小学四年级奥数 第31讲:容斥原理初步(一)

合集下载

四年级奥数容斥原理

四年级奥数容斥原理

四年级奥数容斥原理数学是思维的体操,问题是数学的心脏!四年级(高年级)数学思维训练第4课包容与排斥——包容与排斥原理知识点我们以前遇到过这样的问题吗:从左边看,小明排在第8位,从右边看,小明排在第15位,这一排有多少人?这个问题就是小明是否被反复算计了。

如果计算结果没有重复且没有遗漏,则需要排除重复计数。

这种计数方法是宽容和排斥的原则,也称为重叠问题。

要解决这样的问题,我们还可以用韦恩图来分析定量关系小明有1人8人,15人。

通常,首先计算所有涉及的量,然后排除重叠部分。

我们可以计算出不重复和不遗漏的数量:8+15-1=22(人)经典范例例1: 4 (2)班有28名中国兴趣小组的参与者,29名数学兴趣小组的参与者,12名两个小组的参与者,这个班有多少人参加过语文或数学兴趣小组?先画一个维恩图分析定量关系,然后用包含和排除的方法计算数学变成了一件非常轻松愉快的事情!你发现了吗?- 1-四年级(高年级)数学思维训练模仿训练学校文艺组的每个学生至少能弹一架钢琴和手风琴。

众所周知,有24个人会弹钢琴,17个人会拉手风琴,8个人会两种乐器。

文艺小组有多少人?经典示例示例2:一家餐厅有40道招牌菜,其中妞妞吃了15道,丁丁吃了9道,两个人都吃了4道。

有多少招牌菜没有吃过?首先计算他们吃了什么,然后计算他们没吃什么。

模仿练习在参加采摘活动的46人中,只有18人采摘了樱桃,7人采摘了樱桃和杏子,6人既不摘樱桃也不摘杏子,有多少人采摘了杏子?数学会让你成为一个好的发现孩子!- 2-数学是思维的体操,问题是数学的心脏!四年级(高年级)数学思维训练经典例题例题3:在100个从1到100的自然数中,总共有多少个5和6的倍数?首先找到5的多少倍数?6的倍数是多少?重用包含和排除方法来解决模仿练习从1到100的100个自然数中,有多少不能被5和8整除?经典范例范例4: 50学生面向老师站成一排,老师首先让每个人按1、2、3...从左到右一次数一次,然后让数字是4的倍数的学生返回,然后让数字是6的倍数的学生返回有多少学生仍然面对着老师?首先找出有多少学生已经转了,有多少学生没有转,然后思考哪些学生转了两次,因为那些没有转的和那些转了两次的都是老师。

小学奥数教程之容斥原理

小学奥数教程之容斥原理

学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。

要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。

可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。

可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

容斥原理学生姓名授课日期教师姓名授课时长知识定位容斥原理中的知识点比较简单,是计数问题中比较浅的一支。

这个知识点经常和数论知识结合出综合型题目。

这个原理本身并不是很难理解,不过经常和数论知识结合出题,所以对学生的理解层次要求较高,学生必须充分理解、吃透。

1.充分理解和掌握容斥原理的基本概念2.利用图形分析解决容斥原理问题知识梳理授课批注:本讲的知识点必须让学生充分理解、吃透,这个原理本身并不是很难理解,不过经常和数论知识结合出题所以对学生的理解层次要求较高。

一. 容斥原理的概念定义在一些计数问题中,经常遇到有关集合元素个数的计算。

我们用|A|表示有限集A 的元素个数。

求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:|A∪B| = |A| + |B| - |A∩B|,我们称这一公式为包含与排除原理,简称容斥原理。

图示如右:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A∩B,即阴影面积。

用法:包含与排除原理告诉我们,要计算两个集合A、B的并集A∪B的元素的个数,可分以下两步进行:第一步:分别计算集合A、B的元素个数,然后加起来,即先求|A|+|B|(意思是把A、B的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C=|A∩B|(意思是“排除”了重复计算的元素个数)二.竞赛考点1.容斥原理的基本概念2.与数论相结合的综合型题目例题精讲【试题来源】【题目】在一个炎热的夏日,10个小学生去冷饮店每人都买了冷饮。

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

容斥原理森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。

”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有 80 种鸟类。

狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。

”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有 60 种兽类。

最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类 140 种。

”这个统计正确吗?同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是 139 种。

”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。

当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。

由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。

容斥原理 1如果被计数的事物有 A、B 两类,那么, A 类 B 类元素个数总和= 属于 A 类元素个数+ 属于 B 类元素个数—既是 A 类又是 B 类的元素个数。

即A∪B = A+B - A∩B容斥原理 2如果被计数的事物有 A、B、C 三类,那么, A 类和 B 类和 C 类元素个数总和= A 类元素个数+ B 类元素个数+C 类元素个数—既是 A 类又是 B 类的元素个数—既是 A 类又是 C 类的元素个数—既是 B 类又是 C 类的元素个数+既是 A 类又是 B 类而且是 C 类的元素个数。

即A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C容斥原理 1【例 1】★一次期末考试,某班有 15 人数学得满分,有 12 人语文得满分,并且有 4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?【解析】依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A 类元素”,“语文得满分”称为“B 类元素”,“语、数都是满分”称为“既是 A 类又是 B 类的元素”,“至少有一门得满分的同学”称为“A 类和 B 类元素个数”的总和。

小学四年级奥数 容斥原理

小学四年级奥数 容斥原理

容斥原理在一些计数问题中,经常遇到有关集合元素个数的计算。

求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A∪B=A+B-A∩B (其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思;符号“∩”读作“交”,相当于中文“且”的意思。

),则称这一公式为包含与排除原理,简称容斥原理。

图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A∩B,即阴影面积。

1.先包含——A+B重叠部分A∩B计算了2次,多加了1次;2.再排除——A+B-A∩B把多加了1次的重叠部分A∩B减去。

A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数-既是A类又是B 类的元素个数-既是B类又是C类的元素个数-既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数。

用符号表示为:A∪B∪C=A+B+C-A∩B-B∩C-A∩C+A∩B∩C图示如下:图中小圆表示A的元素的个数,中圆表示B的元素的个数,大圆表示C的元素的个数。

1.先包含——A+B+CA∩B、B∩C、C∩A重叠了2次,多加了1次。

2.再排除——A+B+C-A∩B-B∩C-A∩C重叠部分A∩B∩C重叠了3次,但是在进行A+B+C-A∩B-B∩C-A∩C计算时都被减掉了。

3.再包含——A+B+C-A∩B-B∩C-A∩C+A∩B∩C例1一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积。

例250名同学面向老师站成一行。

老师先让大家从左至右按1、2、3、…、49、50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。

问:现在面向老师的同学还有多少名?求1~2009这2009个自然数既不能被7整除又不能被41整除的自然数有多少个?例3在1到2004所有自然数中,既不是2的倍数又不是3和5的倍数的数有多少个?例4如图,已知甲乙丙三个圆的面积都是30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,三个圆覆盖的总面积为73,求空白部分的面积。

四年级奥数容斥原理教案

四年级奥数容斥原理教案

奥数:容斥原理教学目标:1、理解容斥原理,会画图分析其中关系,正确的找出答案。

2、培养学生的逻辑思维和数学思考能力。

3、培养学生良好的书写习惯。

一、教学内容(一)知识介绍容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=N a+N b-N ab。

(二)例题精讲例1、一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

【思路导航】完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。

这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。

所以,这个班语文、数作业都完成的有:79-48=31人。

例2、某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?【分析与解答】已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。

又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。

所以,两题都答得不对的有36-33=3人。

例3、某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?【分析与解答】要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。

容斥原理讲义

容斥原理讲义

容斥原理例题在很多计数问题中常用到数学上的一个包含与排除原理,也称为容斥原理。

为了说明这个原理,我们先介绍一些集合的初步知识。

在讨论问题时,常常需要把具有某种性质的同类事物放在一起考虑。

如:A={五(1)班全体同学}。

我们称一些事物的全体为一个集合。

A={五(1)班全体同学}就是一个集合。

例1. B={全体自然数}={1,2,3,4,…}是一个具体的有无限多个元素的集合。

例2. C={在1,2,3,…,100 中能被3 整除的数}={3,6,9,12,…,99}是一个具有有限多个元素的集合。

例3. 通常集合用大写的英文字母A、B、C、…表示。

构成这个集合的事物称为这个集合的元素。

如上面例子中五(1)班的每一位同学均是集合A 的一个元素。

又如在例1 中任何一个自然数都是集合B 的元素。

像集合B 这种含有无限多个元素的集合称为无限集。

像集合C 这样含有有限多个元素的集合称为有限集。

有限集合所含元素的个数常用符合︱A︱、︱B︱、︱C︱、…表示。

例4. 记号A∪B 表示所有属于集合A 或属于集合B 的元素所组成的集合,就是下边示意图中两个圆所覆盖的部分。

集合A∪B 叫做集合A与的并集。

“∪”读作“并”,“A∪B”读例5. 设集合A={1,2,3,4},集合B={2,4,6,8},则A∪B={1,2,3,4,6,8}。

元素2,4 在集合A、B 中都有,在并集中只写一个。

记号A∩B 表示所有既属于集合A 也属于集合B 中的元素的全体。

就是上面图中阴影部分所表示的集合。

即是由集合A、B 的公共元素所组成的集合。

它称为集合A、B 的交集。

符号“∩”读作“交”,“A∩B”读作“A 交B”。

如例3 中的集合A、B,则A∩B={2,4}。

例6. 设集合I={1,3,5,7,9},集合A={3,5,7},A={属于集合,但不属于集合A 的全体元素}={1,9}。

我们称属于集合I 但不属于集合A 的元素的集合为集合A 在集合I 中的补集(或余集),如下图中阴影部分表示的集合(整个长方形表示集合I),常记作A。

四年级奥数容斥原理

四年级奥数容斥原理

第4讲包含与排除——容斥原理知识要点以前我们是不是遇到过这样问题:从左边数,小明排在第8个,从右边起小明排在第15个,这一排一共有多少个人?这道题是不是小明被重复计算啦,如果要使得计算的结果既不重复,又无遗漏,就需要把重复的计数排除出去,这样的计数方法就是容斥原理,也称之为重叠问题。

解决这类问题,我们还可以借助韦恩图来分析数量关系。

小明1人8人 15人一般先把包含的所有数量都计算出来,再把重叠的部分排除出去,就可以计算出不重复、不遗漏的数量了:8+15-1=22(人)精典例题例1:四(2)班参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加了,这个班有多少人参加了语文或数学兴趣小组?模仿练习学校文艺组的每位同学至少会演奏钢琴和手风琴中的一种乐器,已知会演奏钢琴的有24人,会演奏手风琴的有17人,其中两种乐器都会演奏的有8人,那么文艺组一共有多少人?精典例题例2:某餐馆有40道招牌菜,牛牛吃过其中的15道,丁丁吃过其中的9道,且有4道菜是两人都吃过的,那么有多少道招牌菜两人都没有吃过?模仿练习在46人参加的采摘活动中,只采了樱桃的有18人,既采了樱桃又采了杏的人有7人,既没有采樱桃又没有采杏的有6人,只采了杏的有多少人?先画韦恩图分析数量关系,再利用包含与排除的方法来计算。

先算他们吃过的菜,再算没有吃过的。

精典例题例3:在1到100这100个自然数中,5和6的倍数一共有多少个?模仿练习在1到100这100个自然数中,不能被5和8整除的数一共有多少个?精典例题例4:50名同学面向老师站成一行,老师先让大家从左往右按1、2、3……一次报数,然后让报数是4的倍数的同学向后转,接着又让报数是6的倍数同学向后转。

现在还面向老师的同学有多少名?模仿练习一根长60里面的木棍,每5厘米用红点标记,每6厘米用蓝点标记,延标记的地方把木棍锯断,木棍总共被锯成了多少段?精典例题例5:光明小学组织棋类比赛,分成围棋、中国象棋和国际象棋三个小组进行,参加围棋比赛的有42人,参加中国象棋比赛的有55人,参加国际象棋比赛的有33人,同时参加了围棋和中国象棋比赛的有18人,同时参加了围棋和国际象棋比赛的人数有10人,同时参加了中国象棋和国际象棋比赛的有9人,三种都参加了的有5人,问:参加棋类比赛的共有多少人?模仿练习三位经理投资了若干只股票,张经理买了66只,王经理买了40只,李经理买了23只,张经理和王经理都买了有17只,王经理和李经理都买了的有13只,李经理和张经理都买了的有9只,三人都买了的有6只,请问这三位经理一共买了多少只不同的股票?先弄清楚有多少同学转了,有多少个同学没转,再思考哪些同学转了两次,因为没转的和转了两次的同学都是面向老师的。

四年级奥数_容斥问题

四年级奥数_容斥问题

练习五
1,科技节那天,学校的科技室里展出了每个年级 学生的科技作品,其中有110件不是一年级的,有 100件不是二年级的,一、二年级参展的作品共有 32件。其他年级参展的作品共有多少件? 2,六(1)儿童节那天,学校的画廊里展出了每个 年级学生的图画作品,其中有25幅画不是三年级的, 有19幅画不是四年级的,三、四两个年级参展的画 共有8幅。其他年级参展的画共有多少幅? 3,实验小学举办学生书法展,学校的橱窗里展出 每个年级学生的书法作品,其中有28幅不是五年级 的,有24幅不是六年级的,五、六年级参展的书法 作品共有20幅。一、二年级参展的作品总数比三、 四年级参展作品的总数少4幅。一、二年级参展的 书法作品共有多少幅?
3,学校文艺组每人至少会演奏一种乐器,已知 会拉手风琴的有24人,会弹电子琴的有17人,其 中两种乐器都会演奏的有8人。这个文艺组一共 有多少人?
例2 、某班有36个同学在一项
测试中,答对第一题的有25人, 答对第二题的有23人,两题都 答对的有15人。问多少个同学 两题都答得不对?
分析 与解答:
例4、在1到100的自然数中, 既不是5的倍数也不是6的倍 数的数有多少个?
分析:
从1到100的自然数中,减去5或6的倍数的个 数。从1到100的自然数中,5的倍数有 100÷5=20个,6的倍数有16个 (100÷6=16……4),其中既是5的倍数又 是6的倍数(即5和6的公倍数)的数有3个 (100÷30=3……10)。因此,是6或5的倍 数的个数是16+20-3=33个,既不是5的倍 数又不是6的倍数的数的个数是:100- 33=67个。
练习四
1,在1到200的全部自然数中,既不是5的倍数 又不是8的倍数的数有多少个?
2,在1到130的全部自然数中,既不是6的倍数 又不是5的倍数的数有多少个?

小学四年级奥数竞赛:容斥原理

小学四年级奥数竞赛:容斥原理

课题容斥原理年级4授课对象编写人时间学习目标利用抽屉原理1、抽屉原理2解题。

学习重点、难点(1)找出题干中物品对应的量;(2)合理构造抽屉(简单问题中抽屉明显,找出即可);(3)利用抽屉原理1、抽屉原理2解题。

教学过程T (测试)1,五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。

其中语文成绩优秀的有65人,数学优秀的有87人。

语文、数学都优秀的有多少人?2,四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?3,学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。

这个文艺组一共有多少人?S (归纳)容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=Na+Nb-Nab。

Nab NbNaE (典例)例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

分析完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。

这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。

所以,这个班语文、数作业都完成的有:79-48=31人。

例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。

小学四年级奥数竞赛班作业第31讲:容斥原理初步(一)

小学四年级奥数竞赛班作业第31讲:容斥原理初步(一)

容斥原理练习题一.夯实基础:1.实验小学五年级二班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加.这个班有多少人参加了语文或数学兴趣小组?2.有100位旅客,其中有10人既不懂英语,又不懂俄语,有75人懂英语,又83人懂俄语.那么这100位旅客中既懂英语又懂俄语的有多少人.3.在1至2011的自然数中,1)能被3或7整除的数有______个;2)既能被3整除,又能被7整除的有______个;3)能被3整除,但不能被7整除的有______个;4)能被7整除,但不能被3整除的有______个.4.在2至400 的偶数中,既不能被3整除,又不能被5整除,同时不能被7整除的整数有多少个?二.拓展提高:5.1-1001中,既不是7的倍数,也不是11的倍数,也不是13的倍数的数有多少个?6.1到1000的自然数中,既不是完全平方数,也不是完全立方数的有多少个?7.森林里住着一群小白兔,每只小白兔都爱吃萝卜、白菜和青草中的一种或者几种.爱吃萝卜的小白兔中有12只不爱吃白菜;爱吃白菜的小白兔中有23只不爱吃青草;爱吃青草的小白兔中有34只不爱吃萝卜.如果三种食物都爱吃的小白兔有5只,那么这群小白兔一共有多少只?8.体育课上,60名学生面向老师站成一行,按老师口令,从左到右报数:1,2,3,…,60,然后,老师让所报的数是4的倍数的同学向后转,接着又让所报的数是5的倍数的同学向后转,最后让所报的数是6的倍数的同学向后转,现在面向老师的学生有多少人?三. 超常挑战9.如图,5条同样长的线段拼成了一个五角星.如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?10.某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球.那么,这个班至少有多少学生这三项运动都会?11.(西城实验考题)新年联欢会上,共有90人参加了跳舞、合唱、演奏三种节目的演出.如果只参加跳舞的人数三倍于只参加合唱的人数;同时参加三种节目的人比只参加合唱的人少7人;只参加演奏的比同时参加演奏、跳舞但没有参加合唱的人多4人;50人没有参加演奏;10人同时参加了跳舞和合唱但没有参加演奏;40人参加了合唱;那么,同时参加了演奏、合唱但没有参加跳舞的有多少人?三.杯赛演练:12.(101中学考题)一根101厘米长的木棒,从同一端开始,第一次每隔2厘米画一个刻度,第二次每隔3厘米画一个刻度,第三次每隔5厘米画一个刻度,如果按刻度把木棒截断,那么可以截出多少段?13.(西城实验考题)在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有多少个?14.(走美试题)2006盏亮着的电灯,各有一个拉线开关控制,按顺序编号为1,2,…,2006.将编号为2的倍数的灯的拉线各拉一下;再将编号为3的倍数的灯的拉线各拉一下,最后将编号为5的倍数的灯的拉线各拉一下.拉完后亮着的灯数为几盏?15.(莫斯科市第四届小学数学竞赛试题)在1至1000的自然数中,不能被5或7整除的数有______个。

小学奥数之容斥原理知识点

小学奥数之容斥原理知识点

小学奥数之容斥原理知识点容斥原理容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b 的事物的个数=Na+Nb-Nab。

例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

分析与解答:完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。

这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。

所以,这个班语文、数作业都完成的有:79-48=31人。

例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。

又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。

所以,两题都答得不对的有36-33=3人。

例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?分析与解答:要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。

例4:在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?分析与解答:从1到100的自然数中,减去5或6的倍数的个数。

从1到100的自然数中,5的倍数有100÷5=20个,6的倍数有16个(100÷6=16……4),其中既是5的倍数又是6的倍数(即5和6的公倍数)的数有3个(100÷30=3……10)。

容斥原理公式及运用

容斥原理公式及运用

在计数时,必须注意无一重复,无一遗漏。

为了使重叠部分不被重复计算,研究出一种新的计数方法。

这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

一、容斥原理1:两个集合的容斥原理如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。

如下图所示。

【示例1】??一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。

A∪B=15+12-4=23,共有23人至少有一门得满分。

二、容斥原理2:三个集合的容斥原理如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。

如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。

即得到:【示例2】??某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B ∩C。

三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩A=45-25-22-24+12+9+8=3人。

小学奥数计数问题之容斥原理知识点

小学奥数计数问题之容斥原理知识点

然后将④⑤⑥代入①中,整理得到 a2×4+a3=26 由于a2、a3均表示人数,可以求出它们的整数解: 当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22 又根据a23=a2-a3×2……⑤可知:a2>a3 因此,符合条件的只有a2=6,a3=2。 然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。 故只解出第二题的学生人数a2=6人。
经典例题:
例1、某班共有30名男生,其中20人参加足球队,12人参加蓝球队,10人参加排球队.已知没一个人同时参加3个队,且每 人至少参加一个队,有6人既参加足球队又参加蓝球队,有2人既参加蓝球队又参加排球队,那么既参加足球队又参加排球队 的有()人. 考点:重叠问题. 分析:如图所示,设既参加是球队又参加排球队的人数为x,则依容斥原理,有20+12+10-6-2-x=30,解方程即可. 解答:解:如图所示,设既参加是球队又参加排球队的人数为x,则依容斥原理, 有20+12+10-6-2-x=30, 解得x=4. 故答案为:4. 点评:此题考查学生依据容斥原理解答问题的能力. 例2、在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出 第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1 人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是() 解答:根据"每个人至少答出三题中的一道题"可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2 题,只答第1、3题,只答2、3题,答1、2、3题。 分别设各类的人数为a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a123=25…① 由(2)知:a2+a23=(a3+a23)×2……② 由(3)知:a12+a13+a123=a1-1……③ 由(4)知:a1=a2+a3……④ 再由②得a23=a2-a3×2……⑤ 再由③④得a12+a13+a123=a2+a3-1⑥

完整版小学四年级奥数容斥问题

完整版小学四年级奥数容斥问题

容斥问题涉及到一个重要的原理一一包含与排除原理,也称为容斥原理,即当两个计数部分有重复包含时,为了不重复地计数,应从它们的和中排除重复部分。

这一讲我们先介绍容斥原理1对n个事物,如果采用两种不同的分类标准:按性质a分类与性质b分类(如图1),那么,具有性质a或性质b的事物的个数=Na+Nb-Nad例1•一个班有55名学生,订阅《小学生数学报》的有12人,订阅《今日少年报》的有9人,两种报纸都订阅的有5人。

(1)订阅报纸的总人数有多少?(2)两种报纸都没订阅的有多少人?例2•一个旅行社有36人,其中会英语的有24人,会俄语的有18人,两样都不会的有4人,两样都会的有多少人?例3.在1到100的全部自然数中,既不是6的倍数也不是5的倍数的数有多少个?例4•艺术节那天,学校的画廊里展了了每个年级学生的图画作品,其中有23幅画不是五年级的,有21幅画不是六年级的,五、六年级参展的画共有8幅。

其他年级参展的画共有多少幅?练习与思考1•将边长分别为4厘米和5厘米的正方形纸片部分重叠,盖在桌面上(如图6),已知重叠的部分为9平方厘米,两块正方形纸片盖住桌面的总面积是多少平方厘米?2 . 二(2)班有50名学生,下课后每人都至少做完了一门作业,其中做完语文作业的有35人,做完数学作业的有40人,两种作业都做完的有多少人?3.有62名学生,其中会弹钢琴的有11名,会吹竖笛的有56名,两样都不会的有4名,两样都会的有多少名?4 •某校选出50名学生参加区作文比赛和数学比赛,作文比赛获奖的有14人,数学比赛获奖的有12人,有3人两项比赛都获奖的,两项比赛都没获奖的有多少人?5 •四(1)班有40个学生,其中有25人参加数学小组,23人参加航模水组,有19人两个小组都参加了,那么,有多少人两个小组都没有参加?6 •在一次数学测验中,所有同学都答了第1、2两题,其中答对第1题的有35人,答对第2题的有28人,这两题都答对的有20人,没有人两题都答错。

小学奥数 容斥原理 知识点+例题+练习 (分类全面)

小学奥数 容斥原理 知识点+例题+练习 (分类全面)
4、少年乐团学生中有170人不是五年级的,有135人不是六年级的,已知五、六年级的共有205人,少年乐团中五、六年级以外的学生共有多少人?
5、在1到130的全部自然数中,既不是6的倍数又不是5的倍数的数有多少个?不是6的倍数或不是5的倍数的数有几个?
6、某班统计考试成绩,数学得90分上的有25人;语文得90分以上的有21人;两科中至少有一科在90分以上的有38人。问两科都在90分以上的有多少人?
巩固:刘老师、夏老师和胡老师共有书90本,其中刘老师和夏老师一共有70本,夏老师和胡老师共有50本,三位老师各有书多少本?
例5、在1至10000中不能被5或7整除的数共有多少个?既不能被5整除又不能被7整除的有多少个?
巩固:在1到200的全部自然数中,既不是5的倍数又不是8的倍数的数有多少个?不是5的倍数或不是8的倍数的数有几个?
巩固:某校的每个学生至少爱好体育和文娱中的一种活动,已知有900人爱好体育活动,有850人爱好文娱活动,其中260人两种活动都爱好。这个学校共有学生多少人?
例3、学校开展课外活动,共有250人参加。其中参加象棋组和乒乓球组的同学不同时活动,参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。问这250名同学中,象棋组、乒乓球组都不参加的有多少人?
课后作业
1、五年级有112人参加语文、数学考试,每人至少有一门功课得优,其中,语文得优的有65人,数学得优的有87人,问语文、数学都得优的有多少人?
2、某班在一次测验中有26人语文获优,有30人数学获优,其中语、数双优的有12人,另外还有8人语、数均未获优,这个班共有多少个学生?
3、五(1)班有学生50人,在一次测试中,语文90分以上的有30人,数学90分以上的35人,语文和数学都在90分以上的有20人,90分以下的有多少人?

四年级奥数培优《容斥原理》

四年级奥数培优《容斥原理》

容斥原理一、知识梳理容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

二、例题精讲例1.一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

例2.某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?例3.某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?例4.在1到60的自然数中,既不是4的倍数也不是5的倍数的数有多少个?例 5.光明小学举办学生书法展览。

学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法作品共有多少幅?三、课堂小测6.五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。

其中语文成绩优秀的有65人,数学优秀的有87人。

语文、数学都优秀的有多少人?7.五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了。

那么,有多少人两个小组都没有参加?8.一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。

问这两种棋都会下的有多少人?9.科技节那天,学校的科技室里展出了每个年级学生的科技作品,其中有110件不是一年级的,有100件不是二年级的,一、二年级参展的作品共有32件。

其他年级参展的作品共有多少件?10.四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?11.某校选出50名学生参加区作文比赛和数学比赛,结果3人两项比赛都获奖了,有27人两项比赛都没有获奖。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例1】(★★)
网校老师共50人报名参加了羽毛球或乒乓球的训练,其中参加羽毛球训练的有30人,参加乒乓球训练的有35人,请问:两个项目都参加的有多少人?
容斥原理初步(一)
【例2】(★★★)
一个班30人,完成作业的情况有三种:一种是完成语文作业没完成数学作业;一种是完成数学作业没完成语文作业;一种是语文、数学作业都完成了。

已知做完语文作业的有20人;做完数学作业的有23人。

这些人只完成数学作业的有多少人?
【例3】(★★★)
网校老师组织理财培训,报名股票培训的有23人,报名基金培训的有32人,两项都报名的有8人,两项都没有报名的有5人,那么网校老师有多少人? 【例4】(★★★)
网校组织40名老师参加趣味运动会,参加同心协力项目的有26人,参加万众一心项目的有18人,两个项目都没参加的有6人,两个项目都参加的有多少人?
1
【例5】(★★★)
网校老师60人组织春游。

报名去香山的有37人,报名去鸟巢的有42人,两个地点都没有报名的有8人,那么只报名其中一个地点的有多少人?【例6】(★★★)
1~100中是2或5的倍数的数有多少个?
【例7】(★★★)
1~100中既不是3的倍数,也不是4的倍数的数有多少个?
【例8】(★★★★)
写有1到100编号的灯100盏,亮着排成一排,第一次把编号是3的倍数的灯拉一次开关,第二次把编号是5的倍数的灯拉一次开关,那么亮着的灯还有多少盏?
本讲总结
巧用文氏图,找准每一样。

重复就减去,少算要加上。

不重也不漏,计数你最棒!
重点例题:例3,例6,例8
2。

相关文档
最新文档