高中数学函数测试题(含答案)
高中函数测试题及答案
![高中函数测试题及答案](https://img.taocdn.com/s3/m/30658a4a876fb84ae45c3b3567ec102de2bddf3c.png)
高中函数测试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1在x=2时的值为:A. 5B. 7C. 9D. 112. 函数y = |x|的图像是:A. 一条直线B. 一个V形C. 一个倒V形D. 一个S形3. 若f(x) = x^2 + 1,求f(-1)的值:A. 0B. 1C. 2D. 34. 函数y = 1/x的图像在第一象限和第三象限是:A. 正比例函数B. 反比例函数C. 一次函数D. 二次函数5. 函数y = log2(x)的定义域是:A. x > 0B. x < 0C. x ≥ 0D. x ≤ 06. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π7. 若f(x) = x^3 - 3x^2 + 2x,求f'(x)的值:A. 3x^2 - 6x + 2B. x^2 - 2x + 1C. 3x^2 - 6xD. x^2 - 2x8. 函数y = cos(x)的图像在x = π/2时的值为:A. 1B. 0C. -1D. 不确定9. 若f(x) = 2^x,求f'(x)的值:A. 2^xB. ln(2) * 2^xC. 1D. 2^(x-1)10. 函数y = x^3的图像是:A. 关于原点对称B. 关于y轴对称C. 关于x轴对称D. 都不是答案:1. B2. B3. C4. B5. A6. B7. A8. B9. B10. A二、填空题(每题4分,共20分)11. 若函数f(x) = x^3 - 6x^2 + 9x + 2,求f(3)的值。
答案:-112. 若函数g(x) = √x,求g(16)的值。
答案:413. 若函数h(x) = 2^x,求h(-1)的值。
答案:1/214. 函数y = 3x - 5的斜率是:答案:315. 若函数k(x) = log10(x) + 1,求k(100)的值。
(必考题)高中数学必修一第二单元《函数》检测题(包含答案解析)
![(必考题)高中数学必修一第二单元《函数》检测题(包含答案解析)](https://img.taocdn.com/s3/m/5af45b19c8d376eeafaa31a0.png)
一、选择题1.下列各函数中,表示相等函数的是( ) A .lg y x =与21lg 2y x =B .211x y x -=-与1y x =+C.1y =与1y x =-D .y x =与log xa y a =(0a >且1a ≠)2.若函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则实数a 的取值范围是( )A.4,⎡-⎣B.⎤⎦C .[]3,4-D.⎡⎣3.函数()()1ln 24f x x x =-+-的定义域是( ) A .[)2,4B .()2,+∞C .()()2,44,⋃+∞D .[)()2,44,+∞4.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3x y =具有性质M ; ②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =. 其中正确的个数是( ) A .0个B .1个C .2个D .3个5.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .1y x=B.y =C .2x y = D .||y x x =-6.已知函数2()(3)1f x mx m x =--+,()g x mx =,若对于任意实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( ) A .(1,9)B .(3,+)∞C .(,9)-∞D .(0,9)7.若函数22,2()13,22x ax x f x a x x⎧-≤⎪=⎨->⎪⎩是R 上的单调减函数,则实数a 的取值范围为( )A .115,24⎡⎤⎢⎥⎣⎦B .4,215⎡⎤⎢⎥⎣⎦C .41,152⎡⎤⎢⎥⎣⎦D .152,4⎡⎤⎢⎥⎣⎦8.已知的2()(1)()f x x x x ax b =+++图象关于直线1x =对称,则()f x 的值域为( ) A .[]4,-+∞B .9,4⎡⎫-+∞⎪⎢⎣⎭C .9,44⎡⎤-⎢⎥⎣⎦D .[]0,49.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .310.已知函数()()1,12,1xmx x f x n x +<⎧⎪=⎨-≥⎪⎩,在R 上单调递增,则mn 的最大值为( ) A .2B .1C .94D .1411.若函数2()34f x x x =--的定义域为[]0m ,,值域为2544⎡⎤--⎢⎥⎣⎦,,则m 的取值范围是( ) A .3,42⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .(]0,4D .3,2⎡⎫+∞⎪⎢⎣⎭12.已知函数()f x 是R 上的单调函数,且对任意实数x ,都有()21213xf f x ⎡⎤+=⎢⎥+⎣⎦成立,则()2020f 的值是( ) A .202021- B .202021+C .202020202121+-D .202020202121-+二、填空题13.已知1()1x f x x +=-,则135199()()()()100100100100f f f f ++++=______________14.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,若()()11f a f a -=+,则a 的取值范围是___________.15.若()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x = 在区间()0,6内的解的个数的最小值是__________ .16.如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________. 17.若对任意02x ≤≤,恒有2x ax b c ++≤成立,则当c 取最小值时,函数()24f x x a x b x c =-+-+-的最小值为________.18.下列给出的命题中:①若()f x 的定义域为R ,则()()()g x f x f x =+-一定是偶函数;②若()f x 是定义域为R 的奇函数,对于任意的x ∈R 都有()(2)0f x f x +-=,则函数()f x 的图象关于直线1x =对称;③某一个函数可以既是奇函数,又是偶函数; ④若1()2ax f x x +=+在区间(2,)-+∞上是增函数,则12a >; 其中正确的命题序号是__________.19.已知函数()2()10f x x ax a =++>,若“()f x 的值域为[)0,+∞”为真命题,则()3f =________.20.设2(),0()1,0x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩,若(0)f 是()f x 的最小值,是a 的取值范围为________________.三、解答题21.已知定义在R 上的函数()f x 的单调递增函数,且对∀x ,y ∈R ,都有()()()1f x y f x f y +=++,f (2)=5.(1)求f (0),f (1)的值;(2)若对11,32x ⎡⎤∈⎢⎥⎣⎦∀,都有2()(21)1f kx f x +-<成立,求实数k 的取值范围. 22.已知函数()y f x =是[]1,1-上的奇函数,当10x ≤<时,()2112x f x x =-+. (1)判断并证明()y f x =在[)1,0-上的单调性; (2)求()y f x =的值域.23.已知函数()y f x =的定义域为D ,如果存在区间[],a b D ⊆,使得[]{}[]|(),,,=∈=y y f x x a b a b ,则称区间,a b 为函数()y f x =的一个和谐区间.(1)直接写出函数3()f x x =的所有和谐区间;(2)若区间[]0,m 是函数3()22=-f x x 的一个和谐区间,求实数m 的值; (3)若函数2()2()=-+∈f x x x m m R 存在和谐区间,求实数m 的取值范围.24.已知函数12()12x xa f x -⋅=+是R 上的奇函数(a 为常数),()22.g x x x m m R =-∈+, (1)求实数a 的值;(2)若对任意12[]1x -∈,,总存在2]3[0x ∈,,使得12()()f x g x =成立,求实数m 的取值范围.25.已知函数()()20f x ax x c a =++>满足:①函数14f x ⎛⎫-⎪⎝⎭是偶函数;②关于x 的不等式()0f x <的解集是()(),11m m <. (1)求函数()f x 的解析式;(2)求函数()()()()43g x f x k x k R =++∈在[]1,3上的最小值()h k .26.已知函数()f x = (1)求()f x 的定义域和值域; (2)设()h x =,若不等式231()42h x m am ≤-对于任意[1,1]x ∈-及任意[1,1]a ∈-都恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】本题可依次判断四个选项中函数的定义域、对应关系、值域是否相同,即可得出结果. 【详解】A 项:函数lg y x =定义域为()0,∞+,函数21lg 2y x =定义域为{}0x x ≠,A 错误; B 项:函数211x y x -=-定义域为{}1x x ≠,函数1y x =+定义域为R ,B 错误;C 项:函数1y =值域为[)1,-+∞,函数1y x =-值域为R ,C 错误;D 项:函数y x =与函数log xa y a =(0a >且1a ≠)定义域相同,对应关系相同,D 正确.故选:D 【点睛】方法点睛:判断两个函数是否相同,首先可以判断函数的定义域是否相同,然后判断两个函数的对应关系以及值域是否相同即可,考查函数定义域和值域的求法,是中档题.2.B解析:B 【分析】函数()f x 在R 上是增函数,则在两段上分别要单调递增,且在分界点处要满足2138a a -+--≤,从而得到答案.【详解】函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则满足下列条件:(1)()2238y x a x =-+--在(],1-∞递增,2312a -≥,即a ≥a ≤(2)y ax =在()1,+∞递增,则0a >(3)当1x =时满足2138a a -+--≤,解得34a -≤≤综上可得函数()f x 在R 上是增函数,实数a 4a ≤≤ 故选:B. 【点睛】关键点睛:本题考查根据分段函数的单调性求参数的范围,解答本题的关键是分段函数要在定义域内单调递增,则在两段上要分别单调递增,且在分界点出满足2138a a -+--≤,这也时容易出错的地方,属于中档题.3.C解析:C 【分析】先根据函数的解析式建立不等式组,再解不等式组求定义域即可. 【详解】解:因为函数的解析式:()()1ln 24f x x x =-+- 所以2040x x ->⎧⎨-≠⎩,解得24x x >⎧⎨≠⎩故函数的定义域为:()(2,4)4,+∞故选:C 【点睛】数学常见基本初等函数定义域是解题关键.4.C解析:C 【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断. 【详解】解:对于①:3x y =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=, 所以函数3x y =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=, 所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =, 故③正确; 故选:C. 【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.5.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误; 选项B中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2x y =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-, 当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).6.D解析:D 【分析】根据所给条件,结合二次函数的图像与性质,分类讨论,即可得解. 【详解】当0m <时,二次函数2()(3)1f x mx m x =--+的图像开口向下,()g x mx =单调递减,故存在x 使得()f x 与()g x 同时为负,不符题意; 当0m =时,()31f x x =-+,()0g x =显然不成立; 当0m >时,2109m m ∆=-+, 若∆<0,即19m <<时,显然成立,0∆=,1m =或9m =,则1m =时成立,9m =时,13x =-时不成立,若0∆>,即01m <<或9m >,由(0)1f =可得:若要()f x 与()g x 的值至少有一个为正数,如图,则必须有302mm->,解得01m <<, 综上可得:09m <<, 故答案为:D. 【点睛】本题考查了二次函数和一次函数的图像与性质,考查了分类讨论思想和计算能力,属于中档题.解决此类问题的关键主要是讨论,涉及二次函数的讨论有: (1)如果平方项有参数,则先讨论; (2)再讨论根的判别式; (3)最后讨论根的分布.7.D解析:D 【分析】若函数()f x 在R 上递减,则必须满足当(],2x ∈-∞时,函数22y x ax =-递减,且()2,x ∈+∞时132y a x=-也递减,且端点处的函数值必须满足条件. 【详解】 易知函数132y a x=-在(2,)+∞上单调递减,要使函数()f x 在R 上单调递减, 则函数22y x ax =-在(,2]-∞上单调递减,所以2a ≥, 当2x =时,2244x ax a -=-,113324a a x -=-,要使()f x 在R 上单调递减, 还必须14434a a -≥-,即154a ≤,所以1524a ≤≤.故选:D . 【点睛】解答本题时,首先要保证原函数在每一段上都递减,另外,解答时容易忽略掉端点的函数值的大小关系.8.B解析:B 【分析】结合函数对称性与解析式可知1,0-是零点,则2,3也是零点,由对应关系求出解析式,利用换元法和二次函数性质即可求解 【详解】因为函数()()()21f x x x x ax b =+++有两个零点1-,0,又因为其图象关于直线1x =对称,所以2,3也是函数()f x 的两个零点,即()()()()123f x x x x x =+⋅--,所以()()()22223f x x x x x =---,令()222111t x x x =-=--≥-,则()()223933124y t t t t t t ⎛⎫=-=-=--- ⎭≥⎪⎝,所以94y ≥-,即()f x 的值域为9,4∞⎡⎫-+⎪⎢⎣⎭. 故选:B 【点睛】关键点睛:本题考查函数对称性的应用,换元法的应用,函数值域的求解,解题关键在于:(1)若函数对称轴为x a =,则有()()f a x f a x +=-; (2)换元法求解函数值域必须注意新元取值范围.9.B解析:B根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.10.D解析:D 【分析】现根据分段函数单调增,列出不等式组,得出011m n m n >⎧⎪<⎨⎪+≤⎩,再根据基本不等式即可求解.【详解】由题意可知,函数在R 上单调递增,则02112m n m n>⎧⎪->⎨⎪+≤-⎩,解得011m n m n >⎧⎪<⎨⎪+≤⎩,则由基本不等式可得2211224m n mn +⎛⎫⎛⎫≤≤= ⎪ ⎪⎝⎭⎝⎭,当且仅当m=n=12时取等号. 故选:D 【点睛】本题主要考查分段函数的单调性,和基本不等式,属于中档题,解题是应注意分段函数单调递增:左边增,右边增,分界点处左边小于等于右边.11.B解析:B求出(0)4f =-,再计算出最小值为32524f ⎛⎫=- ⎪⎝⎭,然后求出()4f m =-的值后可得m 的范围. 【详解】2325()24f x x ⎛⎫=-- ⎪⎝⎭,()f x 在3,2⎛⎫-∞ ⎪⎝⎭上递减,在3,2⎛⎫+∞ ⎪⎝⎭上递增, (0)4f =-,又32524f ⎛⎫=- ⎪⎝⎭,所以32m ≥,由2()344f m m m =--=-解得0m =或3m =, 因此332m ≤≤. 故选:B . 【点睛】方程点睛:本题考查二次函数的性质,掌握其对称轴、单调性是解题关键.由此可得二次函数2()f x ax bx c =++在区间[,]m n 上的最值求法: 设0a >,函数的对称轴0x x =(02bx a=-), 当0x m <时,min ()()f x f m =,0m x n ≤≤时,min 0()()f x f x =,0x n >时,min ()()f x f n =,当02m n x +≤时,max ()()f x f n =,当02m nx +>时,max ()()f x f m =. 0a <类似讨论.12.D解析:D 【分析】采用换元法可构造方程()21213t f t t =-=+,进而求得()f x 解析式,代入2020x =即可得到结果. 【详解】由()f x 是R 上的单调函数,可设()221x f x t +=+,则()13f t =恒成立, 由()221x f x t +=+得:()221x f x t =-+,()21213t f t t ∴=-=+,解得:1t =,()22112121x x xf x -∴=-=++,()2020202021202021f -∴=+. 故选:D . 【点睛】本题考查函数值的求解问题,解题关键是能够采用换元的方式,利用抽象函数关系式求解得到函数的解析式.二、填空题13.100【分析】分析得出得解【详解】∴故答案为:100【点睛】由函数解析式得到是定值是解题关键解析:100 【分析】分析得出(2)()2f x f x -+=得解. 【详解】1()1x f x x +=- 211211(2)()2f x f x x x x x -+∴-+=++=--- ∴135199()()()()100100100100f f f f ++++1199319799101[()()][()()][()()]100100100100100100f f f f f f =+++++ 250100=⨯=故答案为:100. 【点睛】由函数解析式得到(2)()2f x f x -+=是定值是解题关键.14.【分析】本题首先可讨论的情况此时然后根据函数的解析式求出和通过即可求出的值最后讨论的情况此时通过得出此时无解即可得出结果【详解】若则因为函数所以因为所以解得若则因为函数所以因为所以无解综上所述的取值解析:32⎧⎫⎨⎬⎩⎭【分析】本题首先可讨论0a >的情况,此时11a -<、11a +>,然后根据函数()f x 的解析式求出()1f a -和()1f a +,通过()()11f a f a -=+即可求出a 的值,最后讨论0a <的情况,此时11a ->、11a +<,通过()()11f a f a -=+得出此时a 无解,即可得出结果. 【详解】若0a >,则11a -<,11a +>,因为函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,所以1212f a a a a ,1121f a a aa ,因为()()11f a f a -=+,所以21a a ,解得32a =, 若0a <,则11a ->,11a +<,因为函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,所以11213f aa a a ,12123f a a a a ,因为()()11f a f a -=+,所以1323a a ,无解,综上所述,32a =,a 的取值范围是32⎧⎫⎨⎬⎩⎭, 故答案为:32⎧⎫⎨⎬⎩⎭.【点睛】本题考查分段函数的相关问题的求解,在分段函数求函数值的时候,要把自变量代入到所对应的解析式中是解本题的关键,考查分类讨论思想,考查计算能力,是中档题.15.7【解析】由函数的周期为3可得因为若则可得出又根据为奇函数则又可得出又函数是定义在R 上的奇函数可得出从而在中令得出又根据是定义在R 上的奇函数得出从而得到即故从而共7个解解析:7 【解析】由函数的周期为3可得(3)()f x f x +=,因为(2)0f =, 若(0,6)x ∈,则可得出(5)=(2)0f f =, 又根据()f x 为奇函数,则(-2)=-(2)0f f =, 又可得出(4)=(1)(-2)=0f f f =,又函数()f x 是定义在R 上的奇函数,可得出(0)0f =, 从而(3)=(0)0f f =,在(3)()f x f x +=中, 令32x =-,得出33()()22f f -=,又根据()f x 是定义在R 上的奇函数,得出33()-()22f f -=, 从而得到33()-()22f f =,即3()02f =, 故933()(+3)()=0222f f f ==,从而93()()=(4)(1)(3)(5)(2)022f f f f f f f ======,共7个解.16.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于解析:-8 【解析】∵f(x)定义域为[3+a ,5],且为奇函数, ∴3+a =-5,∴a =-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.17.【分析】由题意结合二次函数的图象与性质可得当c 可取最小值时再由零点分段法可得分段函数的解析式即可得解【详解】令由题意知当时c 可取最小值此时解得则所以所以的最小值为故答案为:【点睛】本题考查了二次函数 解析:198【分析】由题意结合二次函数的图象与性质可得当c 可取最小值时,2a =-、12==b c ,再由零点分段法可得分段函数()f x 的解析式,即可得解. 【详解】令()2h x x ax b =++,由题意知当()()()021h h h ==-时,c 可取最小值,此时()421b a b b a b =++⎧⎨=-++⎩,解得212a b =-⎧⎪⎨=⎪⎩,则()102c h ==, 所以()112422422f x x a x b x c x x x =-+-+-=++-+- 171,41132,84153,2871,2x x x x x x x x ⎧+≥⎪⎪⎪+<<⎪=⎨⎪-+-<≤⎪⎪⎪--≤-⎩, 所以()f x 的最小值为15193888f ⎛⎫=-+= ⎪⎝⎭.故答案为:198. 【点睛】本题考查了二次函数的图象与性质与应用,考查了零点分段法的应用及分段函数最值的求解,属于中档题.18.①③④【分析】①根据奇偶函数的定义判断;②利用抽象函数的对称性判断;③通过特殊函数判断;④通过分离常数转化为熟悉的函数判断【详解】①函数的定义域为所以函数的定义域也是即所以函数是偶函数故①正确;②对解析:①③④ 【分析】①根据奇偶函数的定义判断;②利用抽象函数的对称性判断;③通过特殊函数判断;④通过分离常数,转化为熟悉的函数判断. 【详解】①函数()f x 的定义域为R ,所以函数()g x 的定义域也是R ,()()()g x f x f x -=-+,即()()g x g x -=,所以函数()g x 是偶函数,故①正确;②对应任意的x ∈R ,都有()()20f x f x +-=,即函数()f x 关于()1,0对称,并不关于1x =对称,故②不正确;③函数0y =既是偶函数又是奇函数,故③正确; ④()()212112222a x a ax af x a x x x ++-+-===++++,若函数在()2,-+∞上单调递增,则120a -<,解得:12a >,故④正确. 故答案为:①③④ 【点睛】方法点睛:函数的对称性包含中心对称和轴对称,一般判断的方法包含:1.若对函数()y f x =的定义域内的任一自变量x 的值都有()()2f x f a x =-,则()y f x =的图象关于x a =成轴对称;若对函数()y f x =的定义域内的任一自变量x 的值都有()()22f x b f a x =--,则()y f x =的图象关于(),a b 成中心对称;19.16【分析】二次函数的值域为得到求得值得解【详解】因为的值域为所以则又所以故答案为:16【点睛】二次函数的值域为得到是解题关键解析:16 【分析】二次函数()f x 的值域为[)0,+∞得到240a ∆=-=求得a 值得解【详解】因为()2()10f x x ax a =++>的值域为[0,)+∞,所以240a ∆=-=,则2a =±.又0a >,所以2,a =.22()21,(3)323116f x x x f ∴=++∴=+⨯+=故答案为:16 【点睛】二次函数()f x 的值域为[)0,+∞得到0∆=是解题关键.20.【分析】利用定义可知在上递减在上递增所以当时取得最小值为再根据是的最小值可知且解得结果即可得解【详解】当时任设则当时所以所以当时所以所以所以在上递减在上递增所以当时取得最小值为又因为是的最小值所以且 解析:02a ≤≤【分析】利用定义可知1()f x x a x=++在(0,1)上递减,在(1,)+∞上递增,所以当1x =时,1()f x x a x=++取得最小值为2a +,再根据(0)f 是()f x 的最小值,可知0a ≥且2(0)2a a -≤+,解得结果即可得解.【详解】当0x >时,1()f x x a x=++, 任设120x x <<,则12121211()()f x f x x a x a x x -=++---12121()(1)x x x x =--, 当120x x <<1<时,120x x -<,12110x x -<,所以12121()(1)0x x x x -->,所以12()()f x f x >,当121x x <<时,120x x -<,12110x x ->,所以12121()(1)0x x x x --<,所以12()()f x f x <,所以1()f x x a x=++在(0,1)上递减,在(1,)+∞上递增, 所以当1x =时,1()f x x a x=++取得最小值为2a +, 又因为(0)f 是()f x 的最小值,所以0a ≥且2(0)2a a -≤+,解得02a ≤≤. 故答案为:02a ≤≤. 【点睛】本题考查了利用定义判断函数的单调性,考查了根据函数的最值点求参数的取值范围,考查了分段函数的性质,属于中档题.三、解答题21.(1)(0)1f =-;()12f =;(2)4k <. 【分析】(1)令0x y ==可得(0)f ,令1x y ==可得()1f ; (2)转化条件为222k x x <-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立,换元后求得222x x -的最小值即可得解. 【详解】(1)令0x y ==,则(0)(0)(0)1f f f =++,所以(0)1f =-; 令1x y ==,则(2)(1)(1)15f f f =++=,所以()12f =;(2)由题意,不等式2()(21)1f kx f x +-<可转化为2()(21)12f kx f x +-+<,所以()()2211f kx x f +-<,因为函数()f x 单调递增,所以2211kx x +-<, 所以222k x x <-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立, 令[]12,3t x =∈,则221122222t t t ⎛⎫-=-- ⎪⎝⎭,所以当2t =即12x =时,222t t -取最小值4, 所以4k <. 【点睛】关键点点睛:解决本题的关键是利用函数的单调性转化不等式为222k x x<-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立,再转化为求222x x -的最小值即可得解.22.(1)单调递增,证明见解析;(2){}111,0,122⎡⎫⎛⎤--⋃⋃⎪ ⎢⎥⎣⎭⎝⎦. 【分析】(1)利用定义设1210-≤<<x x ,计算()()12f x f x -判断正负即可得出单调性; (2)先利用单调性求出()f x 在[)1,0-的取值范围,再根据奇函数的对称性可求出. 【详解】(1)设1210-≤<<x x ,()()()()()()122112122222121211111x x x x x x f x f x x x x x ---=-=++++, 因为1210-≤<<x x ,所以121x x <,210x x ->, 则()()120f x f x -<,()()12f x f x <, 所以()f x 在[)1,0-上单调递增; (2)函数()f x 在[)1,0-上是增函数,∴()()()10f f x f -≤<,()11f -=-,()102f =-,∴()11,2f x ⎡⎫∈--⎪⎢⎣⎭∴当10x -≤<时,()f x 的取值范围11,2⎡⎫--⎪⎢⎣⎭∴而函数()f x 为奇函数,由对称性可知,函数()y f x =在(]0,1上的取值范围为1,12⎛⎤⎥⎝⎦又()00f =,故()y f x =的值域{}111,0,122⎡⎫⎛⎤--⋃⋃⎪ ⎢⎥⎣⎭⎝⎦. 【点睛】思路点睛:利用定义判断函数单调性的步骤: (1)在定义域内任取12x x <; (2)计算()()12f x f x -并化简整理; (3)判断()()12f x f x -的正负;(4)得出结论,若()()120f x f x -<,则()f x 单调递增;若()()120f x f x ->,则()f x 单调递减.23.(1) 1.0,0,1,[]1,1-;(2)4m =或2;(3)904≤<m . 【分析】(1)本题可令3x x =,解得0x =或±1,然后根据函数()3f x x =的单调性以及“和谐区间”定义即可得出结果;(2)本题首先可将函数转化为()342,23342,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,然后令322x x -=,解得45x =或4,最后绘出函数图像,结合函数图像即可得出结果; (3)讨论1a b <≤或1a b ≤<或1a b <<,根据二次函数的性质确定函数的单调区间,再由单调性求出函数的值域,根据题干,函数的新定义即可求解. 【详解】解:(1)函数()3f x x =是增函数,定义域为R ,令3x x =,解得0x =或±1,故函数()3f x x =的所有“和谐区间”为[]1,0-、0,1、[]1,1-.(2)因为()322f x x =-, 所以()342,23342,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,因为[]()0,0m m >为函数()322f x x =-的一个“和谐区间”, 所以可令322x x -=,解得45x =或4, 如图所示,绘出函数图像:结合“和谐区间”的定义易知,当4x =时满足题意,因为()02f =,所以当2m =时,()min max 2,()0f x f x ==,满足题意, 故m 的值为4或2.(3)①当1a b <≤时,()f x 在,a b 上时单调递减函数,由题意有()()f a bf b a=⎧⎨=⎩,2222a a m b b b m a⎧-+=⎨-+=⎩得1a b +=,因为1a b <≤,所以110,122≤<<≤a b , 且221-+=-a a m a ,即210-+-=a a m ,解得154122+-=≥m a 舍去,或12=<a,1=-=b a 由211(0)2=-++≤<m a a a , 得514m ≤<,所以当514m ≤<时,和谐区间为⎣⎦. ②1a b ≤<时,()f x 在,a b 上时单调递增函数, 由题意有()()f a af b b=⎧⎨=⎩,所以,a b 是方程22-+=x x m x 的两个不等实根.因为3a b +=,又1a b ≤<,得2b ≤,因而有3122≤<<≤a b , 故方程2()30=-+=g x x x m 在31,2⎡⎫⎪⎢⎣⎭和3,22⎛⎤⎥⎝⎦内各有一个实根,即33022≤<且33222<≤, 解得924≤<m , 故当924≤<m时,和谐区间为3322⎡+⎢⎣⎦. ③当1a b <<时,min ()(1)11==-=<f x f m a ,得2m < 当12a b+≤时,即2a b +≤,则max ()()==f x f a b ,得22-+=a a m b , 又1a m =-,得2331=-+>b m m ,得 2m >或1m <, 又由2222+=-+≤a b m m 及2m <,解得01m ≤<,此时和谐区间为21,33⎡⎤--+⎣⎦m m m .当12+≥a b时,即2a b +≥,则max ()()==f x f b b ,得22-+=b b m b ,解得=b若=b 则由2m <知3122+=-+<a b m ,舍去;若32+=b,3122+=-+≥a b m ,解得904≤≤m , 又2m <,所以02m ≤<,此时和谐区间为31,2⎡+-⎢⎣⎦m ,综上,所求范围是904≤<m .【点睛】关键点点睛:本题考查函数新定义,能否结合题意明确函数新定义的含义是解决本题的关键,在解决函数类的问题时,合理利用函数图像可以给解题带来很大帮助,考查数形结合思想,是中档题.24.(1)1;(2)82[,]35-. 【分析】(1)()f x 为R 上的奇函数,由()00f =得解;(2)由“任意[]11,2x ∈-,总存在[]20,3x ∈,使得()()12f x g x =成立”得到等价命题是 “()f x 在[]1,2-上的取值集合是()g x 在[]0,3上的取值集合的子集”,分别求出两个函数的值域得解. 【详解】(1)因为()f x 为R 上的奇函数, 所以()00f =,即102a-=,解得1a = (2)因为[]20,3x ∈,且()g x 在[]0,1上是减函数,在[]1,3上为增函数 所以()g x 在[]0,3上的取值集合为[]1,3m m -+.由122()11221x x xf x -==-+++得()f x 是减函数, 所以()f x 在[]1,2-上是减函数所以()f x 在[]1,2-上的取值集合为31[,]53-.由“任意[]11,2x ∈-,总存在[]20,3x ∈,使得()()12f x g x =成立”()f x 在[]1,2-上的取值集合是()g x 在[]0,3上的取值集合的子集,即[]31[,]1,353m m -⊆-+. 则有315m -≤-,且133m +≥,解得:8235m -≤≤. 即实数m 的取值范围是82[,]35-. 【点睛】探讨方程()()0f x g m -=解的存在性,通常可将方程转化为()()f x g m =,通过确认函数()f x 或()g m 的值域,从而确定参数或变量的范围;类似的,对于不等式()()0(0)f x g m -≥≤,也可仿效此法.25.(1)()223f x x x =+-;(2)()21227,4245,4243,2k k h k k k k k k +≤-⎧⎪=----<<-⎨⎪+≥-⎩. 【分析】(1)由①可知函数()f x 的图象关于直线14x =-对称,由②可知()10f =,可得出关于a 、c 的方程组,进而可得出函数()f x 的解析式;(2)求得()()22413g x x k x =++-,求得该函数的对称轴为直线()1x k =-+,对实数k 的取值进行分类讨论,分析函数()g x 在区间[]1,3上的单调性,进而可求得()h k 关于k 的表达式.【详解】(1)由①可得,函数14f x ⎛⎫-⎪⎝⎭是偶函数, 将函数14f x ⎛⎫- ⎪⎝⎭的图象向左平移14个单位长度可得到函数()f x 的图象, 所以,函数()f x 的图象关于直线14x =-对称,则有1124a -=-,可得2a =. 由②可得:1x =是方程20ax x c ++=的一个解,则有10a c ++=,得3c =-. 于是:()223f x x x =+-; (2)依题意有:()()22413g x x k x =++-,对称轴为()1x k =-+. 当()13k -+≥时,即4k ≤-时,()g x 在[]1,3单调递减,于是()()min 31227g x g k ==+;当()113k <-+<时,即4-<<-2k 时,()g x 在()1,1k -+⎡⎤⎣⎦单调递减,在()1,3k -+⎡⎤⎣⎦单调递增,于是()()2min 1245g x g k k k =--=---; 当()11k -+≤时,即2k ≥-时,()g x 在[]1,3单调递增,于是()()min 143g x g k ==+.综上:()21227,4245,4243,2k k h k k k k k k +≤-⎧⎪=----<<-⎨⎪+≥-⎩. 【点睛】方法点睛:“动轴定区间”型二次函数最值的方法:(1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果.26.(1)定义域为[1,1]-,值域为(2)1m ≤-或1m ≥【分析】(1)由1010x x +≥⎧⎨-≥⎩可得定义域,先求出2()f x 的值域,再开方求出()f x 的值域; (2)换元,令t =∈,根据对勾函数的单调性求出2()()4t h x g t t ==+的最大值,则不等式转化为21310244am m -+-≥对任意[1,1]a ∈-都恒成立,利用一次函数的图象列式可解得结果.【详解】(1)由函数有意义得1010x x +≥⎧⎨-≥⎩,解得11x -≤≤, 所以函数()f x 的定义域为[1,1]-,因为22()2f x ==+[2,4],又()0f x ≥,所以()f x ∈.(2)()h x ==令t =∈,则22t =-, 所以2()()4t h x g t t ==+14t t=+, 因为()g t在上递增,所以当2t =时,()g t 取得最大值221(2)244g ==+,即max 1()4h x =, 所以不等式231()42h x m am ≤-对于任意[1,1]x ∈-恒成立,转化为2311424m am -≥对任意[1,1]a ∈-都恒成立,即21310244am m -+-≥对任意[1,1]a ∈-都恒成立, 所以2213102441310244m m m m ⎧+-≥⎪⎪⎨⎪-+-≥⎪⎩,即2232103210m m m m ⎧+-≥⎨--≥⎩,解得113113m m m m ⎧≤-≥⎪⎪⎨⎪≤-≥⎪⎩或或, 所以1m ≤-或1m ≥.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;。
高中数学必修一函数大题(含详细解答)
![高中数学必修一函数大题(含详细解答)](https://img.taocdn.com/s3/m/3f4dca13f46527d3250ce00d.png)
高中函数大题专练1、已知关于x 的不等式2(4)(4)0kx k x --->,其中k R ∈。
⑴试求不等式的解集A ;⑵对于不等式的解集A ,若满足A ZB =(其中Z 为整数集)。
试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由。
2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。
① 对任意的[0,1]x ∈,总有()0f x ≥;② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。
已知函数2()g x x =与()21xh x a =⋅-是定义在[0,1]上的函数。
(1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值;(3)在(2)的条件下,讨论方程(21)()xg h x m -+=()m R ∈解的个数情况。
3.已知函数||212)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t对于[2,3]t ∈恒成立,求实数m 的取值范围.4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x⎧-⎪=⎨⎪⎩0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式.(2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件.5.已知函数()(0)||bf x a x x =-≠。
(1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围;(2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围;(3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是[,]m n ,则称()g x 是[,]m n 上的闭函数。
高中数学第三章函数的概念与性质专项训练题(带答案)
![高中数学第三章函数的概念与性质专项训练题(带答案)](https://img.taocdn.com/s3/m/46230551591b6bd97f192279168884868662b873.png)
高中数学第三章函数的概念与性质专项训练题单选题1、若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f(a)−f(b)a−b>0成立,则必有( )A .f (x )在R 上是增函数B .f (x )在R 上是减函数C .函数f (x )先增后减D .函数f (x )先减后增 答案:A分析:根据条件可得当a <b 时,f (a )<f (b ),或当a >b 时,f (a )>f (b ),从而可判断. 由f(a)−f(b)a−b>0知f (a )-f (b )与a -b 同号,即当a <b 时,f (a )<f (b ),或当a >b 时,f (a )>f (b ),所以f (x )在R 上是增函数. 故选:A.2、若函数y =√ax 2+4x +1的值域为[0,+∞),则a 的取值范围为( ) A .(0,4)B .(4,+∞)C .[0,4]D .[4,+∞) 答案:C分析:当a =0时易知满足题意;当a ≠0时,根据f (x )的值域包含[0,+∞),结合二次函数性质可得结果. 当a =0时,y =√4x +1≥0,即值域为[0,+∞),满足题意; 若a ≠0,设f (x )=ax 2+4x +1,则需f (x )的值域包含[0,+∞), ∴{a >0Δ=16−4a ≥0,解得:0<a ≤4;综上所述:a 的取值范围为[0,4]. 故选:C.3、若函数f (x )=x α的图象经过点(9,13),则f (19)=( ) A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B4、已知幂函数y =x m 2−2m−3(m ∈N ∗)的图象关于y 轴对称,且在(0,+∞)上单调递减,则满足(a +1)−m3<(3−2a )−m 3的a 的取值范围为( )A .(0,+∞)B .(−23,+∞) C .(0,32)D .(−∞,−1)∪(23,32)答案:D分析:由条件知m 2−2m −3<0,m ∈N ∗,可得m =1.再利用函数y =x −13的单调性,分类讨论可解不等式. 幂函数y =x m2−2m−3(m ∈N ∗)在(0,+∞)上单调递减,故m 2−2m −3<0,解得−1<m <3.又m ∈N ∗,故m =1或2.当m =1时,y =x −4的图象关于y 轴对称,满足题意; 当m =2时,y =x −3的图象不关于y 轴对称,舍去,故m =1. 不等式化为(a +1)−13<(3−2a )−13,函数y =x −13在(−∞,0)和(0,+∞)上单调递减,故a +1>3−2a >0或0>a +1>3−2a 或a +1<0<3−2a ,解得a <−1或23<a <32.故应选:D .5、已知函数f (x +1)的定义域为(−1,1),则f (|x |)的定义域为( ) A .(−2,2)B .(−2,0)∪(0,2) C .(−1,0)∪(0,1)D .(−12,0) 答案:B分析:根据抽象函数定义域的求法求得正确答案. 依题意函数f (x +1)的定义域为(−1,1), −1<x <1⇒0<x +1<2, 所以0<|x |<2,解得−2<x<0或0<x<2,所以f(|x|)的定义域为(−2,0)∪(0,2).故选:B6、已知函数f(x)是定义在R上的偶函数,f(x)在[0,+∞)上单调递减,且f(3)=0,则不等式(2x−5)f(x−1)<0的解集为()A.(−2,52)∪(4,+∞)B.(4,+∞)C.(−∞,−2)∪[52,4]D.(−∞,−2)答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x−5>0f(x−1)<0、{2x−5<0f(x−1)>0求解集即可. 由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0,对于(2x−5)f(x−1)<0,当{2x−5>0f(x−1)<0,即{x>52x−1<−3或{x>52x−1>3,可得x>4;当{2x−5<0f(x−1)>0,即{x<52−3<x−1<3,可得−2<x<52;综上,解集为(−2,52)∪(4,+∞).故选:A7、已知函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),当x∈(0,1]时,f(x)=x2,则f(−2021)+f(2022)=()A.−4B.4C.−1D.1答案:C分析:由已知条件可得x>1时f(x+2)=f(x),然后利用f(−2021)+f(2022)=−f(1)+f(0)求解即可.因为函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),所以f(0)=0,f(2−x)=−f(x)=f(−x),即可得x>1时f(x+2)=f(x),因为当x∈(0,1]时,f(x)=x2,所以f(−2021)+f(2022)=−f(2×1010+1)+f(2×1011+0)=−f(1)+f(0)=−1+0=−1, 故选:C 8、函数f (x )=√−x 2+5x+6x+1的定义域( )A .(−∞,−1]∪[6,+∞)B .(−∞,−1)∪[6,+∞)C .(−1,6]D .[2,3] 答案:C分析:解不等式组{−x 2+5x +6≥0x +1≠0得出定义域.{−x 2+5x +6≥0x +1≠0,解得−1<x ⩽6即函数f (x )的定义域(−1,6] 故选:C 多选题9、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C[0,1]项错误,D项正确.故选:ABD10、下列各组函数是同一函数的是()A.y=|x|x与y=1B.y=√(x−1)2与y=x−1C.y=(√x)2x 与y=(√x)2D.y=x3+xx2+1与y=x答案:CD分析:根据同一函数的概念,逐一分析各个选项,即可得答案.对于A:函数y=|x|x的定义域为x≠0,函数y=1定义域为R,两函数定义域不同,故不是同一函数;对于B:函数y=√(x−1)2定义域为R,化简可得y=|x−1|,与y=x−1解析式不同,故不是同一函数;对于C:函数y=(√x)2x 定义域为x>0,化简可得y=1(x>0),函数y=(√x)2定义域为x>0,化简可得y=1(x>0),故为同一函数;对于D:函数y=x3+xx2+1定义域为R,化简可得y=x,与y=x为同一函数.故选:CD11、如图所示是函数y=f(x)的图象,图中x正半轴曲线与虚线无限接近但是永不相交,则以下描述正确的是()A.函数f(x)的定义域为[−4,4)B.函数f(x)的值域为[0,+∞)C.此函数在定义域内是增函数D.对于任意的y∈(5,+∞),都有唯一的自变量x与之对应答案:BD分析:利用函数的图象判断.由图象知:A.函数f(x)的定义域为[−4,0]∪[1,4),故错误;B.函数f(x)的值域为[0,+∞),故正确;C. 函数f(x)在[−4,0],[1,4)上递增,但在定义域内不单调,故错误;D.对于任意的y∈(5,+∞),都有唯一的自变量x与之对应,故正确;故选:BD12、已知函数y=(m−1)x m2−m为幂函数,则该函数为()A.奇函数B.偶函数C.区间(0,+∞)上的增函数D.区间(0,+∞)上的减函数答案:BC分析:由幂函数的概念可得m的值,根据幂函数的性质可得结果.由y=(m−1)x m2−m为幂函数,得m−1=1,即m=2,则该函数为y=x2,故该函数为偶函数,且在区间(0,+∞)上是增函数,故选:BC.13、已知函数f(x)是定义在[−4,0)∪(0,4]上的奇函数,当x∈(0,4]时,f(x)的图象如图所示,那么满足不等式f(x)−3x+1−3≥0的x的可能取值是()3A .-4B .-1C .12D .2 答案:AC分析:把“求f(x)−3x+1−33≥0的解集”转化为“求f (x )≥3x −1的解集”,进而转化为观察两个函数图象的特征,即可求出不等式的解集.因为函数f (x )是定义在[−4,0)∪(0,4]上的奇函数,由题意,画出函数f (x )在[−4,0)∪(0,4]上的图象(如图),在同一坐标系内画出y =3x −1的图象,因为f (2)=89,所以f (−2)=−f (2)=−89=3−2−1,又f (1)=2=31−1,所以f (x )的图象与y =3x −1的图象交于(−2,−89)和(1,2)两点,f (x )−3x+1−33≥0即为f (x )≥3x −1,由图象可得,只需−4≤x ≤−2或0<x ≤1,故A ,C 可能取到故选:AC . 填空题14、函数y =√x 2−1的单调递减区间为___________. 答案:(−∞,−1](或(−∞,−1)都对)解析:利用复合函数的单调性,同增异减,即可得到答案; 令t =x 2−1,则y =√t ,∵ t =x 2−1在(−∞,−1)单调递减,y =√t 在(0,+∞)单调递增, 根据复合函数的单调性可得:y =√x 2−1在(−∞,−1)单调递减,所以答案是:(−∞,−1).15、为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,的大小评价在[a,b]这段时间内企业污水治理设企业的污水排放量W与时间t的关系为W=f(t),用−f(b)−f(a)b−a能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是____________________.答案:①②③分析:根据定义逐一判断,即可得到结果表示区间端点连线斜率的负数,−f(b)−f(a)b−a在[t1,t2]这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,甲企业在[t1,t2]这段时间内,甲的斜率最小,其相反数最大,即在[t1,t2]的污水治理能力最强.④错误;在t2时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在t3时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;所以答案是:①②③小提示:本题考查斜率应用、切线斜率应用、函数图象应用,考查基本分析识别能力,属中档题.16、已知幂函数f(x)的图象过点(3,13),则此函数的解析式为______.答案:f(x)=x−1##f(x)=1x分析:设出幂函数f(x),代入点(3,13)即可求解.由题意,设f(x)=xα,代入点(3,13)得13=3α,解得α=−1,则f(x)=x−1.所以答案是:f(x)=x−1.解答题17、已知函数f(x)=x2x2+1(1)证明:f(x)为偶函数;(2)判断g(x)=f(x)+x的单调性并用定义证明;(3)解不等式f(x)−f(x−2)+2x>2答案:(1)证明见解析(2)g(x)为R上的增函数,证明见解析(3)(1,+∞)分析:(1)根据奇偶性的定义证明即可;(2)首先得到g(x)的解析式,再利用定义法证明函数的单调性,按照设元、作差、变形、判断符号,下结论的步骤完成即可;(3)根据函数的单调性将函数不等式转化为自变量的不等式,解得即可;(1)证明:f(x)的定义域为R,又f(−x)=(−x)2(−x)2+1=x2x2+1=f(x),故f(x)为偶函数;(2)解:g(x)=f(x)+x=x2x2+1+x,所以g(x)为R上的增函数,证明:任取x1,x2∈R,且x1>x2,g(x1)−g(x2)=x12x12+1+x1−(x22x22+1+x2)=x1−x2+x12x12+1−x22x22+1=x1−x2+x12(x22+1)−x22(x12+1) (x12+1)(x22+1)=x1−x2+x12−x22(x12+1)(x22+1)=(x1−x2)[1+x1+x2(x12+1)(x22+1)]=(x1−x2)[x12x22+x12+x22+1+x1+x2 (x12+1)(x22+1)]=(x1−x2)[x12x22+(x1+12)2+(x2+12)2+12(x12+1)(x22+1)].∵x1>x2,∴x2−x2>0,又x12x22+(x1+12)2+(x2+12)2+12(x12+1)(x22+1)>0,∴(x1−x2)[x12x22+(x1+12)2+(x2+12)2+12(x12+1)(x22+1)]>0,即g(x1)>g(x2),∴g(x)为R上的增函数;(3)解:不等式f(x)−f(x−2)+2x>2,等价于f(x)+x>f(x−2)+2−x=f(2−x)+2−x即g(x)>g(2−x),∵g(x)为R上的增函数,∴x>2−x,解得x>1,故不等式的解集为(1,+∞).18、函数f(x)对任意x,y∈R,总有f(x+y)=f(x)+f(y),当x<0时,f(x)<0,且f(1)=13.(1)证明f(x)是奇函数;(2)证明f(x)在R上是单调递增函数;(3)若f(x)+f(x−3)≥−1,求实数x的取值范围.答案:(1)证明见解析;(2)证明见解析;(3)[0,+∞).分析:(1)先用赋值法求出f(0)=0,令y=−x,即可根据定义证明f(x)是奇函数;(2)利用定义法证明f(x)是R上的增函数;(3)先把f(x)+f(x−3)≥−1转化为f(2x−3)≥f(−3),利用单调性解不等式即可.(1)令x =y =0,则f (0)=f (0)+f (0),解得f (0)=0,令y =−x ,则f (0)=f (x )+f (−x ),即f (x )+f (−x )=0,即f (−x )=−f (x ), 易知f (x )的定义域为R ,关于原点对称,所以函数f (x )是奇函数;(2)任取x 1,x 2∈R ,且x 1<x 2,则x 1−x 2<0,因为当x <0时,f (x )<0,所以f (x 1−x 2)<0,则f (x 1)−f (x 2)=f (x 1)+f (−x 2)=f (x 1−x 2)<0,即f (x 1)<f (x 2),所以函数f (x )是R 上的增函数;(3)由f (1)=13,得f (2)=23,f (3)=1,又由f (x )是奇函数得f (−3)=−1. 由f (x )+f (x −3)≥−1,得f (2x −3)≥f (−3),因为函数f (x )是R 上的增函数, 所以2x −3≥−3,解得x ≥0,故实数x 的取值范围为[0,+∞).。
高中数学_经典函数试题及答案
![高中数学_经典函数试题及答案](https://img.taocdn.com/s3/m/2a4ab192c0c708a1284ac850ad02de80d4d80623.png)
高中数学_经典函数试题及答案【第一份试题】1. 已知函数 y = f(x) 满足 f(2) = 1,f'(x) = 2x - 3。
求函数 f(x) 的解析式。
解答:根据题意,已知了 f'(x) = 2x - 3,因此函数 f(x) 的原函数为 F(x) = x^2 - 3x + C,其中 C 为常数。
根据 f(2) = 1,可得到 F(2) = 1,代入原函数求得 C = 0。
所以函数 f(x) 的解析式为 f(x) = x^2 - 3x。
2. 若函数 f(x) = 2x^3 + 4x + c 是奇函数,求常数 c 的值。
解答:根据题意,函数 f(x) 是奇函数,即满足 f(-x) = -f(x)。
代入函数 f(x) = 2x^3 + 4x + c,得到 -2x^3 - 4x - c = 2x^3 + 4x + c,整理得到 4x^3 + 8x + 2c = 0。
对比系数可得 -c = 2c,解得 c = 0。
所以常数 c 的值为 0。
3. 已知函数 f(x) = (x - 1) / (x + 1),求函数 f(x) 的反函数。
解答:要求函数 f(x) 的反函数,可以将 y(即 f(x))与 x 对调位置,并解出 x 关于 y 的表达式。
首先,将函数 f(x) 表示为 y = (x - 1) / (x + 1)。
交换 x 和 y,得到 x = (y - 1) / (y + 1)。
解以上方程,可以得到 y = (x + 1) / (x - 1)。
所以函数f(x) 的反函数为 f^(-1)(x) = (x + 1) / (x - 1)。
【第二份试题】1. 已知函数y = f(x) = 3sin(2x + π/4),求 f(x) 的周期和最大值、最小值。
解答:对于函数 y = 3s in(2x + π/4),参数 2 决定了正弦函数的周期。
周期T = 2π / 2 = π。
最大值和最小值可以通过观察正弦函数的图像得出。
高中数学函数测试题及答案
![高中数学函数测试题及答案](https://img.taocdn.com/s3/m/66bd244fe45c3b3567ec8bdd.png)
高一数学一、选择题(每小题5分,共60分,请将所选答案填在括号内)1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=CC .A ⊂CD .A=B=C 2.下列各组角中,终边相同的角是( )A .π2k 与)(2Z k k ∈+ππB .)(3k 3Z k k ∈±πππ与C .ππ)14()12(±+k k 与 )(Z k ∈D .)(66Z k k k ∈±+ππππ与3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )A .2B .1sin 2C .1sin 2D .2sin 4.设α角的终边上一点P 的坐标是)5sin,5(cos ππ,则α等于 ( )A .5πB .5cotπC .)(1032Z k k ∈+ππD .)(592Z k k ∈-ππ5.将分针拨慢10分钟,则分钟转过的弧度数是( )A .3πB .-3πC .6πD .-6π6.设角α和β的终边关于y 轴对称,则有( )A .)(2Z k ∈-=βπαB .)()212(Z k k ∈-+=βπαC .)(2Z k ∈-=βπαD .)()12(Z k k ∈-+=βπα7.集合A={},322|{},2|Z n n Z n n ∈±=⋃∈=ππααπαα, B={},21|{},32|Z n n Z n n ∈+=⋃∈=ππββπββ,则A 、B 之间关系为( )A .AB ⊂B .B A ⊂C .B ⊂AD .A ⊂B8.某扇形的面积为12cm ,它的周长为4cm ,那么该扇形圆心角的度数为 ( )A .2°B .2C .4°D .4 9.下列说法正确的是( )A .1弧度角的大小与圆的半径无关B .大圆中1弧度角比小圆中1弧度角大≠ ≠≠C .圆心角为1弧度的扇形的弧长都相等D .用弧度表示的角都是正角 10.中心角为60°的扇形,它的弧长为2π,则它的内切圆半径为 ( )A .2B .3C .1D .2311.一个半径为R 的扇形,它的周长为4R ,则这个扇形所含弓形的面积为 ( )A .2)1cos 1sin 2(21R ⋅- B .1cos 1sin 212⋅RC .221RD .221cos 1sin R R ⋅⋅- 12.若α角的终边落在第三或第四象限,则2α的终边落在 ( )A .第一或第三象限B .第二或第四象限C .第一或第四象限D .第三或第四象限二、填空题(每小题4分,共16分,请将答案填在横线上) 13.αααsin 12sin2cos-=-,且α是第二象限角,则2α是第 象限角.14.已知βαπβαππβαπ-2,3,34则-<-<-<+<的取值范围是 .15.已知α是第二象限角,且,4|2|≤+α则α的范围是 .16.已知扇形的半径为R ,所对圆心角为α,该扇形的周长为定值c ,则该扇形最大面积为.三、解答题(本大题共74分,17—21题每题12分,22题14分)17.写出角的终边在下图中阴影区域内角的集合(这括边界)(1) (2) (3)18.一个视力正常的人,欲看清一定距离的文字,其视角不得小于5′. 试问:(1)离人10米处能阅读的方形文字的大小如何?(2)欲看清长、宽约0.4米的方形文字,人离开字牌的最大距离为多少?19.一扇形周长为20cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求此扇形的最大面积?20.绳子绕在半径为50cm 的轮圈上,绳子的下端B 处悬挂着物体W ,如果轮子按逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W 的位置向上提升100cm? 21.已知集合A={}810,150|{},135|≤≤-︒⋅==∈︒⋅=k k B Z k k ββαα求与A ∩B 中角终边相同角的集合S.22.单位圆上两个动点M 、N ,同时从P (1,0)点出发,沿圆周运动,M 点按逆时针方向旋转6π弧度/秒,N 点按顺时针转3π弧度/秒,试求它们出发后第三次相遇时的位置和各自走过的弧度.高一数学参考答案(一)一、1.B 2.C 3.B 4.D 5.A 6.D 7.C 8.B 9.A 10.A 11.D 12.B 二、13.三 14. )6,(ππ-15.]2,2(),23(πππ⋃--16.162C三、17.(1)}1359013545|{Z k k k ∈︒⋅+︒≤≤︒⋅+︒αα;(2)}904590|{Z k k k ∈︒⋅+︒≤≤︒⋅αα;; (3)}360150360120|{Z k k k ∈︒⋅+︒≤≤︒⋅+︒-αα.18.(1)设文字长、宽为l 米,则)(01454.0001454.01010m l =⨯==α; (2)设人离开字牌x 米,则)(275001454.04.02m l x ===.19.221021,220rr rS r-=⋅⋅=-=αα,当2,5==αr 时,)(252maxcm S =.20.设需x 秒上升100cm .则ππ15,100502460=∴=⨯⨯⨯x x (秒).21.}360k 1350360|{Z k k S ∈︒⋅=︒-︒-==ααα或.22.设从P (1,0)出发,t 秒后M 、N 第三次相遇,则πππ636=+t t ,故t =12(秒).故M 走了ππ2126=⨯(弧度),N 走了ππ4123=⨯(弧度).同步测试(2)任意角的三角函数及同角三角函数的基本关系式一、选择题(每小题5分,共60分,请将所选答案填在括号内)1.已知)20(παα<<的正弦线与余弦线相等,且符号相同,那么α的值为 ( )A .ππ434或 B .ππ4745或C .ππ454或D .ππ474或2.若θ为第二象限角,那么)2cos(sin )2sin(cos θθ⋅的值为( )A .正值B .负值C .零D .为能确定 3.已知αααααtan ,5cos 5sin 3cos 2sin 那么-=+-的值为( )A .-2B .2C .1623 D .-16234.函数1sectan sin cos 1sin1cos )(222---+-=x x xxxx x f 的值域是( )A .{-1,1,3}B .{-1,1,-3}C .{-1,3}D .{-3,1} 5.已知锐角α终边上一点的坐标为(),3cos 2,3sin 2-则α= ( )A .3-πB .3C .3-2πD .2π-36.已知角α的终边在函数||x y -=的图象上,则αcos 的值为( )A .22 B .-22 C .22或-22 D .217.若,cos 3sin 2θθ-=那么2θ的终边所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 8.1sin 、1cos 、1tan 的大小关系为( )A .1tan 1cos 1sin >>B .1cos 1tan 1sin >>C .1cos 1sin 1tan >>D .1sin 1cos 1tan >>9.已知α是三角形的一个内角,且32cos sin =+αα,那么这个三角形的形状为 ( )A .锐角三角形B .钝角三角形C .不等腰的直角三角形D .等腰直角三角形 10.若α是第一象限角,则ααααα2cos ,2tan,2cos,2sin ,2sin 中能确定为正值的有( )A .0个B .1个C .2个D .2个以上11.化简1csc 2csc csc 1tan 1sec 22+++++ααααα(α是第三象限角)的值等于( )A .0B .-1C .2D .-2 12.已知43cos sin =+αα,那么αα33cos sin -的值为( )A .2312825B .-2312825C .2312825或-2312825D .以上全错二、填空题(每小题4分,共16分,请将答案填在横线上) 13.已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos .14.函数x xy cos lg 362+-=的定义域是_________.15.已知21tan -=x ,则1cos sin 3sin2-+x x x =______.16.化简=⋅++αααα2266cos sin 3cos sin . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.已知.1cos sin ,1sin cos =-=+θθθθby a x by a x 求证:22222=+by ax .18.若xxx xx tan 2cos 1cos 1cos 1cos 1-=+---+, 求角x 的取值范围.19.角α的终边上的点P 和点A (b a ,)关于x 轴对称(0≠ab )角β的终边上的点Q 与A 关于直线x y =对称. 求βαβαβαcsc sec cot tan sec sin ⋅+⋅+⋅的值. 20.已知c b a ++=-+θθθθ2424sin sin 7cos 5cos 2是恒等式. 求a 、b 、c 的值. 21已知αsin 、βsin 是方程012682=++-k kx x 的两根,且α、β终边互相垂直.求k 的值.22.已知α为第三象限角,问是否存在这样的实数m ,使得αsin 、αcos 是关于x 的方程012682=+++m mx x 的两个根,若存在,求出实数m ,若不存在,请说明理由.高一数学参考答案(二)一、1.C 2.B 3.D 4.D 5.C 6.C 7.C 8.C 9.B 10.C 11.A 12.C 二、13.23-14. ⎥⎦⎤⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎢⎣⎡--6,232,223,6ππππ 15.52 16.1 三、17.由已知⎪⎪⎩⎪⎪⎨⎧-=+=,cos sin ,cos sin θθθθbx ax故 2)()(22=+bxax.18.左|sin |cos 2|sin ||cos 1||sin ||cos 1|x x x x x x =--+==右,).(222,0sin ,sin cos 2|sin |cos 2Z k k x k x xx x x ∈+<<+<-=∴ππππ19.由已知P (),(),,a b Q b a -,ab ab bb a ba b =-=+=+-=βαβαcot ,tan ,sec ,sin 2222,ab aab a2222csc ,sec +=+=βα , 故原式=-1-022222=++ab a ab.20.θθθθθθθ2424224sin 9sin 27sin 55sin 2sin 427cos 5cos 2-=--++-=-+,故0,9,2=-==c b a . 21.设,,22Z k k ∈++=ππαβ则αβcos sin =,由⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=⋅=⋅=+=+≥+⨯--=∆,1cos sin ,812cos sin ,43cos sin ,0)12(84)6(22222121212ααααααx x k x x k x x k k 解知910-=k ,22.假设存在这样的实数m ,.则⎪⎪⎪⎩⎪⎪⎪⎨⎧>+=⋅-=+≥+-=∆,0812cos sin ,43cos sin ,0)12(32362m m m m αααα 又18122)43(2=+⨯--m m ,解之m=2或m=.910-而2和910-不满足上式. 故这样的m 不存在.高一数学同步测试(3)—正、余弦的诱导公式一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( )A .0B .1C .-1D .232.已知,)1514tan(a =-π那么=︒1992sin( ) A .21||aa + B .21aa + C .21aa +- D .211a+-3.已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( )A .5B .-5C .6D .-6 4.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于( )A .33 B .-33 C .3 D .-35.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形6.当Z k ∈时,])1cos[(])1sin[()cos()sin(απαπαπαπ+++++⋅-k k k k 的值为( )A .-1B .1C .±1D .与α取值有关7.设βαβπαπ,,,(4)cos()sin()(b a x b x a x f ++++=为常数),且,5)2000(=f 那么=)2004(f ( )A .1B .3C .5D .7 8.如果).cos(|cos |π+-=x x 则x 的取值范围是( ) A .)(]22,22[Z k k k ∈++-ππππB .)()223,22(Z k k k ∈++ππππC .)(]223,22[Z k k k ∈++ππππD .)()2,2(Z k k k ∈++-ππππ9.在△ABC 中,下列各表达式中为常数的是 ( )A .CB A sin )sin(++ B . AC B cos )cos(-+C .2tan2tanC B A ⋅+D .2sec2cos A C B ⋅+ 10.下列不等式上正确的是( )A .ππ74sin75sin> B .)7tan(815tanππ->C .)6sin()75sin(ππ->- D .)49cos()53cos(ππ->-11.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为( )A .211aa ++ B .-211aa ++ C .211aa +- D .211aa +-12.若)cos()2sin(απαπ-=+,则α的取值集合为 ( )A .}42|{Z k k ∈+=ππαα B .}42|{Z k k ∈-=ππααC .}|{Z k k ∈=πααD .}2|{Z k k ∈+=ππαα二、填空题(每小题4分,共16分,请将答案填在横线上) 13.已知,2cos 3sin =+αα则=+-ααααcos sin cos sin .14.已知,1)sin(=+βα则=+++)32sin()2sin(βαβα . 15.若,223tan 1tan 1+=+-θθ则=⋅--+θθθθθcos sin cot 1)cos (sin .16.设)cos()sin()(21απαπ+++=x n x m x f ,其中m 、n 、1α、2α都是非零实数,若 ,1)2001(=f 则=)2002(f .三、解答题(本大题共74分,17—21题每题12分,22题14分)17.设sin ,(0)()(1)1,(0)x x f x f x x π<⎧=⎨-+≥⎩和1cos ,()2()1(1)1,()2x x g x g x x π⎧<⎪⎪=⎨⎪-+≥⎪⎩求)43()65()31()41(f g f g +++的值.18.已知,1)sin(=+y x 求证:.0tan )2tan(=++y y x19.已知αtan 、αcot 是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<<求)sin()3cos(απαπ+-+的值.20.已知,3cos 3cot )(tan x x x f -=(1)求)(cot x f 的表达式;(2)求)33(-f 的值.21.设)(x f 满足)2|(|cos sin 4)(sin 3)sin (π≤⋅=+-x xx x f x f ,(1) 求)(x f 的表达式;(2)求)(x f 的最大值.22.已知:∑=+⋅=ni n i i S 1)32cos(ππ ,求.2002S 。
高中数学函数的定义域测试题(含答案)
![高中数学函数的定义域测试题(含答案)](https://img.taocdn.com/s3/m/2cda983f763231126edb114e.png)
高中数学函数的定义域测试题(含答案)高二数学函数的定义域与值域、单调性与奇偶性苏教版【本讲教育信息】一. 教学内容:函数的定义域与值域、单调性与奇偶性二. 教学目标:理解函数的性质,能够运用函数的性质解决问题。
三. 教学重点:函数性质的运用.四. 教学难点:函数性质的理解。
[学习过程]一、知识归纳:1. 求函数的解析式(1)求函数解析式的常用方法:①换元法(注意新元的取值范围)②待定系数法(已知函数类型如:一次、二次函数、反比例函数等)③整体代换(配凑法)④构造方程组(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等)(2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。
(3)理解轨迹思想在求对称曲线中的应用。
2. 求函数的定义域求用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:①若f(x)是整式,则函数的定义域是实数集R;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑤若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题.3. 求函数值域(最值)的一般方法:(1)利用基本初等函数的值域;(2)配方法(二次函数或可转化为二次函数的函数);(3)不等式法(利用基本不等式,尤其注意形如型的函数)(4)函数的单调性:特别关注的图象及性质(5)部分分式法、判别式法(分式函数)(6)换元法(无理函数)(7)导数法(高次函数)(8)反函数法(9)数形结合法4. 求函数的单调性(1)定义法:(2)导数法:(3)利用复合函数的单调性:(4)关于函数单调性还有以下一些常见结论:①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______;②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性;③互为反函数的两个函数在各自定义域上有______的单调性;(5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等(6)应用:比较大小,证明不等式,解不等式。
高中数学函数部分专题测试(含大题详细答案)
![高中数学函数部分专题测试(含大题详细答案)](https://img.taocdn.com/s3/m/f0763dd5580216fc710afde2.png)
高中数学函数部分测试 一.填空题1.设函数⎩⎨⎧<-≥+=)0(2)0(1)(2x x x x x f ,那么1(10)f -=_________2.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________。
3.(20XX 年安徽,数学文理科,13)函数221()log (1)x f x x --=-的定义域为.4.若tanx=6,则tan2x= sin2x= cos2x= .5.已知函数的定义域是[1,2],则f(x)的定义域为 .6.(08辽宁卷16)设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为.7.(08浙江卷12)若3sin()25πθ+=,则cos 2θ=_________。
8.(11江苏9)函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则f(0)= ___________________9.)1(log )1(n n n n ++-+= ___________________。
10.(20XX 年全国二)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则a,b,c 大小关系是___________________。
二.解答题11.设f (x )是定义在(0,+∞)上的单调增函数,满足,求:(1)f (1);(2)若f (x )+f (x -8)≤2,求x 的取值范围。
12.已知函数f (x )对任意实数x 、y 都有f (xy )=f (x )·f (y ),且f (-1)=1,f (27)=9,当时,。
(1)判断f (x )的奇偶性;(2)判断f (x )在[0,+∞)上的单调性,并给出证明; (3)若,求a 的取值范围。
13.(08四川卷17)求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值。
高中数学函数测试题(含答案)
![高中数学函数测试题(含答案)](https://img.taocdn.com/s3/m/5b55bb38c1c708a1294a4426.png)
高中数学函数测试题之马矢奏春创作学生:用时:分数:一、选择题和填空题(3x28=84分)1则()A B D【谜底】A【解析】利用中间值0和1来比力:2A BC【谜底】B3有如下条件:【谜底】②【解析】函数为偶函数,则在区间π02⎡⎤⎢⎥⎣⎦,上,函数2()cos f x x x =-为增函数, 4、已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f =()A.4B.14C.-4 D-14谜底:B 5、函数0.51log (43)y x =-的界说域为()A.(34,1) B(34,∞) C (1,+∞) D. (34,1)∪(1,+∞) 谜底:A6、若x0是方程lgx x 2的解,则x0属于区间()A .(0,1)B .(1,1.25)C .(1.25,1.75)D .(1.75,2)谜底:D7、函数(0,1)x y a a a a =->≠的图象可能是 谜底:C 8、设f(x)=x x -+22lg,则)2()2(xf x f +的界说域为 A. ),(),(-4004 B.(-4,-1) (1,4) C. (-2,-1) (1,2) D.(-4,-2) (2,4) 谜底:B9、设函数1()21(0),f x x x x=+-<则()f x ()A .有最年夜值B .有最小值C .是增函数D .是减函数谜底:A10、设abc>0,二次函数的图像可能是()谜底:D11b,谜底:C12则下列判断正确的是谜底:B13A.y< x<1 B.x< y<1C.1< x<y D.谜底:D)14谜底:C15、下列函数中,既是奇函数又是增函数的为()A谜底:D16、下列四类函数中,(A)幂函数(B)对数函数(C )指数函数 (D )余弦函数 谜底:C17、某学校要召开学生代表年夜会,规定各班每10人推选一名代表,当各班人数除以10的余数年夜于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数[]y x =([x]暗示不年夜于x 的最年夜整数)可以暗示为 (A )y =[10x ] (B )y =[310x +] (C )y =[410x +] (D )y =[510x +] 谜底:B 18、 函数13y x=的图像是【B 】19、方程cos x x =在(),-∞+∞内【C 】(A)没有根 (B)有且仅有一个根 (C) 有且仅有两个根 (D )有无穷多个根20、若不等式2x2-3x+a <0的解集为( m,1),则实数m = ▲. 谜底:1221、函数f(x)log3(x 3)的反函数的图像与y 轴的交点坐标是_____.谜底:(0,2) 22、函数1()12f x x=-的界说域是____________.(用区间暗示)谜底: (21-,∞)23谜底:424.谜底:225、则f(f(-2))=___—2___.26、设一元二次方程x2-4x+n=0有整数根的充要条件是n=___3或4__. 27281,2]上的最年夜值为4,最小值为m,,则a =____.谜底:那时,有,此时,此时检验知符合题意.二、解答题(8x2=16分)29,的取值范围;得30、设向量a=(sinx,cosx),b=(cosx,cosx),x∈R,函数f(x)=a·(a+b).(Ⅰ)求函数f(x)的最年夜值与最小正周期;(Ⅱ)求使不等式x的取值集.本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的基本知识,以及运用三角函数的图像和性质的能力.解:()2sin132sin2cos21222a ab a a a b xx x+=+=++++()=的最年夜值为3222+,最小正周期是(Ⅱ)由(Ⅰ)知。
高中数学必修一函数性质专项习题及答案
![高中数学必修一函数性质专项习题及答案](https://img.taocdn.com/s3/m/53d8ee34e97101f69e3143323968011ca300f780.png)
高中数学必修一函数性质专项习题及答案必修1函数的性质1.在区间(0,+∞)上不是增函数的函数是A.y=2x+1B.y=3x2+1C.y=1/xD.y=2x2+x+12.函数f(x)=4x2-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数。
则f(1)等于()A.-7B.1C.17D.253.函数f(x)在区间(-2,3)上是增函数,则y=f(x+5)的递增区间是()A.(3,8)B.(-7,-2)C.(3,8)D.(0,5)4.函数f(x)=ax+1在区间(-2,+∞)上单调递增,则实数a的取值范围是()x+2A.(0,11/22)B.(11/22,+∞)C.(-2,+∞)D.(-∞,-1)∪(1,+∞)5.函数f(x)在区间[a,b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]内()A.至少有一实根B.至多有一实根C.没有实根D.必有唯一的实根6.若f(x)=x+px+q满足f(1)=f(2)=5,则f(1)的值是()A.5B.-5C.6D.-67.若集合A={x|1<x<2},B={x|x≤a},且A∩B≠Ø,则实数a的集合()A.{a|a<2}B.{a|a≥1}C.{a|a>1}D.{a|1≤a≤2}8.已知定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是()A.f(-1)<f(9)<f(13)B.f(13)<f(9)<f(-1)C.f(9)<f(-1)<f(13)D.f(13)<f(-1)<f(9)9.函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是()A.(-∞,0],[2,∞)B.(-∞,0],[0,2]C.[0,2],[2,∞)D.[0,2],[-∞,0)10.若函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围()A.a≤3B.a≥-3C.a≤5D.a≥311.函数y=x+4x+c,则()A.f(1)<c<f(-2)B.f(1)>c>f(-2)C.c>f(1)>f(-2)D.c<f(-2)<f(1)12.已知定义在R上的偶函数f(x)满足f(x+4)=-f(x),且在区间[0,4]上是减函数,则f(2)的符号为()A.正数B.负数C.零一、文章格式已经修正,删除了明显有问题的段落,并对每段话进行了小幅度改写。
高中数学函数经典复习题含答案
![高中数学函数经典复习题含答案](https://img.taocdn.com/s3/m/27f2625cae1ffc4ffe4733687e21af45b207fe53.png)
高中数学函数经典复习题含答案1、求函数的定义域1)y=(x-1)/(x^2-2x-15)先求分母为0的解:x^2-2x-15=0x-5)(x+3)=0得到:x=5或x=-3但是x=-3不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-3)∪(-3,5)∪(5,+∞)2)y=1-((x+1)/(x+3))-3先求分母为0的解:x+3=0得到:x=-3但是x=-3不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-3)∪(-3,-1)∪(-1,+∞)2、设函数1/(x-1)+(2x-1)+4-x^2的定义域为[1,∞),则函数f(x^2)的定义域为[1,∞);函数f(x-2)的定义域为[3,∞)。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-1,2],函数f(2x-1)的值域为[-2,3]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x)=f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
因为F(x)的定义域存在,所以f(x+m)和f(x-m)的定义域必须都存在,即:1≤x+m≤11≤x-m≤1将两个不等式联立,得到:1≤x≤1m≤x≤m所以m的取值范围为[-1,1]。
二、求函数的值域5、求下列函数的值域:1)y=x+2/x-3 (x∈R)先求分母为0的解:x-3=0得到:x=3但是x=3不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,3)∪(3,+∞)当x→±∞时,y→±∞,所以值域为(-∞,-2]∪[2,+∞)2)y=x+2/x-3 (x∈[1,2])先求分母为0的解:x-3=0得到:x=3但是x=3不在定义域内,因为分母为0时分式无意义,所以定义域为[1,3)∪(3,2]∪(2,+∞)当x→1+时,y→-∞,当x→2-时,y→+∞,所以值域为(-∞,-2]∪[2,+∞)3)y=22/(3x-13x-1)先求分母为0的解:3x-13x-1=0得到:x=4但是x=4不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,4)∪(4,+∞)当x→±∞时,y→0,所以值域为(0,+∞)4)y=(5x^2+9x+4)/(2x-6) (x≥5)当x→+∞时,y→+∞,当x→5+时,y→+∞,所以值域为[5,+∞)5)y=(x-3)/(x+1)+x+1先求分母为0的解:x+1=0得到:x=-1但是x=-1不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-1)∪(-1,+∞)化简得到y=x-2,所以值域为(-∞,-2]∪[-2,+∞)6)y=(x-3+x+1)/(2x-1x+2)先求分母为0的解:2x-1=0或x+2=0得到:x=1/2或x=-2但是x=1/2不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,1/2)∪(1/2,-2)∪(-2,+∞)化简得到y=1/2,所以值域为{1/2}7)y=x^2-x/(x+2)先求分母为0的解:x+2=0得到:x=-2但是x=-2不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-2)∪(-2,+∞)化简得到y=x-2-5/(x+2),所以值域为(-∞,-13/4]∪[1/4,+∞)8)y=(2-x^2-x)/(3x+6)先求分母为0的解:3x+6=0得到:x=-2但是x=-2不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-2)∪(-2,+∞)化简得到y=-1/3,所以值域为{-1/3}三、求函数的解析式1、已知函数f(x-1)=x-4x,求函数f(x),f(2x+1)的解析式。
高中数学_经典函数试题及答案
![高中数学_经典函数试题及答案](https://img.taocdn.com/s3/m/fa44d125ec630b1c59eef8c75fbfc77da26997e9.png)
经典函数测试题及答案(满分: 150 分考试时间:120分钟)一、选择题:本大题共12 小题。
每题 5 分,共 60 分。
在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
1.函数y f (2x 1) 是偶函数,则函数 y f(2x) 的对称轴是()A.x 0 B .x 1 C.x 11 D .x2 22.已知0 a 1, b1,则函数 y a x b 的图象不经过()A.第一象限 B .第二象限 C .第三象限 D .第四象限3.函数y ln x2x 6 的零点必然位于区间()A. (1,2)B. (2,3) C . (3,4) D. (4,5)4.给出四个命题:(1)当n0时,y x n的图象是一条直线;(2)幂函数图象都经过( 0,1)、( 1,1)两点;(3)幂函数图象不行能出此刻第四象限;(4)幂函数y x n在第一象限为减函数,则n 0。
此中正确的命题个数是()A. 1B. 2C. 3D. 45.函数y a x在[0,1]上的最大值与最小值的和为3,则a的值为()A.1B. 2C. 4D.1 246.设f ( x)是奇函数,当x0 时, f ( x)log 2 x, 则当x0 时, f ( x)( ) A.log 2 x B .log2(x) C .log2x D.log 2 (x)7.若方程 2(m 1 )x2+4 mx3m20 的两根同号,则m 的取值范围为().2 m1B .2m 1或2m1A322 m 2m 1C.m1或m D .1或338 .已知 f (x) 是周期为2的奇函数,当0 x 1 时, f ( x) lg x. 设a635()f ( ), b f ( ), c f ( ), 则522A.a b c B .b a c C .c b a D .c a b9.已知 0x y a1,则有()A.log a(xy)0 B .0log a ( xy)1 C . 1< log a( xy)0D .log a( xy)2 10.已知0a1, log a m log a n0, 则()A.1 n m B .1 m n C .m n 1 D .n m 111.设f ( x)lg2x, 则 f x f2的定义域为()2x2xA. (4,0)(0,4)B.( 4, 1)(1,4)C.( 2, 1)(1,2)D.( 4, 2)(2,4)12.已知f ( x)(3a1) x4a, x1log a x, x1是 R 上的减函数,那么a的取值范围是()A. (0,1) B. (0,1)C.1,1D.1,13737二、填空题:本大题共 4 小题,每题 4 分,共 16 分。
高中数学函数试题及答案
![高中数学函数试题及答案](https://img.taocdn.com/s3/m/b19b6d6f3868011ca300a6c30c2259010302f356.png)
高中数学函数试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1在x=1处的导数是()A. 1B. 2C. 4D. 52. 已知函数y = x^3 - 2x^2 + x - 2,求其在x=0时的值是()A. -2B. 0C. 1D. 23. 函数y = sin(x)在x=π/2处的值是()A. 0B. 1C. -1D. π/24. 已知函数f(x) = 3x + 5,求f(-2)的值是()A. -1B. 1C. -7D. 75. 如果函数f(x) = x^2 + 2x + 3在区间[-3, 1]上是增函数,那么下列哪个选项是错误的()A. f(-3) = 12B. f(1) = 6C. f(-2) = 4D. f(0) = 36. 函数y = 1 / (x + 1)的渐近线是()A. x = -1B. y = 0C. x = 1D. y = 17. 函数f(x) = x^3 - 6x^2 + 11x - 6的极值点是()A. x = 1B. x = 2C. x = 3D. x = 48. 函数y = x^2在x=2处的切线斜率是()A. 0B. 2C. 4D. 89. 函数y = 2^x的值域是()A. (0, +∞)B. (-∞, +∞)C. [0, +∞)D. [1, +∞)10. 函数f(x) = |x - 2|的零点是()A. x = 0B. x = 1C. x = 2D. x = 3二、填空题(每题4分,共20分)11. 若函数f(x) = √x在区间[0, 4]上是增函数,则f(4) - f(0) = _______。
12. 函数g(x) = x^2 + bx + c,若g(1) = 2,g(2) = 6,则b + c = _______。
13. 若函数h(x) = 3x - 2的反函数为h^(-1)(x),则h^(-1)(5) =_______。
高中数学函数基础题训练(含答案)
![高中数学函数基础题训练(含答案)](https://img.taocdn.com/s3/m/acabd9f75f0e7cd18525369f.png)
函数基础题训练一、单项选择题(本大题共49小题,共245.0分)1. 下列图形可以表示为以M ={x|0≤x ≤1}为定义域,以N ={y|0≤y ≤1}为值域的函数是( )A.B.C.D.2. 函数f(x)=√x 2−4−√4−x 2的定义域是( )A. [−2,2]B. (−2,2)C.D. {−2,2}3. 已知函数f(2x +1)的定义域为[1,2],则函数f(4x +1)的定义域为( )A. [3,5]B. [12,1]C. [5,9]D. [0,12]4. 下列各组函数中,表示同一函数的是( )A. y =4与y =(√x)4B. y =√x 33与y =x22C. f(x)=x 0与g (x )=1x 0 D. f (x )=√x ⋅√x +1与g (x )=√x 2+x5. 已知函数f(x),g(x)的对应值如下表:则g(f(g(−1)))的值为( )A. 1B. 0C. −1D. 无法确定 6. 已知函数f (x )={x 2,x ≤0,1−2x,x >0,则f(f(−1))=( )A. 1B. 5C. −1D. −57. 设函数f(x)={−x,x ≤0x 2,x >0,若f(a)=4,则实数a =( )A. −4或2B. −4或−2C. −2或4D. −2或28. 已知函数f(3x +1)=x 2+3x +2,则f(10)=( )A. 30B. 6C. 20D. 99. 若f(x)满足关系式f(x)+2f (1x )=3x ,则f(2)的值为( )A. 1B. −1C. −32D. 3210. 设函数f(x)=kx +b(k >0),满足f(f(x))=16x +5,则f(x)=( )x 0 1 −1 f(x)1 0 −1 g(x)−11A. −4x −53B. 4x −53C. 4x −1D. 4x +111. 下列函数中,在区间(0,+∞)上为增函数的是( )A. y =ln(x −1)B. y =|x −1|C. y =(12)xD. y =√x 2+x12. 已知函数f(x)=4x 2−mx +5在区间[−2,+∞)上是增函数,在区间(−∞,−2]上是减函数,则f(1)=( )A. −7B. 1C. 17D. 2513. 已知函数f(x)={−x +3a,x <0log a(x +1),x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围是( )A. (0,1)B. [13,1)C. (0,13]D. (13,1)14. 函数f(x)=x +√x,x ∈[0,9]的最大值为( )A. 0B. 2C. 6D. 1215. 函数y =x 2−2x +2在[−2,2]上的最大值、最小值分别为 ( )A. 10,2B. 10,1C. 2,1D. 以上都不对16. 函数f(x)={1x,x ≥1−x 2+2,x <1的最大值为( )A. 1B. 2C. 12D. 1317. 已知函数f(x)在[−2,2]上的图象如图所示,则此函数的最小值、最大值分别是( )A. f(−2),0B. 0,2C. f(−2),2D. f(2),2 18. 下列函数中是偶函数的是( )A. y =2|x|−1,x ∈[−1,2]B. y =x 2+xC. y =x 3D. y =x 2,x ∈[−1,0)∪(0,1]19. 设函数f(x)是定义在R 上的奇函数,且f(−1)=1,则f(1)+f(0)=( )A. 1B. 0C. −1D. −220. 已知函数f(x)是奇函数,x >0时,f(x)=1,则f(−2)=( )A. 0B. 1C. −1D. ±121. 函数f(x)=ax 2+bx +2a −b 是定义在[1−2a,a]上的偶函数,则a +b =( )A. −13B. 13C. 0D. 122. 若函数f(x)=5x(4x+3)(x−a)为奇函数,则a =( )A. 12B. 23C. 34D. 123. 已知f(x)是定义在R 上的偶函数,且在(0,+∞)是增函数,设a =f(−3),b =f(π),c =f(−1),则a ,b ,c 的大小关系是( )A. a <c <bB. c <b <aC. b <a <cD. c <a <b24. 已知函数f(x)为(−1,1)上的奇函数且单调递增,若f(2x −1)+f(−x +1)>0,则x 的值范围是( )A. (−1,1)B. (0,1)C. [1,+∞)D. [−1,+∞)25. 已知偶函数f(x)在区间[0,+∞)上单调递减,则满足f(lnx −1) > f(−1)的x 的取值范围是( )A. (1,e 2)B. (0,e 2)C. (1e ,e)D. (0,1)∪(1,e 2)26. 已知幂函数y =(m 2−3m +3)x m+1是奇函数,则实数m 的值为( )A. 1B. 2C. 3D. 427. 已知点(2,14)在幂函数y =f (x )的图象上,则f (x )的表达式是( )A. f (x )=x8B. f (x )=x 2C. f (x )=x −2D. f (x )=(12)x28. 如图所示,曲线是幂函数y =x α在第一象限内的图象,已知α取±2,±12四个值,则对应于曲线C 1,C 2,C 3,C 4的指数α依次为( )A. −2,−12,12,2B. 2,12,−12,−2 C. −12,−2,2,12 D. 2,12,−2,−1229. 若a =√(3−π)33,b =√(2−π)44,则a +b =( )A. 1B. 5C. −1D. 2π−530. 下列式子正确的是( )A. (−30)13=1 B. a −2a 12=a −1 C. (a +b)−1=a −1+b −1 D. (−212)2=2 31. 函数y =(a 2−3a +3)a x 是指数函数,则有( )A. a =1或a =2B. a =1C. a =2D. a >1,且a ≠2 32. 函数y =a x −2+2(a >0且a ≠1)的图象必经过点 ( )A. (0,1)B. (1,1)C. (2,2)D. (2,3)33. 函数y =a |x|(a >1)的图象是 ( )A.B.C.D.34. 函数f(x)=√2x −1+1x−2的定义域为( )A. [0,2)B. (2,+∞)C.D.35. 已知a =5log 23.4,b =5log 43.3,c =(15)log 30.3,则( )A. a >b >cB. b >a >cC. a >c >bD. c >a >b36. 若(14)2a+1<(14)8−2a,则实数a 的取值范围是( )A. (74,+∞)B. (1,+∞)C. (−∞,1)D. (−∞,74)37. 已知函数f(x)=a x +b(a >0且a ≠1)的定义域和值域都是[−1,0],则a +b =( )A. −12B. −32C. −52D. −12或−5238. 函数f(x)=(a +1)x 是R 上的减函数,则a 的取值范围是( )A. a <0B. −1<a <0C. 0<a <1D. a <−139. 把对数式x =lg2化为指数式为( )A. 10x =2B. x 10=2C. x 2=10D. 2x =1040. 下列正确的是( )A. log a (x ⋅y)=log a x ⋅log a yB. log a (x +y)=log a x +log a yC. log a (x ÷y)=log a x ÷log a yD. log a x −log a y =log a (x ⋅y −1)41. 函数y =1+log a (x +2)的图象恒过定点( )A. (0,1)B. (1,0)C. (−1,1)D. (−1,0)42. 函数的定义域是( )A. [3,+∞)B. (−∞,3]C. [3,4)D. (−∞,4]43. 如图,曲线是对数函数y =log a x 的图象,已知a 的取值有43,√3,35,110,则相应C 1,C 2,C 3,C 4的a 的值依次是 ( )A. √3,43,110,35B. √3,43,35,110C. 43,√3,35,110D. 43,√3,110,3544. 当a >1时,在同一坐标系中,函数y =a −x 与y =log a x 的图象为 ( )A. B. C. D.45. 不等式log 2(x −1)<−1的解集是 ( )A. {x|x >1}B. {x |x <32} C. {x |1<x <32} D. {x |0<x <32}46. 已知a =log 526,b =√95,c =0.60.9,则( )A. a >b >cB. a >c >bC. b >a >cD. b >c >a47. 函数f(x)=ln(x 2−2x −8)的单调递增区间是( )A.B. (−∞,−1)C. (1,+∞)D. (4,+∞)48. 函数f(x)=(12)x −15x 的零点位于区间( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)49. 设函数f(x)=3x +3x −8,用二分法求方程3x +3x −8=0的近似解时,取区间(1,2),算得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( )A. (1,1.25)B. (1.25,1.5)C. (1.5,2)D. 不能确定答案和解析1.【答案】C【解答】解:A 选项,函数定义域为M ,但值域不是N ; B 选项,函数定义域不是M ,值域为N ; C 选项正确;D 选项,集合M 中存在x 与集合N 中的两个y 对应,故不构成函数关系. 故选C .2.【答案】D【解答】解:由题得{x 2−4≥04−x 2≥0,解得x ∈{−2,2}.所以函数的定义域为{−2,2}.故选D .3.【答案】B【解答】解:∵函数f(2x +1)的定义域为[1,2], ∴1≤x ≤2,∴3≤2x +1≤5, ∴函数f(4x +1)中,3≤4x +1≤5, ∴12≤x ≤1,∴函数f(4x +1)的定义域为[12,1]. 故选B .4.【答案】C【解答】解:对于A ,函数y =√x 4=x 2(x ∈R),与y =(√x)4=x 2(x ⩾0)的定义域不同,不是同一函数; 对于B ,函数y =√x 33=x(x ∈R),与y =x 22(x ∈R)对应关系不同,不是同一函数;对于C ,函数f(x)=x 0=1(x ≠0),与g(x)=1x 0=1(x ≠0)的定义域相同,对应关系也相同,是同一函数;对于D ,函数f(x)=√x ⋅√x +1=√x 2+x(x ⩾0),与g(x)=√x 2+x(x ⩽−1或x ⩾0)的定义域不同,不是同一函数.故选C .5.【答案】C【解答】解:g(−1)=1,则f(g(−1))=f(1)=0,则g(f(g(−1)))=g(0)=−1, 故选C .6.【答案】C【解答】 解:f (x )={x 2,x ≤0,1−2x,x >0,f(−1)=(−1)2=1,f(f(−1))=f(1)=1−2×1=−1.故选C .7.【答案】A解:∵函数f(x)={−x,x ≤0x 2,x >0,且f(a)=4,∴当a ≤0时,−a =4,解得a =−4,满足题意; 当a >0时,a 2=4,解得a =±2,a =2满足题意; ∴实数a =−4或2. 故选:A .8.【答案】C【解答】解:函数f(3x +1)=x 2+3x +2,则f(10)=f(3×3+1)=32+3×3+2=20. 故选C .9.【答案】B【解答】解:∵f(x)满足关系式f(x)+2f(1x )=3x , ∴{f(x)+2f(1x )=3x f(1x )+2f(x)=3x,解得f(x)=2x −x ,∴f(2)=22−2=−1.故选B .10.【答案】D【解答】解:∵f(x)单调递增的一次函数,∴设f(x)=ax +b ,a >0,f(f(x))=a(ax +b)+b =a 2x +ab +b =16x +5, ∴a 2=16,ab +b =5,解得a =4,b =1或a =−4,b =−53(不合题意舍去),∴f(x)=4x +1. 故选:D .11.【答案】D【解答】解:对于A:定义域是(1,+∞),∴y =ln(x −1)在(1,+∞)上单调递增,故A 错误; 对于B:y =|x −1|在(0,1)上单调递减,在(1,+∞)上单调递增,故B 错误; 对于C:y =(12)x 在(0,+∞)上单调递减,故C 错误;对于D:y =√x 2+x ,令u =x 2+x ,则y =√x 2+x 是由y =√u 与u =x 2+x =(x +12)2−14复合而成,而y =√u 是定义域上的增函数,u =x 2+x 在区间(0,+∞)上为增函数,且u >0,故y =√x 2+x 在区间(0,+∞)上为增函数,故D 正确, 故选:D .12.【答案】D【解答】解:由题意知函数f(x)的对称轴方程为x =m 8=−2,∴m =−16,∴f(x)=4x 2+16x +5,∴f(1)=25. 故选D .13.【答案】A【解答】解:∵函数f(x)={−x +3a,x <0log a (x +1),x ≥0(a >0且a ≠1)是R 上的减函数, ∴{3a ≥log a (0+1)0<a <1,∴0<a <1,故选A .14.【答案】D【解析】解:设0≤x 1<x 2≤9,∴f(x 1)−f(x 2)=x 1+√x 1−x 2−√x 2,=(x 1−x 2)+√x 1−√x 2)(√x 1+√x 2)√x +√x ,=(x 1−x 2)12√x +√x , =(x 1−x 2)(1√x +√x ),∵x 1<x 2, ∴x 1−x 2<0,1+x +x >0,∴f(x1)−f(x2)<0,∴f(x1)<f(x2),∴f(x)在[0,9]上为增函数,∴f(x)的最大值为f(9)=9+√9=9+3=12,故选:D.15.【答案】B【解答】解:对称轴为x=1,且抛物线开口向上,所以当x=−2,y max=10;当x=1,y min=1;故选B.16.【答案】B为减函数,此时f(x)在x=1处取得最大值,最大值为f(1)=1;【解答】解:当x≥1时,函数f(x)=1x当x<1时,函数f(x)=−x2+2在x=0处取得最大值,最大值为f(0)=2.综上可得,f(x)的最大值为2.故选B.17.【答案】C【解答】解:观察函数图象,知图象最低点的纵坐标为f(−2),最高点的纵坐标为2,故选C.18.【答案】D【解答】解:选项A中的函数定义域不关于原点对称,故函数为非奇非偶函数;y=x2+x为非奇非偶函数;y=x3为奇函数;y=x2,x∈[−1,0)∪(0,1]的定义域关于原点对称且满足f(−x)=f(x),则函数f(x)为偶函数.故选D.19.【答案】C【解答】解:根据题意,函数f(x)是定义在R上的奇函数,则f(0)=0,若f(−1)=1,则f(1)=−f(−1)=−1,则f(1)+f(0)=−1.故选C.20.【答案】C【解答】解:设x<0,则−x>0,f(−x)=1.∵f(x)是奇函数,∴f(−x)=−f(x).∴−f(x)=1,f(x)=−1(x<0).∴f(−2)=−1.21.【答案】D【解答】解:由偶函数的定义,知[1−2a,a]关于原点对称,所以−a=1−2a,解得a=1.又f(x)为偶函数,所以b=0,所以a+b=1,故选D.22.【答案】C【解答】解:∵f(x)为奇函数,∴f(−x)=−f(x),即−5x(−4x+3)(−x−a)=−5x(4x+3)(x−a),∴(−4x+3)(−x−a)=(4x+3)(x−a),即4x2+(4a−3)x−3a=4x2+(3−4a)x−3a,∴4a−3=3−4a,解得a=34.经检验,当a=34时满足f(−x)=−f(x),且定义域为{x|x≠±34}关于原点对称,故选:C.23.【答案】D【解答】解:已知偶函数f(x)的定义域是R,且f(x)在(0,+∞)是增函数,a=f(−3)=f(3),c=f(−1)=f(1),b=f(π),而1<3<π,∴f(1)<f(3)<f(π),∴c<a<b.故选D.24.【答案】B【解答】解:根据题意,f(x)为(−1,1)上的奇函数且在(−1,1)上单调递增,则f(2x−1)+f(−x+1)>0⇔f(2x−1)>f(x−1),则有{−1<2x−1<1,−1<x−1<1,2x−1>x−1,解得0<x<1,即x的取值范围是(0,1).故选B.25.【答案】A 【解答】解:根据题意,偶函数f(x)在区间[0,+∞)上单调递减,则f(lnx −1)>f(−1)⇒f(|lnx −1|)>f(1)⇒|lnx −1|<1⇒−1<lnx −1<1,解可得:1<x <e 2,则x 的取值范围是(1,e 2).故选:A .26.【答案】B【解答】解:依题意,m 2−3m +3=1,解得m =2或m =1,若m =1,则y =x 2不是奇函数;若m =2,则y =x 3为奇函数.故选:B .27.【答案】C【解答】解:设幂函数解析式为:y =x α,因为点(2,14)在幂函数f(x)的图象上,所以14=2α,解得α=−2,函数的解析式为:f(x)=x −2.故选C . 28.【答案】B【解答】解:要确定一个幂函数y =x α在坐标系内的分布特征,就要弄清幂函数y =x α随着α值的改变图象的变化规律.随着α的变大,幂函数y =x α的图象在直线x =1的右侧由低向高分布.从题图中可以看出,直线x =1右侧的图象,由高向低依次为C 1,C 2,C 3,C 4,所以C 1,C 2,C 3,C 4的指数α依次为2,12,−12,−2.故选B . 29.【答案】A【解答】解:,故选A . 30.【答案】D【解答】解:由(−30)13=−1,a −2a 12=a −32(a >0) 可知AB 错误;当a =b =1时,(a +b)−1=12,a −1+b −1=2,显然C 错误, D 正确,故选D . 31.【答案】C【解答】 解:由指数函数的概念,得a 2−3a +3=1,解得a =1或a =2.当a =1时,底数是1,不符合题意,舍去;当a =2时,符合题意.故选C .32.【答案】D【解答】解:令x −2=0,即x =2时,y =a 0+2=3,∴函数y =a x−2+2(a >0,且a ≠1)的图象必经过点(2,3),故选D .33.【答案】A【解答】解:当y =a |x |={a x ,x ⩾0a −x ,x <0,且a >1, 所以当x ⩾0时,函数单调递增,当x <0时,函数单调递减,且x =0时,函数取得最小值为1,因此A 选项符合.故选A .34.【答案】C【解答】解:要使函数f(x)=√2x −1+1x−2有意义,则{2x −1⩾0x −2≠0,解得x ⩾0且x ≠2,即函数的定义域为. 故选C . 35.【答案】C【解答】解:, log 43.3<1,又y =5x 是增函数,∴a >b , ∵c =(15)log 30.3=5log 3103>5log 33=51=5log 44>5log 43.3=b ,而,∴a >c ,∴a >c >b .故选C . 36.【答案】A【解答】解:函数y =(14)x 在R 上为减函数,因为(14)2a+1<(14)8−2a ,所以2a +1>8−2a ,解得a >74.故选A . 37.【答案】B【解答】解:当a >1时,f(x)单调递增,有f(−1)=1a +b =−1,f(0)=1+b =0,无解;当0<a <1时,f(x)单调递减,有f(−1)=1a +b =0,f(0)=1+b =−1,解得a =12,b =−2,所以a +b =−32.故选B . 38.【答案】B【解答】解:∵函数f(x)=(a +1)x 是R 上的减函数,∴a +1∈(0,1),∴−1<a <0.39.【答案】A【解答】解:因为lg2表示以10为底2的对数,由对数的定义可知对数式x =lg2化为指数式为10x =2.40.【答案】D【解析】解:log a (x ⋅y)=log a x +log a y ≠log a x ⋅log a y ,A 错,log a (x +y)=log a x +log a y 此式不成立,B 错,log a (x ÷y)=log a x −log a y ≠log a x ÷log a y ,C 错,log a x −log a y =log a x y =log a (x ⋅y −1),D 对,故选D .41.【答案】C【解答】解:令x +2=1,则x =−1,y =1,故函数的图象恒过点(−1,1),故选C .42.【答案】C【解答】 解:函数,,∴0<4−x ⩽1,解得3≤x <4,∴函数y 的定义域是[3,4).故选C .43.【答案】B【解答】解:根据对数函数图像性质,满足:1<C 2<C 1,0<C 4<C 3<1时符合图像要求, 又 √3>43>1 ,0<110<35<1,故C 1,C 2,C 3,C 4的a 的值依次√3,43,35,110. 故选B . 44.【答案】C【解答】解:∵函数y =a −x 可化为函数y =(1a )x ,因为a >1,则函数y =(1a )x 在R 上单调递减,经过点(0,1),又y =log a x ,当a >1时,函数单调递增,经过点(1,0),故选:C . 45.【答案】C【解答】解:不等式log 2(x −1)<−1⇔{x −1>0x −1<12⇔1<x <32.故解集为{x |1<x <32}.故选C .46.【答案】A【解析】解:依题意,a =log 526>log 525=2,1<b =√95=915<3215=2,0<c =0.60.9<0.60=1,∴a>b>c.故选:A.47.【答案】D【解答】解:由x2−2x−8>0,得x<−2或x>4,故f(x)的定义域为(−∞,−2)∪(4,+∞),令t=x2−2x−8,则,内函数t=x2−2x−8在区间(4,+∞)上为增函数,在区间上为减函数,外函数在t∈(0,+∞)内单调递增,∴函数f(x)=ln(x2−2x−8)的单调递增区间是(4,+∞).故选D.48.【答案】B【解析】解:函数f(x)在R上为减函数,其图象为一条不间断的曲线,又f(1)=12−15=310>0,f(2)=14−25=−320<0,∴f(1)⋅f(2)<0,由零点存在性定理可知,函数f(x)的零点位于区间(1,2).故选:B.49.【答案】B【解答】解:根据f(1.5)>0,f(1.25)<0,得到f(1.5)f(1.25)<0,所以零点在(1.25,1.5).故选B.。
高中数学函数测试题(含答案)
![高中数学函数测试题(含答案)](https://img.taocdn.com/s3/m/bf2d434bf342336c1eb91a37f111f18583d00c6c.png)
高中数学函数测试题(含答案)高中数学函数测试题一、选择题和填空题(共28题,每题3分,共84分)1、已知$a=log_3\pi$,$b=log_7\frac{6}{5}$,$c=log_{2}0.8$,则$a>b>c$,选A。
解析:利用中间值和1来比较:$a=log_3\pi>1$,$b=log_7\frac{6}{5}<1$,$c=log_{2}0.8<1$。
2、函数$f(x)=(x-1)+\frac{1}{x}$的反函数为$f^{-1}(x)=\begin{cases}1+x^{-1},&x>1\\1-x^{-1},&x<1\end{cases}$,选B。
解析:$x1$时,$f^{-1}(x)=1+x^{-1}$。
3、已知函数$f(x)=x-\cos x$,对于$x_1\frac{\pi}{2}$,$x_1+x_2>0$。
其中能使$f(x_1)>f(x_2)$恒成立的条件序号是2,选B。
解析:函数$f(x)=x-\cos x$为偶函数,所以$f(x_1)>f(x_2)\Leftrightarrow f(|x_1|)>f(|x_2|)$。
在区间$(0,\frac{\pi}{2})$上,函数$f(x)$为增函数,因此$f(|x_1|)>f(|x_2|)\Leftrightarrow |x_1|>|x_2|\Leftrightarrowx_1^2>x_2^2$。
4、已知函数$f(x)=\begin{cases}\log_3x,&x>1\\\frac{x}{4},&x\leq1\end{cases}$,则$f(f(\frac{1}{4}))=\frac{1}{2}$,选B。
解析:$f(\frac{1}{4})=\frac{1}{16}$,$f(f(\frac{1}{4}))=f(\log_3\frac{1}{16})=\log_3\frac{1}{16}\cdot \log_3\frac{1}{3}=-2\cdot(-1)=2$。
高中数学_经典函数试题及答案
![高中数学_经典函数试题及答案](https://img.taocdn.com/s3/m/1aa240045b8102d276a20029bd64783e09127daa.png)
高中数学_经典函数试题及答案一、考点:一次函数试题:已知函数 $y=2x-1$,求该函数在 $x=3$ 时的函数值。
解答:将 $x=3$ 代入 $y=2x-1$ 中,得到 $y=2(3)-1=5$,因此该函数在 $x=3$ 时的函数值为 $5$。
二、考点:二次函数试题:已知函数 $y=x^2-4x+5$,求该函数的 $x$ 轴截距和顶点坐标。
解答:要求 $x$ 轴截距,可以令 $y=0$,则 $x^2-4x+5=0$。
通过求解,可以得到该二次函数的两个根 $x=1$ 和$x=3$,因此 $x$ 轴截距为 $(1,0)$ 和 $(3,0)$。
要求顶点坐标,可以通过求解完成平方后的式子 $y=(x-2)^2+1$ 得到,因此该函数的顶点坐标为 $(2,1)$。
三、考点:指数函数试题:已知函数 $y=2^x$,求该函数在 $x=3$ 时的函数值和在 $x=0$ 时的函数值。
解答:将 $x=3$ 代入 $y=2^x$ 中,得到 $y=2^3=8$,因此该函数在 $x=3$ 时的函数值为 $8$。
将 $x=0$ 代入$y=2^x$ 中,得到 $y=2^0=1$,因此该函数在 $x=0$ 时的函数值为 $1$。
四、考点:对数函数试题:已知函数 $y=\log_3x$,求该函数在 $x=27$ 时的函数值和在 $x=1$ 时的函数值。
解答:将 $x=27$ 代入 $y=\log_3x$ 中,得到$y=\log_3(27)=3$,因此该函数在 $x=27$ 时的函数值为 $3$。
将 $x=1$ 代入 $y=\log_3x$ 中,得到 $y=\log_31=0$,因此该函数在 $x=1$ 时的函数值为 $0$。
五、考点:三角函数试题:已知函数 $y=\sin x$,求该函数在 $x=\frac{\pi}{2}$ 时的函数值和在 $x= \pi$ 时的函数值。
解答:将 $x= \frac{\pi}{2}$ 代入 $y=\sin x$ 中,得到 $y=\sin (\frac{\pi}{2})=1$,因此该函数在 $x=\frac{\pi}{2}$ 时的函数值为 $1$。
高中数学--《函数概念与基本初等函数》测试题(含答案)
![高中数学--《函数概念与基本初等函数》测试题(含答案)](https://img.taocdn.com/s3/m/2784869ca1116c175f0e7cd184254b35eefd1a3e.png)
高中数学--《函数概念与基本初等函数》测试题(含答案)1.函数的反函数是 ( )【答案解析】A2.已知: , :,则的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案解析】B3.设a∈,则使函数的定义域是R,且为奇函数的所有a的值是( )A. B. C. D.【答案解析】A4.若函数的图象经过二、三、四象限,则( )A. B. C. D.【答案解析】B5.(09年黄冈期末理)设函数f(x)(x∈R)为奇函数,,f(x+2)=f(x)+f(2),则f(5)=( )A.0 B.1 C. D.5【答案解析】C6.(09年宜昌一中12月月考文)若函数的反函数为,则的值为()A. B. C. D.【答案解析】D7.(09年天门中学月考文)已知函数的值为()A.2 B.1 C. D.【答案解析】B8.(09年湖北重点中学联考文)函数的定义域为A. B.C. D.【答案解析】D9.(09年湖北百所重点联考文)设集合从A到B 的对应法则f不是映射的是()A. B.C. D.【答案解析】D10.(09年湖北百所重点联考理)已知函数的图象过点(3,4),则a等于()A. B. C. D.2【答案解析】D11.(09年湖北八校联考文)设函数在区间上是增函数,则的取值范围是()A. B. C. D.【答案解析】A12.(09年长郡中学一模文)的图象大致是下面的()【答案解析】B13.(09年朝阳区二模文)若函数的反函数是,则的值是()A. B. C.1 D.2【答案解析】D14.(09年朝阳区二模理)若函数的图象与函数的图象关于直线对称,则的值是()A. B. C.1 D.2【答案解析】D15.(09年西城区抽样文)函数的反函数是()A. B.C. D.【答案解析】D16.(09年东城区二模文)已知函数的反函数为,则的解集是()A. (-∞,1)B. (0,1)C. (1,2)D. (-∞,0)【答案解析】B17.(09年西城区抽样)已知函数,那么函数的反函数的定义域为()A. B.C. D. R【答案解析】B18.(09年丰台区期末文)函数y = log2的定域为()A.{x|–3<x<2} B.{x|–2<x<3}C.{x | x>3或x<– 2} D.{x | x<– 3或x>2}【答案解析】B19.(09年崇文区期末)函数(A)(B)(C)(D)【答案解析】C20.(09年北京四中期中)已知函数,则的值为( )A. B. C. D.【答案解析】B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生: 用时: 分数:一、选择题和填空题(3x28=84分)1、若372log πlog 6log 0.8a b c ===,,,则( ) A .a b c >> B .b a c >> C .c a b >>D .b c a >>【答案】A【解析】利用中间值0和1来比较: 372log π>1log 61log 0.80a b c =<=<=<,0, 2、函数2()(1)1(1)f x x x =-+<的反函数为( ) A.1()11)f x x -=> B.1()11)f x x -=> C.1()11)fx x -=+≥D.1()11)fx x -=-≥【答案】B【解析】221(1)1,(1)11x y x x y x <⇒=-+ ∴-=-⇒-=所以反函数为1()11)fx x -=>3、已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >; ②2212x x >; ③12x x >.其中能使12()()f x f x >恒成立的条件序号是 . 【答案】②【解析】函数2()cos f x x x =-为偶函数,则1212()()(||)(||).f x f x f x f x >⇔> 在区间π02⎡⎤⎢⎥⎣⎦,上, 函数2()cos f x x x =-为增函数,22121212(||)(||)||||f x f x x x x x ∴>⇔>⇔>4、已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f =( )B.14D-14答案:B5、函数y =的定义域为( )A.(34,1) B(34,∞) C (1,+∞) D. (34,1)∪(1,+∞) 答案:A6、若x 0是方程lg xx 2的解,则x 0属于区间( ) A .(0,1) B .(1, C .,D .,2)答案:D7、函数(0,1)xy a a a a =->≠的图象可能是答案:C8、设f(x)=x x -+22lg,则)2()2(xf x f +的定义域为 A. ),(),(-4004 B.(-4,-1) (1,4) C. (-2,-1) (1,2) D. (-4,-2) (2,4) 答案:B9、设函数1()21(0),f x x x x=+-< 则()f x ( )A .有最大值B .有最小值C .是增函数D .是减函数答案:A10、设abc >0,二次函数f(x)=a2x+bx+c 的图像可能是( )答案:D11、a <b,函数2()()y x a x b =--的图象可能是答案:C12、设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 (A)12120,0x x y y +>+> (B)12120,0x x y y +>+< (C)12120,0x x y y +<+> (D)12120,0x x y y +<+<答案:B13、如果,0log log 2121<<y x 那么A .y< x<1B .x< y<1C .1< x<yD .1<y<x答案:D14、集合{|lg 0}M x x =>,2{|4}N x x =≤,则MN =( )A .(1,2)B .[1,2)C (1,2]D .[1,2]答案:C15、下列函数中,既是奇函数又是增函数的为( )A .1y x =+B .2y x =-C .1y x=D .||y x x =答案:D16、下列四类函数中,具有性质“对任意的0,0x y >>,函数()f x 满足()()()n f x y f x f y +=”的是(A )幂函数(B )对数函数(C )指数函数(D )余弦函数答案:C17、某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数[]y x=([x]表示不大于x的最大整数)可以表示为(A)y=[10x] (B)y=[310x+] (C)y=[410x+] (D)y=[510x+]答案:B18、函数13y x=的图像是【B】19、方程cosx x=在(),-∞+∞内【C】(A)没有根(B)有且仅有一个根(C) 有且仅有两个根(D)有无穷多个根20、若不等式2x2-3x+a<0的解集为( m,1),则实数m=▲.答案:1221、函数f(x)log3(x3)的反函数的图像与y轴的交点坐标是_____.答案:(0,2)22、函数()12f xx=-____________.(用区间表示)答案:(21-,∞)23、设函数()12xx xf xx⎧≥⎪=⎨⎛⎫<⎪ ⎪⎝⎭⎩,,,,则()()4=f f-.答案:424、已知函数232,1,(),1,x xf xx ax x+<⎧=⎨+≥⎩若((0))4f f a=,则实数a=.答案:225、设 lg ,0()10,0x x x f x x >⎧=⎨≤⎩ ,则f(f(-2))=___—2___.26、设n ∈N *,一元二次方程x 2-4x+n=0有整数根的充要条件是n=___3或4__.27、函数2()f x =的定义域为 .答案:[3,)+∞28、若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.答案:14 当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.二、解答题(8x2=16分)29、设a 为实数,函数2()2()||f x x x a x a =+--.(1)若(0)1f ≥,求a 的取值范围;(2)求()f x 的最小值;(3)设函数()(),(,)h x f x x a =∈+∞,求.不等式()1h x ≥的解集. 解:(1)若(0)1f ≥,则2||111a a a a a <⎧-≥⇒⇒≤-⎨≥⎩ (2)当x a ≥时,22()32,f x x ax a =-+22min(),02,0()2(),0,033f a a a a f x a a f a a ⎧≥≥⎧⎪⎪==⎨⎨<<⎪⎪⎩⎩ 当x a ≤时,22()2,f x x ax a =+-2min2(),02,0()(),02,0f a a a a f x f a a a a ⎧-≥-≥⎧⎪==⎨⎨<<⎪⎩⎩ 综上22min2,0()2,03a a f x a a ⎧-≥⎪=⎨<⎪⎩ (3)(,)x a ∈+∞时,()1h x ≥得223210x ax a -+-≥,222412(1)128a a a ∆=--=-当a a ≤≥时,0,(,)x a ∆≤∈+∞;当22a -<<>0,得:(0x x x a⎧⎪≥⎨⎪>⎩讨论得:当(22a ∈时,解集为(,)a +∞;当(22a ∈--时,解集为()a ⋃+∞;当[]22a ∈-时,解集为)+∞.30、设向量a =(sinx ,cosx ),b =(cosx ,cosx ),x ∈R ,函数f(x)=a·(a +b).(Ⅰ)求函数f(x)的最大值与最小正周期; (Ⅱ)求使不等式f(x)≥23成立的x 的取值集。
本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的基本知识,以及运用三角函数的图像和性质的能力。
解:(Ⅰ)∵()()222sin cos sin cos cos 1131sin 2cos 21)2224f x a a b a a a b x x x x xx x x π=+=+=+++=++++()=∴()f x的最大值为322+,最小正周期是22ππ=。
(Ⅱ)由(Ⅰ)知()333)sin(2)022*******,488f x x x k x k k x k k Zππππππππππ≥⇔+≥⇔+≥⇔≤+≤+⇔-≤≤+∈即()32f x ≥成立的x 的取值集合是3|,88x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭.|。