模拟光纤通信系统.pdf
模拟光纤通信系统
模拟光纤通信系统模拟光纤通信系统是一种基于光纤技术实现数据传输的通信系统。
光纤通信系统是目前最快、最可靠、最广泛使用的通信方式之一,其数据传输速度、带宽和抗干扰能力都在其他传输方式中处于领先地位。
下面就模拟光纤通信系统进行详细讲解。
一、光纤通信系统的简介光纤通信系统是一种利用光的传输效果将数字或模拟信号从一个地方传输到另一个地方的技术。
它基于光纤传输方式,即光信号通过光纤传输,具有低损耗、高速率和长距离等优势。
目前,光纤通信系统被广泛应用于电话、互联网、电视、广播等通信领域。
二、模拟光纤通信系统的工作原理模拟光纤通信系统一般分为发送端、光纤传输通道和接收端三个部分。
在发送端,模拟信号经过信号处理和调制后被转换成模拟光信号。
光信号经过一系列光学器件的调制和调节后沿着光纤传输通道送到接收端。
在光纤传输通道中,光信号由光纤中名为光纤芯的中央部分传输。
光纤芯由高折射率的玻璃或塑料材料制成,光通过它时被完全反射,从而减少了传播信号的损耗。
光纤芯的外部被一个被称为光纤包层的低折射率材料包围,其作用是防止光纤芯中的光逸出。
光纤包层还可以防止外界干扰信号,提高传输质量。
在接收端,经光纤传输的信号进入接收机进行解调,解调后的模拟信号经过放大和滤波处理后输出。
接收端还需要有一个时钟源对信号进行时钟恢复,以便于后续的数字处理。
三、模拟光纤通信系统的优点1、高速率。
模拟光纤通信系统的传输速率可以达到几千兆每秒(Gbps),比其他传输方式快得多,可以满足大量数据传输和信息交流的需求。
2、长距离。
光纤通信系统的传输距离可以达到数千公里,能够满足远距离通信的需求。
3、低损耗。
光纤传输中信号传输损耗小,信噪比高,能够有效地提高通信质量。
4、抗干扰能力强。
光纤通信系统中信号传输不受外界干扰的影响,能够保障通信信号的稳定性。
四、模拟光纤通信的应用领域光纤通信已经成为当今通信行业最重要的技术之一。
除了经典的电话、广播、电视传输以外,还有广域网应用,以及局域网、视频监控等领域都广泛应用了光纤通信。
光纤通信系统
第一节 光纤通信旳发展概况
光波旳波长在微米级,频率为10^14 HZ数 量级.由电磁波谱中能够看出,紫外线、可见光、 红外线均属于光波旳范围.
目前光纤通信使用旳波长范围是在近红外区 内,即波长为0.8~1.8um.可分为短波长和长 波长波段,短波段是指波长为0.85um,长波长 段是指1.31um和1.55um,这是目前所采用旳三 个通信窗口.
光缆
电端机
光端机 光源
电端机
中继器
光检测器
光源
光端机 光检测器
一、光源和光电检测器
1、光源 38页
在光纤通信系统中光源是光发送部分
旳“心脏”,是实现光纤通信旳主要器件之
一.对光源旳要求是:寿命长;有足够旳
输出光功率;电光转换效率应不低于目前
半导体电子器件旳转换率(约10﹪);发射
波长必须在低损耗传播窗口附近;发光面
4、可靠性较高.
LD和LED旳比较
1、激光器优于发光二极管旳方面是:
1)激光器旳响应速度快,可用于较高旳调制速度;
2)激光器旳光谱较窄,应用于单模光纤时,光在光 纤中旳传播引起旳色散小,可用于大容量通信;
3)耦合到光纤中旳功率高,传播旳距离远。 LD不足于LED旳方面是: 1)温度特征差; 2)易损坏,寿命短; 3)激光器旳成本高,价格昂贵。发光二极管便宜; 4)LD旳调制线不如LED. 所以大容量、远距离光纤通信宜用激光管;小容量、
二、按光纤旳模式分类
1、多模光纤通信系统,采用石英多模梯度光纤作为传播线,因 传播频率受到限制,一般应用于140Mbit/s下列旳系统.
2 、单模光纤通信系统,采用石英单模光纤作为传播线,传播容 量大,距离长,目前建设旳光纤通信系统都是这一类型旳.
《光纤通信》课件第7章 光纤通信系统及设计
图7.7 AM和FM系统中, 功率预算和谱呈抛物线形状, 即随着基带频率的增高, 解调噪声也越来越大。 为了 均衡整个信号带宽内的解调噪声,提高传输质量,需 要在调制器之前对视频信号加入预加重处理, 当然在 接收端解调之后要进行去加重处理。另外,用户接收 FM信号时,需要附加FM-AM转换器, 以便与用户接 口设备兼容。
7.1.2 模拟调制技术 对光纤通信系统来说,数字通信系统所采用的数
字调制方式具有较强的数字处理能力、抗干扰能力, 无噪声积累且适宜于长距离干线传输。但这种方式设 备复杂,价格昂贵。而模拟设备比较简单便宜, 调制 方式多样,使用灵活,因此在图像和数据信号的传输 中获得了较多的应用。
对于图像信号的传输, 一般采用基带电视信号直 接调制光脉冲强度, 称为基带直接强度调制; 另一种 调制方式是先用脉冲幅度调制(PAM)、脉冲频率调 制(PFM)、脉冲宽度调制(PWM)、脉冲间隔(位 置)调制(PPM)的方式把基带信号调制到一个电的 副载波上,再用这个副载波去强度调制(IM)光脉冲。 几种不同的脉冲调制波形见图7.2。
/ Req
(7.9)
7.2.2 多信道传输
前面所述的基带直接强度调制仅是单信道传输的 情况, 对于光纤巨大的带宽资源, 可以使用多路信号 的复用技术。 首先可以把基带信号用AM、 FM、 PM 等调制方式调制到频率为f1、f2、…、fN的N个载波(称 为副载波)上,然后再把这N个信号频分复用 (FDM),调制一个光源,如图7.4所示。
发送机、 光纤传输信道和光接收机。
图7.1 模拟链路的基本单元
光发送机可以是LED或LD。采用LED设备简单, 价格便宜。而用LD作光源,比用LED有较大的入纤功 率,可以延长传输距离,但引起系统非线性失真的因 素较多。
《模拟光纤通信系统》PPT课件
本章主要介绍一些已经实用化或者有重要应用前景
的新技术,如光放大技术,光波分复用技术,光交
换技术,光孤子通信,相干光通信,光时分复用技
术和波长变换技术等。
h
2
7.1 光 纤 放 大 器
光放大器有半导体光放大器和光纤放大器两种类型。半 导体光放大器的优点是小型化,容易与其他半导体器件集成; 缺点是性能与光偏振方向有关,器件与光纤的耦合损耗大。 光纤放大器的性能与光偏振方向无关,器件与光纤的耦合损 耗很小, 因而得到广泛应用。
h
11
7.2 光波分复用技术
在 光 纤 通 信 系 统 中 除 了 大 家 熟 知 的 时 分 复 用 (TDM) 技术外, 还出现了其他的复用技术,例如光时分复 用 (OTDM) 、 光 波 分 复 用 (WDM) 、 光 频 分 复 用 (OFDM)以及副载波复用(SCM)技术。 本节主要讲述 WDM技术。
信号分开(解复用),并作进一步处理,恢复出原信号
后送入不同的终端,因此将此项技术称为光波长分割
复用, 简称光波分复用技术。
h
13
衰 减 / (d B-·k)1 m
4.0 信 道间 隔
3.0 1~10 GHz
2.0
… 载00 1400 1600 1800
波 长 / nm
波长为980 nm的泵浦光转换效率更高,达10 dB/mW, 而且噪声较低,是未来发展的方向。
h
8
增 益 / dB
35.0
30.0
增 益 / dB
25.0
20.0
15.0
输 出 光 功 率 / dBm
10.0
I
I
I
I
5.0
I
0.0
实验四-模拟信号光纤传输系统实验
实验四模拟信号光纤传输系统实验一、实验目的1、了解发送光端机的发光管特性;2、掌握如何在光纤信道中高性能传输模拟信号;3、掌握发送光端机中传输模拟信号驱动电路的设计;4、了解光检测器的原理;5、光接收机的组成;二、预备知识1、光端机发光管特性;2、信道的非线性;3、光电转换特性;4、弱信号检测;三、实验仪器1、Z H5002(II)型“光纤发送模块”、“光纤接收模块”一套;2、20MHz示波器一台;3、低频信号源一台;4、光功率计一台;四、实验原理1、模拟光纤传输系统的主要技术指标:模拟光纤传输系统有两个关键性的质量指标:(1)信噪比S/N(2)信道线性度(非线性失真度)信噪比S/N与信道线性度分别表达噪声大小和线性好坏,这两个指标的数值依据传输的实际用途而定。
一般地说高质量的电视传输(例如演播室图象传输)要求信噪比S/N达到56dB,差分增益ΔG=0.3dB(差分增益是用于表示在不同输入信号电平上所引起增益的差值,即通道的线性度)。
对于数字载波传输系统(模拟信号传输),所需信噪比S/N和通道线性度一般比这要求低,可根据实际系统指标的分配决定。
2、模拟光纤传输系统的噪声来源噪声问题是模拟光纤系统最重要的问题之一,系统的任何组成部分包括有源部件和无源部件都可产生噪声,并叠加在传输信号之上。
在模拟传输系统中,主要由光发射机、传输光纤、光接收机和各类连接器所组成。
在光接收机中光检测器又由光检二极管和前置放大器组成。
模拟光纤传输链路中的噪声主要来源于以下几个方面:(1)光发射机中激光器光强的涨落,即相对强度噪声。
在模拟光纤系统中,激光器的直流偏置点是置于线性范围的中间,即在高于激光器阀值电流I th的某一电流I处。
相对强度噪声随着激光器的偏置不同而变化,在阀值附近,其达到最大,随着偏置增加,•即激光器输出功率增加,其会下降。
相对强度噪声和激光器的工作频率亦有关系,一般在低频时较小,而在高频时相对强度噪声则明显增加。
模拟光纤通信系统PDF.pdf
第六章模拟光纤通信系统(4学时)一、教学目的及要求:使学生熟悉模拟光纤通信系统的组成和结构特点,重点要求他们掌握模拟光纤通信的系统调制方式、模拟基带直接光强调制光纤传输系统和副载波复用光纤传输系统结构。
二、教学重点及难点:本章重点:调制方式、模拟基带直接光强调制光纤传输系统、副载波复用光纤传输系统。
本章难点:调制方式三、教学手段:板书与多媒体课件演示相结合四、教学方法:课堂讲解、提问五、作业:课外作业:6-1 6-2 6-4 6-5六、参考资料:《光纤通信》刘增基第六章。
《光纤通信》杨祥林第八章第九章七、教学内容与教学设计:【讲授新课】(96分钟)第六章模拟光纤通信系统6.1调制方式6.1.1模拟基带直接光强调制模拟基带直接光强调制(DIM)是用承载信息的模拟基带信号,直接对发射机光源(LED或LD)进行光强调制,使光源输出光功率随时间变化的波形和输入模拟基带信号的波形成比例。
6.1.2模拟间接光强调制模拟间接光强调制方式是先用承载信息的模拟基带信号进行电的预调制,然后用这个预调制的电信号对光源进行光强调制(IM)。
预调制又有多种方式,主要有以下三种。
1. 频率调制(FM)频率调制方式是先用承载信息的模拟基带信号对正弦载波进行调频,产生等幅的频率受调的正弦信号,其频率随输入的模拟基带信号的瞬时值而变化。
然后用这个正弦调频信号对光源进行光强调制,形成FMIM光纤传输系统。
2. 脉冲频率调制(PFM)脉冲频率调制方式是先用承载信息的模拟基带信号对脉冲载波进行调频,产生等幅、等宽的频率受调的脉冲信号,其脉冲频率随输入的模拟基带信号的瞬时值而变化。
然后用这个脉冲调频信号对光源进行光强调制,形成PFMIM光纤传输系统。
3. 方波频率调制(SWFM)方波频率调制方式是先用承载信息的模拟基带信号对方波进行调频,产生等幅、不等宽的方波脉冲调频信号,其方波脉冲频率随输入的模拟基带信号的幅度而变化。
然后用这个方波脉冲调频信号对光源进行光强调制,形成SWFM IM光纤传输系统。
光纤通信系统的建模与仿真
光纤通信系统的建模与仿真第一章:光纤通信系统的基本原理光纤通信是一种高速传输数据的方式,其基本原理是利用光的全内反射特性在光纤中传输信息。
光纤通信系统由三部分组成:光源、光纤和接收器。
光源是发出光信号的设备,光纤则是把光信号传输到接收器的载体,接收器则把光信号转换为电信号,经过一定处理后输出信息。
在光纤传输过程中,光信号不断衰减,同时还会受到色散、非线性等影响,因此需要建立相应的光纤传输模型进行仿真分析。
第二章:光纤通信系统建模光纤通信系统建模的核心是光纤传输模型,其目的是描述光信号在光纤中的传输过程。
光纤传输模型有两种常见的描述方式:一种是时域描述方法,也就是在时间域内研究光信号的传输规律;另一种是频域描述方法,也就是在频域内研究光信号的传输规律。
时域描述模型主要包括传输矩阵法和传输线法等。
传输矩阵法通过矩阵运算来描述光纤中光信号的传输过程,求得出射光强度与入射光强度的比值,从而得到光信号的传输特性。
传输线法则是通过建立微小元件的等效模型来描述光信号的传输规律。
频域描述模型则主要包括功率谱密度法和传递函数法等,其基本思路是将复杂的光信号分解为一系列频率分量,在频域内研究光信号的传输规律。
第三章:光纤通信系统仿真光纤通信系统的仿真工作是在光纤传输模型的基础上进行的。
光纤传输模型可以借助各种数学工具进行仿真,如MATLAB、OptiSystem等仿真软件。
MATLAB是一种功能强大的数值计算软件,可以用于各种数学建模分析问题,包括光纤传输模型的仿真。
利用MATLAB进行光纤传输模型的仿真,可以结合其MATHEMATICA工具箱来进行高级数学运算,以及各种数值模拟方法进行算法实现。
OptiSystem是一种专业的光学系统仿真软件,可以有效地模拟光学元件的特性,包括光源、光纤、接收器等,同时还支持频域和时域的仿真模式。
第四章:光纤通信系统仿真案例光纤通信系统的仿真可以应用于各种实际场景,以下是一些典型的仿真案例。
模拟光纤实验报告
一、实验目的1. 了解光纤通信的基本原理和特点。
2. 掌握光纤通信系统的基本组成。
3. 通过模拟实验,验证光纤通信系统的传输性能。
二、实验原理光纤通信是一种利用光在光纤中传输信息的技术。
其基本原理是:将电信号转换为光信号,通过光纤传输,再将光信号转换为电信号,恢复原始信息。
光纤通信具有传输速率高、抗干扰能力强、传输距离远等特点。
光纤通信系统主要由光源、光纤、光模块、光电转换器、传输设备等组成。
三、实验仪器与设备1. 光纤通信实验平台2. 光源(LED)3. 光纤(多模光纤)4. 光模块(发送模块、接收模块)5. 光电转换器6. 信号发生器7. 示波器8. 连接线四、实验步骤1. 搭建实验平台,将光源、光纤、光模块、光电转换器等设备连接好。
2. 设置信号发生器,产生一个稳定的电信号。
3. 将电信号输入到发送模块,通过发送模块将电信号转换为光信号。
4. 将光信号通过光纤传输,到达接收模块。
5. 接收模块将光信号转换为电信号,输出到示波器。
6. 观察示波器上显示的信号波形,分析信号的传输性能。
7. 改变光源功率、光纤长度、接收模块灵敏度等参数,观察信号传输性能的变化。
五、实验数据与分析1. 光源功率为1mW,光纤长度为10m,接收模块灵敏度设置为中等,信号传输良好。
2. 当光源功率增加到2mW,光纤长度增加到20m,接收模块灵敏度设置为高时,信号传输仍然良好。
3. 当光纤长度增加到30m,接收模块灵敏度设置为高时,信号出现一定的衰减,但仍然可以恢复原始信息。
4. 通过实验可知,光纤通信系统具有较长的传输距离和良好的抗干扰能力。
六、实验结论1. 光纤通信系统具有传输速率高、抗干扰能力强、传输距离远等特点。
2. 实验验证了光纤通信系统的传输性能,为实际应用提供了理论依据。
3. 通过调整光源功率、光纤长度、接收模块灵敏度等参数,可以优化光纤通信系统的性能。
七、实验注意事项1. 实验过程中,注意安全,防止触电、火灾等事故发生。
光纤通信(第四版)光纤通信系统及设计
7.4 IM-DD数字光纤通信系统设计
损耗限制系统中继距离计算
PS-PR=2αc+Nαs+αF L+M
L PS PR 2c s M F s / LF
M:富余度
7.4 IM-DD数字光纤通信系统设计
色散限制系统中继距离计算
对于数字光纤系统,色散增大,意谓着数字脉冲展宽增加, 在接收端要发生码间干扰,严重时使系统失去设计的性能。 因而,对于传输速率给定的系统,允许的总色散是一定的, 据此可计算中继距离。
7.3 PCM 数字光纤通信系统
一、系统的组成与主要性能参数
数字光纤通信系统组成
数字光纤通信系统性能参数(包括误码率、线路 速率或码率等)
误码率或误比特率
误比特率:在一定时间内收到的数字信号中发生差错的比特数与同一 时间所收到的数字信号的总比特数之比,就叫做“比特误码率”,也可 以叫做“误比特率”。 误码率:传输中的误码/所传输的总码数之比。
SDH电端机 SDH(同步复接体系) 将多路低速率比特流时分 复用为一路高速率比特流。
7.4 IM-DD数字光纤通信系统设计
总体考虑
(1)传输距离-中继距离 (2)信道带宽-线路码速率 (3)系统性能-误码率
光端机
光发送机:工作波长、码速率、平均发射光功率等。 光接收机:接收灵敏度、动态范围等。
单波长IM-DD系统
损耗限制系统中继距离计算
L PS PR 2c s M F s / LF
色散限制系统中继距离计算
1
L
(1.21
1.28) B
B1
q
106
LБайду номын сангаас
BD
WDM+EDFA系统:波长分配、放大器间隔等。
光纤通信第三版pdf完全版本光纤通信原理与技术
光纤通信第三版pdf完全版本光纤通信原理与技术光纤通信第三版pdf完全版本提供下载,来⾃⽹络。
相关信息:【作者】(美)Gerd Keiser【格式】超星转成的pdf【译者】李⽟权等【 ISBN 】7-5053-7637-3【出版社】电⼦⼯业出版社【系列名】国外电⼦通信教材【出版⽇期】2002年7⽉【版别版次】2002年7⽉第⼀版第⼀次印刷【简介】本书是⼀本系统介绍光纤通信知识的专著。
全书共分为13章,内容涉及光纤传输原理和传输特性、半导体光源和光检测器的⼯作原理及⼯作特性、数字光纤通信系统和模拟光纤通信系统、光放⼤器的⼯作原理和性能、WDM系统原理、光⽹络以及光纤通信系统测量。
本书理论体系严谨,内容深⼊浅出,并且紧密联系实际,是通信⼯程及相关专业⾼年级本科⽣、研究⽣的⼀本好教材,也是通信⼯程师的⼀本很好的参考书。
【⽬录】第1章光纤通信总览1.1 基本的⽹络信息速率1.2 光纤光学系统的演进1.3 光纤传输链路的基本单元1.4 仿真与建模⼯具1.4.1 仿真和建模⼯具的特征1.4.2 编程语⾔1.4.3 PTDS仿真和建模⼯具1.5 本书的使⽤和扩展1.5.1 参考资料1.5.2 CD—ROM中的仿真程序1.5.3 光⼦学实验室1.5.4 基于Web的资源参考⽂献第2章光纤:结构、导波原理和制造2.1 光的特性2.1.1 线偏振2.1.2 椭圆偏振和圆偏振2.1.3 光的量⼦特性2.2 基本的光学定律和定义2.3 光纤模式和结构2.3.1 光纤分类2.3.2 射线和模式2.3.3 阶跃折射率光纤结构2.3.4 射线光学表述2.3.5 介质平板波导中的波动解释2.4 圆波导的模式理论2.4.1 模式概述2.4.2 对关键的模式概念的归纳2.4.3 麦克斯韦⽅程2.4.4 波导⽅程式2.4.5 阶跃折射率光纤中的波动⽅程2.4.6 模式⽅程2.4.7 阶跃折射率光纤中的模式2.4.8 线偏振模2.4.9 阶跃折射率光纤中的功率流2.5 单模光纤2.5.1 模场直径2.5.2 单模光纤中的传播模2.6 梯度折射率光纤的结构2.7 光纤材料2.7.1 玻璃纤维2.7.2 卤化物玻璃纤维2.7.3 有源玻璃纤维2.7.4 硫属化合物玻璃纤维2.7.5 塑料光纤2.8 光纤制造2.8.1 外部汽相氧化法2.8.2 汽相轴向沉积法2.8.3 改进的化学汽相沉积法2.8.4 等离⼦体活性化化学汽相沉积法2.8.5 双坩埚法2.9 光纤的机械特性2.10 光缆习题参考⽂献第3章光纤中的信号劣化3.1 损耗3.1.1 损耗单位3.1.2 吸收损耗3.1.3 散射损耗3.1.4 弯曲损耗3.1.5 纤芯和包层损耗3.2 光波导中的信号失真3.2.1 信息容量的确定3.2.2 群时延3.2.3 材料⾊散3.2.4 波导⾊散3.2.5 单模光纤中的信号失真3.2.6 偏振模⾊散3.2.7 模间⾊散3.3 梯度折射率光波导中的脉冲展宽3.4 模式耦合3.5 单模光纤的优化设计3.5.l 折射率剖⾯3.5.2 截⽌波长3.5.3 ⾊散计算3.5.4 模场直径3.5.5 弯曲损耗习题参考⽂献第4章光源4.1 半导体物理学专题4.1.1 能带4.1.2 本征材料和⾮本征材料4.1.3 pn结4.1.4 直接带隙和间接带隙4.1.5 半导体器件的制造4.2 发光⼆极管(LED)4.2.1 LED的结构4.2.2 光源材料4.2.3 量⼦效率和LED的功率4.2.4 LED的调制4.3 半导体激光器4.3.1 半导体激光器的模式和阈值条件4.3.2 半导体激光器的速率⽅程4.3.3 外量⼦效率4.3.4 谐振频率4.3.5 半导体激光器结构和辐射⽅向图4.3.6 单模激光器4.3.7 半导体激光器的调制4.3.8 温度特性4.4 光源的线性特性4.5 模式噪声、模分配噪声和反射噪声4.6 可靠性考虑习题参考⽂献第5章光功率发射和耦合5.1 光源⾄光纤的功率发射5.1.1 光源的输出⽅向图5.1.2 功率耦合计算5.1.3 发射功率与波长的关系5.1.4 稳态数值孔径5.2 改善耦合的透镜结构5.2.1 ⾮成像微球5.2.2 半导体激光器与光纤的耦合5.3 光纤与光纤的连接5.3.1 机械对准误差5.3.2 光纤相关损耗5.3.3 光纤端⾯制备5.4 LED与单模光纤的耦合5.5 光纤连接5.5.1 连接⽅法5.5.2 单模光纤的连接5.6 光纤连接器5.6.1 连接器的类型5.6.2 单模光纤连接器5.6.3 连接器回波损耗习题参考⽂献第6章光检测器6.1 光电⼆极管的物理原理6.1.1 pin光电⼆极管6.1.2 雪崩光电⼆极管6.2 光检测器噪声6.2.1 噪声源6.2.2 信噪⽐6.3 检测器响应时间6.3.1 耗尽层光电流6.3.2 响应时间6.4 雪崩倍增噪声6.5 InGaAsAPD结构6.6 温度对雪崩增益的影响6.7 光检测器的⽐较习题参考⽂献第7章光接收机7.1 接收机⼯作的基本原理7.1.1 数字信号传输7.1.2 误码源7.1.3 接收机结构7.1.4 傅⾥叶变换表⽰7.2 数字接收机性能7.2.1 误码概率7.2.2 量⼦极限7.3 接收机性能的详细计算7.3.1 接收机噪声7.3.2 散弹噪声7.3.3 接收机灵敏度计算7.3.4 性能曲线7.3.5 ⾮零消光⽐7.4 前置放⼤器的类型7.4.1 ⾼阻抗FET放⼤器7.4.2 ⾼阻抗双极晶体管放⼤器7.4.3 互阻抗放⼤器7.4.4 ⾼速电路7.5 模拟接收机习题参考⽂献第8章数字传输系统8.1 点到点链路8.1.1 系统考虑8.1.2 链路的功率预算8.1.3 展宽时间预算8.1.4 第⼀窗⼝传输距离8.1.5 单模光纤链路的传输距离8.2 线路编码8.2.1 NRZ码8.2.2 RZ码8.2.3 分组码8.3 纠错8.4 噪声对系统性能的影响8.4.1 模式噪声8.4.2 模分配噪声8.4.3 凋嗽8.4.4 反射噪声习题参考⽂献第9章模拟系统9.1 模拟链路概述9.2 载噪⽐9.2.1 载波功率9.2.2 光检测器和前置放⼤器的噪声9.2.3 相对强度噪声(RIN)9.2.4 反射对RIN的影响9.2.5 极限条件9.3 多信道传输技术9.3.1 多信道幅度调制9.3.2 多信道频率调制9.3.3 副载波复⽤习题参考⽂献第10章 WDM概念和器件10.1 WDM的⼯作原理10.2 ⽆源器件10.2.1 2x 2光纤耦合器10.2.2 散射矩阵表⽰法10.2.3 2x 2波导辊合器10.2.4 星形精合器10.2.5 马赫—曾德尔⼲涉仪复⽤器10.2.6 光纤光栅滤波器10.2.7 基于相位阵列的WDM器件10.3 可调谐光源10.4 可调谐滤波器10.4.1 系统考虑10.4.2 可调谐滤波器的类型习题参考⽂献第11章光放⼤器11.1 光放⼤器的基本应⽤和类型11.1.1 ⼀般应⽤11.1.2 放⼤器的类型11.2 半导体光放⼤器11.2.1 外泵浦11.2.2 放⼤器增益11.3 掺饵光纤放⼤器11.3.1 放⼤机制11.3.2 EDFA的结构11.3.3 EDFA的功率转换效率及增益11.4 放⼤器噪声11.5 系统应⽤11.5.1 功率放⼤器11.5.2 在线放⼤器11.5.3 前置放⼤器11.5.4 多信道运⽤11.5.5 在线放⼤器增益控制11.6 波长变换器11.6.1 光栅波长变换器11.6.2 光波混合波长变换器习题参考⽂献第12章光⽹络12.1 基本⽹络12.1.1 ⽹络拓扑12.1.2 ⽆源线形总线的性能12.1.3 星形结构的性能12.2 SONET/SDH12.2.1 传输格式和速率12.2.2 光接⼝12.2.3 SONET/SDH环12.2.4 S0NET/SDH⽹络12.3 ⼴播选择WDM⽹络12.3.1 ⼴播选择单跳⽹12.3.2 ⼴播选择多跳⽹12.3.3 洗牌⽹多跳⽹12.4 波长路由⽹12.4.1 光交叉连接12.4.2 波长变换器的性能评估12.5 ⾮线性对⽹络性能的影响12.5.1 有效长度与⾯积12.5.2 受激拉曼散射12.5.3 受激布⾥渊散射12.5.4 ⾃相位调制和交叉相位调制12.5.5 四波混频12.5.6 ⾊散管理12.6 WDM⼗EDFA系统的性能12.6.1 链路带宽12.6.2 特定BER所需的光功率12.6.3 串扰12.7 孤⼦12.7.1 孤⼦脉冲12.7.2 孤⼦参数12.7.3 孤⼦宽度和间隔12.8 光CDMA12.9 超⾼容量⽹络12.9.1 超⼤容量WDM系统12.9.2 ⽐特间插光TDM12.9.3 时隙光TDM习题参考⽂献第13章测量13.1 测量标准和测试过程13.2 测试设备13.2.1 光功率计13.2.2 光衰减器13.2.3 可调谐激光器13.2.4 光谱分析仪13.2.5 光时域反射仪13.2.6 多功能光测试系统13.3 损耗测量13.3.1 截断法13.3.2 插⼊损耗法13.4 ⾊散的测量13.4.1 模间⾊散13.4.2 模间⾊散的时域测量13.4.3 模问⾊散的频域测量13.4.4 ⾊度⾊散13.4.5 偏振模⾊散13.5 0TDR的场地应⽤13.5.1 0TDR轨迹13.5.2 损耗测量13.5.3 光纤故障定位13.6 眼图13.7 光谱分析仪的应⽤13.7.1 光源特性13.7.2 EDFA增益与噪声系数的测试习题参考⽂献附录A 国际单位制附录B 常⽤的数学关系附录C 贝塞⽿函数附录D 分贝附录E 通信理论专题附录F ⾊散因⼦。
【PDF】PDH的基本原理
PDH 技术介绍光纤接收发送接收光纤通信系统模拟信息传输数字信息传输双向传输发送光端机光端机140M信息复用光中继长沙益阳宁乡PDH??PDH光传输系统的概念、系统结构??采用1B1H线路码型的PDH光传输系统简称1B1H系统??具有自愈功能的采用1B1H线路码型的PDH光传输系统简称自愈的1B1H系统PDH光传输系统的概念PDH是准同步数字复接系列的简称全世界有三大数字复接系列标准欧洲、北美、日本我国采用欧洲标准基本结构和相对应的等效电话容量如下图所示2/8复用设备140/565复用设备34/140复用设备8/34复用设备2Mb/s30CH8Mb/s120CH34Mb/s480CH140Mb/s1920CH565Mb/s7680CHPDH光传输系统结构PDH可以使用不同的传输媒介无线、有线传送如果采用光纤作为传输信道则称为PDH光传输系统。
包括光缆传输媒介光端机接口码型变换光电变换光中继机补偿传输衰耗延长传输距离管理判定故障性能监视等根据接口的标称速率8.448Mb/s、34.368Mb/s、139.264Mb/s不同而分别称之为8Mb/s、34Mb/s、140Mb/s 光传输系统。
光端机光端机管理8M34M140MG.703光中继G.703采用1B1H线路码型的PDH光传输系统简称1B1H系统国情科研的出发点和归宿我国是一个发展中国家通信曾经十分落后。
中央在建设长途干线时地方就争着要区间通信。
在本地网应用中基本上是点对点的局间通信只需要2Mb/s接口。
根据当时器件情况把34Mb/s和140Mb/s光传输系统的线路码速率提高到68Mb/s和280Mb/s采用1B1H线路码型使器件处于最佳运用状态.区分为干线型和本地型两种传输系统。
干线型140Mb/s保留普通的结构另外加入1200CH区间通信可从中继站直接上下。
本地型只保留2/8复用中继站可任意上/下。
由于上述措施使整个系统的容量增大62.5成本降低可靠性提高更加灵活。
实验二 模拟和数字信号光纤传输系统实验
三、实验仪器
1.光纤通信实验系统 1 台。 2.示波器 1 台。 3.光纤跳线 2 根。 4.电话 2 部
四、实验原理
1.模拟信号光纤传输系统 本实验中将模拟信号源输出的正弦波、三角波、方波信号通过光纤进行传输。模拟信号源的电路图如 下:
图中 P400 是输入的方波信号, 输入的方波信号有两种频率可选 1k、 2k。 P401 是三角波的输出端, P410 是正弦波的输出端。 模拟信号也可以通过 PCM 编码后变成数字信号。然后,再送入光发射模块数字信号端进行传输。接 收到信号后再送入 PCM 译码模块,得到模拟信号。这种传输方法将在后面的实验中进行。 2.电话语音光纤传输系统 本实验系统的电话系统采用了热线电话的模式,热线电话的工作模式:其中任意一路摘机后(假定是 甲路) ,另一路将振铃(假定是乙路)而电话甲将送回铃音。当乙路摘机后,双方进入通话状态。当其中
模拟信号源模块正弦波输出p410p500pcm编译码模块一pcm编码输入模拟信号源模块正弦波输出p410p512pcm编译码模块二pcm编码输入pcm编译码模块一pcm编码输出p503p643pcm编码复用解复用模块复用输入一pcm编译码模块二pcm编码输出p507p642pcm编码复用解复用模块复用输入二pcm编码复用解复用模块复用输出p641p2001550nm光发模块数字光发数据输入1550nm光收模块数字信号输出p206p640pcm编码复用解复用模块解复用输入pcm编码复用解复用模块解复用输出一p639p509pcm编译码模块二译码输入pcm编码复用解复用模块解复用输出二p638p506pcm编译码模块一译码输入pcm编码复用解复用模块位时钟输出p644p505pcm编译码模块一pcm译码位时钟pcm编码复用解复用模块位时钟输出p644p510pcm编译码模块二pcm译码位时钟pcm编码复用解复用模块帧同步信号输出p637p504pcm编译码模块一译码帧同步信号pcm编码复用解复用模块帧同步信号输出p637p511pcm编译码模块二译码帧同步信号pcm编译码模块一pcm译码输出p501p515电话甲音频输入pcm编译码模块二pcm译码输出p513p517电话乙音频输入5
实验三模拟信号光纤通信系统模拟光纤传输系统,即通过光纤信道...
实验三模拟信号光纤通信系统模拟光纤传输系统,即通过光纤信道传输模拟信号的通信系统,目前主要用于模拟电视传输。
模拟光纤通信系统采用参数大小连续变化的信号来代替信息,因此,在电光转换过程中信号和信息存在线性对应关系,这样对光源功率特性的线性要求,对系统信噪比的要求,都比较高。
由于噪声的累积,和数字光纤通信系统相比,模拟光纤通信系统的传输距离较短。
但采用频分复用(FDM)和副载波复用(SCM)技术,实现了一根光纤传输100多路电视节目,在有线电视(CA TV)网络中,已得到广泛的应用。
本实验主要是语音信号的传输,分两部分:首先了解各种模拟信号的光纤传输,其次进行模拟电话信号的传输。
第一部分、模拟信号光纤传输系统实验一、实验目的1、了解模拟信号光纤系统的通信原理2、学习并掌握完整的模拟信号光纤通信系统的基本结构3、学习并掌握系统频率特性的测试二、实验仪器1、ZYE4301F(1310)型光纤通信原理实验箱2、20MHz双踪模拟示波器3、麦克风和耳机(最好自备)三、实验原理本实验通过完成各种不同模拟信号的光纤传输,以了解和熟悉光纤传输模拟信号系统的组成。
用双踪示波器观察光发送模块与光接收模块各点的信号波形,并进行比较。
实验中,我们利用8038函数发生器模块电路产生的三角波和正弦波信号以及外输入模拟信号作为传图3-1 模拟信号光纤传输方式一图3-2 模拟信号光纤传输方式二输的模拟信号。
模拟信号的传输,可以有两种方式。
一种是用模拟信号,经过光纤直接进行传输;另一种方式是把模拟信号经过数字化后,调制成数字信号后进行传输,最后经过解调把信号还原成原始模拟信号。
本实验中只考虑模拟信号光纤传输方式中的第一种方法,而第二种方法在后续实验中有详述。
图3-1和图3-2分别是模拟信号光纤传输的两种方式。
本实验中的三角波、正弦波采用8038函数发生器模块电路,信号的幅度0 ~12V连续可调,频率在14Hz~300KHz连续可调。
《光纤通信系统》数字光纤传输测试系统实验
《光纤通信系统》数字光纤传输测试系统实验概述光纤通信是利用光波作为载波,以光纤作为传输媒质实现信息传输,是一种最新的通信技术。
光纤是光导纤维的简称。
光纤通信是以光波为载频,以光导纤维为传输媒质的一种通信方式。
光纤通信使用的波长在近红外区,即波长800~1800nm,可分为短波长波段(850nm)和长波长波段(1310nm和1550nm),这是目前所采用的三个通信窗口。
通信发展过程是以不断提高载频频率来扩大通信容量,光是一种频率极高的电磁波(3×1014HZ),因此用光作载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,是通信发展的必然方向。
光纤通信有许多优点:首先它有极宽的频带。
目前我国已完成了10Gbps的光纤通信系统,这意味着在125um的光纤中可以传输大约11万路电话。
其次,光纤的传输损耗很小,传统的同轴电缆损耗约在5dB/Km以上,站间距离不足10Km;而工作在 1.55um的光纤最低已达到0.2dB/Km的损耗,站间无中继传输可达100Km以上。
另外,光纤通信还具有抗电磁干扰、抗。
腐蚀、抗辐射等特点,它在地球上有取之不尽,用之不竭的光纤原材料—SiO2光纤通信可用于市话中继线,长途干线通信,高质量彩色电视传输,交通监控指挥,光纤局域网,有线电视网和共用天线(CATV)系统。
波分复用技术(WDM)的出现,使光纤传输技术向更高的领域发展,实现信息宽带、高速传输。
光纤通信将会在光同步数字体系(SDH)、相干光通信、光纤宽带综合业务数字网(B—ISDN)、用户光纤网、ATM及全光通信有进一步发展。
光纤通信系统主要由三部分组成:光发射机、传输光纤和光接收机。
其电/光和光/电变换的基本方式是直接强度调制和直接检波。
实现过程如下:输入电信号既可以是模拟信号(如视频信号、电话语音信号、正弦波或三角波信号),也可以是数字信号(如计算机数据、PCM编码信号、数字信号源信号);调制器将输入的电信号转换成适合驱动光源器件的电流信号并用来驱动光源器件,对光源器件进行直接强度调制,完成电/光变换的功能;光源输出的光信号直接耦合到传输光纤中,经一定长度的光纤传输后送达接收端;在接收端,光电检测器对输入的光信号进行直接检波,将光信号转换成相应的电信号,再经过放大恢复等电信号处理过程,以弥补线路传输过程中带来的信号损伤(如损耗、波形畸变),最后输出和原始输入信号相一致的电信号,从而完成整个传送过程。
光纤通信系统的仿真分析
毕业设计(论文) 光纤通信系统的仿真分析电子科技大学中山学院教务处制发光纤通信系统的仿真分析摘要光纤通信系统是以光为载波,利用纯度极高的玻璃制成极细的光导纤维作为传输媒介,通过光电变换,用光来传输信息的通信系统。
光纤通信系统的计算机仿真,是对此类系统进行规划设计、可行性论证以及研制新型系统的重要手段,可用于对已设计的光纤传输系统在硬件实现之前进行性能评估和可行性论证,可节约大量时间和经费; 同时在分析中可随时改动参数值,便于理论研究。
本文对光纤通信系统的仿真进行了深入的探讨,首先介绍了光纤通信系统的特点及构成,接着对光纤通信系统仿真软件Optisystem的简单介绍并对传输速率为10Gb/s的光纤通信系统进行仿真设计和分析,详细介绍了仿真的流程和分析后的结果并作出总结。
关键词:光纤通信系统;Optisystem;仿真Simulation Analysis of Optical FiberCommunication SystemAbstractOptical fiber communication system u sed optical wave as carrier,and very fine optical fiber made of high purity glass as transmission medium. It can transmit information through photoelectric conversion.Optical fiber communication systems computer simulation is of such systems planning and design,feasibility study and development of new types of systems important means can be used to have been designed optical transmission systems in hardware prior to the performance evaluation and feasibility study,Can save a lot of time and funding,while in the analysis parameters can be changed at any time,for theoretical research.The paper discusses in depth the simulation of optical fiber communication system,firstly the characteristics and structure of Optical fiber communication system was introduced, then the simulation software (Optisystem) was simply presented, and an optical fiber communication system with transfer rate of 10 Gb/s was simulated and designed, the process and result of simulation was detailed and the summary was made.Keywords: Optical fiber communication system; Optisystem; simulation目录1 绪论 (1)1.1 光纤通信概述 (1)1.1.1 光纤通信的优点 (1)1.1.2 光纤通信的缺点 (2)1.1.3 光纤通信的应用 (3)1.2 系统仿真原理 (3)2 光纤通信系统及其构成 (5)2.1 光发送机 (5)2.2 光纤线路 (5)2.3 光接收机 (6)2.4 光中继器 (6)3 光纤通信系统仿真软件 (7)4 数字模型建立与性能仿真分析 (8)4.1 发射系统模型的建立 (8)4.1.1 数字模型建立 (8)4.1.2 光源与系统性能关系的仿真分析 (8)4.2 传输系统模型的建立 (10)4.2.1 数字模型建立 (10)4.2.2 传输速率与光纤传输系统特性的关系 (11)4.2.3 光纤信道参数与光纤传输系统特性的关系 (13)4.2.4 光放大器对系统性能的影响 (17)4.3 接收系统模型的建立 (19)4.3.1 数字模型建立 (19)4.3.2 光电检测器与系统性能关系的仿真分析 (20)4.4 波分复用系统仿真分析 (22)5 光纤通信系统仿真实验 (25)5.1 10Gb/s光纤通信系统模型的建立 (25)5.2 仿真结果分析 (26)5.3 光纤通信技术的发展现状及趋势 (28)5.3.1 光纤通信技术的现状 (28)6 结论 (29)致谢 (30)参考文献 (31)1 绪论1.1 光纤通信概述通信是指两个或多个实体之间交换信息的过程,而通信系统是该过程的具体实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章模拟光纤通信系统(4学时)一、教学目的及要求:使学生熟悉模拟光纤通信系统的组成和结构特点,重点要求他们掌握模拟光纤通信的系统调制方式、模拟基带直接光强调制光纤传输系统和副载波复用光纤传输系统结构。
二、教学重点及难点:本章重点:调制方式、模拟基带直接光强调制光纤传输系统、副载波复用光纤传输系统。
本章难点:调制方式三、教学手段:板书与多媒体课件演示相结合四、教学方法:课堂讲解、提问五、作业:课外作业:6-1 6-2 6-4 6-5六、参考资料:《光纤通信》刘增基第六章。
《光纤通信》杨祥林第八章第九章七、教学内容与教学设计:【讲授新课】(96分钟)第六章模拟光纤通信系统6.1调制方式6.1.1模拟基带直接光强调制模拟基带直接光强调制(DIM)是用承载信息的模拟基带信号,直接对发射机光源(LED或LD)进行光强调制,使光源输出光功率随时间变化的波形和输入模拟基带信号的波形成比例。
6.1.2模拟间接光强调制模拟间接光强调制方式是先用承载信息的模拟基带信号进行电的预调制,然后用这个预调制的电信号对光源进行光强调制(IM)。
预调制又有多种方式,主要有以下三种。
1. 频率调制(FM)频率调制方式是先用承载信息的模拟基带信号对正弦载波进行调频,产生等幅的频率受调的正弦信号,其频率随输入的模拟基带信号的瞬时值而变化。
然后用这个正弦调频信号对光源进行光强调制,形成FMIM光纤传输系统。
2. 脉冲频率调制(PFM)脉冲频率调制方式是先用承载信息的模拟基带信号对脉冲载波进行调频,产生等幅、等宽的频率受调的脉冲信号,其脉冲频率随输入的模拟基带信号的瞬时值而变化。
然后用这个脉冲调频信号对光源进行光强调制,形成PFMIM光纤传输系统。
3. 方波频率调制(SWFM)方波频率调制方式是先用承载信息的模拟基带信号对方波进行调频,产生等幅、不等宽的方波脉冲调频信号,其方波脉冲频率随输入的模拟基带信号的幅度而变化。
然后用这个方波脉冲调频信号对光源进行光强调制,形成SWFM IM光纤传输系统。
采用模拟间接光强调制的目的是提高传输质量和增加传输距离。
实现一根光纤传输多路电视有多种方法,目前现实的方法是先对电信号复用,再对光源进行光强调制。
对电信号的复用可以是频分复用(FDM),也可以是时分复用(TDM)。
6.1.3频分复用光强调制频分复用光强调制方式是用每路模拟电视基带信号,分别对某个指定的射频(RF)电信号进行调幅(AM)或调频(FM),然后用组合器把多个预调RF信号组合成多路宽带信号,再用这种多路宽带信号对发射机光源进行光强调制。
把受模拟基带信号预调制的RF电载波称为副载波,这种复用方式也称为副载波复用(SCM)。
SCM 模拟电视光纤传输系统的优点:(1) 一个光载波可以传输多个副载波,各个副载波可以承载不同类型的业务(2) SCM系统灵敏度较高,又无需复杂的定时技术(3) 不仅可以满足目前社会对电视频道日益增多的要求,而且便于在光纤与同轴电缆混合的有线电视系统(HFC)中采用6.2 模拟基带直接光强调制光纤传输系统模拟基带直接光强调制(DIM)光纤传输系统由光发射机(光源通常为发光二极管)、光纤线路和光接收机(光检测器)组成。
模拟信号直接光强调制系统方框图6.2.1特性参数评价模拟信号直接光强调制系统的传输质量的最重要的特性参数是信噪比(SNR)和信号失真(信号畸变)。
1. 信噪比系统的信噪比定义为接收信号功率和噪声功率(NP)的比值。
式中,〈i2s〉和〈i2n〉分别为均方信号电流和均方噪声电流, RL为光检测器负载电阻。
信噪比一般用dB作单位。
和SNR关系密切的一个参数是接收灵敏度。
和数字光纤通信系统相似,在模拟光纤通信系统中,我们把接收灵敏度Pr定义为:在限定信噪比条件下,光接收机所需的最小信号光功率Ps, min,并以dBm为单位。
假设系统除量子噪声外,没有其他噪声存在,在这种情况下,灵敏度由平均信号电流决定,这样确定的灵敏度称为(最高)极限灵敏度。
2. 信号失真一般说,实现电/光转换的光源,由于在大信号条件下工作,线性较差,所以发射机光源的输出功率特性是DIM系统产生非线性失真的主要原因。
非线性失真一般可以用幅度失真参数——微分增益(DG)和相位失真参数——微分相位(DP)表示,其定义为虽然LED的线性比LD好,但仍然不能满足高质量电视传输的要求。
模拟信号直接光强调制光纤传输系统的非线性补偿有许多方式,目前一般都采用预失真补偿方式。
预失真补偿方式是在系统中加入预先设计的、与LED非线性特性相反的非线性失真电路。
这种补偿方式不仅能获得对LED的补偿,而且能同时对系统其他元件的非线性进行补偿。
由于这种方式是对系统的非线性补偿,把预失真补偿电路置于光发射机,给实时精细调整带来一定困难,而把预失真补偿电路置于光接收机,则便于实时精细调整。
在模拟电视光纤传输系统中,最广泛使用的电路是微分相位四点补偿电路。
这种电路的相位补偿是利用集电极和发射极输出的信号相位差180°的原理构成的全通相移网络来实现的。
微分相位补偿电路6.2.2光端机光端机包括光发射机和光接收机。
1. 光发射机模拟基带直接光强调制光纤电视传输系统光发射机的功能是,把模拟电信号转换为光信号。
对这种光发射机的基本要求是:(1) 发射(入纤)光功率要大,以利于增加传输距离。
(2) 非线性失真要小,以利于减小微分相位(DP)和微分增益(DG),或增大调制指数m(mTV)。
(3) 调制指数m(mTV)要适当大。
(4) 光功率温度稳定性要好。
模拟基带DIM光纤电视传输系统光发射机方框图如图光发射机方框图2. 光接收机光接收机的功能是把光信号转换为电信号。
对光接收机的基本要求是:(1) 信噪比(SNR)要高;(2) 幅频特性要好;(3) 带宽要宽。
光接收机方框图6.2.3系统性能模拟基带直接光强调制光纤电视传输系统方框图如图6.9所示。
在发射端,模拟基带电视信号和调频(FM)伴音信号分别输入LED驱动器,在接收端进行分离。
改进DP和DG的预失真电路置于接收端。
模拟基带直接光强调值光前点时传输系统方框图主要技术参数举例如下。
1. 系统参数(1) 视频部分:带宽0~6 MHzSNR≥50 dB(未加校)DG4%发射光功率≥15 dBm(32 μW)接收灵敏度≤30 dBm(2) 伴音部分:带宽0.04~15 kHz输入输出电平0 dBrSNR55 dB(加校)畸变2%伴音调频副载频8 MHz2. 光纤损耗对传输距离的限制模拟基带直接光强调制光纤电视传输系统的传输距离大多受光纤损耗的限制,根据发射光功率、接收灵敏度和光纤线路损耗可以计算传输距离L。
3. 系统对光纤带宽的要求在短波长使用LED光源的情况下,光纤线路总带宽应为B=(B2m+B2c)1/2在实际工程中是否采用短波长LED和多模SI 光纤,要根据经济效益(系统成本和维修费用)来决定。
6.3 副载波复用光纤传输系统模拟基带电视信号对射频的预调制,通常用残留边带调幅(VSBAM)和调频(FM)两种方式,各有不同的适用场合和优缺点。
副载波复用(SCM)模拟电视光纤传输系统方框图为:讲解[板书][板书][板书][多媒体课件]100分钟副载波复用模拟电视光纤传输系统方框图6.3.1特性参数对于副载波复用模拟电视光纤传输系统,评价其传输质量的特性参数主要是载噪比(CNR)和信号失真。
1. 载噪比载噪比CNR的定义是,把满负载、无调制的等幅载波置于传输系统,在规定的带宽内特定频道的载波功率(C)和噪声功率(NP)的比值,并以dB为单位,用公式表示为式中, 〈i2c〉为均方载波电流,〈i2n〉为均方噪声电流。
每个信道的载噪比由此可见,载噪比CNR随着调制指数m和平均接收光功率P0的增加而增加,随三项噪声的增加而减小。
不论采用什么预调制方式,计算CNR的公式都相同,只是公式中具体参数不同而已,既适用于VSBAM, 也适合于FM。
但是为获得相同SNR,不同预调制方式所需的CNR都是不同的。
为在接收机解调后获得相同SNR,两种预调制方式所需的CNR比值为式中, Fd为由图像信号产生的频偏峰 - 峰值,Bb为基带信号带宽,Bf为FM信号带宽。
就载噪比而言,预调制方式FM优于VSB AM。
但是和VSBAM方式相比,FM方式存在一个本质性问题,就是它占用的带宽较宽,约为VSBAM方式的6倍。
所以要根据不同应用场合,选择不同预调制方式。
2. 信号失真副载波复用模拟电视光纤传输系统产生信号失真的原因很多,但主要原因是作为载波信号源的半导体激光器在电/光转换时的非线性效应。
由于到达光检测器的信号非常微弱,在光/电转换时可能产生的信号失真可以忽略。
只要光纤带宽足够宽,传输过程可能产生的信号失真也可以忽略。
副载波复用模拟电视光纤传输系统的信号失真用组合二阶互调(CSO)失真和组合三阶差拍(CTB)失真这两个参数表示。
两个频率的信号相互组合,产生和频(ωi+ωj)和差频(ωiωj)信号,如果新频率落在其他载波的视频频带内,视频信号就要产生失真。
这种非线性效应会发生在所有RF电路,包括光发射机和光接收机。
在给定的频道上,所有可能的双频组合的总和称为组合二阶(CSO)互调失真。
通常用这个总和与载波的比值表示,并以dB为单位,记为dBc。
组合三阶差拍(CTB)失真是三个频率(ωi±ωj±ωk)的非线性组合,其定义和表示方法与CSO相似,单位相同。
CSO和CTB将以噪声形式对图像产生干扰,为减小这种干扰,可以采用如下方法。
(1) 采用合理的频道频率配置,以减小C2i和C3i,改善CSO和CTB。
(2) 限制调制指数m,以保证CSO和CTB 符合规定的指标。
(3) 采用外调制技术,把光载波的产生和调制分开。
6.3.2光端机1. 光发射机对残留边带—调幅光发射机的基本要求是:(1) 输出光功率要足够大,输出光功率特性(P[CD*2]I)线性要好;(2) 调制频率要足够高,调制特性要平坦;(3) 输出光波长应在光纤低损耗窗口,谱线宽度要窄;(4) 温度稳定性要好。
VSBAM光发射机的构成示于下图。
输入到光发射机的电信号经前馈放大器放大后,受到电平监控,以电流的形式驱动激光器。
LD输出特性要求是线性的,但在实际电/光转换过程中,微小的非线性效应是不可避免的,而且要影响系统的性能。
所以优质的光发射机都要进行预失真控制。
VSB AM光发射机的构成外调制1550 nm DFB光发射机结合了直接调制1310 nm DFB光发射机和外调制YAG光发射机的优点。
这种光发射机采用DFB LD作光源,用电流直接驱动,因而与1310 nm DFB光发射机同样具有小型、轻便等优点。
外调制1550 nm DFB光发射机和EDFA结合,在两个重要场合特别适用。