长方体正方体练习题

合集下载

长方体和正方体全套练习题

长方体和正方体全套练习题

第二单元长方体(一)全套练习练习一长文体正方体的认识一、填空1、长方体有()个面,它们一般都是()形,也可能有()个面是正方形.2、长方体的上面和下面、前面和后面、左面和右面都叫做(),它们的面积().3、长方体的12条棱,每相对的()条棱算作一组,12条棱可以分成()组.4、正方体有()个面,每个面都是()形,面积都().5、一个正方体的棱长是6厘米,它的棱长总和是().6、一个长方体的长是1.5分米,宽是1.2分米,高是1分米,它的棱长和是()分米.7、一个长方体的棱长总和是80厘米,其中长是10厘米,宽是7厘米,高是()厘米.8、把两个棱长1厘米的正方体拼成一个长方体,这个长方体的棱长总和是()厘米.二、判断题1、长方体和正方体都有6个面,12条棱,8个顶点.()2、长方体的6个面不可能有正方形.()3、长方体的12条棱中,长、宽、高各有4条.()4、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等.()5、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等.()6、一个长方体长12厘米,宽8厘米,高7厘米,把它切成一个尽可能大的正方体,这个正方体的棱长是8厘米.()三、选择题1、下列物体中,形状不是长方体的是()①火柴盒②红砖③茶杯④木箱2、长方体的12条棱中,高有()条.①4 ②6 ③8 ④123、下列三个图形中,能拼成正方体的是()4、把一个棱长3分米的正方体切成两个相等的长方体,增加的两个面的总面积是()平方分米.①18 ②9 ③36 ④以上答案都不对练习二长文体正方体的棱长和、表面积1、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高多少厘米的长方体?2、一个长方体的水池,长20厘米,宽10厘米,深2米,占地多少平方米?3、用96厘米长的铁丝焊接成一个正方体的框架,然后用纸给它的表面包裹起来,至少需要多少平方厘米的纸?4、一个长方体,长12厘米,宽和高都是8厘米,这个长方体的表面积是多少平方厘米?5、用两个棱长为5厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?6、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5厘米,宽为3厘米,高为4厘米,求正方体的棱长。

(完整版)长方体和正方体的体积测试卷

(完整版)长方体和正方体的体积测试卷

8、一个长方体的长、宽、高都扩大 2 倍,它的表面积就(
)。
od 9、一个长方体最多可以有( )个面是正方形,最多可以有( )条棱长度相等。
o 二、应用题。
g 1、一个面的面积是 36 平方米的正方体,它所有的棱长的和是多少厘米?
g are 2、用一根铁丝刚好焊成一个棱长 8 厘米的正方体框架,如果用这根铁丝焊成一个长 10 厘米、宽 7 厘 in 米的长方体框架,它的高应该是多少厘米?
a (4)一个长方体长 5 厘米 ,宽 5 厘米 ,高 4 厘米 ,这个长方体有 2 个面是( )形,有(

e 个面的面积相等,长方体的表面积是(
)。
tim (5)正方体的棱长扩大 3 倍,它的表面积就扩大(
)倍。
3、做一个不带盖的长方体铁盒,长 0.6 米,宽 0.35 米,高 0,4 米。至少需要多少平方米铁皮?
eir be 3、天天游泳池,长 25 米,宽 10 米,深 1.6 米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是 th 1 分米的正方形,那么至少需要这种瓷砖多少块?
gs in 4、把棱长 12 厘米的正方体切割成棱长是 3 厘米的小正方体,可以切割成多少块?
ll thin 5、一种长方体硬纸盒,长 10 厘米,宽 6 厘米,高 5 厘米,有 2 平方米的硬纸板 210 张,可以做这样 A 的硬纸盒多少个?(不计接口)
7、一盒饼干长 20 厘米,宽 15 厘米,高 30 厘米,现在要在它的四周贴上商标纸,如果商标纸的接头处 是4厘米,这张商标纸的面积是多少平方厘米?
8、把一根长 20 厘米,宽 5 厘米,高 3 厘米的长方体木料沿横截面锯成 2 段,表面积增加多少?
3
d Suf 四、思考题 n 1、一个长方体底面是一个边长为 20 厘米的正方形,高为 40 厘米,如果把它的高增加 5 厘米,它的 a 表面积会增加多少? thing 2、一个长方体正好可以切成 5 个同样大小的正方体,切成的5个正方体的表面积比原来长方表面积多 e 了200平方厘米,求原来长方体的表面积?

长方体与正方体练习题

长方体与正方体练习题

长方体与正方体练习题
1. 长方体的体积计算公式是长×宽×高。

如果一个长方体的长是5cm,宽是3cm,高是2cm,那么它的体积是多少立方厘米?
2. 正方体的体积计算公式是边长的三次方。

一个正方体的边长是4cm,计算它的体积。

3. 一个长方体的体积是60立方厘米,长是5厘米,宽是3厘米,求
它的高。

4. 正方体的表面积计算公式是6×边长²。

如果一个正方体的边长是
5cm,求它的表面积。

5. 长方体的表面积计算公式是2×(长×宽+长×高+宽×高)。

一个
长方体的长是4cm,宽是3cm,高是2cm,求它的表面积。

6. 一个正方体的体积是216立方厘米,求它的边长。

7. 长方体的长、宽、高分别是8cm、6cm、5cm,计算它的体积和表面积。

8. 一个长方体的体积是120立方厘米,长是10厘米,求宽和高。

9. 正方体的边长是3cm,求它的体积和表面积。

10. 长方体的长是9cm,宽是7cm,高是4cm,求它的体积和表面积。

六年级上册《长方体与正方体》专项练习试题(10套)

六年级上册《长方体与正方体》专项练习试题(10套)

苏教版小学数学六年级上册《长方体与正方体》专项练习试题(10套)(1)(长方体和正方体的认识)一、填空:(38%)1、长方体和正方体都有( ) 个面,( ) 条棱,( ) 个顶点。

2、长方体的每个面都是( )形或有一组对面是( )。

它有( )条棱,平行的( )条棱都相等。

3、相交于长方体一个顶点的三条棱的长度分别叫做它的()、()和()。

4、长方体有()个面,从不同的角度观察一个长方体,最多能看到()个面。

5、一个长方体的长是5分米,宽是4分米,高是3分米,6个面中最小的一个面的面积是(),最大的一个面的面积是()。

6、一个长方体,长4米,宽3米,高2米,它的占地面积最大是()平方米。

7、一个长方体模型,从前面看是从上面看是长方体右面的面积是()平方厘米。

8、长方体的右侧面面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的长、宽、高分别是()、()、()。

二、选择(8%):1、一个长方体水池,长20米,宽10米,深2米,这个水池占地()平方米。

A、200B、400C、5202、下面的图形中,能按虚线折成正方体的是()。

3、从一个体积是30立方厘米的长方体木块中,挖掉一小块后(如下图) ,它的表面积( ) 。

A.和原来同样大 B.比原来小 C.比原来大 D.无法判断4、用一根52厘米长的铅丝,正好可以焊成长6厘米,宽4厘米,高()厘米的长方体教具。

A、2B、3C、4D、5三、计算下面每个形体的棱长和(6%)。

四、下面各题,列式计算,不写答。

(40%)1、一个长方体,长5分米,宽3分米,高4分米,求它的所有棱长的和。

2、用钢筋做一个长和宽都是3.5分米,高是10厘米的长方体,需多少分米的钢筋?3、棱长是4分米的正方体,棱长总和是多少分米?4、一个长方体的棱长和是36厘米,从一个顶点出发的三条棱的长度总和是多少厘米?5、同一根长96厘米的铁丝折成一个最大的正方体框架,求正方体框架的棱长。

长方体正方体纯应用题练习(有答案)

长方体正方体纯应用题练习(有答案)

长方体正方体纯应用题练习(有答案)长方体、正方体纯应用题练习(有答案)长方体和立方体的应用问题1、加工一个长方体铁皮烟囱,长2.5dm,宽1.6dm,高2m,至少要用多少平方分米铁皮?解决方案:2m=20分米(2.5*20+1.6*20)*2=1642.学校需要挖一个长4米、宽2米、深0.4米的长方形掩体。

你需要多少立方米的黄沙来填满沙坑?解决方案:4×2×0.4=3.2T3、把一块棱长8cm的正方体钢坯,锻造成长16cm,宽5cm的长方体钢板,这钢板有多厚?(损耗不计)解:厚度=8×8×8÷16÷5=6.4厘米4.长方体机油桶长8米,宽2米,高6米。

如果每升油重0.72公斤,它能装多少公斤油?解决方案:8*2*6*0.72=69.125、一个长12cm,宽4cm,高5cm的长方体纸盒,最多能容纳几个棱长2cm的小立方体?解决方案:12*4*5=240立方厘米2*2*2=8立方厘米240*8=306.长方体水箱,每侧长4米。

将一盒水倒入另一个长8厘米宽2.5厘米的长方体水箱。

水深是多少?解决方案:(4)×4×4)÷(8×2.5)=3.27、一个底面是正方形的长方体,底面周长是24cm,高是10cm,求它的体积。

解:底面边长=24*4=6厘米底面积=6*6=36平方厘米体积=36*10=360立方厘米8.在60米长、40米宽的平地上,240立方米的土壤能铺多厚?解决方案:盒子体积=长×宽×高,240=60×40×高高=1m所以厚1m9.长方体玻璃鱼缸,长12米,宽5米,高6米。

① 制作这个玻璃鱼缸需要多少平方分米的玻璃?② 要使水面距离鱼缸口1米,需要排放多少公斤水?(1立方分米重1千克)解:12*5+(12*6+5*6)*2=264平方分米12*5*5=300立方分米=300千克一10、一个正方体纸盒的表面积是5.4平方分米,它的占地面积是多少平方分米?解决方案:5.4/6=0.9平方分米11、一个正方体的棱长和48cm,求正方体的底面积和表面积。

长方体和正方体练习题

长方体和正方体练习题

第一章 长方体和正方体的认识【概念】1.由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

在一个长方体中,相对面完全相同,相对的棱长度相等。

一个长方体至少可以有两个面是正方形,但不会存在 3 个、4 个、5个面是正方形!2.两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长(a )、宽(b )、高(h )。

3.由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体有12 条棱,它们的长度都相等,所有的面都完全相同。

4.正方体是长、宽、高都相等的长方体,它是一种特殊的长方体 。

形体相同点 不同点 联系 面棱 顶点 面的形状 面的面积 棱长 正方体是一种特殊的长方体 长方体 6个 12条 8个 6个面都是长方形,有时相对的两个面是正方形相对的两个面的面积相等 相对的棱的长度相等 正方体 6个面都是正方形 6个面面积都相等 12条棱都相等【注意点和常见算法】①两个棱长和相等的长方体或一个长方体和一个正方体,表面积不一定相等!②表面积相等的两个长方体或一个长方体和一个正方体,棱长和也不一定相等!③长方体的棱长总和=(长+宽+高)×4长=棱长总和÷4-宽-高宽=棱长总和÷4-长-高高=棱长总和÷4-长-宽④正方体的棱长总和=棱长×12 棱长=棱长总和÷12【小试牛刀】一、判断并改正。

1.长方体的六个面一定是长方形。

()2.正方体的六个面面积一定相等。

()3.一个长方体 ( 非正方体 ) 最多有四个面面积相等。

()4.相交于一个顶点的三条棱相等的长方体一定是正方体。

()5.长方体的三条棱分别叫做长、宽、高。

()6.有两个面是正方形的长方体一定是正方体。

()7.有三个面是正方形的长方体一定是正方体。

()8.有两个相对的面是正方形的长方体,另外四个面的面积是相等的。

()9.正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。

长方体正方体经典习题

长方体正方体经典习题

长方体和正方体练习题1、为迎接五一劳动节,工人叔叔要在工人俱乐部的四周装上彩灯(地面四周不装)。

俱乐部的长90米,宽55米,高20米,至少需要多长的彩灯线?2、一个玻璃鱼缸的形状是正方体(无盖)棱长3dm,制作两个这个鱼缸需要多少平方米玻璃?3、用棱长1cm的小正方体摆成一个大正方体,至少需要几个小正方体?表面积是多少?体积是多少?4、亮亮家要给一个长0.75m,宽0.5m,高1.6m的简易衣柜换布罩(没有底面)至少需要用多少布?1、小卖部要做一个长2.2m,宽40cm,高80cm的玻璃柜台,现要在柜台各边装上角铁,这个柜台需要多少米角铁?2、一个饼干盒长10cm,宽6cm,高12cm,围着四周贴商标纸(上下不贴)商标纸的面积至少要多少平方厘米?3、加工一批洗衣机机套(没底)长59.5m,宽42.5m,高80m,做1000个需要多少平方米布?4、一个游泳池长50m,是宽的2倍,深2.5m。

要在四周和底面贴瓷砖,需要多少平方米瓷砖?1、公园修长15m,厚24cm,高3m的围墙。

每立方米用砖525块,这道围墙要用几块砖?2、妈妈送给奶奶的生日蛋糕长2dm、宽2dm、高0.6dm,奶奶把它平均分成4块长方体形状的小蛋糕,想一想她是怎样分,每个人分到多大的一块蛋糕?3、家具厂订购500根方木,每根方木的横截面的面积是24平方分米,长是3米。

这些木料一共是多少方?4、一个包装盒,如果从里面量长28cm、宽20cm、体积为11、76立方分米。

爸爸想用它包装一件长25cm,宽16cm,高18cm的玻璃器皿,是否可以装下?1、六一儿童节前,全市小学生代表用棱长3cm的正方体塑料品插积木在广场中央搭起了一面长6m,高2.7m,厚6cm的奥运心愿墙,算一算这面墙共用了多少块积木?2、一个长方体和一个正方体的棱长总和相等,已知长方体的长、宽、高分别是6dm、5dm、4dm,那么正方体的棱长是多少分米?它们的体积相等吗?3、一个长方体容器,长20厘米,宽10厘米,高8厘米,里面水深5厘米。

六年级长方体正方体练习(含解析)

六年级长方体正方体练习(含解析)

六年级长方体正方体练习一.选择题(共7小题)1.一个冰箱从里面量长5分米,宽5分米,高4分米,装满水后水箱的()是100升.A.容积B.体积C.重量2.如图:将如图纸片折起来可以做成一个正方体.这个正方体的3号面的对面是()号面.A.2 B.3 C.4 D.13.下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体?()A.B.C.4.如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.5.把一个长3cm、宽4cm、高5cm的长方体截成两个长方体,表面积最多增加()cm2.A.24 B.30 C.406.一个汽油箱长60厘米,宽20厘米,高20厘米,这个油箱可盛汽油()升.A.240000 B.240 C.24 D.0.247.如图,用丝带捆扎一种礼品盒,结头处长25cm,要捆扎这种礼品盒,准备()分米的丝带比较合理.A.10 B.15 C.20 D.22.5二.填空题(共10小题)8.棱长总和是72cm的正方体,表面积是,体积是.9.如果正方体的棱长扩大到原来的3倍,那么它的表面积就扩大到原来的倍.10.用铁丝焊接一个棱长是5 厘米的正方体框架,至少需要铁丝厘米.如果用白纸贴满正方体的各个面,至少要用白纸平方厘米;这个正方体的体积是立方厘米.11.长方形的右侧面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的表面积是平方厘米.12.一个长方体,如果宽增加2厘米,就变成一个正方体,这时表面积比原来增加32平方厘米.原来长方体的表面积是平方厘米,体积是立方厘米.13.一个正方体木块,把它割成2个长方体后.表面积增加了18m2,这个木块原来的表面积是,体积是.14.一个棱长4dm的正方体钢坯的体积是dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是dm.15.一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,这段长方体钢材的体积是立方分米.16.用一根24分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是立方米.17.一根60厘米长的铁丝,如果做一个长8厘米、宽5厘米的长方体模型,这个长方体的高是厘米,这个长方体的表面积是平方厘米,体积是立方厘米.三.判断题(共5小题)18.正方体的棱长扩大到原来的2倍,它的表面积也就扩大到原来的2倍..(判断对错)19.棱长为6cm的正方体的体积与表面积相等..(判断对错)20.底面周长是8分米的正方体,它的表面积是24平方分米..(判断对错)21.如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍.(判断对错)22.把一个长方体锻造成一个正方体铁块,形状变了,但体积不变.(判断对错)四.解答题(共10小题)23.如图,如果把这个长方体完全沉没于盛满水的水槽中,会有多少水溢出来?如果要包装这个盒子,至少需要多少平方厘米的包装纸?(单位:厘米)24.求出如图中长方体的体积和表面积.(单位:米)25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)26.一间平顶教室,长是8.5米,宽6米,高4.2米.教室的门窗和黑板的面积一共有35.8平方米.要粉刷教室的顶面和四面墙壁,粉刷的面积有多少平方米?27.一个长方形的游泳池,从里面量长50米,宽20米,高2米,平均水深1.5米.粉刷它的四壁和地面,粉刷面积是多少平方米?28.一块长32厘米、宽25厘米的铁皮,从四个角各切掉一个边长为3厘米的正方形,然后做成盒子.这个盒子用了多少铁皮?它的容积有多少立方厘米?(如图)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.30.一个长方体水箱,从里面量长是40cm,宽是35cm,水箱中浸没一个钢球(水末溢出),水深15cm,取出钢球后,水深12cm.如果每立方分米钢重7.8千克,这个钢球重多少千克?31.把棱长为4dm的正方形钢坯熔铸成横截面是边长8cm的正方形的长方体钢条,这个钢条的长是多少分米?32.李老师用一根长56cm的铁丝,做成一个长6cm,宽5cm的长方体框架教具,这个教具的高是多少厘米?六年级长方体正方体练习(2)参考答案与试题解析一.选择题(共7小题)1.(2016春•卧龙区校级期中)一个冰箱从里面量长5分米,宽5分米,高4分米,装满水后水箱的()是100升.A.容积B.体积C.重量【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据容积的意义,某容器所能容纳别的物体的体积叫做这个容器的容积.据此解答即可.【解答】解:根据容积的意义可知:一个木箱装满水后水箱的容积是100升故选:A.【点评】此题考查的目的是理解掌握容积的意义及应用.2.(2016秋•如皋市月考)如图:将如图纸片折起来可以做成一个正方体.这个正方体的3号面的对面是()号面.A.2 B.3 C.4 D.1【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】根据正方体展开图的11种特征,属于“1﹣3﹣2”型,折叠成正方体后,1号面与5号面相对,2号面与3号面相对,4号面与6号面相对.【解答】解:如图,折叠成正方体后,1号面与5号面相对,2号面与3号面相对,4号面与6号面相对.故选:A.【点评】此题是考查正方体展开图的特征,正方体展开图有11种情况,折叠成正方体后哪些面相对是有规律的,最好是掌握规律,能快速解答此类题.3.(2016春•乐亭县校级月考)下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体?()A.B.C.【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】根据正方体展开图的11种特征,选项B不属于正方体展开图,不能折成正方体;选项A和选项C都属于正方体展开图的“1﹣4﹣1”型,都能折成正方体.【解答】解:根据正方体展开图的特征,选项B不能折成正方体;选项B和选项C都能折成正方体.故选:B.【点评】本题主要是考查正方体展开图的特征,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.4.(2015•绵阳)如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】我们可以对四个选项用排除法,根据正方体展开图的特征,选项D不能折成无盖的正方体纸盒;选项A、B、C都能折成无盖的正方体纸盒,选项B、C中字母“M”都在侧面,只有选项A折成无盖的正方体纸盒,下底标有字母“M”.【解答】解:如图,根据正方体展开图的特征,将其剪开展成平面图形是:故选:A.【点评】此题是考查正方体展开图的特征,四个选项中除D外,其余几个都能折成无盖的正方体盒,关键是看哪个字母“M”在底上.5.(2015•德江县模拟)把一个长3cm、宽4cm、高5cm的长方体截成两个长方体,表面积最多增加()cm2.A.24 B.30 C.40【考点】AB:长方体和正方体的表面积.【专题】12 :应用题;33 :假设法;462:立体图形的认识与计算.【分析】抓住长方体的切割特点可得,要使增加的表面积最多,则平行于最大面5×4面切割,则表面积就是增加2个5×4面,据此即可解答.【解答】解:5×4×2=20×2=40(平方厘米)答:表面积最多能增加40平方厘米.故选:C.【点评】根据长方体切割小长方体的方法,明确表面积增加的2个面是解决本题的关键.6.(2015•徐州模拟)一个汽油箱长60厘米,宽20厘米,高20厘米,这个油箱可盛汽油()升.A.240000 B.240 C.24 D.0.24【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据长方体的容积(体积)公式:v=abh,把数据代入公式解答.【解答】解:60×20×20=24000(立方厘米),24000立方厘米=24(升),答:这个油桶可以盛汽油24升.故选:C.【点评】此题主要考查长方体的容积(体积)公式的灵活运用,关键是熟记公式,注意:体积单位与容积单位之间的换算.7.(2015秋•射阳县校级期末)如图,用丝带捆扎一种礼品盒,结头处长25cm,要捆扎这种礼品盒,准备()分米的丝带比较合理.A.10 B.15 C.20 D.22.5【考点】8G:长方体的特征.【专题】12 :应用题;3B :代数方法;462:立体图形的认识与计算.【分析】由图形可知:丝带的长度等于长方体的两条长+两条宽+4条高,然后再加上打结用的25厘米就是所需要的长度,列式解答即可.【解答】解:30×2+20×2+25×4+25=60+40+100+25=225(厘米)=22.5(分米答:准备22.5分米的丝带比较合理.故选:D.【点评】此题考查的目的是理解掌握长方体的特征,相对棱的长度相等,关键是弄清如何捆扎的,进而确定是求哪几条棱的长度和.二.填空题(共10小题)8.(2016春•玉林期末)棱长总和是72cm的正方体,表面积是216平方厘米,体积是216立方厘米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】正方体的12条棱的长度都相等,用棱长总和除以12求出棱长,再根据正方体的表面积公式:s=6a2,体积公式:v=a3,把数据分别代入公式解答.【解答】解:72÷12=6(厘米),6×6×6=216(平方厘米),6×6×6=216(立方厘米),答:这个正方体的表面积是216平方厘米,体积是216立方厘米.故答案为:216平方厘米,216立方厘米.【点评】此题主要考查正方体的表面积公式、体积公式的灵活运用.9.(2016春•克州校级期中)如果正方体的棱长扩大到原来的3倍,那么它的表面积就扩大到原来的9倍.【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据正方体的表面积公式s=6a2,再根据积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,由此解答.【解答】解:根据正方体的表面积公式s=6a2,一个正方体的棱长扩大到原来的3倍,表面积扩大到原来的3×3=9倍.答:它的表面积扩大到原来的9倍.故答案为:9.【点评】此题主要根据正方体表面积计算方法和积的变化规律解决问题.10.(2016秋•玄武区期末)用铁丝焊接一个棱长是5 厘米的正方体框架,至少需要铁丝60厘米.如果用白纸贴满正方体的各个面,至少要用白纸150平方厘米;这个正方体的体积是125立方厘米.【考点】AB:长方体和正方体的表面积;8G:长方体的特征;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据正方体的棱长总和=棱长×12,正方体的表面积公式:S=6a2,体积公式:v=a3,把数据分别代入公式解答.【解答】解:5×12=60(厘米);5×5×6=25×6=150(平方厘米);5×5×5=125(立方厘米);答:至少需要铁丝60厘米,至少要用白纸150平方厘米,它的体积是125立方厘米.故答案为:60、150、125.【点评】此题主要考查正方体的棱长总和公式、表面积公式、体积公式的灵活运用,关键是熟记公式.11.(2016春•扬州校级期末)长方形的右侧面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的表面积是52平方厘米.【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据长方体的特征.相对面的面积相等,已知长方体相邻三个面的面积,求这个长方体的表面积,也就是用相邻三个面的面积和乘2即可,据此解答.【解答】解:(6+8+12)×2=26×2=52(平方厘米)答:这个长方体的表面积是52平方厘米.故答案为:52.【点评】此题考查的目的是理解掌握长方体的特征,以及长方体的表面积公式的灵活运用.12.(2016秋•无锡期末)一个长方体,如果宽增加2厘米,就变成一个正方体,这时表面积比原来增加32平方厘米.原来长方体的表面积是64平方厘米,体积是32立方厘米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】12 :应用题;17 :综合填空题;462:立体图形的认识与计算.【分析】根据题意可知,一个长方体如果宽增加2厘米,就变成了一个正方体;说明长和高相等且比宽大2厘米,因此增加的32平方厘米是4个同样的长方形的面积和;由此可以求长方体的长=(32÷4)÷2=4厘米,由于长比宽多2厘米,那么宽=4﹣2=2厘米,由此再利用长方体的体积公式和表面积计算公式计算即可解答.【解答】解:32÷4÷2=4(厘米)4﹣2=2(厘米)(1)4×4×2+4×2×4=32+32=64(平方厘米)答:原来长方体的表面积是64平方厘米.(2)4×4×2=16×2=32(立方厘米)答:原来长方体的体积是32立方厘米.故答案为:64,32.【点评】本题主要考查长方体正方体表面积的实际应用,解答本题的关键是根据宽增加2cm,就变成一个正方体,可知增加的部分是长为2厘米的4个面,从而可以分别求出长方体的长、宽、高,进而利用长方体的表面积和体积的计算方法即可求解.13.(2016春•未央区期末)一个正方体木块,把它割成2个长方体后.表面积增加了18m2,这个木块原来的表面积是54平方米,体积是27立方米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】17 :综合填空题;462:立体图形的认识与计算.【分析】把一个正方体切成两个完全相同的长方体后,则表面积增加了两个边长和原来正方体棱长相同的两个横截面的面积,表面积增加了18平方米,则每个横截面的面积为18÷2=9平方米,即可求出正方体的边长为3米,再利用正方体的表面积公式S=6a2,体积公式V=a3,即可解答.【解答】解:18÷2=9(平方米)因为3×3=9,所以原来正方体的棱长是3米,表面积:3×3×6=9×6=54(平方米)体积:3×3×3=9×3=27(立方米)答:这个木块原来的表面积是54平方米,体积是27立方米.故答案为:54平方米、27立方米.【点评】此题主要考查正方体表面积公式和体积的计算,关键是求出正方体的棱长,再把数据代入表面积和体积公式解答即可.14.(2016春•仁怀市校级期末)一个棱长4dm的正方体钢坯的体积是64dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是 3.2dm.【考点】AC:长方体和正方体的体积.【分析】(1)根据正方体的体积=棱长×棱长×棱长即可解答;(2)锻造前后的体积不变,根据长方体的体积公式,用上面求出的正方体的体积,除以这个长方体的底面积,即可得出长方体的高.【解答】解:(1)正方体钢坯的体积是:4×4×4=64(立方分米);(2)64÷20=3.2(分米),答:一个棱长4dm的正方体钢坯的体积是64dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是3.2分米.故答案为:64;3.2.【点评】此题考查了正方体和长方体的体积公式的灵活应用,抓住锻造前后的体积不变,是解决此类问题的关键.15.(2016春•日照期末)一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,这段长方体钢材的体积是800立方分米.【考点】AC:长方体和正方体的体积.【分析】根据长方体的面的特征,它的6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等;由题意可知,一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,增加了两个截面的面积,0.8÷2=0.4平方米,长方体的体积=底面积×高;由此解答.【解答】解:1立方米=1000立方分米;0.8÷2×2=0.4×2=0.8(立方米);0.8立方米=800立方分米;答:这段长方体钢材的体积是800立方分米.故答案为:800.【点评】此题主要考查长方体的体积计算,关键是理解沿横截面截成两段后,表面积增加了0.8平方米,增加的是两个截面的面积即底面积,然后根据体积公式解答.16.(2016春•抚州校级期末)用一根24分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是8立方米.【考点】AC:长方体和正方体的体积;8G:长方体的特征.【专题】462:立体图形的认识与计算.【分析】用一根24分米长的铁丝围成一个最大的正方体形状的框架,也就是这个正方体的棱长总和是24分米,首先用棱长总和除以12求出棱长,再根据正方体的体积公式:v=a3,把数据代入公式解答即可.【解答】解:24÷12=2(分米),2×2×2=8(立方分米),答:这个正方体的体积是8立方分米.故答案为:8.【点评】此题主要考查正方体的棱长总和公式、体积公式的灵活运用,关键是熟记公式.17.(2016秋•泰兴市校级期中)一根60厘米长的铁丝,如果做一个长8厘米、宽5厘米的长方体模型,这个长方体的高是2厘米,这个长方体的表面积是124平方厘米,体积是80立方厘米.【考点】8G:长方体的特征;AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】17 :综合填空题;462:立体图形的认识与计算.【分析】用长60厘米的铁丝围一个长方体框架,也就是这个长方体的棱长总和是60厘米,用棱长总和除以4求出长、宽、高的和,已知长方体的长是8厘米,宽是5厘米,用长、宽、高的和减去长、宽,即可求出高,再根据长方体的表面积公式:s=(ab+ah+bh)×2,体积公式:v=abh,把数据分别代入公式解答.【解答】解:60÷4﹣8﹣5=15﹣8﹣5=2(厘米)表面积:(8×5+5×2+8×2)×2=(40+10+16)×2=62×2=124(平方厘米)体积:8×5×2=40×2=80(立方厘米)答:这个长方体的高是2厘米,这个长方体的表面积是124平方厘米,体积是80立方厘米.故答案为:2、124、80.【点评】此题主要考查长方体的棱长占公式、表面积公式、体积公式的灵活运用,关键是求出长方体的高.三.判断题(共5小题)18.(2017春•渭源县校级期末)正方体的棱长扩大到原来的2倍,它的表面积也就扩大到原来的2倍.×.(判断对错)【考点】AB:长方体和正方体的表面积.【专题】18 :综合判断题;39 :找“定”法;462:立体图形的认识与计算.【分析】依据正方体的表面积公式S=a×a×6进行解答即可.【解答】解:原来的表面积:S=a×a×6=6a2,现在的表面积:S=2a×2a×6=24a2,表面积扩大:24a2÷6a2=4倍.所以题干的说法是错误的.故答案为:×.【点评】此题主要考查正方体的表面积公式的灵活应用.19.(2016•玉溪模拟)棱长为6cm的正方体的体积与表面积相等.×.(判断对错)【考点】AC:长方体和正方体的体积;AB:长方体和正方体的表面积.【专题】18 :综合判断题;462:立体图形的认识与计算.【分析】根据正方体的表面积公式:s=6a2,正方体的体积公式:v=a3,因为表面积和体积不是同类量,无法进行比较.由此解答.【解答】解:表面积:6×6×6=216(平方厘米)体积:6×6×6=216(立方厘米)因为表面积和体积不是同类量,无法进行比较.故答案为:×.【点评】此题解答关键是明确:只有同类量才能进行比较大小,不是同类量无法进行比较.20.(2016春•正定县校级期末)底面周长是8分米的正方体,它的表面积是24平方分米.√.(判断对错)【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据正方体的特征,正方体的6个面是完全相同的正方形,已知它的底面周长是8分米,首先用底面周长除以4求出底面边长,再根据正方体的表面积公式:s=6a2,把数据代入公式求出它的表面积,然后与24平方分米进行比较即可.【解答】解:8÷4=2(分米),2×2×6=4×6=24(平方分米),答:它的表面积是24平方分米.故答案为:√.【点评】此题主要考查正方形的周长公式、正方体的表面积公式的灵活运用,关键是熟记公式.21.(2016春•仁怀市校级期末)如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍.×(判断对错)【考点】AC:长方体和正方体的体积.【专题】18 :综合判断题;462:立体图形的认识与计算.【分析】根据长方体的体积计算方法和积的变化规律,长方体的体积=长×宽×高,积扩大的倍数等于因数扩大倍数的乘积.由此解答.【解答】解:长方体的体积=长×宽×高,长、宽、高都扩大3倍,它的体积就扩大:3×3×3=27倍;所以“如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍”的说法是错误的.故答案为:×.【点评】此题主要根据长方体的体积计算方法和积的变化规律解决问题.22.(2016春•黎平县校级期末)把一个长方体锻造成一个正方体铁块,形状变了,但体积不变.√(判断对错)【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.将一个长方体铁块锻造成正方体,只是形状变了,但体积不变.据此解答.【解答】解:把一块长方体的铁块锻造成正方体的铁块,形状改变了,但体积不变,所以本题说法正确;故答案为:√.【点评】此题主要考查了学生对正方体表面积及体积公式的掌握应用情况.四.解答题(共10小题)23.(2017春•渭源县校级期末)如图,如果把这个长方体完全沉没于盛满水的水槽中,会有多少水溢出来?如果要包装这个盒子,至少需要多少平方厘米的包装纸?(单位:厘米)【考点】AC:长方体和正方体的体积;AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】(1)溢出的水的体积就等于长方体的体积,利用长方体的体积公式即可得解;(2)求包装纸的面积实际上是求长方体的面积,利用长方体的表面积公式即可求解.【解答】解:(1)13×2×8=208(立方厘米);答:会有208立方厘米水溢出来.(2)(13×2+13×8+2×8)×2,=(26+104+16)×2,=146×2,=292(平方厘米);答:至少需要292平方厘米的包装纸.【点评】此题主要考查长方体的表面积和体积的计算方法的灵活应用.24.(2016•安溪县模拟)求出如图中长方体的体积和表面积.(单位:米)【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】长方体的表面积=(长×宽+长×高+宽×高)×2,长方体的体积=长×宽×高,已知长是5厘米,宽是3厘米,高是4厘米.把数据分别代入公式解答.【解答】解:(3×4+3×5+4×5)×2=(12+15+20)×2=47×2=94(平方米)3×4×5=60(立方米)答:这个长方体的表面积是94平方米,体积是60立方米.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式.25.(2016秋•玄武区期末)看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)【考点】8L:长方体的展开图;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】我们通过观察得到这个长方体的长是6分米,宽是9﹣6=3分米,高是11﹣3=8厘米,由此运用长方体的体积公式进行解答即可.【解答】解:长方体的体积:6×(9﹣6)×(11﹣3),=6×3×8,=144(立方厘米);答;这个纸盒的表面积是136平方厘米,体积是80立方厘米.【点评】本题考查了学生对长方体的体积公式的运用掌握情况.重点考查了空间想象能力.26.(2016秋•毕节市期中)一间平顶教室,长是8.5米,宽6米,高4.2米.教室的门窗和黑板的面积一共有35.8平方米.要粉刷教室的顶面和四面墙壁,粉刷的面积有多少平方米?【考点】AB:长方体和正方体的表面积.【分析】由题意知,粉刷的面积=教室的顶面面积+四面墙壁的面积﹣门窗和黑板的面积,据此列式解答即可.【解答】解:2×(8.5×4.2+6×4.2)+8.5×6﹣35.8=2×60.9+51﹣35.8=121.8+51﹣35.8=137(平方米).答:粉刷的面积有137平方米.【点评】本题主要考查长方体的表面积的知识点,长方体的表面积=2(长×宽+长×高+宽×高).本题需要注意减去地面的面积和教室的门窗和黑板的面积.27.(2016春•扬州校级期末)一个长方形的游泳池,从里面量长50米,宽20米,高2米,平均水深1.5米.粉刷它的四壁和地面,粉刷面积是多少平方米?【考点】AB:长方体和正方体的表面积.【专题】12 :应用题;462:立体图形的认识与计算.【分析】要在四壁和池底粉刷,只求它的5个面的总面积,根据长方体的表面积公式:S=2ab+2ah+2bh进行解答.【解答】解:(50×20+50×2+20×2)×2﹣50×20=(1000+100+40)×2﹣1000=1140×2﹣1000=2280﹣1000=1280(平方米)答:粉刷面积是1280平方米.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行解答问题.。

人教版五年级下册长方体和正方体练习题

人教版五年级下册长方体和正方体练习题

第三单元长方体和正方体练习题(1)一、填空题。

(每空1分)姓名:4. 一个长方体的长、宽、高分别为1分米、2分米、3分米,它的棱长总和是()分米,表面积是()平方分米,体积是()立方分米。

5. 棱长为10厘米的正方体,表面积是()平方厘米,体积是()立方厘米。

6. 一个长方体,底面积是20平方分米,高是5厘米,体积是()平方分米。

7. 棱长为5分米的正方体,表面积是()平方分米,底面积是()平方分米;体积是()立方分米。

8. 把一个正方体切成两个小长方体后,表面积比原来增加()分之()。

9.一个长方体的底面积是18平方分米,高是5厘米,它的体积是()平方分米。

10.正方体的棱长扩大3倍,它的表面积扩大()倍,体积扩大()倍。

11.一个长方体棱长和是144厘米,长、宽、高的比是3:2:1,它的体积是()立方厘米。

12.两个完全相同的三角形一定能拼成一个()形,所拼成的图形面积是每个三角形面积的()倍。

13.一个三角形中至少有()个锐角。

14.等腰三角形的顶角是120度,它的一个底角是()度,这个三角形是()角三角形。

一、判断题。

(每题2分)1. 棱长6分米的正方体,体积和表面积相等。

()2. 因为正方体是特殊的长方体,所以说长方体一定是正方体。

()3. 由六个面围成的立体图形不是正方体,就是长方体。

()4. 长方体相对的面完全相同。

()5. 长、宽、高都相等的长方体,一定是正方体。

( )6. 棱长是6分米的正方体,它的体积和表面积相等。

()7. 若a、b、h分别表示长方体的长、宽、高,则长方体棱长总和是4(a+b+h)。

()8. 有的长方体,可以有8条棱长相等。

()9. 任意两个梯形都可以拼成一个平行四边形。

()10. 三角形的底是28分米,是高的2倍,这个三角形的面积是196平方分米。

()11. 边长是4厘米的正方形,它的周长和面积相等。

()12. 不相交的两条直线叫做平行线。

()13. 周长相等的两个长方形,它们的面积一定相等。

(完整版)“长方体和正方体”练习题及答案

(完整版)“长方体和正方体”练习题及答案

六年级第一学期“长方体和正方体”练习题姓名成绩一、填空题。

(每空1分,共24分)1、在括号里填上合适的单位名称。

⑴一小瓶红墨水是60()⑵一台电冰箱的体积约是240()⑶一种油箱的容积是0.6()⑷一只火柴盒的体积约是9.6()⑸一种水箱可容水约24()2、一个长方体长5厘米,宽5厘米,高4厘米,这个长方体有2个面是()形,还有()个面的面积相等,长方体的表面积是()。

3、一个长方体的体积是162立方厘米,它的底面积是32.4平方厘米,底面长8.1厘米,这个长方体的高是( )厘米,宽是( )厘米。

4、一个长方体的体积是240立方厘米,长是8厘米,宽是6厘米,高是()厘米。

5、 6.4立方米=( )立方分米 4500毫升=( )升80立方厘米=()立方分米 3.8升 = ( )毫升7.05立方分米=( )升 50平方厘米=()平方分米6、右图是由棱长1厘米的小正方体拼成的,它的体积是()立方厘米,至少再加上()个小正方体,就能成为一个较大的正方体。

7、一个长方体,长、宽、高分别为a米、b米、c米,如果高增加4米,新的长方体比原来长方体增加了()立方米。

8、一个长方体的表面积是90平方分米,把它平均分开正好成两个相等的正方体,每个正方体的表面积是()平方分米。

9、用3个棱长4厘米的正方体粘合成一个长方体,长方体的表面积比3个正方体的表面积少()平方厘米。

10、一个长方体相邻三个面的面积分别为10平方厘米、15平方厘米和6平方厘米,这个长方体的体积为()。

11、一个长方体的宽和高都是5厘米,把它从长的中点截成两个相同的长方体后,得到其中一个长方体的表面积比原来大长方体的表面积减少120平方厘米。

原来长方体的体积是()立方厘米。

二、判断题。

(每题2分,共12分)1、正方体棱长扩大到原来的2倍,体积扩大到原来的8倍。

……………()2、a3=3a。

……………………………………………………………………()3、一个长方体茶叶罐,体积和容积相等。

长方体和正方体典型习题

长方体和正方体典型习题

长方体和正方体的认识一、长方体和正方体的认识个、5个面是正方形!练习题:(1)判断并改正:1、长方体的六个面一定是长方形; ( )2、正方体的六个面面积一定相等; ( )3、一个长方体(非正方体) 最多有四个面面积相等; ( )4、相交于一个顶点的三条棱相等的长方体一定是正方体。

( )7、长方体的三条棱分别叫做长、宽、高。

( )8、有两个面是正方形的长方体一定是正方体。

( )9、有三个面是正方形的长方体一定是正方体。

()11、有两个相对的面是正方形的长方体,另外四个面的面积是相等的。

()12、长方体和正方体最多可以看到3个面。

()14、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。

()15、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。

()16、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。

()(2)填空:1、一个长方体最多有()个面是正方形,最多有()条棱长度相等。

2、一个长方体的底面是一个正方形,则它的4个侧面是()形。

3、正方体不仅相对的面相等,而且所有相邻的面(),它的六个面都是相等的()形。

4、把长方体放在桌面上,最多可以看到()个面。

最少可以看到()【知识点2】棱长和公式:长方体棱长和=(长+宽+高)长+宽+高=棱长和÷4正方体棱长和=棱长×12 棱长=棱长和÷12练习题:(1)看图2-6,并填空单位:厘米这个长方体长( )厘米,宽( )厘米,高( )厘米。

由一个顶点引出的三条棱的长度和是( )厘米。

棱长总和是( )厘米。

上下两个面是( )形。

(2)看图2-7并填空单位:厘米这是一个( )体,正方体的棱长是( )厘米,棱长之和是( )厘米,每个面的面积是( )平方厘米。

(3)一只鱼缸,棱长和为280cm,其中,底面周长为50cm,右面周长为40cm,前面周长为50cm,鱼缸的长、宽、高各是多少?长方体和正方体的表面积【知识点1】长方体表面积=(长×宽+长×高+宽×高)×2 =(a×b+a×c+b×c)×2=(前面面积+上面面积+右面面积)×2正方体表面积=棱长×棱长×6=a×a×6=6a2=任意一个面的面积×6前面面积=后面面积;左面面积=右面面积;上面面积=下面面积两个棱长和相等的长方体或一个长方体和一个正方体,表面积不一定相等!表面积相等的两个长方体或一个长方体和一个正方体,棱长和也不一定相等!练习题:1、判断题:长方体的表面积一定比正方体的表面积大。

长方体和正方体练习

长方体和正方体练习

长方体和正方体的认识·练习题一.填空1、长方体有( )个面,每个面都是( )形,也可能有两个相对的面是( )形,( )的面积相等。

有( )条棱,( )的棱的长度相等。

2、正方体有( )个面,每个面都是( )形,( )的面积都相等,有( )条棱,它们的长度( )3、因为正方体是长、宽、高都()的长方体,所以正方体是()的长方体。

4、一个正方体的棱长为a,棱长之和是(),当a =6cm时,这个正方体的棱长总和是()cm。

5、一个长方体长、宽、高分别是a、b、h,那么这个长方体的棱长总和是()。

6、用一根长()dm铁丝正好可以做一个长6cm、宽5cm、高4cm的长方体框架。

7、做一个长方体抽屉,需要()块长方形木板。

8、一个长方体水池,长20m,宽10m,深2m,这个水池占地()m2。

9、下面的图形中,能按虚线折成正方体的是()。

二、判断:1、正方体是由6个正方形围成的立体图形。

()2、一个长方体中,可能有4个面是正方形。

()3、4个正方体能拼成一个大正方体。

()4、由6个面围成的图形都是长方体。

()三.看图并填空(单位:cm)1、(1)这个长方体长( )cm,宽( )cm,高( )cm。

(2)由一个顶点引出的三条棱的长度和是( )cm。

(3)棱长总和是( )cm。

(4)上下两个面是( )形。

2、(1)这是一个( )体 (2)正方体的棱长是( )cm。

(3)棱长之和是( )cm (4)每个面的面积是( )平方cm。

三、应用题1、一个正方体的棱长是15cm,这个正方体的棱长总和是多少dm?2、用6dm长的铁丝焊接成一个正方体的框架,这个正方体的棱长是多少cm?3、用多少dm的铁丝可以焊接成一个长12cm,宽10cm,高5cm的长方体的框架?4、有一根52cm的铁丝,恰好可以焊接成一个长6cm,宽4cm,高多少cm的长方体?5、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5cm,宽为3cm,高为4cm,求正方体的棱长。

人教版数学5年级下册 第3单元(长方体与正方体)应用题专项训练(含答案)

人教版数学5年级下册 第3单元(长方体与正方体)应用题专项训练(含答案)
11.如下图,把一个正方体平均分成两个一样的长方体,其中一个长方体的表面积是 ,原来的正方体表面积是多少平方厘米?
12.教学楼门前有一根长方体柱子,高3.6m,底面是边长0.4m的正方形。如果要给这根柱子的四周刷油漆,每平方米需要油漆0.3kg,一共需要油漆多少千克?
13.如图,一个棱长为5分米的正方体,在它6个面的正中和8个顶点处,分别挖去一个棱长为1分米的小正方体,剩下立体图形的体积和表面积分别是多少?
14.学校正在进行改扩建,需要对会议室四周(前面、后面、左面和右面)(如下图)进行粉刷。学校后勤部门通过了解,知道某品牌涂料的标价如下表。请你帮后勤部门的工作人员完成费用预算。
品牌
规格
可涂刷面积
单价
A
5L/桶35m238元15.爸爸拿出一块不规则的假山石,对小雪说:“你能求出这块假山石的体积吗?”小雪说:“当然能。”于是,小雪用家中一个长50cm、宽40cm、高60cm长方体无盖玻璃鱼缸装一部分水,量得水深50cm,然后把假山石完全浸没在水中,这时又量得水面高度是51.2cm。你知道这块假山石的体积是多少吗?
3.一个长方体的商品盒长18cm,宽15cm,高20cm,如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少要多少平方分米?
4.一个正方体玻璃容器(无盖)的棱长是2分米。
(1)做这个玻璃容器至少需要多少平方分米的玻璃?
(2)向容器中倒入5升水,再把一个土豆没入水中。这时量得容器内水深14厘米。土豆的体积是多少?(玻璃的厚度忽略不计)
(1)如果要给这个无盖的长方体补上一个盖,则这个盖至少需要多少平方厘米?
(2)这个长方体盒子的体积是多少立方厘米?
7.下面是小明为测量西红柿的体积所做的实验,请计算出这个西红柿的体积。

六年级长方体正方体练习(含解析)

六年级长方体正方体练习(含解析)

六年级长方体正方体练习(含解析)work Information Technology Company.2020YEAR六年级长方体正方体练习一.选择题(共7小题)1.一个冰箱从里面量长5分米,宽5分米,高4分米,装满水后水箱的()是100升.A.容积B.体积C.重量2.如图:将如图纸片折起来可以做成一个正方体.这个正方体的3号面的对面是()号面.A.2 B.3 C.4 D.13.下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体()A.B.C.4.如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.5.把一个长3cm、宽4cm、高5cm的长方体截成两个长方体,表面积最多增加()cm2.A.24 B.30 C.406.一个汽油箱长60厘米,宽20厘米,高20厘米,这个油箱可盛汽油()升.A.240000 B.240 C.24 D.0.247.如图,用丝带捆扎一种礼品盒,结头处长25cm,要捆扎这种礼品盒,准备()分米的丝带比较合理.A.10 B.15 C.20 D.22.5二.填空题(共10小题)8.棱长总和是72cm的正方体,表面积是,体积是.9.如果正方体的棱长扩大到原来的3倍,那么它的表面积就扩大到原来的倍.10.用铁丝焊接一个棱长是 5 厘米的正方体框架,至少需要铁丝厘米.如果用白纸贴满正方体的各个面,至少要用白纸平方厘米;这个正方体的体积是立方厘米.11.长方形的右侧面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的表面积是平方厘米.12.一个长方体,如果宽增加2厘米,就变成一个正方体,这时表面积比原来增加32平方厘米.原来长方体的表面积是平方厘米,体积是立方厘米.13.一个正方体木块,把它割成2个长方体后.表面积增加了18m2,这个木块原来的表面积是,体积是.14.一个棱长4dm的正方体钢坯的体积是dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是dm.15.一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,这段长方体钢材的体积是立方分米.16.用一根24分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是立方米.17.一根60厘米长的铁丝,如果做一个长8厘米、宽5厘米的长方体模型,这个长方体的高是厘米,这个长方体的表面积是平方厘米,体积是立方厘米.三.判断题(共5小题)18.正方体的棱长扩大到原来的2倍,它的表面积也就扩大到原来的2倍..(判断对错)19.棱长为6cm的正方体的体积与表面积相等..(判断对错)20.底面周长是8分米的正方体,它的表面积是24平方分米..(判断对错)21.如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍.(判断对错)22.把一个长方体锻造成一个正方体铁块,形状变了,但体积不变.(判断对错)四.解答题(共10小题)23.如图,如果把这个长方体完全沉没于盛满水的水槽中,会有多少水溢出来如果要包装这个盒子,至少需要多少平方厘米的包装纸(单位:厘米)24.求出如图中长方体的体积和表面积.(单位:米)25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)26.一间平顶教室,长是8.5米,宽6米,高4.2米.教室的门窗和黑板的面积一共有35.8平方米.要粉刷教室的顶面和四面墙壁,粉刷的面积有多少平方米?27.一个长方形的游泳池,从里面量长50米,宽20米,高2米,平均水深1.5米.粉刷它的四壁和地面,粉刷面积是多少平方米?28.一块长32厘米、宽25厘米的铁皮,从四个角各切掉一个边长为3厘米的正方形,然后做成盒子.这个盒子用了多少铁皮它的容积有多少立方厘米(如图)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.30.一个长方体水箱,从里面量长是40cm,宽是35cm,水箱中浸没一个钢球(水末溢出),水深15cm,取出钢球后,水深12cm.如果每立方分米钢重7.8千克,这个钢球重多少千克?31.把棱长为4dm的正方形钢坯熔铸成横截面是边长8cm的正方形的长方体钢条,这个钢条的长是多少分米?32.李老师用一根长56cm的铁丝,做成一个长6cm,宽5cm的长方体框架教具,这个教具的高是多少厘米?六年级长方体正方体练习(2)参考答案与试题解析一.选择题(共7小题)1.(2016春•卧龙区校级期中)一个冰箱从里面量长5分米,宽5分米,高4分米,装满水后水箱的()是100升.A.容积B.体积C.重量【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据容积的意义,某容器所能容纳别的物体的体积叫做这个容器的容积.据此解答即可.【解答】解:根据容积的意义可知:一个木箱装满水后水箱的容积是100升故选:A.【点评】此题考查的目的是理解掌握容积的意义及应用.2.(2016秋•如皋市月考)如图:将如图纸片折起来可以做成一个正方体.这个正方体的3号面的对面是()号面.A.2 B.3 C.4 D.1【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】根据正方体展开图的11种特征,属于“1﹣3﹣2”型,折叠成正方体后,1号面与5号面相对,2号面与3号面相对,4号面与6号面相对.【解答】解:如图,折叠成正方体后,1号面与5号面相对,2号面与3号面相对,4号面与6号面相对.故选:A.【点评】此题是考查正方体展开图的特征,正方体展开图有11种情况,折叠成正方体后哪些面相对是有规律的,最好是掌握规律,能快速解答此类题.3.(2016春•乐亭县校级月考)下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体()A.B.C.【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】根据正方体展开图的11种特征,选项B不属于正方体展开图,不能折成正方体;选项A和选项C都属于正方体展开图的“1﹣4﹣1”型,都能折成正方体.【解答】解:根据正方体展开图的特征,选项B不能折成正方体;选项B和选项C都能折成正方体.故选:B.【点评】本题主要是考查正方体展开图的特征,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.4.(2015•绵阳)如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】我们可以对四个选项用排除法,根据正方体展开图的特征,选项D不能折成无盖的正方体纸盒;选项A、B、C都能折成无盖的正方体纸盒,选项B、C中字母“M”都在侧面,只有选项A折成无盖的正方体纸盒,下底标有字母“M”.【解答】解:如图,根据正方体展开图的特征,将其剪开展成平面图形是:故选:A.【点评】此题是考查正方体展开图的特征,四个选项中除D外,其余几个都能折成无盖的正方体盒,关键是看哪个字母“M”在底上.5.(2015•德江县模拟)把一个长3cm、宽4cm、高5cm的长方体截成两个长方体,表面积最多增加()cm2.A.24 B.30 C.40【考点】AB:长方体和正方体的表面积.【专题】12 :应用题;33 :假设法;462:立体图形的认识与计算.【分析】抓住长方体的切割特点可得,要使增加的表面积最多,则平行于最大面5×4面切割,则表面积就是增加2个5×4面,据此即可解答.【解答】解:5×4×2=20×2=40(平方厘米)答:表面积最多能增加40平方厘米.故选:C.【点评】根据长方体切割小长方体的方法,明确表面积增加的2个面是解决本题的关键.6.(2015•徐州模拟)一个汽油箱长60厘米,宽20厘米,高20厘米,这个油箱可盛汽油()升.A.240000 B.240 C.24 D.0.24【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据长方体的容积(体积)公式:v=abh,把数据代入公式解答.【解答】解:60×20×20=24000(立方厘米),24000立方厘米=24(升),答:这个油桶可以盛汽油24升.故选:C.【点评】此题主要考查长方体的容积(体积)公式的灵活运用,关键是熟记公式,注意:体积单位与容积单位之间的换算.7.(2015秋•射阳县校级期末)如图,用丝带捆扎一种礼品盒,结头处长25cm,要捆扎这种礼品盒,准备()分米的丝带比较合理.A.10 B.15 C.20 D.22.5【考点】8G:长方体的特征.【专题】12 :应用题;3B :代数方法;462:立体图形的认识与计算.【分析】由图形可知:丝带的长度等于长方体的两条长+两条宽+4条高,然后再加上打结用的25厘米就是所需要的长度,列式解答即可.【解答】解:30×2+20×2+25×4+25=60+40+100+25=225(厘米)=22.5(分米答:准备22.5分米的丝带比较合理.故选:D.【点评】此题考查的目的是理解掌握长方体的特征,相对棱的长度相等,关键是弄清如何捆扎的,进而确定是求哪几条棱的长度和.二.填空题(共10小题)8.(2016春•玉林期末)棱长总和是72cm的正方体,表面积是216平方厘米,体积是216立方厘米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】正方体的12条棱的长度都相等,用棱长总和除以12求出棱长,再根据正方体的表面积公式:s=6a2,体积公式:v=a3,把数据分别代入公式解答.【解答】解:72÷12=6(厘米),6×6×6=216(平方厘米),6×6×6=216(立方厘米),答:这个正方体的表面积是216平方厘米,体积是216立方厘米.故答案为:216平方厘米,216立方厘米.【点评】此题主要考查正方体的表面积公式、体积公式的灵活运用.9.(2016春•克州校级期中)如果正方体的棱长扩大到原来的3倍,那么它的表面积就扩大到原来的9倍.【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据正方体的表面积公式s=6a2,再根据积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,由此解答.【解答】解:根据正方体的表面积公式s=6a2,一个正方体的棱长扩大到原来的3倍,表面积扩大到原来的3×3=9倍.答:它的表面积扩大到原来的9倍.故答案为:9.【点评】此题主要根据正方体表面积计算方法和积的变化规律解决问题.10.(2016秋•玄武区期末)用铁丝焊接一个棱长是 5 厘米的正方体框架,至少需要铁丝60厘米.如果用白纸贴满正方体的各个面,至少要用白纸150平方厘米;这个正方体的体积是125立方厘米.【考点】AB:长方体和正方体的表面积;8G:长方体的特征;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据正方体的棱长总和=棱长×12,正方体的表面积公式:S=6a2,体积公式:v=a3,把数据分别代入公式解答.【解答】解:5×12=60(厘米);5×5×6=25×6=150(平方厘米);5×5×5=125(立方厘米);答:至少需要铁丝60厘米,至少要用白纸150平方厘米,它的体积是125立方厘米.故答案为:60、150、125.【点评】此题主要考查正方体的棱长总和公式、表面积公式、体积公式的灵活运用,关键是熟记公式.11.(2016春•扬州校级期末)长方形的右侧面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的表面积是52平方厘米.【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据长方体的特征.相对面的面积相等,已知长方体相邻三个面的面积,求这个长方体的表面积,也就是用相邻三个面的面积和乘2即可,据此解答.【解答】解:(6+8+12)×2=26×2=52(平方厘米)答:这个长方体的表面积是52平方厘米.故答案为:52.【点评】此题考查的目的是理解掌握长方体的特征,以及长方体的表面积公式的灵活运用.12.(2016秋•无锡期末)一个长方体,如果宽增加2厘米,就变成一个正方体,这时表面积比原来增加32平方厘米.原来长方体的表面积是64平方厘米,体积是32立方厘米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】12 :应用题;17 :综合填空题;462:立体图形的认识与计算.【分析】根据题意可知,一个长方体如果宽增加2厘米,就变成了一个正方体;说明长和高相等且比宽大2厘米,因此增加的32平方厘米是4个同样的长方形的面积和;由此可以求长方体的长=(32÷4)÷2=4厘米,由于长比宽多2厘米,那么宽=4﹣2=2厘米,由此再利用长方体的体积公式和表面积计算公式计算即可解答.【解答】解:32÷4÷2=4(厘米)4﹣2=2(厘米)(1)4×4×2+4×2×4=32+32=64(平方厘米)答:原来长方体的表面积是64平方厘米.(2)4×4×2=16×2=32(立方厘米)答:原来长方体的体积是32立方厘米.故答案为:64,32.【点评】本题主要考查长方体正方体表面积的实际应用,解答本题的关键是根据宽增加2cm,就变成一个正方体,可知增加的部分是长为2厘米的4个面,从而可以分别求出长方体的长、宽、高,进而利用长方体的表面积和体积的计算方法即可求解.13.(2016春•未央区期末)一个正方体木块,把它割成2个长方体后.表面积增加了18m2,这个木块原来的表面积是54平方米,体积是27立方米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】17 :综合填空题;462:立体图形的认识与计算.【分析】把一个正方体切成两个完全相同的长方体后,则表面积增加了两个边长和原来正方体棱长相同的两个横截面的面积,表面积增加了18平方米,则每个横截面的面积为18÷2=9平方米,即可求出正方体的边长为3米,再利用正方体的表面积公式S=6a2,体积公式V=a3,即可解答.【解答】解:18÷2=9(平方米)因为3×3=9,所以原来正方体的棱长是3米,表面积:3×3×6=9×6=54(平方米)体积:3×3×3=9×3=27(立方米)答:这个木块原来的表面积是54平方米,体积是27立方米.故答案为:54平方米、27立方米.【点评】此题主要考查正方体表面积公式和体积的计算,关键是求出正方体的棱长,再把数据代入表面积和体积公式解答即可.14.(2016春•仁怀市校级期末)一个棱长4dm的正方体钢坯的体积是64 dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是 3.2 dm.【考点】AC:长方体和正方体的体积.【分析】(1)根据正方体的体积=棱长×棱长×棱长即可解答;(2)锻造前后的体积不变,根据长方体的体积公式,用上面求出的正方体的体积,除以这个长方体的底面积,即可得出长方体的高.【解答】解:(1)正方体钢坯的体积是:4×4×4=64(立方分米);(2)64÷20=3.2(分米),答:一个棱长4dm的正方体钢坯的体积是64dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是3.2分米.故答案为:64;3.2.【点评】此题考查了正方体和长方体的体积公式的灵活应用,抓住锻造前后的体积不变,是解决此类问题的关键.15.(2016春•日照期末)一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,这段长方体钢材的体积是800立方分米.【考点】AC:长方体和正方体的体积.【分析】根据长方体的面的特征,它的6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等;由题意可知,一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,增加了两个截面的面积,0.8÷2=0.4平方米,长方体的体积=底面积×高;由此解答.【解答】解:1立方米=1000立方分米;0.8÷2×2=0.4×2=0.8(立方米);0.8立方米=800立方分米;答:这段长方体钢材的体积是800立方分米.故答案为:800.【点评】此题主要考查长方体的体积计算,关键是理解沿横截面截成两段后,表面积增加了0.8平方米,增加的是两个截面的面积即底面积,然后根据体积公式解答.16.(2016春•抚州校级期末)用一根24分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是8立方米.【考点】AC:长方体和正方体的体积;8G:长方体的特征.【专题】462:立体图形的认识与计算.【分析】用一根24分米长的铁丝围成一个最大的正方体形状的框架,也就是这个正方体的棱长总和是24分米,首先用棱长总和除以12求出棱长,再根据正方体的体积公式:v=a3,把数据代入公式解答即可.【解答】解:24÷12=2(分米),2×2×2=8(立方分米),答:这个正方体的体积是8立方分米.故答案为:8.【点评】此题主要考查正方体的棱长总和公式、体积公式的灵活运用,关键是熟记公式.17.(2016秋•泰兴市校级期中)一根60厘米长的铁丝,如果做一个长8厘米、宽5厘米的长方体模型,这个长方体的高是2厘米,这个长方体的表面积是124平方厘米,体积是80立方厘米.【考点】8G:长方体的特征;AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】17 :综合填空题;462:立体图形的认识与计算.【分析】用长60厘米的铁丝围一个长方体框架,也就是这个长方体的棱长总和是60厘米,用棱长总和除以4求出长、宽、高的和,已知长方体的长是8厘米,宽是5厘米,用长、宽、高的和减去长、宽,即可求出高,再根据长方体的表面积公式:s=(ab+ah+bh)×2,体积公式:v=abh,把数据分别代入公式解答.【解答】解:60÷4﹣8﹣5=15﹣8﹣5=2(厘米)表面积:(8×5+5×2+8×2)×2=(40+10+16)×2=62×2=124(平方厘米)体积:8×5×2=40×2=80(立方厘米)答:这个长方体的高是2厘米,这个长方体的表面积是124平方厘米,体积是80立方厘米.故答案为:2、124、80.【点评】此题主要考查长方体的棱长占公式、表面积公式、体积公式的灵活运用,关键是求出长方体的高.三.判断题(共5小题)18.(2017春•渭源县校级期末)正方体的棱长扩大到原来的2倍,它的表面积也就扩大到原来的2倍.×.(判断对错)【考点】AB:长方体和正方体的表面积.【专题】18 :综合判断题;39 :找“定”法;462:立体图形的认识与计算.【分析】依据正方体的表面积公式S=a×a×6进行解答即可.【解答】解:原来的表面积:S=a×a×6=6a2,现在的表面积:S=2a×2a×6=24a2,表面积扩大:24a2÷6a2=4倍.所以题干的说法是错误的.故答案为:×.【点评】此题主要考查正方体的表面积公式的灵活应用.19.(2016•玉溪模拟)棱长为6cm的正方体的体积与表面积相等.×.(判断对错)【考点】AC:长方体和正方体的体积;AB:长方体和正方体的表面积.【专题】18 :综合判断题;462:立体图形的认识与计算.【分析】根据正方体的表面积公式:s=6a2,正方体的体积公式:v=a3,因为表面积和体积不是同类量,无法进行比较.由此解答.【解答】解:表面积:6×6×6=216(平方厘米)体积:6×6×6=216(立方厘米)因为表面积和体积不是同类量,无法进行比较.故答案为:×.【点评】此题解答关键是明确:只有同类量才能进行比较大小,不是同类量无法进行比较.20.(2016春•正定县校级期末)底面周长是8分米的正方体,它的表面积是24平方分米.√.(判断对错)【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据正方体的特征,正方体的6个面是完全相同的正方形,已知它的底面周长是8分米,首先用底面周长除以4求出底面边长,再根据正方体的表面积公式:s=6a2,把数据代入公式求出它的表面积,然后与24平方分米进行比较即可.【解答】解:8÷4=2(分米),2×2×6=4×6=24(平方分米),答:它的表面积是24平方分米.故答案为:√.【点评】此题主要考查正方形的周长公式、正方体的表面积公式的灵活运用,关键是熟记公式.21.(2016春•仁怀市校级期末)如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍.×(判断对错)【考点】AC:长方体和正方体的体积.【专题】18 :综合判断题;462:立体图形的认识与计算.【分析】根据长方体的体积计算方法和积的变化规律,长方体的体积=长×宽×高,积扩大的倍数等于因数扩大倍数的乘积.由此解答.【解答】解:长方体的体积=长×宽×高,长、宽、高都扩大3倍,它的体积就扩大:3×3×3=27倍;所以“如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍”的说法是错误的.故答案为:×.【点评】此题主要根据长方体的体积计算方法和积的变化规律解决问题.22.(2016春•黎平县校级期末)把一个长方体锻造成一个正方体铁块,形状变了,但体积不变.√(判断对错)【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.将一个长方体铁块锻造成正方体,只是形状变了,但体积不变.据此解答.【解答】解:把一块长方体的铁块锻造成正方体的铁块,形状改变了,但体积不变,所以本题说法正确;故答案为:√.【点评】此题主要考查了学生对正方体表面积及体积公式的掌握应用情况.四.解答题(共10小题)23.(2017春•渭源县校级期末)如图,如果把这个长方体完全沉没于盛满水的水槽中,会有多少水溢出来如果要包装这个盒子,至少需要多少平方厘米的包装纸(单位:厘米)【考点】AC:长方体和正方体的体积;AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】(1)溢出的水的体积就等于长方体的体积,利用长方体的体积公式即可得解;(2)求包装纸的面积实际上是求长方体的面积,利用长方体的表面积公式即可求解.【解答】解:(1)13×2×8=208(立方厘米);答:会有208立方厘米水溢出来.(2)(13×2+13×8+2×8)×2,=(26+104+16)×2,=146×2,=292(平方厘米);答:至少需要292平方厘米的包装纸.【点评】此题主要考查长方体的表面积和体积的计算方法的灵活应用.24.(2016•安溪县模拟)求出如图中长方体的体积和表面积.(单位:米)【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】长方体的表面积=(长×宽+长×高+宽×高)×2,长方体的体积=长×宽×高,已知长是5厘米,宽是3厘米,高是4厘米.把数据分别代入公式解答.【解答】解:(3×4+3×5+4×5)×2=(12+15+20)×2=47×2=94(平方米)3×4×5=60(立方米)答:这个长方体的表面积是94平方米,体积是60立方米.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式.25.(2016秋•玄武区期末)看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)【考点】8L:长方体的展开图;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】我们通过观察得到这个长方体的长是6分米,宽是9﹣6=3分米,高是11﹣3=8厘米,由此运用长方体的体积公式进行解答即可.【解答】解:长方体的体积:6×(9﹣6)×(11﹣3),=6×3×8,=144(立方厘米);答;这个纸盒的表面积是136平方厘米,体积是80立方厘米.【点评】本题考查了学生对长方体的体积公式的运用掌握情况.重点考查了空间想象能力.26.(2016秋•毕节市期中)一间平顶教室,长是8.5米,宽6米,高4.2米.教室的门窗和黑板的面积一共有35.8平方米.要粉刷教室的顶面和四面墙壁,粉刷的面积有多少平方米?【考点】AB:长方体和正方体的表面积.【分析】由题意知,粉刷的面积=教室的顶面面积+四面墙壁的面积﹣门窗和黑板的面积,据此列式解答即可.【解答】解:2×(8.5×4.2+6×4.2)+8.5×6﹣35.8=2×60.9+51﹣35.8=121.8+51﹣35.8=137(平方米).答:粉刷的面积有137平方米.【点评】本题主要考查长方体的表面积的知识点,长方体的表面积=2(长×宽+长×高+宽×高).本题需要注意减去地面的面积和教室的门窗和黑板的面积.27.(2016春•扬州校级期末)一个长方形的游泳池,从里面量长50米,宽20米,高2米,平均水深1.5米.粉刷它的四壁和地面,粉刷面积是多少平方米?【考点】AB:长方体和正方体的表面积.【专题】12 :应用题;462:立体图形的认识与计算.【分析】要在四壁和池底粉刷,只求它的5个面的总面积,根据长方体的表面积公式:S=2ab+2ah+2bh进行解答.【解答】解:(50×20+50×2+20×2)×2﹣50×20=(1000+100+40)×2﹣1000=1140×2﹣1000=2280﹣1000=1280(平方米)。

长方体、正方体各种题型练习

长方体、正方体各种题型练习

右图是由棱长均为1厘米的正方体摆成 的物体。它的表面积是( )平方厘米, 体积是( )立方厘米,至少再添( )
个小正方体,就可以得到一个较大的正 方体。
一个长方体的长宽高分别是a米,b米,c米,如 果将高增加2米,那么新长方体的表面积增加 ( )平方米;如果将宽增加3米,那么新长方 体的体积增加( )立方米。
• 19、一个正方体的棱长扩大3倍,表面积扩大( )倍,底面周长扩大( )倍,棱 长总和扩大( )倍,体积扩大( )倍,体积增加( )倍。
• 20、一个横截面积是20平方厘米、长是2米的长方体,它的体积是多少立方厘米?
一个长方体容器,底面积是8平方分米,高10分米,水 深6分米。在其中放入一个体积是24立方分米的铁块, 铁块完全浸没在水中。这时水面上升多少分米?这时 水面的高度是多少?
7.水泥厂制10根长方体铁皮通讯管道,管子横截面为边 长30厘米的正方形,管全长2米,共需多少平方米铁 皮?
•8.希望小学六一班教室长10米,宽6米,高3.5米.这 间教室的占地面积有多大?如果按每1平方米需要8w 的照明计算,这间教室需要安装多少盏40w的日光灯?
9.育才北辰学校现在需要对教室进行装修,现需要 在距离地面1米处贴一圈瓷砖。教室长10米,宽6米, 高3米,去除门窗没贴部分10平方米,现在需要贴瓷 砖的面积为多少?如果瓷砖为边长60厘米的正方形, 现在需要多少块瓷砖?
把一根长3米的长方体木料据成3段 后,表面积增加18平方分米,这根 木料原来的体积是( )立方米。
把一根长4.5米的长方体木材横截成 三段,表面积比原来增加了24平方 分米,这根木材原来的体积是( )
立方米
一个正方体的棱长是a厘米,把它 切成两个长方体,比原正方体的表 面积增加了( )平方厘米,这 两个长方体的表面积之和是( ) 平方厘米。

人教版五年级下册长方体和正方体练习题

人教版五年级下册长方体和正方体练习题

第三单元长方体和正方体练习题(1)一、填空题。

(每空1分)姓名:4. 一个长方体的长、宽、高分别为1分米、2分米、3分米,它的棱长总和是()分米,表面积是()平方分米,体积是()立方分米。

5. 棱长为10厘米的正方体,表面积是()平方厘米,体积是()立方厘米。

6. 一个长方体,底面积是20平方分米,高是5厘米,体积是()平方分米。

7. 棱长为5分米的正方体,表面积是()平方分米,底面积是()平方分米;体积是()立方分米。

8. 把一个正方体切成两个小长方体后,表面积比原来增加()分之()。

9.一个长方体的底面积是18平方分米,高是5厘米,它的体积是()平方分米。

10.正方体的棱长扩大3倍,它的表面积扩大()倍,体积扩大()倍。

11.一个长方体棱长和是144厘米,长、宽、高的比是3:2:1,它的体积是()立方厘米。

12.两个完全相同的三角形一定能拼成一个()形,所拼成的图形面积是每个三角形面积的()倍。

13.一个三角形中至少有()个锐角。

14.等腰三角形的顶角是120度,它的一个底角是()度,这个三角形是()角三角形。

一、判断题。

(每题2分)1. 棱长6分米的正方体,体积和表面积相等。

()2. 因为正方体是特殊的长方体,所以说长方体一定是正方体。

()3. 由六个面围成的立体图形不是正方体,就是长方体。

()4. 长方体相对的面完全相同。

()5. 长、宽、高都相等的长方体,一定是正方体。

( )6. 棱长是6分米的正方体,它的体积和表面积相等。

()7. 若a、b、h分别表示长方体的长、宽、高,则长方体棱长总和是4(a+b+h)。

()8. 有的长方体,可以有8条棱长相等。

()9. 任意两个梯形都可以拼成一个平行四边形。

()10. 三角形的底是28分米,是高的2倍,这个三角形的面积是196平方分米。

()11. 边长是4厘米的正方形,它的周长和面积相等。

()12. 不相交的两条直线叫做平行线。

()13. 周长相等的两个长方形,它们的面积一定相等。

长方体正方体必考题型练习题

长方体正方体必考题型练习题

如果长方体的长、宽、高分别扩大到原来的2倍, 3倍,4倍,那么体积扩大 到 原来 的 倍
一根长方体的木料的体积是20立方分米,横截面 积是4平方分米,木料长是〔 〕
一根2米长的长方体钢材,沿横截面平均截成两段
后,外表积增加0.6平方分米,这段长方体钢材原
来的体积是
立方分米。
一个正方形的铁皮,边长8分米,在它的四角各 剪去一个边长为2分米的正方形后,再把剩下的
倍.
一根长方体木料,它的横截面积是9平方厘米,把它
截成2段,外表积增加
cm2
一个无盖的长方体金鱼缸,长8分米,宽6分米, 高7分米。制作这个鱼缸共需玻璃多少平方分米? 这个鱼缸能装水多少升?〔玻璃厚度忽略不计〕
第6页,共20页。
正方体的外表积=棱长×棱长×6
把一个棱长为a的正方体,切成两个长方体,
几个物体锻造成一个物体,体积不变 把8块边长是1分米的正方体铁块熔成一个大正
方体,这个大正方体的体积和外表积各是多少?
体积:1×1×1×8=8〔dm3〕 大正方体的棱长为:2分米 大正方体的外表积:2×2×6=24〔dm2〕
第16页,共20页。
物体浸入水中的体积=排开水的体积
有一个底面积是300平方厘米、高10厘米的长方 体,里面盛有5厘米深的水。现在把一块石头浸 没到水里,水面上升2厘米。这块石头的体积是 多少立方厘米?
大正方体的棱长是小正方体的棱长的2倍,那么大
正方体的外表积是小正方体外表积的〔

倍,大正方体的体积是小正方体体积的〔 〕倍。
第9页,共20页。
长方体的体积=长×宽×高
一个长方体的长、宽、高都扩大2倍,它的外表积扩大 倍,体积扩大 倍。
一个长方体的长、宽、高分别是a米、b米、h米。如果高

长方体 正方体 练习题

长方体 正方体 练习题

1.如果长方体的长、宽、高都扩大到原来的3倍,它的棱长总和就扩大到原来的()倍,它的表面积就扩大到原来的()倍,它的体积就扩大到原来的()倍。

2.如果正方体的棱长扩大到原来的2倍,它的棱长总和就扩大到原来的()倍,它的表面积就扩大到原来的()倍,它的体积就扩大到原来的()倍。

3.一个长方体的底面积扩大到原来的2倍,高不变,它的体积()。

4.花园小区广场上铺设了4000块长6dm,宽3dm,厚0.5dm的青石板,铺设的青石板的面积是多少平方米?体积是多少立方米?5.一个长方体养鱼池长12m,宽9m,深2m,这个养鱼池的占地面积是多少平方米?.6.学校要挖一个长4m,宽2m,深0.5m的跳远沙坑,需挖土多少方?如果在坑内铺上0.4m厚的黄沙,需要黄沙多少方?7.一长方体沙坑占地面积是15m2,坑深0.4m,坑内装0.3m高的沙。

如果每方沙重1.4吨,这个沙坑有沙多少吨?8.红星村修一条长1800.m,宽12m的公路,要先铺10cm厚的三合土,再铺6cm后的沙石。

需要三合土、沙石各多少方?9.实验小学有一个池塘,从里面量长4m,宽2.5m,深0.4m。

如果池塘内要注0.3m高的水,每立方米的水重1吨,那么这个池塘需要注水多少吨?10.可燃冰是一种天然固态化合物,1m3的可燃冰可转化成164m3天然气。

全球可燃冰的存储量约是已知煤、石油和天然气总储量的2倍。

现有一棱长是3m的正方体可燃冰,可转化为多少立方米的天然气?11.一种下水管的截面是边长为8cm的正方形,教学楼上共安装了10根18m长的这样的下水管,那么制作这些下水管至少需要多少平方米的铁皮?12.一个棱长之和是72cm的正方体,它的表面积是多少平方厘米?13.如图1所示,密封的玻璃缸内水深2cm,如果把这个玻璃缸按图2的样子放置,那么缸中水深多少厘米?图1 图214.运动会中的平衡木长5m,横截面是边长0.1m的正方形,100根这样的平衡木放在一起,它们的体积是多少?15.一个正方体和长方体的体积相等。

长方体正方体巩固练习1-3

长方体正方体巩固练习1-3

长方体和正方体巩固练习(一)班级:姓名一、填空1、一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是()平方分米。

2、把一个正方体锯成两个长方体,它的表面积增加了6平方厘米,那么原正方体的表面积是()平方厘米3、把一个棱长是4厘米的正方体从中间切开,切开后每一个长方体的表面积是()平方厘米,体积是()立方厘米。

4、一个长方体,如果高增加4厘米,就成为一个正方体。

这时表面积比原来增加了112平方厘米。

原来长方体的体积是()立方厘米。

5、把一个长16cm,宽10cm高4cm的长方体切成两个完全一样的小长方体,每个小长方体的体积是()立方厘米。

每个小长方体表面积最大是()平方厘米,最小是()平方厘米。

6.两个完全一样的长方体,长、宽、高分别是5厘米、4厘米、3厘米,这两个长方体拼在一起表面积最大是()平方厘米。

最小是()平方厘米。

7、一个长方体从中间切成两个完全一样的正方体,表面积增加60平方厘米,原来长方体的表面积是()平方厘米。

8、一块长方体木料长10分米,宽6分米,高8分米,把它切成棱长是2分米的正方体木块,可以切成()块。

排成一排长()米。

二、应用题。

1、一个长方体玻璃缸,从里面量长40厘米,宽25厘米,向容器中倒入12升水,再把一个石头放入水中,这时量得容器中的深14厘米,求石块的体积?2、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,接头处还需要3厘米。

这张商标纸的面积是多少平方厘米?3、把一棱长30厘米的正方体钢坯,锻压成高和宽都是5厘米的长方体钢材.能锻造多长?4.一块长方形铁皮,长5米,宽3米,从四角各剪掉一个边长为0.5米的正方形,然后做成盒子,这个盒子的容积有多少升?5、每张办公桌抽屉长48厘米,宽25厘米,高10厘米,做2张办公桌抽屉至少用木板多少平方米?6、在一个装满水的棱长为20厘米(从里面量)的正方体水缸里,有一块被水浸没了的长方体铁块,它的长是10厘米,宽8厘米,当把铁块取出后,水位下降了2厘米,这块铁块的高是多少?长方体和正方体巩固练习(二)班级:姓名1、把五个棱长6厘米的正方体的拼成一个长方体,这个长方体的表面积是()平方厘米,体积是()立方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长方体正方体练习题
1. 一块砖的长是24cm,宽是12cm,厚是6cm,它的体积是多少立方厘米?
2. 做250个棱长是12cm的正方体纸盒,至少要用多少平方厘米硬纸板?
3. 一根长方形木料,长5m,横截面的面积是㎡。

这跟木料的体积是多少?
4. 一个没盖的铁皮工具箱,长48cm,宽30cm,高15cm。

这个工具箱至少需要多少平方厘米的铁皮?
5. 一个玻璃鱼缸的形状是正方体,棱长为3dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)
6. 做一个棱长为8dm的无盖正方体木箱,需要多少木板?
7. 小卖部要做一个长,宽40cm,高80cm的玻璃柜台,现在要在柜台各边都安上角铁,这个柜台需要多少米的角铁?
8. 用铁丝做一个长30cm,,宽20cm,高15cm的长方体框架,至少需要铁丝多少厘米?
9.一个正方体木块,棱长8cm,在它的上面中央挖去一个棱长为4cm的小正方体。

剩下木块的体积是多少?
10. 一个棱长为的正方体水箱,能盛水多少升?
11. 为迎接“五一”国际劳动节,工人叔叔要在工人俱乐部的四周装上彩灯(地面的四边不装)。

已知工人俱乐部长90m,宽55m,高20m,工人叔叔至少需要多长的彩线?
12. 一个正方体,棱长是3dm,它的体积是多少立方分米?它的表面积是多少平方分米?
13. 一个长方体的食品盒,长15cm,宽12cm,高20cm。

如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少是多少平方厘米?
14. 用一根长48cm的铁丝围成一个正方体框架,它的棱长是多少厘米?
15. 一个长方体车厢,从里面量长3m,宽,高2m。

它的容积是多少立方米?
16. 一个长方体立式空调机,它的底面积是㎡,高是,它的体积是多少立方米?
17. 一个长方体的底面积是160d㎡,高是4dm。

这个长方体的体积是多少立方米?
18.一根长方体木料,长是5m,横截面的面积是6d㎡,6根这样的木料体积是多少?
19.我家客厅用长,宽1dm,厚的木板铺地,共用了400块,这些木板一共多少立方米?
20.一个长方体的食品盒长12cm,宽5cm,高10cm,如果围着它贴一周商标纸,(上下面不贴),这种商标纸的面积至少是多少平方厘米?
21.一根长96cm的铁丝围成一个长13cm,,宽7cm的长方体框架,这个框架的高是多少厘米?
22.一块正方体的石料,棱长是4dm,它的体积是多少立方分米?每立方分米的石料重,这块石料重多少千克?
23.一个长方体鱼塘长8m,宽,深2m。

这个鱼塘的占地面积是多少?这个鱼塘的体积大约是多少立方米?
24.一根长方体钢材,长是60cm,横截面的面积是18c㎡。

这根钢材的体积是多少立方厘米?合多少立方分米?
25.公园南面要修一道长15m,厚24cm,高3m的围墙。

如果每立方米用砖
525块,这道围墙一共用砖多少块?
26.妈妈送给奶奶的生日蛋糕长2dm,宽2dm,高,奶奶把蛋糕平均分成4块,每人分到多大的一块蛋糕?
27.一个长方体的体积是720立方厘米,它的长是15cm,宽是8cm,它的高是多少厘米?
28.一辆卡车的车厢长,宽2m,高1m,里面装的沙子高9dm,如果每立方米的沙子重吨,这车沙子重多少吨?
29.学校要修一个长100m,宽60m的长方形操场,整修操场地面时,要先铺10cm厚的灰土,再铺4cm厚的煤渣。

需要灰土和煤渣各多少立方米?
30.一个正方体水泥块,棱长为50cm,它的体积是多少立方厘米?合多少立方分米?
31.有一堆150立方米的碎石,把它铺在10m宽的公路上,铺3cm厚,能铺多少米长?
32.家具厂定购500根方木,每根方木横截面的面积是24d㎡,长是3m。

这根木料一共是多少方?
33.一个长方体罐头盒长20cm,宽10cm,高6cm。

(1)在它的四周贴上商标纸,这张商标纸的面积至少是多少?(2)这个罐头盒的体积是多少?
34.一个长方体游泳池,长50m,宽25m,深,在它的底面和四壁砌上瓷砖,砌瓷砖的面积是多少平方米?
35.一个棱长3dm的正方体积木,它的体积是多少立方分米?如果在积木的表面涂上绿色油漆,涂漆部分的面积是多少平方分米?
36.为了美化环境,我们小区在院内建了一个长方形蓄水池,长10m,宽4m,深,在四周和地面抹水泥,平均每平方米用水泥2kg。

(1)这个水池
的占地面积是多少平方米?(2)一共需要多少千克水泥?(3)水池能容纳多少立方米的水?
37.妈妈要给我家的微波炉做一个布套(没有底面),这个微波炉长60cm,宽50cm,高45cm,一共用布多少?
38.做一个无盖的长方体铁皮水箱,底面是边长为的正方形,高为4dm,至少用多少铁皮?
39.营养学家建议,儿童每天水的摄入量应不少于1500ml,小刚每天用8cm,宽4cm,高10cm的长方体水杯喝6杯水,小刚每天水的摄入量达到要求了吗?
40.陈师傅要制作20根长方体通风管,管口是边长为20cm的正方形,管长1m,一共需要多少铁皮?
41.挖一个体积是50立方米的菜窖,菜窖的深是米,长10米,这个菜窖的占地面积是多少平方米?
42.学校要建一个游泳池,长40m,宽20m,深。

(1)需要挖土多少方?(2)若将四壁和地面贴瓷砖,需要多少平方米的瓷砖?(3)若每平方米瓷砖20元,一共要花多少元?
43.学校砌一道长18m,厚24cm,高的砖墙,每立方米用525块砖。

砌这道墙一共需要多少块砖?
44.一间教室长9m,宽6m,高3m,用涂料粉刷,扣除门窗20㎡,要粉刷的面积是多少平方米?
45.一个汽车油箱,里面长8dm,宽6dm,高4dm。

这个邮箱最多可装汽油多少升?每升汽油重,这个邮箱最多可装汽油多少千克?
46.一个长方体游泳池,长50m,宽25m,池里的水深。

用水泵向外排水,
每分钟排水立方米,需要多少小时才能把水排完?
47.一间办公室,长12m,宽9m,高3m。

用涂料粉刷办公室的顶棚和四面墙壁,扣除门窗面积34㎡,需要粉刷的面积是多少平方米?
48.学校挖一个长6m,宽,深的长方体沙坑,一共挖出多少方的土?运来方黄沙倒入沙坑,能否将沙坑填平?
49.一个长方体鱼池占地面积是200㎡,池内能容纳500吨的水,这个鱼池的水深多少米?(1立方米的水重1吨)
50.一个正方体和一个长方体的体积相等。

正方体的棱长是8cm,长方体的底面积是16c㎡,长方体的高是多少厘米?
51.一个长方体沙坑的长是8m,宽是4m,深是。

每方黄沙重吨,填平这个沙坑一共需要黄沙多少吨?
52.一根长方体的木料,它的横截面是边长的正方形,长是。

这根木料的体积是多少立方分米?
53.一个正方体的玻璃缸,棱长4dm,用它装满水,再把水全部倒入一个底面积为20d㎡的长方体水槽中。

水槽里的水面高多少分米?
54.学校要粉刷新教室,已知教室的长是8m,宽是6m,高是3m,扣除门窗的面积是㎡,如果每平方米需要花4元的涂料费,粉刷这个教室需要花费多少元?
55.把一个铁球放到长50cm,宽40dm,高20dm的玻璃缸中,原来水深14cm,水面现在上升到22cm,铁球的体积是多少?
56. 一个长方体水箱,长5dm,宽,高3dm,容器中的水深12cm,把一块石头浸入水中,这时量得容器中的水深15cm,石头的体积是多少?。

相关文档
最新文档