小学奥数计算练习题:数列求和
四年级奥数等差数列求和
等差数列求和例1、有一个数列:3、6、9、12、……480,这个数列共有几项?其中48是第几项?练1、有一个数列:13、21、29、37、……85,这个数列共有几项?练2、有一个数列:113、108、103、98、……48,这个数列共有几项?练3、已知一个等差数列,首项是6,末项是126,公差是5,其中121是第几项?练4、已知等差数列5、7、9、11……这个数列的第20项和第92项分别是什么?练5、已知等差数列500、497、494、491……这个数列的第20项和第92项分别是什么?例2、计算1+2+3+4+5+6+7+8+9+10练、计算1+2+3+4+5+……+99+100 1+2+3+4+……+500计算1+2+3+4+……+133 1+2+3+4+……+311例3、计算5+8+11+14+17……+38练、计算16+19+22+25……+100 5+7+9+11+……+47计算41+46+51+……306 6+16+26……+666计算999+997+995+……+101 777+769+761+753……+401例4、有一个等差数列:1、5、9、13……那么这个等差数列前100项的和是多少?练1、有一个等差数列:1、5、9、13……那么这个等差数列前50项的和是多少?练2、有一个等差数列:9、11、13、15……那么这个等差数列前65项的和是多少?练3、有一个等差数列:300、297、294……那么这个等差数列前55项的和是多少?练4、有一个等差数列a1=18,d=5,那么这个等差数列前99项的和是多少?例5、计算(1+3+5+……+2019)-(2+4+6+……2018)练1、计算(2+4+6+...+100)-(1+3+5+ (99)练2、计算1000-1-2-3-……-20练3、计算2000-3-6-9-……-51-54练4、计算1+2+3+......+9+10+20+30+......+90+100+200+300+ (1000)请认真完成作业~·~1、有一个数列:10、13、16、19……124,这个数列共有几项?其中28是第几项?2、计算1+2+3+4+……199 1+2+3+4……+3333、计算80+81+82+83……+150 332+331+330+……+1004、计算1+3+5+7+9……+99 8+10+12+14+……+1885、计算23+26+29+……119 222+118+114+……+986、有一个等差数列,a1=13,d=4,求前40项的和。
三年级奥数--简单数列求和
Yi03010第十讲简单数列求和⑴1+5+9+13+…+2001⑵4000-(50+48+46+ (2)⑶(1000+995+990+...+5)+(4+8+12+ (996)⑷2+10+6+15+10+20+…+398+505⑸2002-1+2-3+4-5+…+1948-1949⑹1+2-3+4+5-6+7+8-9+…+97+98-99例2学校举行数学竞赛,规定前15名可以获奖。
比赛结果第一名1人,第二名并列2人,第三名并列3人……第十五名并列15人。
用最简便方法计算出得奖的一共有多少人?例3在1949,1950,1951…1997,1998这五十个正整数中,所有双数之和比所有单数之和大多少?例4在1~200这二百个数中能被9整除的数的和是多少?例539个连续单数的和是1989,其中最大的一个单数是多少?例6有一列数:1,1993,1992,1,1991,1990,1……从第三个数起,每一个数都是它前面两个数中大数减小数的差,从第1个到第1993个数这些数的和是多少?1.计算题⑴1001+1002+1003+…+9999⑵199+193+187+181+…+103⑶5000-(1+2+3+ (68)⑷(101+103+105+...+457)-(97+99+101+ (439)⑸1000-1001+1002-1003+…+2000-2001+20022.星际影院的第一放映厅有15排座位,后一排比前一排多2个座位,最后一排有56个座位,这个剧院一共有多少个座位?3.霄霄从七月一日开始写毛笔字,第一天写了6个,以后每天比前一天多写相同数量的毛笔字,结果全月共写1116个毛笔字,霄霄每天比前一天多写几个大字?。
四年级奥数《巧妙求和》
四年级数学 数列求和 奥数:巧妙求和 通项公式:第n项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1 求和公式:总和=(首项+末项) ×项数÷2
奥数题等差数列求和及应用一
等差数列求和及应用一等差数列的定义:一列数,如果相邻两个数的差相等,我们就说这个数列叫做等差数列;相等的差叫做这列数的公差,这列数的个数叫做项数,最小的数叫做首项,最大的数叫做末项。
(以下公式要求熟记)基本公式:和=(首项+末项)×项数÷2 末项=首项+(项数-1)×公差项数=(末项-首项)÷公差+1 首项=末项-(项数-1)×公差 公差=1--项数首项末项例1、 计算:1+2+3+4+…+99+100=例2、 计算:1+3+5+7+…+1995+1997+1999=例3、 数列4,9,14,19,…的第80项是多少例4、 有一列数按如下规律排列:6,10,14,18,…这数列中前100个数的和是多少例5、 求100至200之间被7除余2的所有三位数的和是多少例6、 学校进行乒乓球选拔赛,每个参赛选手要和其他选手赛一场,⑴如果一共有10外队员,一共要进行多少场比赛⑵一共进行了78场比赛,有多少人参加了选拔赛例7、 小红家在一条胡同里,这条胡同门牌号从1开始,挨着号码编下去。
如果除小红家外,其余各家的门牌号加起来,减去小红家的门牌号数,恰好等于100。
问小红家的门牌是几号全胡同里共有几家例8、 若干个同样的盒子排成一排,小明把50多个同样的棋子分装在盒中,其中只有一个盒子没有棋子,然后他外出了。
小光从每个有棋子的盒子里各拿出一个其中放在空盒里,再把盒子重新排列了一下,小明回来查看一番,没发现有人动过。
问:共有多少个盒子家庭作业:【1】计算 ⑴ 2+4+6+8…+198+200 ⑵ 3+10+17+24+31+…+94 ⑶ 77+74+71+……+11+8+5【2】已知等差数列3,7,11,15,…,195,问这个数列共有多少项【3】已知等差数列2,7,12,17,……它的第25项是多少第36项是多少【4】一个有30项的等差数列,公差是5,末项为154,这个数的首项是多少【5】一个等差数列,首项是4,末项是88,公差是6,这列数的总和是多少【6】有一列数,已知第一个数是9,从第二个数起,每个数都比前一个数多4,这列数的前50个数的和是多少【7】学校举行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行91场比赛,有多少人参加了选拔赛【8】一个物体从空中降落,第一秒落下9米,以后每秒都比前一秒多落下9米,经过10秒到达地面,这个场体原来离地面的高是多少米【9】上体育课时,我们几个同学站成一排,从1开始顺序报数,除我以外的其他同学报的数之和减去我报的数恰好等于72。
小学六年级奥数数列求和问题专项强化训练(高难度)
小学六年级奥数数列求和问题专项强化训练(高难度)例题:已知数列 an 的通项公式为 a n = n2 + 2n,求 s10,其中 s10 表示数列前 10 项的和。
解析:我们需要先找到数列的前 10 项,然后将它们相加。
数列的通项公式为 an = n^2 + 2n,所以我们可以求出数列的前 10 项:a1 = 12 + 2×1 = 3a2 = 22 + 2×2 = 8a3 = 32 + 2×3 = 15...a10 = 102 + 2×10 = 120接下来,将这些项相加得到数列前 10 项的和 s10:s10 = a1 + a2 + a3 + ... + a10s10 = 3 + 8 + 15 + ... + 120这是一个等差数列,使用求和公式可以得到:s10 = (a1 + a10) × 10 ÷ 2s10 = (3 + 120) × 10 ÷ 2s10 = 1230所以,数列前 10 项的和为 1230。
接下来是 15 道对应题型的专项练习应用题:1.已知数列 an 的通项公式为 an = n2 + 3n,求 s12。
2.2. 已知数列 an 的前 n 项和为 sn,an = 2n + 1,求 s10。
3. 已知数列 an 的前 n 项和为 sn,an = n2 - n,求 s8。
4. 已知数列 an 的前 n 项和为 sn,an = 3n + 2,求 s15。
5. 已知数列 an 的前 n 项和为 sn,an = n2 + n + 1,求 s20。
6. 已知数列 an 的前 n 项和为 sn,an = 4n + 3,求 s18。
7. 已知数列 an 的前 n 项和为 sn,an = n2 + 5n,求 s16。
8. 已知数列 an 的前 n 项和为 sn,an = 2n2 + 3n,求 s14。
9. 已知数列 an 的前 n 项和为 sn,an = 5n + 4,求 s13。
小学奥数等差数列求和习题及答案
等差数列求和知识精讲一、定义:一个数列的前〃项的和为这个数列的和.二、表达方式:常用S.来表示.三:求和公式:和=(首项+末项)X项数+2, = (%+%)x/? + 2.对于这个公式的得到可以从两个方而入手:(思路1) 1 + 2+3 +…+98 + 99 + 100= (14-100)+(2 + 99)+(3 + 98) + ... + (50 + 51) =101x50 = 5050共50个1.1(思路2)这道题目,还可以这样理解:和=1 + 2 + 3 + 4 +・・・+ 98 + 99 +100+ 和=ioo+ 99 + 98 + 97+…+ 3 + 2+12 倍和= 101+ 101+ 101+ 101+…+ 101+ 101+ 101即,和=(100 + 1)x100 + 2=101x50=5050.四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半:或者换句话说,各项和等于中间项乘以项数.譬如:① 4+8 + 12+…+ 32 + 36 = (4 + 36)x9 + 2 = 20x9 = 1800,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于20x9;②65 + 63 + 61+…+5 + 3 + 1 = (1 + 65)x33 + 2 = 33x33=1089,题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于33x33 o例题精讲:例1:求和:(1) 1+2+3+4+5+6 = (2) 1+4+7+11+13=(3) 1+4+7+11+13+-+85=分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和.例如(3)式项数二(85-1) 4-3+1=29和二(1+85) X294-2=1247答案:(1) 21 (2) 36 (3) 1247例2:求以下各等差数列的和.(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和.例如⑴式二(1+199) X 1994-2=19900答案:(1) 19900 (2) 1160 (3) 5355例3: 一个等差数列2, 4, 6, 8, 10, 12, 14,这个数列的和是多少?分析:根据中项定理,这个数列一共有7项,各项的和等于中间项乘以项数,即为:8x7 = 56答案:56例4:求1+5+9+13+17……+401该数列的和是多少.分析:这个数列的首项是1,末项是401,项数是(401-1) =4+1=101,所以根据求和公式, 可有:和二(1+401) X101-? 2=20301答案:20301例5:有一串自然数2、5、8、11、……,问这一串自然数中前61个数的和是多少?分析:即求首项是2,公差是3,项数是61的等差数列的和,根据末项公式:末项=2+ (61-1) X3=182根据求和公式:和二(2+182) X614-2=5612例6:把自然数依次排成“三角形阵",如图.第一排1个数;第二排3个数:第三排5个数:…求:1(1)第十二排第一个数是几?最后一个数是几? 2 3 45 6 7 8 910 11 12 13 14 15 16(2) 207排在第几排第几个数?...................(3)第13排各数的和是多少?分析:整体看就是自然数列,每排的个数的规律是1,3, 5, 7...即为奇数数列假设排数为n(n>2de自然数),那么这排之前的数共有(n-1) (n-1)个.(1)第十二排共有23个数.前而共有(1+21) Xll+2=121个数,所以第十二排的第一个数为122,最后一个数为122+ (23-1) X 1=144(2)前十四排共有196个数,前十五排共有225个数,所以207在第十五排,第十五排的第一个数是197,所以207是第(207-197=10)个数(3)前十二排共有144个数,所以第十三排的第一个数是145,而第十三排共有25 个数,所以最后一个数是145+ (25-1) X 1=169,所以和二(145+169) X25^-2=3925答案:(1) 122; 144 (2)第十五排第10个数(3) 3925例7: 15个连续奇数的和是1995,其中最大的奇数是多少?分析:由中项定理,中间的数即第8个数为:1995 - 15 = 133,所以这个数列最大的奇数即第15个数是:133 + 2x(15-8) = 147 0答案:147.例8:把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?分析:由题可知:由210拆成的7个数必构成等差数列,那么中间一个数为210 + 7=30,所以, 这7 个数分别是15、20、25、30、35、40、45.即第1个数是15,第6个数是40.答案:第1个数:15:第6个数:40.例9:等差数列15, 19, 23,……443,求这个数列的奇数项之和与偶数项之和的差是多少?分析:公差二19T5=4项数二(443-15) 4-4+1=108倒数第二项=443-4=439奇数项组成的数列为:15, 23, 31……439,公差为8,和为(15+439) X 544-2=12258 偶数项组成的数列为:19, 27, 35……443,公差为8,和为(19+443) X544-2=12474 差为12474-12258=216答案:216例10:在1〜100这一百个自然数中,所有能被9整除的数的和是多少?分析:每9个连续数中必有一个数是9的倍数,在1〜100中,我们很容易知道能被9整除的最小的数是9 = 9x1,最大的数是99 = 9x11,这些数构成公差为9的等差数列,这个数列一共有:11 — 1 + 1 = 11 项,所以,所求数的和是:9 + 18 + 27 +…+99 = (9 +99)x11+2 = 594. 也可以从找规律角度分析.答案:594例11: 一串数按下面的规律排列:1、2、3、2、3、4、3、4、5、4、5、6……问:从左面第一个数起,前105个数的和是多少?分析:这些数字直接看没有什么规律,但是如果3个一组,会发现这样一个数列:6, 9,12, 15 ............即求首项是6,公差是3,项数是105+3=35的和末项末+3* (35-1) =108和二(6+108) *35+2=1995例12:在下而12个方框中各填入一个数,使这12个数从左到右构成等差数列,其中10、16 已经填好,这12个数的和为.□ □□ □□画□□画□□□分析:由题意知:这个数列是一个等差数列,又由题目给出的两个数10和16知:公差为2, 那么第一个方格填26 ,最后一个方格是4 ,由等差数列求和公式知和为:(4 + 26)x12 + 2 = 180.答案:180.本讲小结:L 一个数列的前〃项的和为这个数列的和,我们称为.2.求和公式:和=(首项+末项)x项数+2 , = (% + %)x〃 +2.3.对于任意一个奇数项的等差数列,各项和等于中间项乘以项数.练习:1.求和:(1) 1+3+5+7+9= (2) 1+2+3+4+・・・+21 二(3) 1+3+5+7+94-- + 39=分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和. 答案:(1) 25 (2) 231 (3) 4002.求以下各等差数列的和.(1)1+2+3+…+100(2)3+6+9+…+39分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和. 答案:(1) 5050 (2) 2733. 一个等差数列4, 8, 12,16, 20, 24, 28, 32, 36这个数列的和是多少?分析:根据中项定理,这个数列一共有9项,各项的和等于中间项乘以项数,即为:20X9=180答案:1804.所有两位单数的和是多少?分析:即求首项是11,末项是99的奇数数列的和为多少.和二(11+99) X 45+2=2475答案:24755.数列1、5、9、13、……,这串数列中,前91个数和是多少?分析:首项是1,公差是4,项数是91,根据重要公式,可得:末项= 1+ (91-1) X4=361和二(1+361) X914-2=16471答案:164716.如图,把边长为1的小正方形叠成“金字塔形〞图,其中黑白相间染色,如果最底层有15个正方形,问:“金字塔〞中有多少个染白色的正方形,有多少个染黑色的正方于分析:由题意可知,从上到下每层的正方形个数组成等差数列, 厂其中4=1, 〞 = 2,?=15,所以〃 = (15-D+2 + l=8,所以,白色方格数是:1 + 2 + 3 +…+ 8=(l + 8)x8 + 2 = 36黑色方格数是:1 + 2 + 3 +…+7=(l + 7)x7 + 2 = 28.答案:287. (2005 + 2006 + 2007 + 2021 + 2021 + 2021 + 2021^ 2021 =.分析:根据中项定理知:2005 + 2006 + 2007 + 2021 + 2021 + 2021 + 2021=2021 x 7,所以原式= 2021x7^2021 = 7 o答案:7.8.把248分成8个连续偶数的和,其中最大的那个数是多少?分析:公差为2的递增等差数列.平均数:248 ・ 8=31,第4 个数:31-1=30:首项:30-6=24:末项:24+ (8-1) X2=38O即:最大的数为38.答案:389.求从1到2000的自然数中,所有偶数之和与所有奇数之和的差.分析:解法1:可以看出,2, 4, 6, 2000是一个公差为2的等差数列,1, 3, 5,…,1999也是一个公差为2的等差数列,且项数均为1000.所以:原式二(2+2000)X10004-2- (1+1999) X1000-?2=1000解法2:注意到这两个等差数列的项数相等,公差相等,且对应项差1,所以1000项就差了1000个1,即原式二1000X1=100010.在1~ 100这一百个自然数中,所有不能被9整除的数的和是多少?分析:先计算1~ 100的自然数和,再减去能被9整除的自然数和,就是所有不能被9整除的自然数和了^ 1 + 2 +…+100 = (1 + 100)x100 +2 = 5050 ,9 + 18 + 27 +…+99 = (9 + 99)x11+2 = 594 ,所有不能被9整除的自然数和:5050-594 = 4456.如果直接计算不能被9整除的自然数和,是很麻烦的,所以先计算所有1~100的自然数和,再排除掉能被9整除的自然数和,这样计算过程变得简便多了.答案:59411.一个建筑工地旁,堆着一些钢管(如图),聪明的小朋友,你能算出这堆钢管一共有多少根吗?分析:观察发现,这堆钢管的排列就是一个等差数列:首项是3,公差是1 ,末项是10, 项数是8根据求和公式,和二(3+10)根+2=52 (根)所以这堆钢管共有52根.答案:52根.12.求100以内除以3余2的所有数的和.解析:100以内除以3余2的数为2、5、8、11、……98公差为3的等差数列,首先求出一共有多少项,(98-2)+3+1 = 33 ,再利用公式求和(2+98)x 33 + 2 = 1650 0。
三年级数列求和先配对奥数题
三年级数列求和先配对奥数题
以下是一个适合三年级学生的数列求和先配对的奥数题:
题目:有一个数列,它的前几个数是这样的:1、2、3、4、5、6、5、4、3、2、1。
从第一个数开始,依次取两个数相加,直到最后两个数相加为止,求所有和的总和。
解析:观察数列,我们可以看到这是一个对称的数列,中间的数是最大的数6。
因此,我们可以将数列分为两部分:前半部分和后半部分。
每一对相加的两个数,一个是前半部分的数,一个是后半部分的数。
由于数列是对称的,每一对的和都是相同的。
解答:我们可以将数列分成以下几组配对的数:(1,5),(2,4),(3,3),(4,2),(5,1),(6,6),(5,1),(4,2),(3,3),(2,4),(1,5)。
每一对的和分别是6、6、6、6、6、12、6、6、6、6、6。
因此,所有和的总和是6×10+12=72。
类似的题目可以帮助学生锻炼数列求和和观察数列规律的能力,同时也可以培养学生的逻辑思维和数学思维能力。
小五奥数:等差数列求和 经典练习
小五奥数:等差数列求和经典练习
思维热身
有一个人到边打水,他只带有两个没有任何测量刻度的容器。
但是知道这两个容器的容量分别6升和5升,如何只用这两容器,使他能打回恰好3升的水?
1. 2,5,8,11,14......按照规律排列的一串数,则第21项是多少?
2.9+10+11+12+13+14+15+16+17+18+19+20+21
3.有一串数,第1个数是5,以后每个数都比前一数大5,最后一个数是90.则这串数连加,和是多少?
4.30把铁的钥匙搞乱了,为了使每把锁都配上自己的钥匙。
则最多要试几次?
5. 把210拆成7个自然数的和,使7数从小到大排成一行后,相邻两个数的差都是5,那么第1个数与第6个数分别是多少?
6. (2+4+6+8+...+1984+1986+1988)-(1+3+5+7+...+1983+1985+198
7)
7一个大剧院,座位排列的形状像是一个梯形,而且第一排有10个座位,第二排有12个座位,第三排有14个座位……最后一排他数了一下一共有210个座位,思考下
剧院中间一排有少个座位呢?这个剧院一共有多少个座位呢?
8.在一次数学竞赛中,获得一等奖的8名同学的分数恰好构成等差数列,总分为656分,且第一名得分超过了90分(满分为100分),已知同学们的分数都是整数,那么第三名的分数是多少?
9.105+110+115+120+...+195+200
10.如果一个等差数列的第五项是19,第8项是61.求它的第11项。
10. 5000-2-4-6-8-...-98-100
12.1+3+5+7+9...+1995+1997+1999。
小学奥数解题方法大全100道及答案(完整版)
小学奥数解题方法大全100道及答案(完整版)题目1:计算1 + 2 + 3 + 4 + …+ 100 的和。
解题方法:使用等差数列求和公式,首项为1,末项为100,公差为1,项数为100。
求和公式为:(首项+ 末项)×项数÷2 。
答案:(1 + 100) ×100 ÷2 = 5050题目2:鸡兔同笼,共有30 个头,88 只脚,求鸡兔各有多少只?解题方法:假设全是鸡,共有脚30×2 = 60 只,比实际少88 - 60 = 28 只。
因为每把一只兔当成鸡,就少算4 - 2 = 2 只脚,所以兔有28÷2 = 14 只,鸡有30 - 14 = 16 只。
答案:鸡16 只,兔14 只。
题目3:一条路长100 米,从头到尾每隔10 米栽1 棵梧桐树,共栽多少棵树?解题方法:因为两端都栽树,所以棵数= 间隔数+ 1 ,间隔数为100÷10 = 10 ,则棵数为10 + 1 = 11 棵。
答案:11 棵。
题目4:某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。
那么有多少人两个小组都不参加?解题方法:参加数学或航模小组的人数为15 + 18 - 10 = 23 人,所以两个小组都不参加的人数为40 - 23 = 17 人。
答案:17 人。
题目5:甲乙两数的和是32,甲数的3 倍与乙数的5 倍的和是122,求甲、乙二数各是多少?解题方法:设甲数为x,乙数为y,则x + y = 32 ,3x + 5y = 122 。
将第一个式子乘以3 得到3x + 3y = 96 ,用第二个式子减去这个式子得到2y = 26 ,y = 13 ,则x = 19 。
答案:甲数19,乙数13 。
题目6:一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。
求这列火车的速度是每秒多少米?车长多少米?解题方法:火车40 秒走的路程= 桥长+ 车长,30 秒走的路程= 山洞长+ 车长。
五年级奥数数列求和
)9911()311()211(991)411()311()211(41)311()211(3121121+⨯⨯+⨯++++⨯+⨯+++⨯+++ 领先教育五年级奥数-数列的求和1. 计算: (3+4+5+6+7+8+9+10+11+12+13+14+15)÷13=______.2. 计算: ______19901990199031990219901=++++ . 3. 计算: (1+337)+(1+337×2)+(1+337×3)+…+(1+337×10)+(1+337×11)=______. 4. 在1,4,7,10,13,…,100中,每个数的前面加上一个小数点以后的总和等于______. 5. 121,12239,,124,123,122 这239个数中所有不是整数的分数的和是______. 6. 计算: 15131131111191971751⨯+⨯+⨯+⨯+⨯=______. 7. 计算: ______3012981131011071741411=⨯++⨯+⨯+⨯+⨯ . 8. 计算: ______99163135115131=++++. 9. 计算: 1+3______9011772115561134211130192017121561=+++++++. 10. 把1到100的一百个自然数全部写出来,所用到的所有数码字的和是____.11. 求: +⨯198719861986+⨯198819871986+⨯198919881986…+200019991986⨯. 12. 求: 98.087.076.065.054.043.032.021.0 +++++++. 13. 求:14. 一个家具厂生产书桌的数目每个月增加10件,一年共生产了1920件,问这一年的12月份生产了多少件?———————————————答 案——————————————————————答 案:1. 解法一(3+4+5+6+…+14+15)÷13 =2153+×13÷13 =9×13÷13=9 2.19901+19902+19903+…+19901990 =19901×219901+×1990 =219913. (1+337)+(1+337×2)+(1+337×3)+…+(1+337×10)+(1+337×11) =(1+1+…+1)+337×(1+2+3+…+10+11) =11+337×112111⨯+ =11+337×6×11 =25.4. 这列数的各个数是1,4,7,10,13,17,…~3个数是一位数,每个数都缩小了10倍,第4个数到第33个数(10~97)是两位数,每个数都缩小了100倍,最后一个数100缩小了1000倍.先分别求出1,4,7的和以及第4个数到第33个数的和,再求出34个小数的和.0.1+0.4+0.7+0.10+0.13+…=(1+4+7)×101+(10+13+…+97)×1001 =1.2+(10+97)÷2×30×1001 =)1921(122392)2391(+++-⨯÷+ =19219112239120⨯+-⨯ =2390-190=2200.6. 15131131111191971751⨯+⨯+⨯+⨯+⨯ =)151131(21)9171(21)7151(21-⨯++-⨯+-⨯ =)15151(21-⨯ =15221⨯ =151 7. 仿上题,用裂项法解之.=)]30112981()10171()7141()411[(31-++-+-+-⨯ =)30111(31-⨯ =301100 8. 99163135115131++++ =1191971751531311⨯+⨯+⨯+⨯+⨯ =)]11191()9171()7151()5131()311[(21-+-+-+-+-⨯ =)1111(21-⨯ =1159. 1+361+52017121++9301+11421+13561+15721+17901 =(1+3+5+7+9+11+13+15+17)+(+⨯+⨯+⨯+⨯+⨯761651541431321871⨯+981⨯ +1091⨯ ) =)]10191()5141()4131()3121[(92171-++-+-+-+⨯+ =81+(10121-) =81+52 =8152 10. 把1到100的一百个自然数排成以下数阵1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29……90 91 92 93 94 95 96 97 98 99100(1+2+3+…+8+9)×10×2+1 =291+×9×10×2+1 =90111. 和=1986×(19861-19871+19871-19881+…+19991-20001) =1986×(19861-20001) =1986×2000198619862000⨯- =10007. 12. 和=9011+9021+9031+…+9081 =901×(11+21+31+…+81) =901×28)8111(⨯+ =45184=4454. 13. 和=991003423991453423413423312321⨯⨯⨯++⨯⨯+⨯+ =100992542432322⨯++⨯+⨯+⨯ =2)100991541431321(⨯++⨯+⨯+⨯⨯=2)1001991514141313121(-++-+-+-⨯ =2)100121(-⨯ =5049. 14. 设1月份生产了x 件,那么12月份生产了x +110件,一年共生产书桌 1920212)110(=⨯++x x , 化简得 2x +110=320;解得 x =105.所以12月份生产书桌105+110=215件.五年级奥数:数的整除性(A )年级 班 姓名 得分一、填空题1. 四位数“3AA 1”是9的倍数,那么A =_____.2. 在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3. 能同时被2、3、5整除的最大三位数是_____.4. 能同时被2、5、7整除的最大五位数是_____.5. 1至100以内所有不能被3整除的数的和是_____.6. 所有能被3整除的两位数的和是______.7. 已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8. 如果六位数1992□□能被105整除,那么它的最后两位数是_____.9. 42□28□是99的倍数,这个数除以99所得的商是_____.10. 从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题11. 173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字, 所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12.在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13.在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14.试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13. ———————————————答 案——————————————————————1. 7已知四位数3AA 1正好是9的倍数,则其各位数字之和3+A +A +1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之.设3+A +A +1=9,则A =2.5,不合题意.再设3+A +A +1=18,则A =7,符合题意.事实上,3771÷9=419.2. 1这个数奇数位上数字和与偶数位上数字和之差是0或是11的倍数,那么这个数能被11整除.偶数位上数字和是5+7=12,因而,奇数位上数字和2+□+9应等于12,□内应填12-2-9=1.3. 990要同时能被2和5整除,这个三位数的个位一定是0.要能被3整除,又要是最大的三位数,这个数是990.4. 99960解法一: 能被2、5整除,个位数应为0,其余数位上尽量取9,用7去除999□0,可知方框内应填6.所以,能同时被2、5、7整除的最大五位数是99960.解法二: 或者这样想,2,5,7的最小公倍数是70,而能被70整除的最小六位是100030.它减去70仍然是70的倍数,所以能被2,5,7整除的最大五位数是100030-70=99960.5. 3367先求出1~100这100个数的和,再求100以内所有能被3整除的数的和,以上二和之差就是所有不能被3整除的数的和.(1+2+3+...+100)-(3+6+9+12+ (99)=(1+100)÷2⨯100-(3+99)÷2⨯33=5050-1683=33676. 1665能被3整除的二位数中最小的是12,最大的是99,所有能被3整除的二位数如下:12,15,18,21,…,96,99这一列数共30个数,其和为12+15+18+…+96+99=(12+99)⨯30÷2=16657. 96910或46915 五位数B A 691BB =0时,6910A 能被11整除,所以(A +9+0)-(6+1)=A +2能被11整除,因此A =9;当B =5时,同样可求出A =4.所以,所求的五位数是96910或46915.8. 90因为105=3⨯5⨯7,根据数的整除性质,可知这个六位数能同时被3、5和7整除。
奥数小学三年级精讲与测试第3讲简单数列求和
第3讲简单数列求和知识点、重点、难点当一列数的规律是相邻两项的差是一个固定的数,这样的数列就称为等差数列.其中固定的差用d表示,和用S表示,项数用n表示,其中第n项用a n表示.等差数列有以下几个通项公式:S=(a1+a n)×n÷2,n=(a n-a1)÷d+1(当a1<a n),a n=a1+(n-1)×d.例题精讲例1 1+2+3+4+5+6+7+8+9解原式=(1+9)×9÷2=10×9÷2=45例2 (1)1+5+9+13+…+2001解项数=(2001+1)÷4+1=501S=(1+2001)×501÷2=1001×501=501501(2)4000-(50+48+46+ (2)解原式=4000-(50+2)×25÷2=4000-26×25=3350例3 在1949、1950、1951…1997、1998这五十个正整数中,所有双数之和比所有单数之和大多少?解 (1950+1952+1954+...+1998)-(1949+1951+1953+ (1997)=(1950+1998)×25÷2-(1949+1997)×25÷2=(1950+1998-1949-1997)×25÷2=2×25÷2=25例 4 在1~200这二百个数中能被9整除的数的和是多少?分析:在1~200这二百个数中能被9整除的数构成了一个以9为首项,公差为9的等差数列:9,18,27,36,…,189,198.解项数=(198-9)÷2+1=22.S=(9+198)×22÷2==207×22÷2=2277.例 5 39个连续单数的和是1989,其中最大的一个单数是多少?分析:39个连续单数之和为1989,所以中间一个数是这39个数的平均数,然后再找出其中最大的一个单数.解 1989÷39=51,51+19×2=89.例 6 有一列数:1,1993,1992,1,1991,1990,1,...,从第三个数起,每一个数都是它前面两个数中大数减小数的差,从第1个到第1993个数这些数多的和是多少?分析:仔细观察这一数列,如果把1拿出,正好成为一个等差数列:1993,1992,1991,1990,...,在原数列中三个数一组出现一个1.1993÷3=664...1,可分为664组一个1,即665个1,其余是1993到666,共664×2=1328个数.解 1×665+(666+1993)×1328÷2=665+2659×1328÷2=665+1765576=1766241.水平测试 3A 卷一、填空题1.1+2+3+4+5+6+7=________2.2+4+6++8+10=_________3.1+3+5+7+9+11+13+15+17=__________4.25+27+29+31+33=________5.2002+2004+2006+2008+2010+2012=________6.15+20+25+30+35+40=_________7.11-12+13-14+15-16+17-18+19=_________8.(2003+2001+1999+...+3+1)-(2002+2000+1998+...+4+2)=_________9.27+31+35+39+43+47=_________10.121+134+127+130+133+136+139=_________11.101+103+105+...+139=_________二、解答题12.计算:10+13+16+19+...+295+298.13.求200以内的双数之和.14.等差数列7、10、13...的第20项数是几?15.肖肖从七月一日开始写毛笔字,第一天写了6个,以后每天比前一天多写相同数量的毛笔字,结果全月共写了1116个毛笔字,肖肖每天比前一天多写了几个毛笔字?B 卷一、填空题1.57+67+77+...+217+227=________2.11+12-13-14+15+16-17-18+...+31+32-33-34+35+36=_______3.1+3++5+7+...+151+153+155=_________4.96+97+98+...+293+294+295=________5.从37到111的所有单数之和是________6.所有三位数的和为_________7.1+4+7+10+...+292+295+298=_________8.1+2+3+...+59+60+59+...+3+2+1=________二、解答题9.计算:(2+4+6+...+100)-(1+2+3+...+50).10.把一堆苹果分给8个小朋友,要使每个小朋友都能拿到苹果,而且每个人拿到苹果个数都不同的话,这堆苹果至少应该有多少个?11.小红读一本书,第一天读30页,从第二天起,每天读的页数都必须比前一天多4页,最后一天读了70页刚好读完,这本书共有几页?12.小文从5岁开始存钱,5岁时他有了30元,以后每年比前一年多存10元,那么到他18岁时他共存了多少钱?13.求100以内所有7的倍数之和.C 卷一、填空题1.25个连续的正整数之和是750,则第13个数是_______,第一个数是_______2.一串钥匙30把,对应30把锁,若不小心搞乱了,那么至多需要试_______次.3.若在第2题中只要找出8把锁所对应的钥匙,那么至多需要试______次4.1+4+5+8+9+12+...+48+49+52=________5.321+320+319+...+124+123+124+...+319+320+321=________6.所有三位数中被26除余5的数之和是________7.学校礼堂共有30排座位,已知第一排是15个座位,以后每排比前一排多2个座位,那么共有______个座位.8.1+3+7+13+15+19+25+27+31+...+121+123+127=________二、解答题9.小华看一本书,第一天看了3页,以后每一天比前一天多看的页数相同.第20天看了79页,刚好看完,问这本书共多少页?每天比前一天多看多少页?10.求两位数中所有含有数字5的数之和.11.如图,每个最小的等边三角形的面积是1平方厘米,边长是一根火柴棒,问最大的三角形的面积是多少平方厘米?整个图形由几根火柴棒摆成?12.有10个盒子,44只乒乓球.把这44只乒乓球放到盒子中,能不能使每个盒中的球数都不相同(每个盒子中至少要放一个球)?13.已知数列2,7,5,5,3,2,7,5,5,3,2,7,5,5,3,...,这个数列的第40项是哪个数字?前36项之和是多少?简单数列求和答案:A 卷1.28 原式=(1+7)×7÷2=282.30 原式=(2+10)×5÷2=303.81 原式=(1+17)×9÷2=814.145 原式=(25+33)×5÷2=1455.12042 原式=(2002+2012)×6÷2=120426.165 原式=(15+40)×6÷2=1657.15 原式=11+(13-12)+(15-14)+(17-16)+(19-18)=15.8.1002 原式=(2003-2002)+(2001-2000)+...+(3-2)+1=10021001对9.222 原式=(27+47)×6÷2=22210.910 原式=(121+139)×7÷2=91011.2400 原式=(101+139)×[(139-101)÷2+1]÷2=240012.14938 原式=(10+298)×[(298-10)÷3+1]÷2=308×(96+1)÷2=154×97=1493813.200以内所有双数之和等于10100 2+4+6+...+198+200=(2+200)×100÷2=1010014.64 a n=a1+(n-1)×d=7+(20-1)×3=6415.最后一天写了1116×2÷31-6=66(个),(66-6)÷(31-1)=2(个)B 卷1.2556 由于共有(227-57)÷10+1=18项,原式=(57+227)×18÷2=25562.47 原式=(36-34)+(35-33)+(32-30)+(31-29)+...+(16-14)+(15-13)+11+12=24+23=47. 其中每个括号内两项之差为2,所以除11,12外所有和等于项数,即36-13+1=24.3.6084 原式=(1+155)×78÷2=6084,其中项数78=(155-1)÷2+1.4.39100.项数为(295-96)÷1+1=200,原式=(96+295)×200÷2=39100.5.2812.项数为(111-37)÷2+1=38,原式=(37+111)×38÷2=2812.6.494550 100+101+102+103+...+999=(100+999)×900÷2=4945507.14950.项数为(298-1)÷3+1=100,原式=(1+298)×100÷2=14950.8.3600. 原式=(1+59)×59÷2×2+60=3600.9.原式=(2-1)+(4-2)+(6-3)+...+(100-50)=1+2+3+...+50=(1+50)×50÷2=1275.10.36个 1+2+3+4+5+6+7+8=(1+8)×8÷2=36(个).11.550页. 先求小红看了几天,(70-30)÷4+1=11(天).再求这本书的总页数,(30+70)×11÷2=550(页).12.当他18岁时,他共存了1330元.(30+10×(18-5)+30)×(18-5+1)÷2=(30+130+30)×(14÷2)=190×7=1330(元).13.100以内所有7的倍数之和为735.7+14+21+...+98=7×(1+14)×14÷2=735.C 卷1.30,18第13项是中间项,对等差数列中间项等于数列平均数,即750÷25=30;第一个数为30-(13-1)×1=182.464第一把最多试30次,第二把锁最多试29次,...第29把最多试2次,所以共30+29+...+2=(30+2)×29÷2=464(次)3.212第一把锁最多试了30次,第二把锁最多试29次,...第八把最多试23次,所以最多须试30+29+...+23=(30+23)×8÷2=212(次).4.689原式=(1+5+9+...+49)+(4+8+12+...+52)=(1+49)×((49-1)÷4+1)÷2+4×(1+2+...+13)=50×13÷2+4×(1+13)×13÷2=325+364=689.5.88233.原式=(321+124)×((321-124)+1)÷2×2+123=445×198+123=88233.6.19285.原式=26×4+5+26×5+5+...+26×38+5=26×(4+5+...+38)+5×(38-4+1)=19285.7.1320.最后一排座位数为15+2×(30-1)=73,由(15+73)×30÷2=1320(个).8.2101.原式=(1+13+25+...+121)+(3+15+27+...+123)+(7+19+31+...+127)=(1+121)×11÷2+(3+123)×11÷2+(7+127)×11÷2=2101.9.全书共有820页,小华每天比前一天多看4页.(3+79)×20÷2=820(页),(79-3)÷(20-1)=4(页).10.两位数中所有含数字5的数之和为985.(15+25+...+95)+(50+51+...59)-55=(15+95)×9÷2+(50+59)×10÷2-55=495+545-55=985.11.45平方厘米,45根.每层小三角形个数分别是1.3.5.7.9.所以面积是(1+9)×9÷2=45(平方厘米).每层火柴棒根数分别是3.6.9.12.15,所以总根数是(3+15)×5÷2=45(根).12.不能.每个盒子中的乒乓球个数都不相同,所以球的个数有1+2+...+10=55(个).44个乒乓球是不能这样放的.13.这个数列第40项的数字是3,前36项之和为156.由于这个数列每5个重复一次,而40÷5=8,所以第40项就等于前5项中最后一项,即数字为3.由于36÷5=7...1,所以前36之和为(2+7+5+5+3)×7+2=156.。
四年级奥数 等差数列求和二
四年级奥数等差数列求和二work Information Technology Company.2020YEAR第四周巧妙求和专题解析:前面我们学习了等差数列求和,其实生活中某些问题,可以转化为求若干个数的和,在解决这些问题时,要先判断是否是求某个等差数列的和。
如果是等差数列求和,就可以用等差数列公式求和。
某一项=首项+(项数-1)×公差项数=(末项-首项)÷公差 + 1总和=(首项+末项)×项数÷2例题1:计算1+3+5+7+……+197+199【思路导航】仔细观察发现,这个算式是一个等差数列求和的问题,公差为2,再根据项数=(末项-首项)÷公差 + 1来求得项数是多少,然后根据公式:总和=(首项+末项)×项数÷2 ,即得到算式总和。
解:公差为2,项数=(199-1)÷2+1=100,总和:(1+199)×100÷2=10000。
练习1:(1)计算:2+6+10+14+……+398+402 (2)计算:5+10+15+20+……+195+200(3)计算:1+11+21+31+……+1991+2001+2011 (4)计算:100+99+98+……+61+60例题2:计算:(2+4+6+……+98+100)-(1+3+5+……+97+99)【思路导航】我们可以发现,被减数和减数都是等差数列的和,因此,可以先分别求出它们各自的和,然后相减。
练习2:计算下面各题。
(1)(2+4+6+......+2000)-(1+3+5+ (1999)(2)(2001+1999+1997+1995)-(2000+1998+1996+1994)(3)1+2-3+4+5-6+7+8-9+……+58+59-60例题3:王俊读一本小说,他第一天读了30页,从第二天起,他每天读的页数都比前一天多3页,第11天读了60页,正好读完,这本书共有多少页练习3:(1)刘师傅做一批零件,第一天做了20个,以后每天都比前一天多做2个,第15天做了48个,正好做完,这批零件共有多少个(2)一个电影院的第一排有17个座位,以后每排比第一排多2个座位,最后一排有75个座位,这个电影院共有多少个座位(3)赵玲读一本书,她第一天读了20页,从第二天起,每天读的页数比前一天多5页,最后一天读了50页恰好读完,这本书有多少页。
奥数数列求和专题练习题精选全文完整版
可编辑修改精选全文完整版奥数数列求和专题练习题奥数数列求和专题练习题例1 求100以内所有的奇数的和。
(形成性练习)求100以内所有的偶数的和。
例2 计算:1+2+3-4+5+6+7-8+9……+25+26+27-28=(形成性练习)计算:19+20+21+…+83+84=例3 小明家的闹钟几点钟就敲几下,而且每半点也敲一下。
请问,这只闹钟一昼夜共敲了多少下?(形成性练习)有一列数:19,22,25,28……请问这列数的前99个数的总和是多少?例4 从99开始,每隔三个数写出一个数来:99,103,107……求1999是这数中的第几个数?(形成性练习)求100以内所有3的倍数的和。
例5 把1—91这91个数分成七组,使每组各数的和都相等,这个和是多少?(形成性练习)有8个小朋友聚会,每两人都握手一次,一共要握手多少次?例6 一把钥匙只能开一把锁。
现在有10把锁和可以打开它们的10把钥匙,但全部放乱了。
请问,最多要试多少次可以打开所有的锁?(最多试多少次可以找出打开锁的钥匙?)(形成性练习)木材收购站有一堆圆木,它的每一层都比它的下一层少一根。
小敏数一数,它的最下一层是26根,一共18层。
你知道这堆木材一共有多少根吗?练习题1、求1+2+3+4+……+35+36=2、求2+4+6+……86+88=3、求1+2-3+4+5-6+……+58+59-60=4、求1-2+3-4+5-……+2001-2002+2003=5、31+32+33+……98+99=6、21+22+23+……+99+100=7、在所有的.两位数中,十位上比个位上的数字大的数,一共有多少?8、从17开始每隔两个数写出一个数来,便可以得到17,20,23,26……请问:第662个数是多少?9、一个正六边形苗圃,里面均匀地栽着一些小树苗,它的最外面一圈共栽了90棵树苗,而且每个角落上都栽有一棵。
求这个苗圃共栽了多少棵树苗?10、从甲城到乙城的铁路线上,有七个途中停车站(不包括甲乙两站)。
三年级奥数等差数列求和问题练习
三年级奥数等差数列求和问题练习三年级奥数第五讲:等差数列求和
例题1:计算2+5+8+11+17+20+23.
练:计算1+2+3+5+7+9+11+13+15+17+19.
例题2:计算8+10+12+14+16+18+20.
练:计算3+6+9+12+15+18+21.
例题3:计算5+6+7+8+9+10+9+8+7+6+5.
练:20+17+14+11+8+5+2.
例题4:计算9+11+13+15+17+19+22.
练:计算5+7+9+11+13+15+17+19+21+25.
例题5:计算8+9+10+11+12+13+15+17+19+21+23.
练:计算12+13+14+15+16+18+20+22+24+26.
例题6:XXX为了买课外书自己存钱,2003年元月存一
元钱,以后每月都比前一个月多存1元钱,那么2003年这一
年里一共可以存多少钱?
练:一辆双层公共汽车空车出发,第一站上一位乘客,第二站上两位,第三站上三位,以此类推,到第11站之后,公
汽上的作为刚好坐满。
求这两公汽共有多少个座位?
例题7:三年级数学培优班第1小组由8名同学,开学时,老师要求该组每人都握一次手,问共握多少次手?。
4年级奥数等差数列求和
汇报人:
CONTENTS
PART ONE
PART TWO
等差数列的定义: 一个数列,从第 二项开始,每一 项与它的前一项 的差都等于同一
个常数。
等差数列的通 项公式:
an=a1+(n1)d,其中an是 第n项,a1是第 一项,d是公差。
等差数列的定义:一个数列,从第二项开始,每一项与它的前一项的差 都等于同一个常数。
等差数列的特点:每一项与它的前一项的差是固定的,且等于公差。
等差数列的通项公式:an=a1+(n-1)d,其中an是第n项,a1是第一项, d是公差。
等差数列的求和公式:Sn=(a1+an)n/2或Sn=n/2*(2a1+(n-1)d),其中 Sn是前n项和,a1是第一项,an是第n项,d是公差。
统计学:等差数列求和在统计学中 用于样本数据的处理、概率计算等。
添加标题
添加标题
添加标题
添加标题
科学实验:在物理学、化学、生物 学等科学实验中,等差数列求和用 于计算实验数据、分析规律。
计算机编程:等差数列求和在计算 机编程中用于实现循环、迭代等算 法。
基础数学概念:等差数列求和是数学学习中的基础概念,对于理解数列、数学分析等有重要作 用。
公式推导:通过实例演示公式的推导过程,帮助学生理解公式原理。
口诀记忆:将公式中的项数、公差、首项、末项等要素编成口诀,方便学生记忆。
练习巩固:通过大量的练习题,让学生在实际操作中加深对公式的理解和记忆。 归纳总结:总结等差数列求和公式的适用范围和注意事项,帮助学生更好地掌握 公式。
PART FOUR
题目:一个等差数列 的前5项和为25,最 后5项和为100,那么 这个数列共有多少项?
小学奥数等差数列求和习题及答案
等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。
二、表达方式:常用n S 来表示 。
三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。
对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。
四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。
例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。
(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
小学奥数计算题
计算综合一等比数列同等差数列一样,等比数列同样有首项,末项及项数,同学们可以想一想如何通过首项和公比将等比数列的每一项都表示出来.等差数列求和是利用“倒序相加”或“配对求和”的方法,那么等比数列如何求和呢?我们来看一个例题.1计算:(1)1+2+4+8+16+32+64+128+256;(2)2+6+18+54+162+486+1458.1(1)23+24+25+26+27+28+29;(2)3+32+33+⋯+37.(38=6561)等比数列求和,最常用的是“错位相减”法.其基本步骤是:1.设等比数列的和为S;2.等式两边同时乘以公比(或者公比的倒数);3.两式对应的项相减,消去同样的项,求出结果.有关等比数列的知识,同学们到中学以后还会继续学习,在这里只需掌握简单的等比数列求和即可.下面我们看一些技巧性比较强的分数计算的题目,首先我们先来看一个整体约分的题目.2计算:1×2×3+2×4×6+4×8×12+7×14×211×3×5+2×6×10+4×12×20+7×21×35.1计算:2×3×4+4×6×8+6×9×12+8×12×163×4×5+6×8×10+9×12×15+12×16×20.除了整体约分,有时候我们也可以对计算中的某些数进行适当的拆分,从而避免很多冗繁的计算.使得计算过程呈现出“四两拨千斤”的效果.3计算:15113×1314+16114×1415+17115×1516.1计算:33115×1516+35116×1617+37117×1718.4计算:2011÷201120112012+2216÷7+12013.1计算:198÷198198199+64117÷9+1200.5定义新运算为a与b之间(包含a,b)所有与a奇偶性相同的自然数的平均数,例如:,(1)计算:;(2)在算式的方框中填入恰当的自然数后可使等式成立,请问: 所填的数是什么?最后我们来看一下数列数表的问题,数列数表的问题一般难度比较大,需要我们仔细观察,寻找规律.6观察数列⋯的规律,求:(1)150是数列中第几项?(2)数列中第100个分数是多少?分析:观察数列,你找到什么规律了吗?又如何来利用这些规律呢?作业:1.计算:2+22+⋯2122.计算:3+6+12+24+⋯+384.3.计算:25111×1112+27112×1213.4.计算:1×2×3+2×4×6+5×10×151×2×5+2×4×10+5×10×25.5.数列23、25、45、27、47、67、29、⋯中,第100项是多少?100105是数列的第几项?计算综合二到了六年级,我们对四则运算提出了新的要求,考试中出现的经常是比较复杂的分数四则混合运算题目,因而要求有较强的计算基本功.在计算的同时,综合运用以前学过的各种巧算技巧,往往能使题目的计算过程变得简洁.当然现在的巧算技巧不再像以前那么直接,而是蕴藏在计算的细节之中1计算:1练习1计算:2计算:1练习2计算:3计算:1练习3计算:接下来我们学习一种特殊的计算技巧:换元法.请同学们先看下面的例4.4计算:1计算:例4中用到了换元的运算技巧.换元,指的是用字母来代表一块算式,把算式当成一个整体进行计算的想法,是一种很实用的计算技巧.换元的目的是让我们省去很多不必要的计算,这样能够大大简化计算过程.有时候,不一定要用换元才能够省去计算,只要带着这个想法考虑问题就行了.连分数.什么是连分数呢,举几个简单的例子:1+11+11+111+12+131+12+13+14像上面这样包含若干层分数线的复杂分数就是连分数.连分数本质上讲应该是一个算式,而不仅仅只是一个数,所以我们通常需要将这样的连分数化简成最简分数的形式.那究竟如何化简呢?想要将连分数化简成普通分数,必须从短分数线开始一层层的来算.我们就拿简单的五层连分数1+11+11+11+11+11为例.下面的算式就是这个连分数化简为普通分数的全过程:连分数计算最重要的就是把分数线减少.仔细观察一下上述过程,大家不难发现,连分数的计算顺序是由短分数线开始算,每次算完,分数线就变少,形式变得越来越简单.1(1)将下面这个连分数化简为最简真分数:(2)若等式成立,x等于多少?作业:1.计算:.2.计算:(1);(2).3.计算:.4.(1)计算:;(2)已知,求x .5.规定运算,求:(1).(2);(3).分数计算综合提高本讲知识点汇总:1.分数计算技巧凑整分组提取公因数约分(整体约分)2.分数与循环小数互化分数化循环小数循环小数化分数3.比较与估算4.分数裂项5.分数数列、数表1(1)34+934+9934+99934+1;(2)12×23×34×⋯×99100;(3)1-122 ×1-132×⋯×1-1992 ;(4)12+13+⋯+1100 +23+24+⋯+2100+⋯+9899+98100 +99100.1.2(1)191919989898+190190980980+1900190098009800÷1998;(2)1665+666×16641665×666+999;(3)2011+2012+20132010-2012+2013+20142011+2013+2014+20152012-2014+2015+2016201312010-12011+12012-12013;(4)5115+5937+7395 ×5937+7395+1551 -5115+5937+7395+1551 ×5937+7395.1(1);(2).3算式12+13+14+15+16+17+18+19+110+111结果的小数点后第2013位数字是多少,循环节是多少?1算式:的计算结果,小数点后第2012位是数字多少?4(1)12×3+13×4+14×5+15×6+⋯+12012×2013;(2)11×3+13×5+15×7+17×9+⋯+113×15;(3)32-56+712-920+1130-1342+1556-1772+1990;(4)43-815+1235-1663+2099-24143+28195-32255.1(1);(2).5已知“*”表示一种运算符号,它的含义是:a ∗b =1ab +1(a +1)(b +A ),已知2*3=14,那么:(1)A 等于多少?(2)计算1∗2 +3∗4 +5∗6 +⋯+99∗100 .6观察下面的数表:11;21,12;31,22,13;41,32,23,14;51,42,33,24,15;⋯⋯⋯⋯⋯⋯⋯⋯.根据前五行数所表达的规律,19911949这个数位于由上而下的第几行;在这一行中,它位于由左向右的第几个?作业1.计算:.2.算式结果的小数点后第666位、2013位数字分别是多少?3.计算:.4.计算:.5.将真分数按照图中数表方式排列开,那么位于不超过100行,100列的所有真分数之和是多少?计算综合练习【学生注意】本讲练习满分100分,考试时间70分钟.一、填空题Ⅰ(本题共有7小题,每题4分)1.212+314+418+5116+6132=_______.2.2010+2010×2010-2010 ÷2010=_______.3.8-1.25×4.8+2.4÷12431×4.125=_______.4.12+34+56=_______.5.13×4+14×5+15×6+16×7+17×8+18×9=_______.6.2010×1-13 ×1-14 ×1-15 ×⋯×1-12010=_______.7.123456789×999999999=________.二、填空题Ⅱ(本题共有4小题,每题5分)8.815-1235+1663-2099+24143-28195+32255=_______.9. 2.012+4.02×7.99+7.992=_______.10.1+2-3+4+5-6+7+8-9+⋯+2008+2009-2010=_______.11.114×5+124+314×2+1712-0.625×0.7+1.875÷712345÷3-2.4×1415×7.5=________.三、填空题Ⅲ(本题共有4小题,每题6分)12.适合不等式12<3x<56的自然数x的所有可能值是__________.13.黑板上写有从1开始的一些连续奇数:1、3、5、7、⋯,擦去其中一个奇数后,剩下的所有奇数的和是2010,那么擦去的奇数是_______.14.把四个分数算式:17+111、15+113、13+115、29.从小到大排列后,得到:_________<_________<_________<_________.15.在一列数14、25、36、47、⋯中,与1的差大于12010的有______个.四、填空题Ⅳ(本题共有4小题,每题7分)16.1-12+14-16+18-110+⋯+12008-12010×10的整数部分是_______.17.设147340=1a +1b +1c +1d ,其中a ,b ,c ,d 都是非零自然数,则a +b +c +d =________.18.将循环小数0.0 54 与0.2 31546 相乘,所得结果的小数点后第2010位是________.19.定义新运算:a ∗b =b -a +1b -a ,求:(1)19∗18 +18∗17 +17∗16 +⋯+12∗1 =________;(2)1∗4 +1∗9 +1∗16 +⋯+1∗100 =_________.31。
小学奥数全能解法及训练(数列求和)
=(124+276)×39÷2 =7800
7800-7800=0
先运用等差公式 求出和,再用7800相减。
规 律 总 结
小学奥数全能解法及训练
数列求和
精讲1
解法精讲
(1)1、2、3、4、5、6
(2)2、4、6、8、10、12
数列
(3)5、10、15、20、25、30
首项
项数
末项
a1
n
an
精讲2
(1)1、2、3、4、5、6
1
2 (2)2、4、6、8、10、12
(3)5、10、15、20、25、30
5
等差数列
公差
d
精讲3 数列:1、3、5、7、9、11……
答:这个数列共有9项。
例2 求数列2+4+6+······+2000的和。
S=(a1+an)n÷2 n=(an-a1)÷d+1
等差数列
例2 求数列2+4+6+······+2000的和。
n=(2000-2)÷2+1 =1998÷2+1 =999+1 =1000
S=(2000+2)×1000÷2 =2002×1000÷2 =2002000÷2 =1001000
第2项: 3=1+2 第3项: 5=1+2 ×2 第4项: 7=1+2 ×3
首项+公差×(2-1) 首项+公差×(3-1) 首项+公差×(4-1)
an=a1+(n-1)×d
精讲4 数列:6 、10 、14 、18 、22 、26 30 、34 、38
数列的和
6 + 10 + 14 + 18 + 22 + 26 + 30 + 34 + 38 38+ 34 + 30 + 26 + 22 + 18 + 14 + 10 + 6