IGBT直流降压斩波电路设计设计直流降压IGBT降压斩波电路
MATLAB中IGBT降压斩波电路设计(纯电阻负载)
![MATLAB中IGBT降压斩波电路设计(纯电阻负载)](https://img.taocdn.com/s3/m/9fad520905087632311212e4.png)
IGBT降压斩波电路设计(纯电阻负载)1、设计要求输入直流电压:U d=100V;输出功率:100W;开关频率5KHz ;占空比10%~90% ;输出电压脉率:小于10% 。
设计主回路、触发电路,设计仿真模型;给出模型的仿真波形,进行分析。
2、参数计算取输出电压脉率8%,R=25Ω,由P=I2R=UI=W,得I0=2A,U0=50V;α=U0E0=50100=0.5;T=1f=15k=0.0002sL=U0(1−α)2I ∗T=50×0.52×2×0.0002=0.00125H=1.25e-3HC=U0(1−α)8LC ×TT50×(1−0.5)8(0.08×50)×0.00125×0.0002×0.0002=0.000025F=2.5e-5F3、工作原理及原理图工作原理:当开关管IGBT驱动为高电平时,IGBT导通,储能电感L被充磁,流经电感的电流线性增加,同时给电容C充电,给R供能。
当开关管IGBT驱动为低电平时,IGBT关断,电感L通过续流二极管放电,电感电流线性减少,输出电压靠输出滤波电容C放电,以及减小的电感电流维持。
4、仿真模型及波形5、分析开关管的导通与关断受控制电路输出的驱动脉冲控制。
当控制电路脉冲输出高电平时,开关管导通,续流二极管D阳极电压为零,阴极电压为电压电压Us ,因此反向截止,开关上流过电流is流经电感L向负载R供电;此时L中的电流逐渐上升,在L两端产生左端正右端负的自感电势阻碍电流上升,L将电能转化为磁能存储起来。
经过时间ton后,控制电路脉冲为低电平,开关管关断,但L中的电流不能突变,这时电感L两端产生右端正左端负的自感电势阻碍电流下降,从而使D正向偏置导通,于是L中的电流经D构成回路,电流值逐渐下降,L中储存的磁能转化为电能释放出来供给负载R。
经过时间off后,控制电路脉冲又使开关管导通,重复上述过程。
直流变换器的设计(降压)
![直流变换器的设计(降压)](https://img.taocdn.com/s3/m/5de8809a71fe910ef12df89c.png)
直流变换器的设计(降压)一、设计要求: (1)二、题目分析: (1)三、总体方案: (2)四、原理图设计: (2)五、各部分定性说明以及定量计算: (5)六、在设计过程中遇到的问题及排除措施: (6)七、设计心得体会: (6)直流变换器的设计(降压)BUCK降压斩波电路就是直流斩波中最基本的一种电路,是用BUCK作为全控型器件的降压斩波电路,用于直流到直流的降压变换。
IGBT是MOSFET与双极晶体管的复合器件。
它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。
其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。
所以用BUCK作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点。
BUCK降压斩波电路由于易驱动,电压、电流容量大在电力电子技术应用领域中有广阔的发展前景,也由于开关电源向低电压,大电流和高效率发展的趋势,促进了IGBT 降压斩波电路的发展。
一、设计要求:技术参数:输入直流电压Vin=36V输出电压Vo=12V输出电流Io=3A最大输出纹波电压50mV工作频率f=100kHz二、题目分析:电力电子器件在实际应用中,一般是由控制电路,驱动电路和以电力电子器件为核心的主电路组成一个系统。
由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断来完成整个系统的功能,当控制电路所产生的控制信号能够足以驱动电力电子开关时就无需驱动电路。
课程设计步骤分析(顺序):1.设计主电路,主电路为:采用BUCK变换器,主功率管用MOSFET;2.选择主电路所有图列元件,并给出清单;3.设计MOSFET驱动电路及控制电路;4.绘制装置总体电路原理图,绘制: MOSFET驱动电压、BUCK电路中各元件的电压、电流以及输出电压波形;5.编制设计说明书、设计小结。
IGBT降压斩波电路设计解读
![IGBT降压斩波电路设计解读](https://img.taocdn.com/s3/m/b6124a173d1ec5da50e2524de518964bcf84d208.png)
IGBT降压斩波电路设计解读首先,需要明确电路中的主要元件,包括IGBT晶体管、电感、电容和负载电阻。
IGBT晶体管是一种结合了普通MOSFET和双极型晶体管的半导体元件,可用作开关。
电感和电容则构成了滤波电路,用于减小电流和电压的纹波。
负载电阻是电路的输出负载,用于消耗电能。
IGBT降压斩波电路的工作原理如下:输入直流电压经过输入电感和滤波电容后,进入IGBT晶体管。
IGBT晶体管根据控制信号开关,将输入电压的波形转换为脉冲状的输出电压。
然后,经过输出电感和输出滤波电容进一步滤波,最后通过负载电阻供给负载。
控制信号由控制电路生成,通过与电压、电流进行反馈控制来实现输出电压的稳定调节。
在设计IGBT降压斩波电路时,需要考虑以下几个方面:1.输入电压范围:确定所需的输入电压范围,以便确定合适的IGBT和电感、电容参数。
2.输出电压和电流需求:根据负载的电压和电流需求,选择合适的负载电阻和电感、电容参数。
3.电路保护措施:考虑过压、过流等保护措施,以保护电路和负载。
4.控制电路设计:设计一个稳定可靠的控制电路,通过采样反馈信号对输出电压进行精确控制。
5.散热设计:IGBT晶体管的工作产生热量,需要适当散热,保证电路的稳定性和长寿命。
IGBT降压斩波电路的设计可以采用计算和仿真相结合的方法。
首先,使用电路分析工具进行理论计算,根据输入电压、输出电压和负载电流的需求计算出电感、电容和负载电阻的参数。
然后,使用电路仿真软件进行验证,模拟电路工作的波形和性能。
根据仿真结果进行调整和优化,直至满足设计要求。
除了设计之外,IGBT降压斩波电路的实际搭建和测试也是至关重要的。
在搭建电路时,应注意电路布局的合理性,减小信号干扰和串扰。
在测试时,可以测量输入输出电压、电流和负载电阻,通过对比实测数据和设计理论值来验证电路性能。
综上所述,IGBT降压斩波电路设计涉及多个方面的考虑,包括输入输出电压、电流需求、保护措施、控制电路设计和散热设计等。
IGBT控制的直流斩波电路设计
![IGBT控制的直流斩波电路设计](https://img.taocdn.com/s3/m/0961ff6058fafab069dc0288.png)
控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。当把死区时间控制输入端接上固定的电压(范围在0—3.3V之间)即能在输出脉冲上产生附加的死区时间。
脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。两个误差放大器具有从-0.3V到(Vcc-2.0)的共模输入范围,这可能从电源的输出电压和电流察觉得到。误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。当比较器CT放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触发器进行计时,同时停止输出管Q1和Q2的工作。若输出控制端连接到参考电压源,那么调制脉冲交替输出至两个输出晶体管,输出频率等于脉冲振荡器的一半。如果工作于单端状态,且最大占空比小于50%时,输出驱动信号分别从晶体管Q1或Q2取得。输出变压器一个反馈绕组及二极管提供反馈电压。在单端工作模式下,当需要更高的驱动电流输出,亦可将Q1和Q2并联使用,这时,需将输出模式控制脚接地以关闭双稳触发器。这种状态下,输出的脉冲频率将等于振荡器的频率。TL494内置一个5.0V的基准电压源,使用外置偏置电路时,可提供高达10mA的负载电流,在典型的0—70℃温度范围50mV温漂条件下,该基准电压源能提供±5%的精确度。
直流斩波电路设计
![直流斩波电路设计](https://img.taocdn.com/s3/m/e66a1a1f3d1ec5da50e2524de518964bcf84d2f8.png)
一、设计项目与要求1、输入直流电压U i=60V,R=8Ω;2、输出电压范围为0-100V,试选用合适斩波电路;3、计算占空比α=23%和α=59%时,负载两端输出电压和电流;4、画出α=23%和α=59%时斩波电路的电压电流波形分析图;5、IGBT的工作特性分析。
二、电路原理图设计2.1主电路的设计斩波电路:将直流电变为另一固定电压或可调电压的直流电。
也称为直流-直流变换器(DC/DCConverter)。
一般指直接将直流电变为另一直流电,不包括直流-交流-直流。
升降压斩波斩波电路结构Boost型升降压斩波变换器的特点是输出电压可以低于电源电压,也可以高于电源电压,是将降压斩波和升压斩波电路结合的一种直接变换电路。
主要由功率开关、二极管、储能电感、输出滤波电容等组成。
本次课题是在输入直流电压为60V时,想要输出电压的范围为0-100V,故而要选择的斩波电路应为升降压斩波斩波电路。
图1升降压斩波电路原理图2.2触发电路设计斩波器触发电路由三部分组成,图2为斩波器触发电路的原理图。
第一部分为由幅值比较电路U1和积分电路U2组成一个频率和幅值均可调的锯齿波发生器。
电位器RP1用来调节锯齿波的上下位置,电位器RP2用来调节锯齿波的频率,频率从100到700Hz可调。
由于晶闸管的开关速度及LC振荡频率所限,所以在斩波实验中我们一般选用200Hz这一范围。
第二部分是比较器部分。
比较器U3输入的一路是锯齿波信号,另一路是给定的电平信号,输出为前沿固定后沿可调的方波信号。
改变输入的电平信号的值,则相应改变了输出方波的占空比。
第三部分是比较器产生的方波送到4098双单稳电路U4,单稳电路则在方波的前沿和后沿分别产生两个脉冲,如图4所示,其后沿脉冲随方波的宽度变化而移动,前沿脉冲相位则保持不变,输出的脉冲经三极管放大通过脉冲变压器输出。
将上述两脉冲分别送至主晶闸管及辅助晶闸管,其中方波前沿触发脉冲G1、K1接主晶闸管VT1,而后沿触发脉冲G2、K2接辅助晶闸管VT2。
IGBT降压斩波电路设计
![IGBT降压斩波电路设计](https://img.taocdn.com/s3/m/5401e31bbf23482fb4daa58da0116c175e0e1e4b.png)
IGBT降压斩波电路设计
首先,我们需要确定电路的输入和输出电压。
根据要求,我们假设输
入电压为Vin,输出电压为Vout。
接下来,我们选择合适的IGBT和二极管。
IGBT是一种功率开关器件,具有较高的开关速度和额定电流能力。
二极管则用于反向电压的导通,以
避免IGBT在关断时产生负压。
在设计电路时,我们需要考虑到IGBT和二极管的额定电压和电流。
根据这些参数,我们可以选择合适的元器件,并计算电路中需要的电阻值
和电容值。
```
Vin
│
▼
┌─┴─┐
│IGBT│
└┬─┬┘
││D1
││
││
┴┴
┌─┴─┐
│IGBT│
└─┬─┘
│
▼
Vout
```
在这个电路中,IGBT1和IGBT2交替导通,通过调整其导通比例和频率来控制输出电压。
为了保证电路的稳定性,我们可以使用负载电流的反馈控制技术,通过测量负载电流来实时调整IGBT的导通比例。
这样可以避免负载电流过大或过小,保证电路的安全运行。
为了提高电路的效率,我们可以使用高频交流变压器来提高功率传输效率。
变压器可以将输入电压转换为所需的输出电压,并且可以通过变换比例调整输出电压。
此外,在设计电路时,还需要考虑到电路的保护机制。
例如,可以使用过流保护和过温保护来避免电路的过电流和过热情况。
总结起来,IGBT降压斩波电路设计需要考虑电路的输入输出电压、元器件的选择、稳定性、效率和保护机制等因素。
通过合理的设计,可以实现稳定高效的电源供应。
IGBT升压斩波电路设计
![IGBT升压斩波电路设计](https://img.taocdn.com/s3/m/de2edaea3086bceb19e8b8f67c1cfad6185fe979.png)
IGBT升压斩波电路设计引言在工业、能源和交通等领域中,高稳定性的直流电源得到广泛应用。
而升压斩波电路是一种常见的直流电源升压技术,在短时间内将直流电压升高到所需电压水平,同时保证电路稳定性和高效性。
因此,设计一种合理可行的IGBT升压斩波电路对于实际应用有非常重要的意义。
1.升压斩波电路原理升压斩波电路是通过改变输入电流的波形来实现电压的升高,使电压高于输入电压。
其实现原理是利用三极管的导通与截止控制,将电压进行放大、升压和限流的过程。
具体原理如下:1.在升压周期内,当输入电压低于输出电压,将三极管S1导通,使电感L储存能量。
2.当电压达到一定值时,开关S1关闭,而三极管S2导通,以使储存在电感L中的能量释放,从而产生高电压。
3.在降压周期内,当输入电压高于输出电压时,电感L将存储电流,而电容C通过三极管S2连接会被放电,以使电路中的电流保持稳定。
4.当电压下降到一定程度后,开关S2关闭,而三极管S1导通,使剩余能量继续储存于电感L中,以进行下一次升压。
2.IGBT升压斩波电路设计在设计IGBT升压斩波电路之前,需要考虑一些参数和特性,如输出电压、电流、升压斜率、升压率、升压时间、谐振频率、效率和稳定性等因素。
在设计过程中,需要根据实际需求进行合理参数选择和参数调整,针对性优化设计,以达到最佳的工作效果。
2.1 设计参数选择在设计IGBT升压斩波电路时,首先需要考虑输出电压和电流的大小,以确定升压斩波电路的类型和参数。
在选择输出电压和电流时,需要考虑实际应用环境中所需的电压范围和电流稳定性,选择合适的交流输入电压和电容参数。
此外,根据所选择的参数,还需要适当调整升压斜率、升压率和升压时间等因素,以提高效率和稳定性。
2.2 升压斩波电路拓扑结构设计针对不同的电压和电流要求,升压斩波电路有多种不同的拓扑结构,如单臂斩波、全桥斩波、半桥斩波和反平衡斩波等。
在选择拓扑结构时,需要考虑它们的优缺点和适用规律,确定最佳的设计方案。
IGBT升降压斩波电路设计
![IGBT升降压斩波电路设计](https://img.taocdn.com/s3/m/efe2b55f551810a6f42486a7.png)
电力电子技术课程设计报告课题名称升降压斩波电路设计IGBT专业班级学号学生姓名指导教师指导教师职称评分完成日期:2015年1月13日摘要直流斩波电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器,诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。
直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。
全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。
升降压斩波电路综合了升压电路和降压电路的优点,可以在一个电路中同时实现升压和降压,简化了电路结构。
而全控型器件IGBT的使用为外部自动控制提供了巨大便利,因此其使用范围在直流斩波电路中很广泛,对其做研究有很好的使用意义。
本文首先比较了两种具有升降压功能的DC/DC变换电路,具体地分析了两种DC/DC变换器的设计(拓扑结构、工作模式和储能电感参数设计),详细地阐述了该DC/DC变换器控制系统的原理和实现,通过MATLAB软件中的Simulink部分建模仿真,最后给出了测试结果。
关键词全控型; IGBT升降压;直流斩波;:目录目录 (1)1 设计任务要求 (1)1.1 设计任务 1 1.2 设计要求22方案选择 (2)2.1方案一22.2方案二 23 电路设计 (3)3.1 主电路设计3 3.2 驱动电路设计33.3保护电路 44 仿真控制 (5)5心得体会 (5)参考文献 (6)附录1 程序清单 (6)附录2 元件清单 (7)答辩记录 (7)1 设计任务要求1.1 设计任务IGBT升降压斩波电路设计(纯电阻负载)设计条件:(1)输入直流电压,Ud=50V;(2)输出功率:300W(3)开关频率5KHZ(4)占空比10%-50%10%输出电压脉率:小于 (5)1.2 设计要求1,分析题目要求,提出2-3种实现方案,比较并确定主电路结构和控制结构方案;2,设计主电路原理图,触发电路原理图,并设置必要的保护电路;3,参数计算,选择主电路及保护电路元件参数4,利用仿真软件MATLAB等进行电路优化;5,最好可以建模并仿真完成相关的设计电路。
降压式直流斩波电路
![降压式直流斩波电路](https://img.taocdn.com/s3/m/4fafebea31126edb6e1a107a.png)
实验一降压式直流斩波电路(Buck )、原理图在控制开关VT 导通ton 期间,二极管VD 反偏,电源E 通过电感L 向负载 R 供电,此间iL 增加,电感L 的储能也增加,导致在电感两端有一个正向电压 Ul=E-u0,左正右负,这个电压引起电感电流iL 的线性增加。
2)在控制开关VT 关断toff 期间,电感产生感应电势,左负右正,使续流二 极管VD 导通,电流iL 经二极管VD 续流,uL=-u0,电感L 向负载R 供电,电 感的储能逐步消耗在R 上,电流iL 线性下降,如此周而复始周期变化。
如图1-1。
iDV D Z\C=P R UO图1-1电路图二、建立仿真模型根据原理图用matalb 软件画出正确的仿真电路图,如图1-2仿真参数,算法(solver ) ode15s,相对误差(relativetoleranee ) 1e-3,开始 时间0结束时间10,如图1-3。
IGBTiL"I ■?图1-2 仿真电路图(截图)□Cp^^rgMl€ocpi\:2□图1-3 (截图)电源参数,电压100v,如图1-4。
B Block Parameters: OC Voltage SourceDC Swioe |m®k) lbrik|Id&al DC source.Paiamet&rgamphude(V]MMsifements Norw |T;图1-4 (截图)晶闸管参数,如图1-5旨Block Parameters: IGBT/Diod^IGET 心odehwk)恤]Imptmerts an ide® IGBT. G ED. or and dudePadameiari;Ihternai lesislance Ron (Ohm?)图1-5 (截图)电感参数,如图1-6图1-6 (截图)电阻参数,如图1-7图1-7 (截图)二极管参数设置,如图1- 8。
1 fir* I4 np#*k4 ***h • WW RC mufatwtn 5Uii ・g CModfr AhCiM Zt i fnd »wi 曲・<时 f)or>| vmd rtdWc 曲 艮呦 Pot nwf 4Dck :4fiCK g fwy r^lucftanc* 曲4tt be "S ««■Th«- D«odte fTvedvKP ic rihMe rt 井刚*t "wfe^ PWenW 尊A«tttanc« Ren KMmta tftdmnc* ten 则 CF VMW J v^Lggt VT ca1r*4wwWts|A|: HC'「— iX~1 剝“tg rewiarcfr Ai f>vw;f 99Q| c4C4c*Jwe C* f ) i$h0^HV4iM«cnef*pQftSf^ _)[ £*"=^ - EM>电容参数设置,如图1-9三、仿真参数设置设置触发脉冲占空比 a 分别为20%、50%、70%、90%。
基于IGBT的降压斩波电路
![基于IGBT的降压斩波电路](https://img.taocdn.com/s3/m/4267573e9b89680202d825d2.png)
.1引言随着电力电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。
电子设备的小型化和低成本化使电源向轻、薄、小和高效率方向发展。
开关电源因其体积小,重量轻和效率高的优点而在各种电子信息设备中得到广泛的应用。
直流电动机在冶金、矿山、化工、交通、机械、纺织、航空等领域中已经得到了广泛的应用。
直流电动机的启动和调速性能、过载能力强等特点显得十分重要。
计算机在控制领域和高开关频率、全控型第二代电力半导体器件的发展,以及脉宽调制(PWM)直流调速技术的应用,直流电机得到广泛应用。
直流电动机转速的控制方法可分励磁控制法与电枢电压控制法两类。
励磁控制法控制磁通,其控制功率虽然小,但低速时受到磁饱和的限制,高速时受到换向火花和换向器结构强度的限制;而且由于励磁线圈电感较大,动态响应较差。
所以常用的控制方法是改变电枢端电压调速的电枢电压控制法,调节电阻即可改变端电压,达到调速目的。
但这种传统的调压调速方法效率低。
目前,市场上用的最多的IGBT直流斩波器,它是属于全控型斩波器,它的主导器件采用国际上先进的电力电子器件IGBT,由门极电压控制,从根本上克服了晶闸管斩波器及GTR斩波器的缺点。
该斩波器既能为煤矿窄轨电机车配套的调速装置,针对不同的负载对象,做一些少量的改动又可用于其它要求供电电压可调的直流负载上。
与可控硅脉冲调速方式和电阻调速方式相比,具有明显的优点。
IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。
IGBT是MOSFET与双极晶体管的复合器件。
它既有MOSFET易驱动的特点,又具有功率晶体管电压、..电流容量大等优点。
其频率特性介于MOSFET与功率晶体管之间,可正常工作于几千赫兹频率围,故在较高频率的大、中功率应用中占据了主导地位。
所以用IGBT作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点。
IGBT降压斩波电路设计
![IGBT降压斩波电路设计](https://img.taocdn.com/s3/m/d956624cf61fb7360a4c654f.png)
目录摘要 (1)1前言 (1)2 方案确定 (2)3主电路设计 (2)3.1 主电路方案 (2)3.2 工作原理 (3)3.3参数分析 (4)4控制电路设计 (5)4.1 控制电路方案选择 (5)4.2 工作原理 (6)4.3 控制芯片介绍 (7)5驱动电路设计 (9)5.1 驱动电路方案选择 (9)5.2工作原理 (10)6保护电路设计 (11)6.1 过压保护电路 (11)6.1.1 主电路器件保护 (11)6.1.2 负载过压保护 (12)6.2 过流保护电路 (13)7系统仿真及结论 (14)7.1 仿真软件的介绍 (14)7.2仿真电路及其仿真结果 (14)心得体会 (16)参考文献 (17)致谢 (18)IGBT降压斩波电路设计摘要:直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流电变流电路和间接直流电变流电路。
直接直流电变流电路也称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。
间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称带隔离的直流-直流变流电路或直-交-直电路。
直流斩波电路的种类有很多,包括六种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路。
Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,利用不同的斩波电路的组合可以构成符合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等。
利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。
关键字:IGBT 直流斩波降压斩波1前言随着电力电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。
伴随着人们对开关电源的进一步升级,低电压,大电流和高效率的开关电源成为研究趋势。
开关电源分为AC/DC和DC/DC,其中DC/DC 变换已实现模块化,其设计技术和生产工艺已相对成熟和标准化。
IGBT降压斩波电路设计
![IGBT降压斩波电路设计](https://img.taocdn.com/s3/m/7ae63b6a0b1c59eef8c7b4d0.png)
1引言1.1 直流斩波电路的意义及功能直流斩波电路的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流-直流变换器。
直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流-交流-直流的情况。
直流变换电路的用途非常广泛,包括直流电动机传动、开关电源、单相功率因数校正,以及用于其他领域的交直流电源。
斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。
IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。
IGBT降压斩波电路由于易驱动,电压、电流容量大在电力电子技术应用领域中有广阔的发展前景,也由于开关电源向低电压,大电流和高效率发展的趋势,促进了IGBT降压斩波电路的发展。
1.2 本人所做的工作这里首先讨论了降压斩波电路主电路的工作原理及器件的参数选择、额定参数计算,并设计了PWM(脉冲宽度调制)控制方式的降压电路,并应用Matlab的可视化仿真工具Simulink,对该降压斩波主电路进行了建模,并对仿真结果进行了分析,既避免了繁琐的绘图和计算过程,又尝试得到了一种直观、快捷分析直流变换电路的新方法。
2 系统总体方案1.1设计课题IGBT直流降压斩波电路设计1.2课程设计目的1.加深理解《电力电子技术》课程的基本理论2.掌握电力电子电路的一般设计方法,具备初步的独立设计能力3.学习MATLAB仿真软件及各模块参数的确定1.3设计要求1.电源电压:直流U d =100V2.输出功率:400W3.占空比5.0=α4.开关频率5KHz5.L=100mH 2.4 主电路及其原理降压斩波电路的原理图如图2-1所示。
该电路使用一个全控型器件V ,图中为IGBT,若采用晶闸管,需设置使晶闸管关断的辅助电路。
图2-1中,为在V 关断时给负载中的电感电流提供通道,设置了续流二极管VD 。
若负载中无反电动势时,只需令E M =0。
直流降压斩波电路
![直流降压斩波电路](https://img.taocdn.com/s3/m/62541d716bec0975f465e2fe.png)
.目录第1章总体方案 (2)第2章主电路设计 (3)2.1 工作原理 (3)2.2 参数分析 (4)2.3 元件型号选择 (5)第3章控制电路设计 (5)3.1 控制电路方案选择 (5)3.2 工作原理 (7)第4章驱动电路设计 (8)4.1 驱动电路方案选择 (8)4.2 工作原理 (9)第5章保护电路设计 (10)5.1 过压保护电路 (10)5.2 过流保护电路 (12)第6章系统仿真 (13)6. 1 电路总图 (13)6.2MATLAB的仿真结果 (14)6.3 仿真结果分析 (15)第7章课程设计总结 (15)第8章参考文献 (16)第1章总体方案电力电子器件在实际应用中,一般是由控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。
由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断来完成整个系统的功能,当控制电路所产生的控制信号能够足以驱动电力电子开关时就无需驱动电路。
根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路,设计出降压斩波电路的结构框图如图1所示。
图1降压斩波电路结构框图在图1结构框图中,控制电路是用来产生降压斩波电路的控制信号,控制电路产生的控制信号传到驱动电路,驱动电路把控制信号转换为加在开关控制端,可以使其开通或关断的信号。
通过控制开关的开通和关断来控制降压斩波电路的主电路工作。
控制电路中的保护电路是用来保护电路的,防止电路产生过电流现象损害电路设备。
第2章 主电路设计2.1 工作原理根据所学的知识,直流降压斩波主电路如图2所示:图2 主电路图直流降压斩波主电路使用一个全控器件IGBT 控制导通。
用控制电路和驱动电路来控制IGBT 的通断,当t=0时,驱动IGBT 导通,电源E 向负载供电,负载电压0u =E ,负载电流0i 按指数曲线上升。
电路工作时波形图如图3所示:图3 降压电路波形图t O O O E O t t tE M i G t t T i G t on t off i o i 1i 2I 10I 20t 1u oa)b)O O T E E i G t on t off i o t x i 1i 2I 20t 1t 2u o当1t t =时刻,控制IGBT 关断,负载电流经二极管D V 续流,负载电压0u 近似为零,负载电流指数曲线下降。
IGBT的降压斩波电路 2
![IGBT的降压斩波电路 2](https://img.taocdn.com/s3/m/1160e710650e52ea5518982b.png)
引言电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。
开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。
伴随着人们对开关电源的进一步升级,低电压,大电流和高效率的开关电源成为研究趋势。
电子设备的小型化和低成本化使电源向轻,薄,小和高效率方向发展。
开关电源因其体积小,重量轻和效率高的优点而在各种电子信息设备中得到广泛的应用。
其中IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。
IGBT是MOSFET与GTR的复合器件。
它既有MOSFET易驱动的特点,输入阻抗高,又具有功率晶体管电压、电流容量大等优点。
其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。
所以用IGBT作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点,因此发展很快。
1方案确定电力电子器件在实际应用中,一般是由控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。
由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断,来完成整个系统的功能。
根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路,设计出降压斩波电路的结构框图如图1-1所示。
控制电路(含保护电路)驱动电路主电路图1-1降压斩波电路结构框图在图1结构框图中,控制电路是用来产生降压斩波电路的控制信号,控制电路产生的控制信号传到驱动电路,驱动电路把控制信号转换为加在开关控制端,可以使其开通或关断的信号。
通过控制开关的开通和关断来控制降压斩波电路的主电路工作。
控制电路中的保护电路是用来保护电路的,防止电路产生过电流现象损害电路设备。
IGBT直流降压斩波电路设计
![IGBT直流降压斩波电路设计](https://img.taocdn.com/s3/m/e9fc57cfce2f0066f4332210.png)
目录1设计原理分析 (1)1.1总体结构分析 (1)1.2主电路的设计 (1)1.3触发电路的选型 (2)1.4驱动电路选型 (3)1.5整流滤波电路 (5)2. 设计总电路图及参数 (6)2.1设计总电路图 (6)2.2 元件参数计算 (8)3. 元器件清单 (10)小结 (11)参考文献 (11)IGBT 直流降压斩波电路的设计1设计原理分析1.1总体结构分析直流斩波电路的功能是将直流电变为另一固定电压或可调电压的直流电。
它在电源的设计上有很重要的应用。
一般来说,斩波电路的实现都要依靠全控型器件。
在这里,我所设计的是基于IGBT 的降压斩波短路。
直流降压斩波电路主要分为三个部分,分别为主电路模块,控制电路模块和驱动电路模块。
电路的结构框图如下图(图1)所示。
图1 电路结构框图1.2主电路的设计主电路是整个斩波电路的核心,降压过程就由此模块完成。
其原理图如图2所示。
图2 主电路原理图如图,IGBT 在控制信号的作用下开通与关断。
开通时,二极管截止,电流io 流过大i EV +-MRLVD a)i oE Mu oi G电源 触发电路 驱动电路 主电路整流滤波电路电感L ,电源给电感充电,同时为负载供电。
而IGBT 截止时,电感L 开始放电为负载供电,二极管VD 导通,形成回路。
IGBT 以这种方式不断重复开通和关断,而电感L 足够大,使得负载电流连续,而电压断续。
从总体上看,输出电压的平均值减小了。
输出电压与输入电压之比α由控制信号的占空比来决定。
这也就是降压斩波电路的工作原理。
降压斩波的典型波形如下图所示。
图3 降压电路波形图图2中的负载为电动机,是一种放电动式负载。
反电动势负载有电流断续和电流连续两种工作状态。
分别入图3中b )和a )所示。
无论哪一种情况,输出电压的平均值都与负载无关,其大小为:(1-1)T on 表示导通的时;T off 表示截止的时间 ;α表示导通时间占空比。
对于输出电流,当0U >E 时电流连续,输出电流平均值大小为:(1-2) 当Uo<E 时,电流既无法通过IGBT 也无法通过二极管。
基于IGBT的降压斩波电路
![基于IGBT的降压斩波电路](https://img.taocdn.com/s3/m/21c1a769770bf78a6429547d.png)
1 引言随着电力电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。
电子设备的小型化和低成本化使电源向轻、薄、小和高效率方向发展。
开关电源因其体积小,重量轻和效率高的优点而在各种电子信息设备中得到广泛的应用。
直流电动机在冶金、矿山、化工、交通、机械、纺织、航空等领域中已经得到了广泛的应用。
直流电动机的启动和调速性能、过载能力强等特点显得十分重要。
计算机在控制领域和高开关频率、全控型第二代电力半导体器件的发展,以及脉宽调制(PWM)直流调速技术的应用,直流电机得到广泛应用。
直流电动机转速的控制方法可分励磁控制法与电枢电压控制法两类。
励磁控制法控制磁通,其控制功率虽然小,但低速时受到磁饱和的限制,高速时受到换向火花和换向器结构强度的限制;而且由于励磁线圈电感较大,动态响应较差。
所以常用的控制方法是改变电枢端电压调速的电枢电压控制法,调节电阻即可改变端电压,达到调速目的。
但这种传统的调压调速方法效率低。
目前,市场上用的最多的IGBT直流斩波器,它是属于全控型斩波器,它的主导器件采用国际上先进的电力电子器件IGBT,由门极电压控制,从根本上克服了晶闸管斩波器及GTR 斩波器的缺点。
该斩波器既能为煤矿窄轨电机车配套的调速装置,针对不同的负载对象,做一些少量的改动又可用于其它要求供电电压可调的直流负载上。
与可控硅脉冲调速方式和电阻调速方式相比,具有明显的优点。
IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。
IGBT是MOSFET与双极晶体管的复合器件。
它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。
其频率特性介于MOSFET与功率晶体管之间,可正常工作于几千赫兹频率围,故在较高频率的大、中功率应用中占据了主导地位。
所以用IGBT作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点。
IGBT直流斩波电路的设计
![IGBT直流斩波电路的设计](https://img.taocdn.com/s3/m/15ba51c5e45c3b3566ec8b60.png)
目录1设计原理分析............................................................................................................ 错误!未定义书签。
1.1总体结构分析................................................................................................. 错误!未定义书签。
1.2主电路的设计................................................................................................. 错误!未定义书签。
1.3触发电路的设计............................................................................................ 错误!未定义书签。
1.4驱动电路设计................................................................................................. 错误!未定义书签。
1.5保护电路分析................................................................................................. 错误!未定义书签。
2仿真分析与调试....................................................................................................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1设计原理分析 (1)1.1总体结构分析 (1)1.2主电路的设计 (1)1.3触发电路的选型 (2)1.4驱动电路选型 (3)1.5整流滤波电路 (5)2. 设计总电路图及参数 (6)2.1设计总电路图 (6)2.2 元件参数计算 (8)3. 元器件清单 (10)小结 (11)参考文献 (11)IGBT 直流降压斩波电路的设计1设计原理分析1.1总体结构分析直流斩波电路的功能是将直流电变为另一固定电压或可调电压的直流电。
它在电源的设计上有很重要的应用。
一般来说,斩波电路的实现都要依靠全控型器件。
在这里,我所设计的是基于IGBT 的降压斩波短路。
直流降压斩波电路主要分为三个部分,分别为主电路模块,控制电路模块和驱动电路模块。
电路的结构框图如下图(图1)所示。
图1 电路结构框图1.2主电路的设计主电路是整个斩波电路的核心,降压过程就由此模块完成。
其原理图如图2所示。
图2 主电路原理图如图,IGBT 在控制信号的作用下开通与关断。
开通时,二极管截止,电流io 流过大i EV +-MRLVD a)i oE Mu oi G电源 触发电路 驱动电路 主电路整流滤波电路电感L ,电源给电感充电,同时为负载供电。
而IGBT 截止时,电感L 开始放电为负载供电,二极管VD 导通,形成回路。
IGBT 以这种方式不断重复开通和关断,而电感L 足够大,使得负载电流连续,而电压断续。
从总体上看,输出电压的平均值减小了。
输出电压与输入电压之比α由控制信号的占空比来决定。
这也就是降压斩波电路的工作原理。
降压斩波的典型波形如下图所示。
图3 降压电路波形图图2中的负载为电动机,是一种放电动式负载。
反电动势负载有电流断续和电流连续两种工作状态。
分别入图3中b )和a )所示。
无论哪一种情况,输出电压的平均值都与负载无关,其大小为:(1-1)T on 表示导通的时;T off 表示截止的时间 ;α表示导通时间占空比。
对于输出电流,当0U >E 时电流连续,输出电流平均值大小为:(1-2) 当Uo<E 时,电流既无法通过IGBT 也无法通过二极管。
于是便出现了电流断续的现象。
一般不希望出现电流断续的现象,因此需要通过控制信号占空比的调节来维持负载的电流。
1.3触发电路的选型根据对输出电压平均值进行调制的方式不同,斩波电路有三种控制方式:1)保持开关周期T 不变,调节开关导通时间t on ,称为脉冲宽度调制或脉冲调宽型:tO O OE OtttE Mi G ttTi Gt ont offi oi 1i 2I 10I 20t 1u oa)b)O O T EEi G t ont offi otxi 1i 2I 20t 1t 2u oE E TtE t t t U α==+=on off on on o RE U I Moo -=2)保持导通时间不变,改变开关周期T,成为频率调制或调频型;3)导通时间和周期T都可调,是占空比改变,称为混合型。
其中第一种是最常用的方法。
PWM控制信号的产生方法有很多。
这里我使用的是IGBT 的专用触发芯片SG3525,其电路原理图如下。
图4 PWM信号产生电路SG3525所产生的仅仅只是PWM控制信号,强度不够,不能够直接去驱动IGBT,中间还需要有驱动电路将信号放大。
另外,主电路会产生很大的谐波,很可能影响到控制电路中PWM信号的产生。
因此,还需要对控制电路和主电路进行电气隔离。
1.4驱动电路的选型IGBT是电力电子器件,控制电路产生的控制信号一般难以以直接驱动IGBT。
因此需要信号放大的电路。
另外直流斩波电路会产生很大的电磁干扰,会影响控制电路的正常工作,甚至导致电力电子器件的损坏。
因而还设计中还学要有带电器隔离的部分。
具体来讲IGBT的驱动要求有一下几点:1. 动态驱动能力强,能为IGBT栅极提供具有陡峭前后沿的驱动脉冲。
否则IGBT会在开通及关延时,同时要保证当IGBT损坏时驱动电路中的其他元件不会被损坏。
2. 能向IGBT提供适当的正向和反向栅压,一般取+15 V左右的正向栅压比较恰当,取-5V反向栅压能让IGBT可靠截止。
3. 具有栅压限幅电路,保护栅极不被击穿。
IGBT栅极极限电压一般为土20 V,驱动信号超出此范围可能破坏栅极。
4. 当IGBT处于负载短路或过流状态时,能在IGBT允许时间内通过逐渐降低栅压自动抑制故障电流,实现IGBT的软关断。
驱动电路的软关断过程不应随输入信号的消失而受到影响。
当然驱动电路还要注意其他几个问题。
主要是要选择合适的栅极电阻Rg和Rge。
以及要有足够的输入输出电隔离能力,要能够保证输入输出信号无相互影响。
我采用的IGBT的驱动电路是专用的混合集成驱动器,下面给出的是三菱公司的M57962L型IGBT驱动器的接线图。
这些混合集成驱动器内部都有退饱和检测和保护环节,当发生过电流时能快速响应但慢速关断IGBT,并向外部电路给出故障信号。
M57962L输出的正驱动电压均为+15V左右,负驱动电压为-10V。
图5 M57962L型IGBT驱动器的接线图1.5整流滤波电路由于生活中给的都是220V的交流电,所以我们在进行直流斩波时,第一步是把交流电进行变压整流滤波成为直流电压。
下面是我使用的整流滤波电路。
电容为滤波电容。
具体电路如下图。
图6 整流滤波电路2.设计总电路图及参数2.1设计总电路图经过以上对整流滤波电路,主电路,触发电路,驱动电路的分析与设计,得到直流降压斩波电路的总电路图如下图所示。
图7 总电路图2.2元件参数计算2.2.1由图3可得如下分析基于分时段线性电路这一思想,按V 处于通态和处于断态两个过程来分析,初始条件分电流连续和断续。
电流连续时得出(1-3)(1-4)式中, , , ,I10和I20分别是负载电流瞬时值的最小值和最大值。
把式(1-3)和式(1-4)用泰勒级数近似,可得(1-5)平波电抗器L 为无穷大,此时负载电流最大值、最小值均等于平均值。
(1-5)所示的关系还可从能量传递关系简单地推得,一个周期中,忽略电路中的损耗,则电源提供的能量与负载消耗的能量相等,即则假设电源电流平均值为I1,则有其值小于等于负载电流Io ,由上式得R E m e e R E R E e e I mT t ⎪⎪⎭⎫ ⎝⎛---=-⎪⎪⎭⎫ ⎝⎛--=1111//101ραρττR E m e e R E R E e e I m T t ⎪⎪⎭⎫⎝⎛---=-⎪⎪⎭⎫ ⎝⎛--=----ραρττ1111//201R L /=ττρ/T =E E m m/=αρττ=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=T T t t 11/()o IREm II =-≈≈α2010T I E T RI t EI o m o on o +=2R E E I m o -=αo o onI I T t I α==1o o o IU EI EI ==α1即输出功率等于输入功率,可将降压斩波器看作直流降压变压器。
电流断续时有I10=0,且t=ton+tx 时,i2=0,可以得出当offxt t <时,电路为电流断续工作状态,offxt t <是电流断续的条件,即输出电压平均值为负载电流平均值为根据上式可对电路的工作状态做出判断。
该式也是最优参数选择的依据。
2.2.2 假设设计要求VU d100=,A I d10=,我令直流电压输入V E 200=,则由BUCK 降压斩波电路公式E U dα=得导通占空比为50%,在此为了方便令V E M 0=,故Ω=10R ,可选型号为10K 。
根据之前电路分析,电感应为无穷大,故取H L10=,可选型号为cmso805-6r3 。
另外,为了使输出的波形更加稳定,我在R 上并联了滤波电容C ,取F C 1.0=可选型号为BSMJ-0.25-2-1。
又有前述可知要求供给斩波的直流电压为200V 。
则 变压器二次侧电压有效值为: 222.22V0.9 / 200 U2== (1-6) 二次侧电流有效值为:7.07A 2 /10 I 2== (1-7) 由变压器容量公式 I2 * U2 S = (1-8)由此可得:⎥⎦⎤⎢⎣⎡--=-m em t x αρτ)1(1ln 11-->ραρe e m E m T t t T E t t T E t U x on m x on on o ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+=--+=1)(αRE U R E m T t t t i t i T I mo x on t t t t o on xon on -=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+=⎰⎰+α021d d 1S=1571.10V A一次侧电流最大有效值为:7.14A220SI1=÷=(1-9)对于IGBT,它所承受的最大电压为200V,最大电流为10A。
由于IGBT很容易过电损坏,选择器件是留足两倍的裕量。
则选择IGBT的额定电压为400V,额定电流为20A,由此可选得型号为IRG4PC-40U 。
另外,续流二极管承受最大电压和电流与IGBT相同,也采用相同方式来整定器件参数,即其额定电压也与IGBT相同,由此可选得型号为1N4007。
在滤波电路中,单个二极管的平均电流为0.45U2/R;平均压降为2U2(为全波整流的一半)。
I dvt =0.45×222.22÷10=10AUdvt =2×222.22=444.44v在选择器件型号的时候可以选择电流留有两倍裕量20A,电压留有一点五倍裕量666.66v。
由此可选二极管型号1N5396 。
3.1 元器件清单:元件名称元件型号数量数值大小电源交流※220v电容BSMJ-0.25-2-1(C5)BSMJ-0.25-5-1(C6) 2C5=0.1F C6=100pF普通二极管1N5396 4 13333.2w 续流二极管1N4007 1 80000w IGBT IRG4PC40U 1 80000w 电感cmso805-6r3 1 10H 电阻10K 1 10Ω小结在此次课程设计中,我做的是降压直流斩波电路,其要求是输出电压为100V,电流为10A。
在电力电子技术中,我们学习了直流斩波原理,故此次课程设计更加加深了我对这一章的了解。
其中整个电路包括整流滤波电路,降压直流斩波主电路,以及IGBT的触发电路和驱动电路。
触发电路使用的是PWM控制,驱动电路将其信号放大,控制IGBT的关断和导通,从而改变输出直流电压的大小,达到连续调节的目的。
此次课程设计我大概用了2个星期的时间,遇到了很多问题,也学到了很到知识。
每一次跌倒都是最好的成长。
只有把理论跟实践相结合,从实践中得出结论,分析理论,才能跟好的掌握所学知识,同时也提高了我们的实际动手能力和独立思考能力。