知识点,总分为20分。

这一部分主要包括数列的定义、性质、通项公式以及数列的和的计算。

学生需要熟悉各类数列的特点和计算方法,能够灵活运用数学知识解答与数列相关的问题。

5. 三角函数(15分)三角函数是高考数学文科中的另一个重要知识点,总分为15分。

这一部分主要包括三角函数的定义、性质、基本公式以及应用。

学生需要掌握三角函数的定义和相关性质,了解三角函数的常用公式和应用方法,能够运用三角函数解答相关的几何问题。

文科数学高考所有知识点

文科数学高考所有知识点

文科数学高考所有知识点作为文科生,数学是高考必考科目之一。

它在评价学生数理能力和思维逻辑方面起到了重要作用。

以下将详细介绍文科数学高考的所有知识点。

一、函数与方程1. 函数的概念:函数是自变量与因变量之间的一种确定关系。

通常用y=f(x)表示,其中x为自变量,y为因变量。

2. 函数与方程的关系:一个函数的解是使得f(x)=0成立的x的值,方程的解是使得方程成立的x的值。

3. 一次函数:一次函数是指最高次项为1的多项式函数,可以用y=kx+b表示。

其中k称为斜率,b称为截距。

4. 二次函数:二次函数是指最高次项为2的多项式函数,可以用y=ax²+bx+c表示。

其中a是二次项系数,b是一次项系数,c是常数项。

二、平面几何1. 直角三角形:直角三角形是指其中一个角为90度的三角形,根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。

2. 同心圆:同心圆是指有相同圆心但半径不同的圆。

同心圆具有共同切点、相似比例等性质。

3. 相似三角形:相似三角形是指对应角相等、对应边成比例的三角形。

根据相似三角形的性质,可以解决一些涉及比例的几何问题。

4. 图形的面积:常见的图形面积计算公式有矩形、正方形、三角形、圆等。

掌握这些公式并能熟练运用是解决面积问题的关键。

三、概率统计1. 随机事件与概率:随机事件是指在一定条件下具有不确定性的事件。

概率是随机事件发生的可能性,在0到1之间且和为1。

2. 独立事件:两个或多个事件互不影响,且其中一个事件的发生与其他事件无关,称为独立事件。

独立事件的概率可以通过乘法定理计算。

3. 排列组合:排列是指从n个元素中按照一定顺序取出m个元素的选择方式,可以通过阶乘计算。

组合是指从n个元素中无序地取出m个元素的选择方式,可以通过阶乘进行计算。

4. 统计图表:常见的统计图表有条形图、折线图、饼图等。

掌握统计图表的读取和分析是解决实际问题的重要手段。

四、数列与级数1. 等差数列:等差数列是指其相邻两项之差为常数的数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二高考文科数学知识点
高二是学生们备战高考的重要阶段,文科数学的知识点是需要
重点掌握和复习的内容之一。

本文将介绍高二文科数学的主要知
识点,帮助同学们更好地备考。

一、函数与方程
1. 一次函数
一次函数的表达式为y=ax+b,其中a和b为常数,a表示斜率,b表示截距。

学生们需要掌握一次函数的性质、图像和应用。

2. 二次函数
二次函数的表达式为y=ax²+bx+c,其中a、b和c为常数,a表
示抛物线的开口方向,b和c决定了抛物线的位置。

需要掌握二次
函数的图像、性质和解析式,并能灵活应用。

3. 指数与对数函数
指数函数的表达式为y=a^x,对数函数的表达式为y=loga(x),
其中a为底数。

需要了解指数与对数函数的性质、图像和应用,
掌握其运算规则。

4. 三角函数
三角函数包括正弦函数、余弦函数和正切函数,分别表示为sin(x)、cos(x)、tan(x)。

需要熟练掌握三角函数的性质、图像和公式,能够解决与三角函数相关的问题。

二、统计与概率
1. 数据收集与整理
学生需了解数据的收集方法,包括问卷调查、实地观察等,并能使用手段整理和处理数据,如制作表格、绘制统计图表等。

2. 相关系数与回归分析
相关系数用于衡量两组数据之间的相关程度,回归分析则使用线性回归模型来研究变量之间的关系。

学生需要理解相关系数与回归分析的概念,并能进行计算和解释结果。

3. 概率与统计
概率是研究随机事件发生可能性的数学分支,统计则是利用数
据进行分析和推断的方法。

学生需要了解概率与统计的基本概念、性质和计算方法,能够解决与概率与统计相关的问题。

三、数列与数学归纳法
1. 等差数列与等差数列求和
等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为项数。

学生需要熟练掌握等差数列的性质和求和公式,能够解决与等差数列相关的问题。

2. 等比数列与等比数列求和
等比数列的通项公式为an=a1q^(n-1),其中a1为首项,q为公比,n为项数。

学生需要熟练掌握等比数列的性质和求和公式,能够解决与等比数列相关的问题。

3. 数学归纳法
数学归纳法是一种证明方法,用于证明数学命题对于一连串正
整数都成立。

学生需要了解数学归纳法的基本思想和步骤,并能
运用数学归纳法解决问题。

四、解析几何
1. 平面几何
平面几何研究平面上的点、线和图形的性质与关系。

学生需要
熟练掌握点、线、角、圆等的概念、性质和计算方法,能够解决
与平面几何相关的问题。

2. 空间几何
空间几何研究三维空间中的点、线、面和多面体的性质与关系。

学生需要了解空间几何的基本概念、定理和计算方法,能够解决
与空间几何相关的问题。

五、应用题
高中数学的知识点都会在应用题中得到应用。

学生需要通过大
量的应用题练习,培养分析问题、运用知识解决问题的能力。

总结:
高二文科数学的知识点涉及函数与方程、统计与概率、数列与
数学归纳法、解析几何和应用题等内容。

学生们在备考过程中,
应注重理解概念、掌握性质和运用方法,通过大量的练习来巩固
和提升自己的数学水平。

希望同学们能够在高考中取得优异的成绩!。

相关文档
最新文档