高等数学函数的极限与连续习题精选及答案
高等数学课后习题答案--第一章
![高等数学课后习题答案--第一章](https://img.taocdn.com/s3/m/e8ac2e7f5acfa1c7aa00cce6.png)
《高等数学》习题参考资料第一篇 一元函数微积分第一章 极限与连续§1 函 数习 题1.确定下列初等函数的定义域:(1) 21)(2−−+=x x x x f ;(2)4)(2−=x x f ;(3) 21arcsin )(−=x x f ;(4)2)5lg()(x x x f −=;(5) 4lg )5lg()(2−−=x x x f ;(6)x x x f cos sin )(−=。
1. 【答案】(1) )},2()2,1()1,(|{:+∞∪−∪−−∞∈=x x D (2) )},2[]2,(|{:+∞∪−−∞∈=x x D (3) ]}3,1[|{:;−∈=x x D (4) )}5,0()0,(|{:∪−∞∈=x x D (5) ]}4,1[|{:∈=x x D (6)+ +∈=+∞−∞=U k k k x x D ππ452,412|:.2. 作出下列函数的图象:(1)|sin |sin )(x x x f −=;(2)|1|2)(−−=x x f ;(3)+−−=,1,1,21)(x x x x f .12,21,1||−<<−<<≤x x x 2 【答案】 (1)2(2)2 (3)3.判断下列函数的奇偶性:(1)x x x f ++−=11)(;(2)xxx f x x +−+−=11lg110110)(;(3)x x a a x f x x sin )(++=−;(4))1lg()(2x x x f ++=。
3. 【答案】 (1) 偶函数; (2) 偶函数; (3) 偶函数; (4) 奇函数 .4.证明:两个奇函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数。
4. 【答案】 设)(x f ,)(x h 是奇函数, )(x g 是偶函数,)()()(x h x f x f =,)()()(x g x f x G =, 于是)()()(x h x f x F −−=−))())(((x h x f −−=)()()(x F x h x f ==, 因此)(x F 是偶函数.)()()(x g x f x G −−=−)()(x g x f −=)(x G −=, 因此)(x G 是奇函数.5.设函数f 满足:D (f )关于原点对称,且()xc x bf x af =+1)(,其中a ,b ,c 都是常数,||||b a ≠,试证明f 是奇函数。
(完整版)函数、极限与连续习题及答案
![(完整版)函数、极限与连续习题及答案](https://img.taocdn.com/s3/m/ac547a93650e52ea551898a7.png)
第一章 函数、极限与连续(A)1.区间[)+∞,a 表示不等式( )A .+∞<<x aB .+∞<≤x aC .x a <D .x a ≥ 2.若()13+=t t ϕ,则()=+13t ϕ( )A .13+tB .26+tC .29+tD .233369+++t t t 3.设函数()()x x x x f arcsin 2513ln +-++=的定义域是( )A .⎪⎭⎫ ⎝⎛-25,31B .⎪⎭⎫ ⎝⎛-25,1C .⎪⎭⎫⎝⎛-1,31 D .()1,1-4.下列函数()x f 与()x g 相等的是( )A .()2x x f =,()4x x g =B .()x x f =,()()2x x g =C .()11+-=x x x f ,()11+-=x x x g D . ()112--=x x x f ,()1+=x x g 5.下列函数中为奇函数的是( )A .2sin xx y = B .xxe y 2-= C .x x x sin 222-- D .x x x x y sin cos 2+= 6.若函数()x x f =,22<<-x ,则()1-x f 的值域为( ) A .[)2,0 B .[)3,0 C .[]2,0 D .[]3,0 7.设函数()x e x f =(0≠x ),那么()()21x f x f ⋅为( )A .()()21x f x f +B .()21x x f +C .()21x x fD .⎪⎪⎭⎫⎝⎛21x x f8.已知()x f 在区间()+∞∞-,上单调递减,则()42+x f 的单调递减区间是( ) A .()+∞∞-, B .()0,∞- C .[)+∞,0 D .不存在 9.函数()x f y =与其反函数()x fy 1-=的图形对称于直线( )A .0=yB .0=xC .x y =D .x y -=10.函数2101-=-x y 的反函数是( ) A .2lg-=x x y B .2log x y = C .xy 1log 2= D .()2lg 1++=x y 11.设函数()⎩⎨⎧=是无理数是有理数x x a x f x ,0,10<<a ,则( )A .当+∞→x 时,()x f 是无穷大B .当+∞→x 时,()x f 是无穷小C .当-∞→x 时,()x f 是无穷大D .当-∞→x 时,()x f 是无穷小 12.设()x f 在R 上有定义,函数()x f 在点0x 左、右极限都存在且相等是函数()x f 在点0x 连续的( )A .充分条件B .充分且必要条件C .必要条件D .非充分也非必要条件13.若函数()⎩⎨⎧<≥+=1,cos 1,2x x x a x x f π在R 上连续,则a 的值为( )A .0B .1C .-1D .-2 14.若函数()x f 在某点0x 极限存在,则( ) A . ()x f 在0x 的函数值必存在且等于极限值 B .()x f 在0x 函数值必存在,但不一定等于极限值 C .()x f 在0x 的函数值可以不存在 D .如果()0x f 存在的话,必等于极限值15.数列0,31,42,53,64,…是( )A .以0为极限B .以1为极限C .以n n 2-为极限 D .不存在在极限 16.=∞→xx x 1sin lim ( )A .∞B .不存在C .1D .017.=⎪⎭⎫ ⎝⎛-∞→xx x 211lim ( )A .2-eB .∞C .0D .21 18.无穷小量是( )A .比零稍大一点的一个数B .一个很小很小的数C .以零为极限的一个变量D .数零19.设()⎪⎩⎪⎨⎧≤≤-<≤<≤-=31,110,201,2x x x x x f x 则()x f 的定义域为 ,()0f = ,()1f = 。
2023高考数学泉州卷函数的极限与连续历年真题及答案
![2023高考数学泉州卷函数的极限与连续历年真题及答案](https://img.taocdn.com/s3/m/f7adf80f42323968011ca300a6c30c225901f0cb.png)
2023高考数学泉州卷函数的极限与连续历年真题及答案函数的极限与连续是数学中的重要概念,对于2023年高考的数学考试来说尤为关键。
在泉州卷中,与函数的极限与连续相关的真题相当多,掌握这些题目的解法将有助于提高考试得分。
本文将通过回顾历年真题,并提供详细的解答,帮助考生更好地理解和应用函数的极限与连续。
一、选择题(共5题,每题4分,共20分)1. 设函数$f(x)=\frac{x^2-1}{x-1}$,则$f(x)$的极限为()。
A. -∞B. 无极限C. 1D. 2解析:对于此题,我们可以通过将函数$f(x)$进行因式分解,然后观察分解式在$x=1$时的取值来判断极限。
经过计算,得到分解式为$f(x)=x+1$。
因此,该函数在$x=1$时的极限为2,故选D。
2. 已知函数$f(x)$在$x=1$处连续,求参数$a$的值,使得$f(x)$在$x=1$处可导。
A. 0B. 1C. -1D. 2解析:对于此题,根据函数连续的定义,函数$f(x)$在$x=1$处连续需要满足以下两个条件:极限存在且与函数值相等。
我们可以先求出函数$f(x)$在$x=1$处的极限,然后令函数值等于极限,从而求出参数$a$的值。
经过计算和代入得到,参数$a$的值为2,因此选D。
3. 函数$f(x)=\begin{cases} \sin{x}, & \text{if } x \leq \frac{\pi}{2} \\ 2x-1, & \text{if } x > \frac{\pi}{2}\end{cases}$在$x=\frac{\pi}{2}$处()。
A. 不连续B. 连续但不可导C. 可导D. 极限不存在解析:对于此题,我们需要分别判断函数在$x=\frac{\pi}{2}$处的左极限和右极限是否存在且相等。
根据题目给出的函数表达式,我们可以得到左极限为1,右极限也为1。
因此,函数$f(x)$在$x=\frac{\pi}{2}$处连续,但不可导,故选B。
高等数学函数极限连续练习题及解析
![高等数学函数极限连续练习题及解析](https://img.taocdn.com/s3/m/3a117777f11dc281e53a580216fc700abb6852bf.png)
高等数学函数极限连续练习题及解析第一篇:高等数学函数极限连续练习题及解析数学任务——启动——习题1一、选择题:(1)函数y=-x+arccosx+1的定义域是()2(A)x≤1;(B)-3≤x≤1(C)(-3,1)(D)xx<1⋂x-3≤x≤1(2)函数y=xcosx+sinx是()(A)偶函数(B)奇函数(C)非奇非偶函数(D)奇偶函数(3)函数y=1+cos{}{}π2x的最小正周期是()(A)2π(B)(4)与y=π(C)4(D)1 2x2等价的函数是()(A)x;(B)(x)(C)x)(D)23x⎧x-1-1<x≤0(5)f(x)=⎨,则limf(x)=()x0<x≤1x→0⎩(A)-1(B)1(C)0(D)不存在二、填空题:(1)若f ⎪=⎛1⎫⎝t⎭5+2t2,则f(t)=_________,ft2+1=__________.t()⎧⎪1(2)φ(t)=⎨⎪sinx⎩π⎫⎛π⎫3,则φ⎛φ⎪=______。
⎪=______,π⎝6⎭⎝6⎭x>30,1],则fx2的定义域为______,f(sinx)的定义域为x≤π(3)若f(x)的定义域为()______,f(x+a)(a>0)的定义域为___,f(x+a)+f(x-a)(a>0)的定义域为______。
1-4x2(4)lim。
=__________12x+1x→-2(5)无穷小量皆以______为极限。
三、计算题(1)证明函数y=11sin在区间(0,1]上无界,但当x→+0时,这个函数不是无穷大。
xx(2)求下列极限(1)lim2x3+3x2+5x→∞7x3+4x2-1(3)lim(tanx)tan2xx→π(5)limex-1xx→0(7)lim+xsinx-1x→0x2arctanx(2)lim1-cos2x x→0xsinx(4)lim(1+2n+3n1n n→∞(6)limtanx-sinxx→0sin32x ⎛1(8)limx ex-1⎫⎪x→∞⎝⎪⎭(3)设f(x)=⎨⎧1-xx<0,求limf(x)。
函数、极限与连续测试卷带答案
![函数、极限与连续测试卷带答案](https://img.taocdn.com/s3/m/ea25a764f11dc281e53a580216fc700aba685260.png)
函数、极限与连续测试卷带答案第一篇:函数、极限与连续测试卷带答案上海民航学院函数、极限与连续测试卷总分100分命题人:叶茂莹一、填空题(每空2分,共20分)1、函数y=3-2x|-4的定义域是;解:|3-2x|-4≥0,3-2x≥4,或3-2x≤-4 ∴-2x≥1,或-2x≤-717∴x≤-,或x≥ 2217∴x∈(-∞,-]⋃[,+∞)222、把复合函数y=earctan(1+x)分解成简单的函数________________________;解:y=eu,u=arctanv,v=1+x23、函数y=arcsin2x的反函数是_____________________;1⎡ππ⎤解:y=sinx,x∈⎢-,⎥ 2⎣22⎦⎛1+x⎫4、lim ⎪; x→∞⎝x⎭2x2⎛1+x⎫解:lim ⎪x→∞⎝x⎭2x⎡⎛1⎫x⎤=lim⎢1+⎪⎥=e2 x→∞⎝x⎭⎦⎢⎥⎣2(2x-1)15(3x+1)30=;5、limx→∞(3x-2)45(2x-1)15(3x+1)30215⨯330⎛2⎫==⎪解:lim4545x→∞(3x-2)3⎝3⎭x2-3x+26、lim2;x→2x+4x-12(x-1)(x-2)=lim(x-1)=1x2-3x+2lim解:lim2 x→2x+6x→2x+4x-12x→2x+6x-28157、x→1=;2解:lim=x→1x→x-12x→12=x→1 =x→13x-1==34x+2的连续区间为(x+1)(x-4)解:x+2≥0,且(x+1)(x-4)≠08、函数f(x)=∴x≥-2,x≠-1,x≠4,∴x∈[-2,-1)⋃(-1,4)⋃(4,+∞)ax2+bx-19、已知a,b为常数,lim=2,则a=,b=.x→∞2x+1ax2+bx-1解:因为x的最高次为2,lim=2 x→∞2x+1所以a=0,b=2,即b=42x≠0在点x=0处连续,则a=x=0x1-⎤⎡=lim⎢(1-x)x⎥x→0⎣⎦-22⎧x⎪10、已知f(x)=⎨(1-x)⎪a⎩解:limf(x)=lim(1-x)x→0x→0=e-2因为f(x)在点x=0处连续,f(0)=a=limf(x)=e-2,所以a=e-2。
极限与连续练习题及解析
![极限与连续练习题及解析](https://img.taocdn.com/s3/m/16d38d2b1fb91a37f111f18583d049649b660e88.png)
极限与连续练习题及解析在数学课上,我们经常会遇到一些有关于极限与连续的练习题。
这些题目不仅能够帮助我们巩固对极限与连续的理解,还能提高我们解决问题的能力。
在本文中,我将为大家分享一些关于极限与连续的练习题及解析。
题目一:计算极限求解以下极限:1. $$\lim_{x\to 2}\frac{x^2-4}{x-2}$$解析:将被除数进行因式分解得:$$\lim_{x\to 2}\frac{(x+2) \cdot (x-2)}{x-2}$$最后得到:$$\lim_{x\to 2}(x+2)$$代入极限的定义,得到结果为:$$4$$题目二:证明函数连续证明下列函数在指定区间上连续:1. 函数$f(x)=\sqrt{x}$在区间$[0, +\infty)$上连续。
首先,我们需要证明$f(x)=\sqrt{x}$在$[0, +\infty)$上存在。
由于$x \geq 0$,所以$\sqrt{x}$是有定义的。
接下来,我们需要证明对于任意给定的$\varepsilon > 0$,存在一个$\delta > 0$,使得当$0 < |x-a| <\delta$时,$|\sqrt{x}-\sqrt{a}|<\varepsilon$。
根据不等式$|\sqrt{x}-\sqrt{a}|<|\sqrt{x}+\sqrt{a}|$,可以得到$$|\sqrt{x}-\sqrt{a}|<|\sqrt{x}-\sqrt{a}|\cdot\frac{|\sqrt{x}+\sqrt{a}|}{|\sqrt{x}-\sqrt{a}|}$$进一步化简得:$$|\sqrt{x}-\sqrt{a}|<\frac{|\sqrt{x}^2-\sqrt{a}^2|}{|\sqrt{x}-\sqrt{a}|}$$继续化简得:$$|\sqrt{x}-\sqrt{a}|<\frac{|x-a|}{|\sqrt{x}+\sqrt{a}|}$$由于$\sqrt{x}+\sqrt{a}$在$x$趋于$a$时不等于0,所以存在一个正数$M$,使得$|\sqrt{x}-\sqrt{a}|<M|x-a|$。
高中数学函数的极限与连续练习题及参考答案2023
![高中数学函数的极限与连续练习题及参考答案2023](https://img.taocdn.com/s3/m/2d0ddeaa988fcc22bcd126fff705cc1755275f3e.png)
高中数学函数的极限与连续练习题及参考答案2023题目一:函数极限1. 计算以下极限:a) lim(x→2) (x^2 + 3x - 4)b) lim(h→0) [(4+h)^2 - 16]/hc) lim(x→∞) [(x+1)/(x-1)]^2d) lim(x→0) (1/x - 1)/(1 - sqrt(1 + x))解答:a) 将x代入函数,得到:lim(x→2) (2^2 + 3*2 - 4) = 8b) 将h代入函数,得到:lim(h→0) [(4+0)^2 - 16]/0 = 0c) 当x趋向于正无穷大时,[(x+1)/(x-1)]^2 = 1d) 将x代入函数,得到:lim(x→0) (1/0 - 1)/(1 - sqrt(1)) = undefined题目二:连续函数2. 判断以下函数在给定区间是否连续:a) f(x) = x^2 - 5x + 6, 在区间[1, 5]上b) g(x) = √(x + 2), 在区间[-2, 3]上c) h(x) = 1/(x-2), 在区间(-∞, 2)上解答:a) 函数f(x)是一个二次函数,对于任意实数x,f(x)都是连续的。
因此,f(x)在区间[1, 5]上连续。
b) 函数g(x)是一个开根号函数,对于非负实数x,g(x)都是连续的。
在区间[-2, 3]上,g(x)的定义域为[-2, ∞),因此在该区间上连续。
c) 函数h(x)在x=2处的定义域为无穷,因此在该点不连续。
在区间(-∞, 2)上除x=2之外的点,h(x)为一个连续函数。
题目三:函数极限的性质3. 判断以下命题的真假,并简要说明理由:a) 若lim(x→a) f(x) = L,且L≠0,则lim(x→a) [f(x)]^2 = L^2。
b) 若lim(x→a) f(x) = L,且f(x) > 0,那么lim(x→a) 1/f(x) = 1/L。
c) 若lim(x→a) f(x) = L,且lim(x→a) g(x) = M,则lim(x→a) [f(x) +g(x)] = L + M。
高中数学练习题附带解析极限与连续函数的计算
![高中数学练习题附带解析极限与连续函数的计算](https://img.taocdn.com/s3/m/4ed3f866cdbff121dd36a32d7375a417866fc1e6.png)
高中数学练习题附带解析极限与连续函数的计算高中数学练习题附带解析:极限与连续函数的计算第一题:求以下函数在$x=0$处的右导数和左导数,判断该函数在$x=0$处是否连续。
$$f(x)=\begin{cases}x+1 &,x<0 \\x^2 &,x \geq 0\end{cases}$$解析:首先求该函数在$x=0$处的函数值$f(0)$,由于$x \geq 0$时,$f(x)=x^2$,因此$f(0)=0$。
其次,求该函数在$x=0$处的右导数和左导数。
当$x<0$时,$f(x)=x+1$,因此该函数在$x=0$处的左导数为$f'_{-}(0)=1$。
当$x>0$时,$f(x)=x^2$,因此该函数在$x=0$处的右导数为$f'_{+}(0)=0$。
由于$f'_{-}(0) \neq f'_{+}(0)$,因此该函数在$x=0$处不存在导数,所以该函数在$x=0$处不连续。
第二题:求以下函数在$x=1$处的极限。
$$f(x)=\begin{cases}x+1 &,x<1 \\x^2 &,x >1\end{cases}$$解析:该函数在$x=1$处的左极限为$$\lim_{x \to 1^{-}}f(x)=\lim_{x \to 1^{-}}(x+1)=2$$该函数在$x=1$处的右极限为$$\lim_{x \to 1^{+}}f(x)=\lim_{x \to 1^{+}}(x^2)=1$$由于左极限和右极限不相等,因此该函数在$x=1$处不存在极限。
第三题:求以下函数在$x \to +\infty$时的极限。
$$f(x)=\frac{3x^3+x^2+1}{5x^3-2x+1}$$解析:首先将分母的最高次幂提取出来,得到$$f(x)=\frac{3x^3+x^2+1}{5x^3-2x+1}=\frac{x^3(3+\frac{1}{x}+\frac{1}{x^3})}{x^3(5-\frac{2}{x^2}+\frac{1}{x^3})}$$当$x \to +\infty$时,$\frac{1}{x} \to 0$,$\frac{1}{x^2} \to 0$,$\frac{1}{x^3} \to 0$,所以$$\lim_{x \to +\infty}f(x)=\lim_{x \to+\infty}\frac{x^3(3+\frac{1}{x}+\frac{1}{x^3})}{x^3(5-\frac{2}{x^2}+\frac{1}{x^3})}=\frac{3}{5}$$因此,该函数在$x \to +\infty$时的极限为$\frac{3}{5}$。
(完整版)高职专升本第一章函数极限与连续习题及答案
![(完整版)高职专升本第一章函数极限与连续习题及答案](https://img.taocdn.com/s3/m/b1f891db05a1b0717fd5360cba1aa81144318f6b.png)
(完整版)高职专升本第一章函数极限与连续习题及答案高等数学习题集第一章函数极限与连续一.选择题1.若函数)(x f 的定义域为[0,1],则函数)(ln x f 的定义域是( B )。
A [0,1]B [1,e]C [0,e]D (1,e)2.设xx f 11)(+=,则)]([x f f =( A )。
(2002-03电大试题) A.x x ++11 B.x x +1 C.x ++111 D.x+11。
3.设)(x f =e 2x ,则函数)()()(x f x f x F -+=是( B )。
A 奇函数;B 偶函数;C 既是奇函数又是偶函数;D 非奇非偶函数。
4.下列说法错误的是( D )。
A y=2x 与y=|x|表示同一函数;B x x f 3sin 21)(=是有界函数; C x x x f +=cos )(不是周期函数; D 12+=x y 在(-∞,+∞)内是单调函数。
5.下列函数中非奇非偶的函数是( D )。
A ||lg )(x x f =;B 2)(xx e e x f --=; C x x x f sin )(+=; D ||)(x x x f -=。
6.下列函数中( A )是基本初等函数。
A x x f 2=)(;B x x f 2=)(;C 2)(+=x x f ;D x x x f +=2)(。
7.函数( A )是初等函数: A x x y arccos 12-=;B =≠--=.1,0,1,112x x x x y C xx y ln )ln(-=;D ΛΛ+++++=+12421n y 8.“数列{x n }的极限存在”是“数列{x n }有界”的( A )。
A 充分但非必要条件;B 必要但非充分条件;C 充分必要条件;D 既非充分亦非必要条件。
9.∞→x lim 5x 的值是( D )。
A +∞; B -∞; C 0; D 不存在。
10.+∞→x lim e -x 的值是( A )。
函数极限连续复习题答案
![函数极限连续复习题答案](https://img.taocdn.com/s3/m/790080b4c0c708a1284ac850ad02de80d4d8069b.png)
函数极限连续复习题答案一、选择题1. 函数极限的定义是什么?A. 当自变量趋近于某一点时,函数值趋近于一个确定的值B. 当自变量趋近于无穷大时,函数值趋近于一个确定的值C. 当自变量趋近于无穷小时,函数值趋近于一个确定的值D. 当自变量趋近于某一点时,函数值趋近于无穷大答案:A2. 函数在某点连续的定义是什么?A. 函数在该点的极限值等于函数值B. 函数在该点的极限值等于无穷大C. 函数在该点的极限值等于无穷小D. 函数在该点的极限值不存在答案:A3. 函数在某点不连续的类型有哪些?A. 可去间断点B. 跳跃间断点C. 无穷间断点D. 以上都是答案:D二、填空题1. 函数极限的符号表示为:\(\lim_{x \to a} f(x) = L\),其中\(L\)表示函数值趋近于的确定值。
2. 函数在某点连续的充要条件是:\(\lim_{x \to c} f(x) = f(c)\)。
3. 函数在某点不连续时,若左极限和右极限都存在且相等,但不等于该点的函数值,则该点为可去间断点。
三、解答题1. 求函数\(f(x) = \frac{x^2 - 1}{x - 1}\)在\(x = 1\)处的极限值。
解:首先对函数进行化简,得到\(f(x) = x + 1\)(当\(x \neq1\))。
因此,\(\lim_{x \to 1} f(x) = \lim_{x \to 1} (x + 1) = 1 + 1 = 2\)。
2. 判断函数\(g(x) = \begin{cases} x^2, & x \geq 0 \\ -x^2, & x < 0 \end{cases}\)在\(x = 0\)处是否连续,并说明理由。
解:计算左极限和右极限,得到\(\lim_{x \to 0^-} g(x) = 0\)和\(\lim_{x \to 0^+} g(x) = 0\)。
由于\(g(0) = 0\),且左极限等于右极限等于函数值,所以函数在\(x = 0\)处连续。
(完整版)函数、极限与连续习题及答案
![(完整版)函数、极限与连续习题及答案](https://img.taocdn.com/s3/m/ac547a93650e52ea551898a7.png)
第一章 函数、极限与连续(A)1.区间[)+∞,a 表示不等式( )A .+∞<<x aB .+∞<≤x aC .x a <D .x a ≥ 2.若()13+=t t ϕ,则()=+13t ϕ( )A .13+tB .26+tC .29+tD .233369+++t t t 3.设函数()()x x x x f arcsin 2513ln +-++=的定义域是( )A .⎪⎭⎫ ⎝⎛-25,31B .⎪⎭⎫ ⎝⎛-25,1C .⎪⎭⎫⎝⎛-1,31 D .()1,1-4.下列函数()x f 与()x g 相等的是( )A .()2x x f =,()4x x g =B .()x x f =,()()2x x g =C .()11+-=x x x f ,()11+-=x x x g D . ()112--=x x x f ,()1+=x x g 5.下列函数中为奇函数的是( )A .2sin xx y = B .xxe y 2-= C .x x x sin 222-- D .x x x x y sin cos 2+= 6.若函数()x x f =,22<<-x ,则()1-x f 的值域为( ) A .[)2,0 B .[)3,0 C .[]2,0 D .[]3,0 7.设函数()x e x f =(0≠x ),那么()()21x f x f ⋅为( )A .()()21x f x f +B .()21x x f +C .()21x x fD .⎪⎪⎭⎫⎝⎛21x x f8.已知()x f 在区间()+∞∞-,上单调递减,则()42+x f 的单调递减区间是( ) A .()+∞∞-, B .()0,∞- C .[)+∞,0 D .不存在 9.函数()x f y =与其反函数()x fy 1-=的图形对称于直线( )A .0=yB .0=xC .x y =D .x y -=10.函数2101-=-x y 的反函数是( ) A .2lg-=x x y B .2log x y = C .xy 1log 2= D .()2lg 1++=x y 11.设函数()⎩⎨⎧=是无理数是有理数x x a x f x ,0,10<<a ,则( )A .当+∞→x 时,()x f 是无穷大B .当+∞→x 时,()x f 是无穷小C .当-∞→x 时,()x f 是无穷大D .当-∞→x 时,()x f 是无穷小 12.设()x f 在R 上有定义,函数()x f 在点0x 左、右极限都存在且相等是函数()x f 在点0x 连续的( )A .充分条件B .充分且必要条件C .必要条件D .非充分也非必要条件13.若函数()⎩⎨⎧<≥+=1,cos 1,2x x x a x x f π在R 上连续,则a 的值为( )A .0B .1C .-1D .-2 14.若函数()x f 在某点0x 极限存在,则( ) A . ()x f 在0x 的函数值必存在且等于极限值 B .()x f 在0x 函数值必存在,但不一定等于极限值 C .()x f 在0x 的函数值可以不存在 D .如果()0x f 存在的话,必等于极限值15.数列0,31,42,53,64,…是( )A .以0为极限B .以1为极限C .以n n 2-为极限 D .不存在在极限 16.=∞→xx x 1sin lim ( )A .∞B .不存在C .1D .017.=⎪⎭⎫ ⎝⎛-∞→xx x 211lim ( )A .2-eB .∞C .0D .21 18.无穷小量是( )A .比零稍大一点的一个数B .一个很小很小的数C .以零为极限的一个变量D .数零19.设()⎪⎩⎪⎨⎧≤≤-<≤<≤-=31,110,201,2x x x x x f x 则()x f 的定义域为 ,()0f = ,()1f = 。
高等数学习题详解-第2章 极限与连续
![高等数学习题详解-第2章 极限与连续](https://img.taocdn.com/s3/m/f7f0833131126edb6f1a10f9.png)
习题2-11. 观察下列数列的变化趋势,写出其极限:(1) 1n nx n =+ ;(2) 2(1)n n x =--;(3) 13(1)n n x n =+-; (4) 211n x n =-. 解:(1) 此数列为12341234,,,,,,23451n n x x x x x n =====+ 所以lim 1n n x →∞=。
(2) 12343,1,3,1,,2(1),n n x x x x x =====-- 所以原数列极限不存在。
(3) 1234111131,3,3,3,,3(1),234n n x x x x x n=-=+=-=+=+- 所以lim 3n n x →∞=。
(4) 12342111111,1,1,1,,1,4916n x x x x x n=-=-=-=-=- 所以lim 1n n x →∞=-2.下列说法是否正确:(1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散;(4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。
(2) 错误 例如数列{}(-1)n有界,但它不收敛。
(3) 正确。
(4) 错误 例如数列21(1)nn x n ⎧⎫=+-⎨⎬⎩⎭极限为1,极限大于零,但是11x =-小于零。
*3.用数列极限的精确定义证明下列极限:(1) 1(1)lim1n n n n-→∞+-=;(2) 222lim 11n n n n →∞-=++; (3) 323125lim-=-+∞→n n n证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε>即可,所以可取正整数1N ε≥.因此,0ε∀>,1N ε⎡⎤∃=⎢⎥⎣⎦,当n N >时,总有1(1)1n n n ε-+--<,所以1(1)lim 1n n n n-→∞+-=.(2) 对于任给的正数ε,当3n >时,要使222222332211111n n n n n x n n n n n n n n n ε---+-=-==<<<+++++++,只要2n ε>即可,所以可取正整数2max ,3N ε⎧⎫=⎨⎬⎩⎭.因此,0ε∀>,2max ,3N ε⎧⎫∃=⎨⎬⎩⎭,当n N >时,总有22211n n n ε--<++,所以222lim 11n n n n →∞-=++. (3) 对于任给的正数ε,要使25221762()()131333(31)313n n x n n n n ε+--=--=<=<----,只要123n ε->即可,所以可取正整数213N ε≥+.因此,0ε∀>,213N ε⎡⎤∃=+⎢⎥⎣⎦,当n N >时,总有522()133n n ε+--<-,所以323125lim-=-+∞→n n n .习题2-2 1. 利用函数图像,观察变化趋势,写出下列极限: (1) 21limx x →∞ ;(2) -lim xx e →∞;(3) +lim xx e-→∞;(4) +lim cot x arc x →∞;(5) lim 2x →∞;(6) 2-2lim(1)x x →+;(7) 1lim(ln 1)x x →+;(8) lim(cos 1)x x π→-解:(1) 21lim0x x →∞= ;(2) -lim 0xx e →∞=;(3) +lim 0xx e-→∞=;(4) +lim cot 0x arc x →∞=;(5) lim 22x →∞= ;(6) 2-2lim(1)5x x →+=;(7) 1lim(ln 1)1x x →+=;(8) lim(cos 1)2x x π→-=-2. 函数()f x 在点x 0处有定义,是当0x x →时()f x 有极限的( D )(A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件解:由函数极限的定义可知,研究()f x 当0x x →的极限时,我们关心的是x 无限趋近x 0时()f x 的变化趋势,而不关心()f x 在0x x =处有无定义,大小如何。
第一章函数、极限与连续习题答案.doc
![第一章函数、极限与连续习题答案.doc](https://img.taocdn.com/s3/m/f1dae8326529647d2628528c.png)
第一章函数、极限与连续1 . 若」 t =t31,贝 U 「t 31 =( D )A. t 31 B. t62 C. t92 D. t 9 3t 6 3t322. 设函数 f x = In 3x ? 1 ? i 5 - 2x ? arcsin x 的定义域是 ( C )1 5C.-1,1 D. -1,13 ,233. 下列函数 f x 与 g x 相等的是 (A )— 2A. f x = x 2 , g x - x4B . fx=x ,gx= xC.fX gx「X 1x -14. 下列函数中为奇函数的是 (A )2x x八sin xf- c 2— 22 ?A. y2B .y - xe xCsin xD . y = x cosx xsin xx25 . 若函数 fxl=x , - 2:; x ::: 2,则 f x-1 的值域为 (B )A. 0,2B. 0,3C. 0,21D. 0,316 . 函数y =10x4 -2 的反函数是(D )xC .A . y =igB .log x 2x—2a X X 是有理数7.设函数 %是无理数°<a",则(B )1y =Iog 2_ D . y =1 lg x 2 x1A . 当 Xr J 时, f x 是无穷大B . 当 x- 工: 时, f x 是无穷小C. 当 Xr - ■时, f x 是无穷大 D . 当 x—. - ■时, f x 是无穷小8 . 设 f x 在R上有定义 ,f x 在点X。
连续的(A . 充分条件C.必要条件x2 a,cos x, 函数 f x 在点X。
左、右极限都存在且相等是函数B. 充分且必要条件D. 非充分也非必要条件x—1在 R 上连续,则 a 的值为(D)x::: 1C. -1D.-210.若函数 f x 在某点X。
极限存在,则(C )f x 在X o的函数值必存在且等于极限值B. f x 在X o函数值必存在,但不一定等于极限值C. f X 在X o的函数值可以不存在D. 如果f X o存在的话 ,11 . 数列0,3 ,2,4,是 (B )A.以0为极限B.以1为极限C . 以口为极限D . 不存在在极限n112 . lim xsin( CxB. 不存在C. 1D. 013.li=(A )C.0x2214?无穷小量是(C)A.比零稍大一点的一个数B. —个很小很小的数C. 以零为极限的一个变量 D . 数零[2X,-1 _ x :: 015. 设f(x)= 2, x ::: 1 则f x的定义域为[-1,3] , f 0 =x—1, 1 _x _32 __ , f 1 =0。
高等数学函数的极限与连续习题精选和答案
![高等数学函数的极限与连续习题精选和答案](https://img.taocdn.com/s3/m/3482ab5c376baf1ffc4fadb6.png)
1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。
2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。
5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。
7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。
9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则 (1)()xef 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x (3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x n x n x n n x n x n n n n =⋅==∞→∞→∞→sinlim 1sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()b ax x xx --+-+∞→1lim2()()()bax x x bax x x b ax x x x +++-+++---+-=+∞→111lim 222()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→x xax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a13、=∞→x x x sin lim( 0 ),=∞→xx x 1sin lim ( 1 ), ()=-→xx x 11lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim=⋅=∞→∞→x x xx x x 111sin lim1sin lim ==∞→∞→xx x x x x()[]1)1(110)(1lim 1lim --⋅-→→=-+=-e x x xx x x k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数 ∵()()11log 1)(log 22++=+-+-=-x x x x x f aa()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域恒有()M x f ≤(M 是正数),则函数()x f 在该邻域( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。
(完整版)高等数学函数的极限与连续习题精选及答案
![(完整版)高等数学函数的极限与连续习题精选及答案](https://img.taocdn.com/s3/m/eae7a0994a7302768e9939a1.png)
1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。
2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。
5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。
7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。
9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则 (1)()xef 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x (3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x n x n x n n x n x n n n n =⋅==∞→∞→∞→sinlim 1sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→xxax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a 13、=∞→x x x sin lim( 0 ),=∞→xx x 1sin lim ( 1 ), ()=-→xx x 11lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim=⋅=∞→∞→x x xx x x 111sin lim1sin lim ==∞→∞→xx x x x x()[]1)1(110)(1lim 1lim --⋅-→→=-+=-e x x xx x x k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数 ∵()()11log 1)(log 22++=+-+-=-x x x x x f aa()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。
函数极限与连续习题(含答案)
![函数极限与连续习题(含答案)](https://img.taocdn.com/s3/m/17101c6fa98271fe910ef927.png)
基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。
函数的极限与连续训练题1、 已知四个命题:(1)若)(x f 在0x 点连续,则)(x f 在0x x →点必有极限(2)若)(x f 在0x x →点有极限,则)(x f 在0x 点必连续(3)若)(x f 在0x x →点无极限,则)(x f 在0x x =点一定不连续(4)若)(x f 在0x x =点不连续,则)(x f 在0x x →点一定无极限。
其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、42、若a x f x x =→)(lim 0,则下列说法正确的是( C ) A 、)(x f 在0x x =处有意义 B 、a x f =)(0C 、)(x f 在0x x =处可以无意义D 、x 可以只从一侧无限趋近于0x3、下列命题错误的是( D )A 、函数在点0x 处连续的充要条件是在点0x 左、右连续B 、函数)(x f 在点0x 处连续,则)lim ()(lim 00x f x f x x x x →→= C 、初等函数在其定义区间上是连续的 D 、对于函数)(x f 有)()(lim 00x f x f x x =→ 4、已知x x f 1)(=,则xx f x x f x ∆-∆+→∆)()(lim 0的值是( C ) A 、21x B 、x C 、21x - D 、x - 5、下列式子中,正确的是( B )A 、1lim 0=→x xx B 、1)1(21lim 21=--→x x x C 、111lim 1=---→x x x D 、0lim 0=→x x x 6、51lim 21=-++→xb ax x x ,则b a 、的值分别为( A ) A 、67和- B 、67-和 C 、67--和 D 、67和7、已知,2)3(,2)3(-='=f f 则3)(32lim 3--→x x f x x 的值是( C ) A 、4- B 、0 C 、8 D 、不存在8、=--→33lim a x ax a x ( D )A 、0B 、1C 、32aD 、323a9、当定义=-)1(f 2 时,xx x f +-=11)(2在1-=x 处是连续的。
高等数学函数的极限与连续习题及答案
![高等数学函数的极限与连续习题及答案](https://img.taocdn.com/s3/m/7ad8514027d3240c8447efd6.png)
上式化简为
1a2
0,∴a1,
2
1b
12ab12abx1b212ablimlimlim
xxx1a∴1
a1,12ab0,b2
10、函数fx
的间断点是(x0,x1).
11
xx2x2
11、fx2的连续区间是(,1,1,3,3,).
x4x3ax2sinx
2,则a(2)12、若lim.
xx∴aax2sinxsinxlimlima2a0a02limxxxxx
a
xx21
logaxx21fx
3、当x0时,ex1是x的(c)
a.高阶无穷小b.低阶无穷小c.等价无穷小
4、如果函数fx在x0点的某个邻域b.连续c.有界
5、函数fx1
1x在(c)条件下趋于.
a.x1 b.x10 c.x10
6、设函数fxsinx
x,则limx0fx(c)
a.1b.-1c.不存在∵sinx
6、如果~,则o.
1,是
∴limlim10,即是的同阶无穷小.
2xx2sin2sin1cosx11limlim2正确∵limx0x0x04x2x2x2
2正确∵lim
11limxlimsin0.x0xx0x0x
1错误∵limsin不存在,∴不可利用两个函数乘积求极限的法则计算。x0x8、limxsin
高等数学函数的极限与连续习题精选及答案
第一章函数与极限复习题
1、函数fxx2x31x1与函数gxx1相同.
错误∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴fxx2x31x1与gx函数关系相同,但定义域不同,所以fx与gxx1
是不同的函数。
2、如果fxM(M为一个常数),则fx为无穷大.
高等数学测试题一(极限、连续)答案.
![高等数学测试题一(极限、连续)答案.](https://img.taocdn.com/s3/m/7696206316fc700aba68fc0b.png)
高等数学测试题(一)极限、连续部分(答案)一、选择题(每小题4分,共20分)1、当时,(A)无穷小量。
A B C D2、点是函数的(C)。
A 连续点B 第一类非可去间断点C 可去间断点D 第二类间断点3、函数在点处有定义是其在处极限存在的(D)。
A 充分非必要条件B 必要非充分条件C 充要条件D 无关条件4、已知极限,则常数等于(A)。
A -1B 0C 1D 25、极限等于(D)。
A B 2 C 0 D -2二、填空题(每小题4分,共20分)1、=2、当时,无穷小与无穷小等价,则常数A=33、已知函数在点处连续,且当时,函数,则函数值=04、=15、若存在,且,则=1二、解答题1、(7分)计算极限解:原式=2、(7分)计算极限解:原式=3、(7分)计算极限解:原式=4、(7分)计算极限解:原式=5、(7分)设具有极限,求的值解:因为,所以,因此并将其代入原式6、(8分)设,试确定常数,使得解:此时,7、(7分)试确定常数,使得函数在内连续解:当时,连续,当时,连续。
所以当时,在连续因此,当时,在内连续。
8、(10分)设函数在开区间内连续,,试证:在开区间内至少存在一点,使得证明:因为在内连续,,所以在上连续,由连续函数的最大值、最小值定理知,在上存在最大值M和最小值m,即在上,,所以,又因为,所以,由连续函数的介值定理知:存在,使得,即证毕。
第一章函数极限连续例题练习
![第一章函数极限连续例题练习](https://img.taocdn.com/s3/m/ff17846a2e60ddccda38376baf1ffc4ffe47e2c1.png)
【例题1.13】求极限I = lim
x→0
φ2
【例题1.14】设f (a)表示方程x +ln(1+x )=a的实数根,a∈[1,+∞).证明: lim f (a) lna = x→∞ a
1
【例题1.19】求极限I = lim n sin (2πen!)
x→∞
【例题1.23】设fn
(x)
=
xn
ln
x,求极限 lim
数n,存在ξn ∈ [0, 1],使得f
1 ξ−
n
1 = f (ξ) −
n
2
,使 lim
x→0
arctan
x
−
x 1
+ +
αx3 βx2
是关于x的尽可能高阶的等价无穷小
【例题1.42】尝试确定常数A,B,C使得 lim esin x x→0 sin x
=
1
+ Bx + Cx2 x + Ax2
+
o
x2
【例题1.55】设f (x)在闭区间[0, 1]上连续,f (0) = 0, f (1) = 1,求证:对于任意的正整
k
√
【例题1.30】设数列{an}满足a1
>
0, an+1
=
an+1an, n
≥
1,证明: lim √ an x→∞ 4n +
1
=
2 2
1
【例题1.31】设数列{xn}定义为x1
=
1, xn+1
=
xn
+
1 xn
,
n
=
1, 2 · · · 证明: lim x2n − n n→∞ ln n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()xg 是不同的函数。
2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。
5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。
7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。
9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则 (1)()xef 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x (3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x n x n x n n x n x n n n n =⋅==∞→∞→∞→sinlim 1sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()b ax x xx --+-+∞→1lim2()()()bax x x bax x x b ax x x x +++-+++---+-=+∞→111lim 222()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→x xax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a13、=∞→x x x sin lim( 0 ),=∞→xx x 1sin lim ( 1 ), ()=-→xx x 11lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim=⋅=∞→∞→x x xx x x 111sin lim1sin lim ==∞→∞→xx x x x x()[]1)1(110)(1lim 1lim --⋅-→→=-+=-e x x xx x x k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数 ∵()()11log 1)(log 22++=+-+-=-x x x x x f aa()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。
7、如果函数()x f 当0x x →时极限存在,则函数()x f 在0x 点( c ) a .有定义 b .无定义 c .不一定有定义∵()x f 当0x x →时极限存在与否与函数在该点有无定义没有关系。
8、数列1,1,21,2,31,3,…,n1,n ,…当∞→n 时为( c ) a .无穷大 b .无穷小 c .发散但不是无穷大9、函数()x f 在0x 点有极限是函数()x f 在0x 点连续的( b )a .充分条件b .必要条件c .充分必要条件 10、点0=x 是函数1arctanx的( b ) a .连续点 b .第一类间断点 c .第二类间断点 ∵001lim arctan2x x π→-=- 001lim arctan 2x x π→+=根据左右极限存在的点为第一类间断点。
11、点0=x 是函数x1sin的( c ) a .连续点 b .第一类间断点 c .第二类间断点 四、计算下列极限:1、()nn nn 31lim -+∞→ 解()31))1(3131(lim 31lim =-⋅+=-+∞→∞→n n n n n nn2、0tan 3limsin 2x xx→解 0tan 3lim sin 2x x x →2323lim 0==→x x x (∵x x 2sin ,0→~2,tan3x x ~x 3) 3、⎪⎭⎫ ⎝⎛+--+∞→x x x x x lim()xx x x x +--+∞→lim()()xx x x xx x x x x x x x ++-++-+--=+∞→limxx x x xx ++--=+∞→2lim111111lim2-=++--=+∞→xx x4、()n n n nn --++∞→221lim解()()()nn n n nn n nnn n nn n n nn n -+++-+++--++=--++∞→∞→22222222111lim1lim11111112lim 112lim222=-++++=-++++=∞→∞→nn n n n n n n n n n 5、xx x x x sin lim 2300+++→21sin 11lim sin 1lim sin lim 00002300=++=++=+++→+→+→xx x x x x xx x x x xx x 6、11sinlim2-+→x x x x)22211limlimx x x x x x →→→⋅+⋅+==)lim12x→=+=7、11lim0--→xxx()()()11lim111lim11lim=+=-+-=--→→→xxxxxxxxx8、1lim1--→xxxx()111lim1lim11=--=--→→xxxxxxxx9、3tan sinlimxx xx→-()23330001sin1costan sin112lim lim limcos cos2 x x xx xx xx xx x x x x →→→⋅⋅--==⋅= (∵210,1cos2x x x→-,sinx)10、xxx2cos1lim0--→解()21221lim2cos1lim2-==--→-→xxxxxx(∵xx cos1,0-→~221x)11、1lim1xxxx→∞-⎛⎫⎪+⎝⎭解121111lim lim111xxxx xx exx e ex-→∞→∞⎛⎫-⎪-⎛⎫⎝⎭===⎪+⎝⎭⎛⎫+⎪⎝⎭12、⎪⎭⎫⎝⎛+∞→xxx11lnlim解 ⎪⎭⎫⎝⎛+∞→x x x 11ln lim 111lim ln 11ln lim =⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=∞→∞→xx x x x x13、xx xx x cos cos lim+-∞→解 cos 1cos lim lim 1cos cos 1x x x x x x x x x x→∞→∞--==++14、⎪⎭⎫⎝⎛---→1112lim 21x x x解 2211121111lim lim lim 11112x x x x x x x x →→→-⎛⎫-==-=- ⎪---+⎝⎭ 15、x 解lim lim 1x x →∞→∞==16、x x x cos 1sin lim 00-+→ 解000000sin sin lim lim lim x x x x x x →+→+→+===17、()⎪⎪⎭⎫ ⎝⎛+++⋅+⋅∞→11321211lim n n n 解 ()⎪⎪⎭⎫ ⎝⎛+++⋅+⋅∞→11321211lim n n n ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=∞→1113121211lim n n n1111lim =⎪⎭⎫ ⎝⎛+-=∞→n n。