《半导体光电子学课件》下集4.1 异质结半导体激光器概述(1)

合集下载

半导体激光器ppt课件

半导体激光器ppt课件
Ⅱ、与同质结激光器相比,异质结激光器具有以下优点: 1)阈值电流低,同时阈值电流随温度的变化小; 2)由于界面处的折射率差异,光子被限制在作用区内; 3)能实现室温下的连续振荡。
应用:
半导体激光器应用十分广泛,主要分布在军事、生产和医疗方面:
军事:Ⅰ)激光引信。半导体激光器是唯一能够用于弹上引信的激光器。 Ⅱ)激光制导。它使导弹在激光射束中飞行直至摧毁目标。 Ⅲ)激光测距。主要用于反坦克武器以及航空、航天等领域。 Ⅳ)激光雷达。高功率半导体激光器已用于激光雷达系统
目录
CONTENTS
1 基本介绍及发展 2 基本原理及构成
3 主要特性
4 分类、应用及发展前景
基本介绍及发展
高能态电子束>低能态电子束
高能态
低能

同频同相
的光发射
同频同相光 谐振腔内多次往返
放大
激光
激光:通过一定的激励方 式,实现非平衡载流子的 粒子数反转,使得高能态 电子束大于低能态电子束, 当处于粒子数反转状态的 大量电子与空穴复合时, 便产生激光。
激光具有很好的方向性和 单色性。用途十分广泛
高功率半导体激光器
① 、1962年9月16日,通用电气公司的罗伯特·霍尔 (Robert Hall) 带领的研究小组展示了砷化镓(GaAs)半导体的红外发射, 首个半 导体激光器的诞生。 ②、70年代,美国贝尔实验室研制出异质结半导体激光器,通过对光 场和载流限制,从而研制出可在室温下连续运转且寿命较长的激光器。 ③、80年代,随着技术提升,出现了量子陷和超晶格等新型半导体激 光器结构; 1983年,波长800nm的单个输出功率已超过100mW,到 了1989年,0.1mm条宽的则达到3.7W的连续输出,转换效率达39%。 ④、90年代在泵浦固体激光器技术推动下,高功率半导体激光器出现 突破进展。。1992年,美国人又把指标提高到一个新水平:1cm线阵 连续波输出功率达121W,转换效率为45%。

半导体激光器工作原理及基本结构PPT课件

半导体激光器工作原理及基本结构PPT课件
• 一定波长的受激光辐射在谐振腔内形成振荡的条件: 腔长=半波长的整数倍 L=m(λ/2n)
第5页/共15页
增益和阈值电流
• 增益:在注入电流的作用下,激活区受激辐射不断增强。 • 损耗:受激辐射在谐振腔中来回反射时的能量损耗。包括载流子吸收、缺
陷散射及端面透射损耗等。 • 阈值电流:增益等于损耗时的注入电流。
在材料设计时,考虑将p区和n区重掺杂等工艺,使得辐射 光严格在pn结平面内传播,单色性较好,强度也较大,这种 光辐射叫做受激光辐射。
第4页/共15页
法布里-珀罗谐振腔 (形成相干光)
• 垂直于结面的两个平行的晶体解理面形成法布里-珀罗谐振腔 ,两个解理 面是谐振腔的反射镜面。在两个端面上分别镀上高反膜和增透膜,可以提 高激射效率.
2. 有源区工作时产生的热量能通过周围四个方向的无源区传 递而逸散,提高器件的散热性能;
3. 有源区尺寸减小了,提高材料均匀的可能性; 4. 器件的可靠性提高、效率提高、远场特性改善。
第10页/共15页
条形结构类型
从对平行于结平面方向的载流子和光波限制情况可分为增益波导条形激光器(普通条形)和折射 率波导条形激光器(掩埋条形、脊形波导)。
第3页/共15页
自发光辐射和受激光辐射
• 自发光辐射(发光二极管)
当给器件加正向偏压时,n区向p区注入电子,p区向n区注 入空穴,在激活区电子和空穴自发地复合形成电子-空穴对, 将多余的能量以光子的形式释放出来,所发射的光子相位和 方向各不相同,这种辐射叫做自发辐射。
• 受激光辐射(半导体激光器)
第13页/共15页
弱折射率波导条形激光器(脊形波导)
特点:在侧向对光波的有一定限制作用,在条形有源区上方腐蚀出一个脊(宽度大约 3~4um),腐蚀深度大概1.5~2um, 腐蚀一部分上限制层。由于腐蚀深度较深,在侧向 形成一定的折射率台阶,对侧向光波有较弱的限制作用。

半导体激光器原理PPT课件

半导体激光器原理PPT课件

适合做有源区发光材料
态的
(如GaAs,InP,AlGaInAs) 波矢不同,必须有相应的声子参与吸收
和发
第12页/共77页
半导体异质结
• 异质结的作用:
• 异质结对载流子的限 制作用
• 异质结对光场的限制 作用
• 异质结的高注入比
第13页/共77页
异质结对光场的限制作用
第14页/共77页
半导体激光器的材料选择
3 PECVD 生长 SiO2, 填充聚酰亚胺
第75页/共77页
VCSEL 芯片制造
4 欧姆接触
第76页/共77页
感谢您的观看!
第77页/共77页
第48页/共77页
VCSEL 的优点 ●易于实现二维平面和光电集成; ●圆形光束易于实现与光纤的有效耦合; ●有源区尺寸极小,可实现高封装密度和低阈值电流; ●芯片生长后无须解理、封装即可进行在片实验; ●在很宽的温度和电流范围内都以单纵模工作; ● 成品率高、价格低。
第49页/共77页
第50页/共77页
第25页/共77页
F-P腔激光器
第26页/共77页
第27页/共77页
DFB激光器
第28页/共77页
DFB-LD与DBR-LD
第29页/共77页
F-P-LD与DFB-LD的纵模间隔
第30页/共77页
DFB-LD的增益与损耗
第31页/共77页
工作特性
1.阈值电流 Ith
影响阈值电流的因素: 1. 有源区的体积:腔长、条宽、厚度 2. 材料生长:掺杂、缺陷、均匀性 3. 解理面、镀膜 4. 电场和光场的限制水平 5. 随温度增加,损耗系数增加,漏电流增加,内量子效率降低,这些都会

半导体物理异质结解析PPT课件

半导体物理异质结解析PPT课件
第13页/共30页
界面量子阱中二维电子气的势阱和状态密度
第14页/共30页
电子的能量:
二维电子气的状态密度
k空间原胞的面积:
k空间k-k+dk圆环的面积: E-k关系: 状态密度:
第15页/共30页
低维半导体材料及其状态密度
Bulk
QW
QD
3D
2D
0D
DD((EE))
DD((EE))
D(E)
E
• qVD = qVD1 + qVD2 = EF2 - EF1 = W1 - W2
半导体物理学
第7章 金第属4页和/半共导30体页的接触
SCNU 光电学院
4
突变反型异质结的能带特征
• n型半导体的能带弯曲量为qV2,且导带底在交界面处形成一个向
上的“尖峰”。
• p型半导体的能带弯曲量为qV1,且导带底在交界面处形成一个向
第2页/共30页
pn结的能带图
qVD E Fn EFp
第3页/共30页
突变反型异质结的能带图
• 形成异质结时电子从n型半导体流向p型半导体,空穴的流动方向相反。
• 达到平衡时,两块半导体具有统一的费米能级。
• 在异质结界面的两边形成空间电荷区,产生内建电场和附加电势能,使 空间电荷区中的能带发生弯曲。
EE
EE
Modification of density of states by confining carriers
第16页/共30页
双异质结间的单量子阱结构
第17页/共30页
双异质结间的单量子阱结构
势阱形状: 波函数分离变量: 波函数分离变量: 薛定谔方程:
第18页/共30页

演示文档半导体异质结.ppt

演示文档半导体异质结.ppt

.精品课件.
24
多量子阱和超晶格中电子的波函数
由于两种构成材料的禁带宽度不同,当窄禁带材料的厚度 小于电子的德布罗意波长时,这种材料即成为载流子的势阱
.精品课件.
25
量子阱效应
一、量子约束效应:量子阱中电子的能级间距与阱宽的平方成反比,对于由 夹在宽禁带材料之间的窄禁带材料薄层构成的量子阱,当薄层狭窄到 足以使电子状态量子化
特点:在界面处就会出现能带的弯曲,发生导带及价带的不连续
.精品课件.
6
异质结耗尽层宽度的计算
• 假设条件:在热平衡下,界面两端的费米能级相同 禁带宽度Eg和电子亲和能皆非杂质浓度的函(非简并)
• 导带边缘的不连续和价带边缘的不连续不会受杂质浓度影响 • 能带的弯曲量VD(扩散电势)为两种半导体功函数之差
VD VD1 VD2 W1 W2
VD2 NA p VD1 NDn
NA是p型半导体的受主浓度,ND是n型半导体的施主浓度。 n与p分别是n型和p型半导体的相对介电常数。
(x0 x1)
212 ND2VD qNA1(1NA1 2 ND2 )
(x2 x0 )
212 NA1VD qND1(1NA1 2 ND2 )
式中λ为所使用的X
射线波长;L为反射级数;
θ表示衍射角
L=0对应于 布拉格
(Bragg)反射峰,若在较
低角度的第一条伴线取为
L= -1,则在较高角度的第
一条伴线即取L= +1。
上图超晶格的调制
波 长 为 13nm , 而 下 图 超 晶
格 的 调 制 波 长 为 11nm 。 随
着调制波长的增加,伴线变
11
负反向势垒异质结的伏安特性

半导体激光器PPT学习教案

半导体激光器PPT学习教案
受激辐射 和受激 吸收的 区别与 联系 受激辐 射是受 激吸收 的逆过 程。电 子在E1和E2两个能级 之间跃 迁,吸 收的光 子能量 或辐射 的光子 能量都 要满足 波尔条 件,即 E2-E1=hυ
式中,h=6.628×10-34J·s,为普朗克常数, υ为吸收或辐射的光子频率。
第7页/共54页
产生受 激辐射 和产生 受激吸 收的物 质是不 同的。 设在单 位物质 中,处 于低能 级E1和处于高 能级E2(E2>E1)的原子数分别 为N1和N2。 当系统 处于热 平衡状 态时,
能量 Eg
导带
Ec Eg/2
Ef
Eg
Eg/2
Ev
价带
Ec
Ec
Ef Eg Ef
Ev
Ev
(a)
(b)
(c)
图 3.2
(a) 本征半导体; (b) N型半导体; (c) P型半导体
第12页/共54页
能量 Eg
导带
Ec Eg/2
Ef
Eg
Eg/2
Ev
价带
Ec
Ec
Ef Eg Ef
Ev
Ev
在热平衡 状态下 ,能量 为E的能 级被电 子占据 的概率 为费米 分布
电子在低能级E1的基态和高能级E2的激发态之 间的跃迁有三种基本方式:受激吸收(本征吸 收) 自发辐射 受激辐射
第2页/共54页
初态
E2
E1
E2
hυ=E2-E1
终态
E1
(a) 自发辐射 光子的特点:非相干光
第3页/共54页
初态
E2

E1
E2
终态
E1
(b) 受激辐射 光子的特点:相干光

半导体激光器简介

半导体激光器简介

(2)杂质半导体
* n 型半导体 外场
E
当四价的元素中 掺入少量五价元 素时形成n 型半导体。如:硅中掺入 杂质磷后,磷原子在硅中形成局部能 级位于导带底附近(称为施主能级)。 一般温度下,杂质的价电子很容 易 被激发跃迁至导带,成为导电电子, 使导带中的电子浓度大大增加。 n 型 半导体以电子导电为主。
典型的V-I曲线和相应的dV/dI曲线


2、P-I特性 P-I 特性揭示了激光器输出光功率与注入电流之间的变化规律, 因此是激光器最重要的特性之一。
典型的激光器P-I曲线
• 由P-I曲线可知,半导体激光器是阈值型器件,随注入电流的不同而 经历了几个典型阶段。 • 当注入电流较小时,有源区里不能实现粒子数反转,自发辐射占主导 地位,半导体激光器发射普通的荧光,光谱很宽,其工作状态类似于 一般的发光二极管。 • 随着注入电流的加大,有源区里实现了粒子数反转,受激辐射开始占 主导地位,但当注入电流仍小于阈值电流时,谐振腔里的增益还不足 以克服损耗,不能在腔内建立起一定模式的振荡,半导体激光器发射 的仅仅是较强的荧光,称为“超辐射”状态。 • 只有当注入电流达到阈值以后,才能发射谱线尖锐、模式明确的激光, 光谱突然变窄并出现单峰(或多峰)。 • P-I 特性曲线决定了一系列半导体激光器参数与特性:
反向连接
正向连接时,P中的空穴和N中的电子都易于通过P-N 结, 形成P N的 正向宏观电流。
反向连接时,P中的空穴和N中的电子都难以通过P-N 结。故 P-N结具有单 向导电的性能。
半导体异质结的发光与吸收
自发辐射与受激辐射: 导带的电子不稳定,向价带 跃迁与空穴复合而放出光子—— 光辐射。如果跃迁是自发的,则 光子具有随机的方向、相位及偏 振态,称为自发辐射; 如果受到入射光子的激励, 辐射的光子与入射光子有相同的 方向、相位及偏振态,称为受激 辐射。

(完整版)同质结和异质结半导体激光器

(完整版)同质结和异质结半导体激光器

3.热平衡时,电子在能带中的分布不再服从玻尔兹曼分布,而服从费米分布,能
级E被电子占据的几率为
1 fn (E) EEF
e kT 1
半导体的能带和产生受激辐射的条件
1.杂质半导体中费米能级的位置与杂质类型及掺杂浓度有密切关系。为了说明问 题,图(5-25)给出了温度极低时的情况。
费米能级的位置与杂质类型及掺杂浓度关系

n c2 A21
8 2ν2
f ν
n c2
8 2ν2t复合
f ν
半导体激光器的工作原理和阈值条件
3.半导体激光器的阈值电流
➢在一定的时间间隔内,注入激光器的电子总数与同样时间内发生的电子与空穴 复合数相等而达到平衡
nLwd I
t复合
e

n c2 A21 8 2ν2
f
ν
n c2 8 2ν2t复合
2.在半导体中产生光放大的条件是在半导体中存在双简并能带,并且入射光的频
率满足
EF EF hν Eg
PN结和粒子数反转
1. P-N结的双简并能带结构 ➢把P型和N型半导体制作在一起,是否可能在结区产生两个费米能级呢? ➢未加电场时,P区和N区的费米能级必然达到同一水平,如图(5-26)。
PN能带
GaAs激光器的伏安特性
激光束的空间分布示意图
同质结和异质结半导体激光器
1. 同质结砷化镓(GaAs)激光器的特性 ➢光谱特性:图(5-31)是GaAs激光器的发射光谱。其中图(a)是低于阈值时的荧光 光谱,谱宽一般为几百埃,图(b)是注入电流达到或大于阈值时的激光光谱,谱 宽达几十埃。
GaAs激光器的发射光谱
➢双异质结半导体激光器:双异质结半导体激光器结构如图(5-32)(c)所示。

单异质结半导体激光器.课件

单异质结半导体激光器.课件

交叉学科应用的前景
1 2
生物医学领域应用
利用单异质结半导体激光器的特性,开发用于生 物成像、光动力治疗和光热治疗等应用的激光器 。
光子集成与光通信
结合光子集成技术,实现单异质结半导体激光器 的片上集成和高速光通信系统中的应用。
3
量子信息技术
探索单异质结半导体激光器在量子信息处理、量 子密钥分发和量子纠缠光源等领域的潜在应用。
生物医学成像
单异质结半导体激光器在生物医学成像中发挥着重要 作用,可用于荧光显微镜、光谱仪等设备。
在生物医学成像中,单异质结半导体激光器作为激发 光源,能够提供高亮度、高纯度的单色光,用于激发 荧光标记物或特定组织中的荧光物质。通过荧光显微 镜或光谱仪等设备,可以观察和分析生物样本中的分 子结构和功能信息,为医学研究和临床诊断提供重要 依据。此外,单异质结半导体激光器还可应用于眼科 、皮肤科等领域,为患者提供高效、安全的治疗方法 。
应用研究进展
光通信
单异质结半导体激光器在光通信领域 具有广泛的应用前景,其研究主要集 中在提高器件的稳定性、降低阈值电 流密度以及实现可调谐波长等方面。
光互联
单异质结半导体激光器在光互联领域 也具有广泛的应用前景,其研究主要 集中在提高器件的光束质量、实现可 调谐波长以及降低成本等方面。
06
单异质结半导体激光器的挑战与 展望
宽禁带半导体材料
具有高热导率和抗击穿特性,如SiC、 GaN等。
异质结的结构设计
单异质结
由不同带隙的半导体材料 构成,形成能级差,用于 限制电子和空穴的流动。
双异质结
由两种不同带隙和折射率 的材料构成,形成波导结 构,用于控制光子的流动 。
多层异质结
通过多层的不同材料堆叠 ,实现能级结构和波导结 构的复合,提高激光器的 性能。

《半导体光电子学》课件

《半导体光电子学》课件

探测器性能测试
演示光电探测器的响应度、速度和线性范围 等测试方法。
实验四:光子集成回路的制备与性能测试
总结词
掌握光子集成回路的基本原理、制备工艺和性能测试方法
光子集成回路基本原理
介绍光子晶体、光波导和光子器件等基本概念。
光子集成回路制备工艺
介绍微纳加工、耦合和封装等关键工艺流程。
回路性能测试
演示光子集成回路的传输损耗、器件特性和系统性能等测试方法。
发展历程与现状
发展历程
从20世纪初的初步研究到现在的广 泛应用,经历了基础研究、技术突破 和应用拓展等阶段。
现状
随着光电子器件的快速发展,半导体 光电子学在通信、能源、医疗等领域 发挥着越来越重要的作用。
半导体光电子学的应用领域
通信领域
利用半导体光电子器件实现高 速、大容量的信息传输,如光 纤通信系统中的激光器、调制
太阳能电池
提高太阳能电池的光电转换效率和稳 定性,降低成本,推动其在可再生能 源领域的应用。
光子集成回路的研究
光子晶体
研究新型光子晶体结构和材料,实现光 子器件的小型化、集技术,制作高性能的光子器 件,推动光子集成回路的发展。
半导体光电子学的未来展望
新材料、新结构的研究
导带是电子填充的能级, 价带是空穴填充的能级, 禁带是导带和价带之间的 能量间隙。
不同类型和性质的半导体 具有不同的能带结构。
半导体的光学性质
半导体的光学性质与材料的能带结构和光学常 数有关。
光电效应是太阳能电池等光电器件工作的基础。
半导体对光的吸收、反射、折射和散射等行为 具有特定的规律。
半导体的光电效应是指光子照射在半导体表面时 ,半导体吸收光子能量并产生电子-空穴对的现 象。

第四章 半导体异质结

第四章 半导体异质结

第4章半导体异质结4.1 半导体异质结界面4.2 半导体异质结的能带突变4.3 半导体异质结的能带图4.1 半导体异质结界面半导体异质结概念同质结(p-n结):在同一块单晶材料上,由于掺杂的不同形成的两种导电类型不同的区域,区域的交接面就构成了同质结。

若形成异质结的两种材料都是半导体,则为半导体异质结。

若一方为半导体一方为金属,则为金属-半导体接触,这包括Schottky结和欧姆接触。

1957年,德国物理学家赫伯特.克罗默指出有导电类型相反的两种半导体材料制成异质结,比同质结具有更高的注入效率。

1960年,Anderson制造了世界上第一个Ge-GaAs异质结。

1962年,Anderson提出了异质结的理论模型,他理想的假定两种半导体材料具有相同的晶体结构,晶格常数和热膨胀系数,基本说明了电流输运过程。

1968年美国的贝尔实验室和苏联的约飞研究所都宣布做成了GaAs-AlxGa1-xAs双异质结激光器。

在70年代里,金属有机物化学气相沉积(MOCVD)和分子束外延(MBE)等先进的材料成长方法相继出现,使异质结的生长日趋完善。

半导体异质结分类1.根据半导体异质结的界面情况,可分为三种:(1)晶格匹配的异质结。

300K时,如:Ge/GaAs(0.5658nm/0.5654nm)GaAs/AlGaAs(0.5654nm/0.5657nm)、InAs/GaSb(0.6058nm/0.6095nm)(2)晶格不匹配的异质结(3)合金界面异质结2.根据过渡空间电荷分布情况及过渡区宽度的不同:(1)突变异质结:在不考虑界面态的情况下,从一种半导体材料向另一种半导体材料的过渡只发生于几个原子距离(≤1μm)范围内。

(2)缓变异质结:在不考虑界面态的情况下,从一种半导体材料向另一种半导体材料的过渡发生于几个扩散长度范围内。

3.根据构成异质结的两种半导体单晶材料的导电类型:(1)反型异质结:由导电类型相反的两种半导体单晶材料所形成的异质结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质结
量子阱(QW)
SQW
(有源层由多层异质结组成)
MQW
.
3
条形 ②依电极或有源层的宽窄划分
宽面
③依据有源区是否存在应变
应变LD 无应变LD
.
4
❖ 1967年用液相外延生长出 G1axAxlAsGaA 异质结(单异质结)
❖ 1970年双异质结LD → 条形LD
❖ 70代中期,DBF(分布反馈)、DBR(分布 布拉格反射)、QW LD
第四章 异质结半导体激光器
.
1
§4.1 概述
一.形成激光器的具备条件
❖ ①有源介质→有源层
②谐振腔→解理面
③泵浦源→
直流
→电流源
⊥结平面 d
交流 --- 调制
w ∥结类
①依据有源层的结构、材料
同质结 LD
LD
单异
宽面LD
异质结 LD
质结 双异
块状材料(Bulk)
(有源层由一种材料组成) 条形LD
.
5
相关文档
最新文档