一种新型的双重刺激响应性聚合物

合集下载

具有多重响应性的新型智能材料研究

具有多重响应性的新型智能材料研究

具有多重响应性的新型智能材料研究随着科技的飞速进步和人类对于材料科学的深入探索,一种多重响应性的新型智能材料逐渐引起了科技领域的广泛关注。

这种材料不仅可以对外界环境的刺激做出高度敏感的响应,还能在不同刺激下展现出多种不同的性能和特征,具有极大的应用潜力和市场前景。

一、多重响应性的新型智能材料的特点多重响应性的新型智能材料是一种可以对不同刺激做出响应的新型材料。

它们可以对诸如温度、光照、电场等各种外界刺激产生高度敏感的响应。

除此之外,它们还能够在不同刺激下表现出多种不同的性能和特征,具有良好的可控性和可调节性。

这种材料有着广泛的应用前景,包括但不限于人工智能、能源、环境、医疗等领域。

例如,在人工智能领域,这种材料可以被用于制造更加高效有用的仿生机器人和智能机械;在能源领域,这种材料可以被应用于制造高效的电池和太阳能电池;在环境领域,这种材料可被应用于制造高效的纳米催化剂,可以帮助改善环境问题。

另外,这种材料还可以被用于制造智能医疗器材等。

二、多重响应性的新型智能材料研究的进展多重响应性的新型智能材料的研究已经开始进入实质性的探索阶段。

许多学者和研究人员已经进行了较为深入的研究和探索,并获得了一系列具有创新性的突破。

例如,在温度敏感材料的研究中,研究人员通过设计合适的化学结构,成功地制造出具有高度温度敏感性的聚合物。

这种聚合物具有较高的熔点,可在高温下自我形变,并且可以通过对其结构进行微调,实现不同范围内的响应性。

除此之外,许多研究人员也开始关注多重响应性智能材料在光学和电学领域的应用,尝试制造出具有光学响应性和电学响应性的新型材料。

有些材料在接受光照后可以发生下的形态改变,使其变得更具响应性;有些材料可以在接受电场刺激后更容易进行光发射或酵素催化,具有高度的可控性和可调节性。

三、多重响应性的新型智能材料的潜在应用由于多重响应性的新型智能材料具有极高的可控性和可调节性,因此它们具有极大的潜在应用。

以下简要介绍一些可能的应用。

CO_2刺激响应聚合物_冯岸超

CO_2刺激响应聚合物_冯岸超
2 CO2 刺激响应聚合物概述
CO2 气体从体系中释放出来后,体系可逆地回复到 初始的状态( 如图式 1 所示) 。这样的机理通常被 认为是动态的共价键的自组装[19,20]。
图式 1 伯胺与 CO2 气体分子的可逆共价结合机理[16] Scheme 1 Reversible covalent mechanism of primary amine with CO2 gas molecules[16]
Department of Chemistry,Tsinghua University,Beijing 100084,China)
Abstract CO2 -stimuli responsive polymers are a class of newly developed smart stimuli responsive polymers, which usually refers to the polymers possessing reversible changes upon admission and emission of CO2 . Since the regulation process only involves CO2 and inert gases,without the introduction of other impurities,there are many potential applications in this field. This article summarized recent research progress on the preparation of CO2 stimuli responsive polymers,followed by the discussion of their self-assembly,classifying in accordance with the CO2 -switchable groups,such as primary amine,amide and some specific polymer chains. The development prospect of this research field and its potential applications are also discussed.

双重响应N-乙烯基己内酰胺、甲基丙烯酸共聚微凝胶的研究

双重响应N-乙烯基己内酰胺、甲基丙烯酸共聚微凝胶的研究
物 ; 别 利 用 光 散 射 技 术 和 浊 度 法 考 察 了 微 凝 胶 的 温 度 响 应 性 和 p 响 应 性 , 果 表 明 这 分 H 结 些 微 凝 胶 具 有 良好 的 温 度 和 p 响应 性 。 H 关 键 词 : 凝 胶 ; 淀 聚 合 ;温 度 响 应 性 ; H 响 应 性 微 沉 p 中 图分 类 号 : 3 O6 1 文献标 识码 : A
双重 响 应 N一 乙烯 基 己内酰 胺 、 甲基 丙烯 酸共 聚 微凝 胶 的 研究
程 祥 胜 ,马 晓 梅 ,邢 雅 成
( 岛大 学化 学化工 与环境 学院 ,山 东 青 岛 2 6 7 ) 青 6 0 1 摘要 :以 N一 乙烯 基 己内酰 胺 、 甲基 丙烯 酸为单体 , N一 甲基 双丙 烯酰 胺为 交联 剂 , N, 亚 过 硫 酸钾为 引发剂 , 利用沉 淀 聚合 法 合 成 了一 系列 具 有 p 和温 度 双重 响应 性 的微 凝 胶 。 H 利 用红外 光谱技术 对微凝 胶进行 了结构 表征 , 结果 表 明 , 制备 的微凝 胶是两 种单体 的共聚
程祥 胜 , :双重 响应 N 一 等 乙烯 基 己内 酰胺 、 甲基丙 烯 酸共 聚微凝 胶 的研 究
6 l
N一 乙烯 基 己 内酰 胺 ( L , VC ) 纯度 为 9 . , 肃省 化工 研究 院提 供 , 接使 用 ; 87 甘 直 甲基 丙烯 酸 ( MAA) 分 ,
物相容性 差等缺 点 。研究 发现另 一类热 力学 响应 性 聚合 物一 聚 ( 一 N 乙烯 基 己 内酰胺 ) P L) 它 的体积相 ( VC ,
转变温 度范 围在 3  ̄4 0 0℃ ( P P 与 NI AM 接近 ) 非常接 近人体 的生理 学温度 , , 另外 还具有 高 的配位 性质和 良 好 的成膜性 , 在人体 内不会 引起排 斥反应 , ] 且水解 后低 毒 、 没有 氨 基衍 生 物 的生成 _ 。国外有 些 研究 者 已 3 ] 经考 察 了部 分基 于 VC L体系 的微凝胶 , A.ma 等报 道 了 N 一 如 I z 乙烯基 己内酰胺基微 凝胶 的合成 和表征 , 并

温度和pH双重响应性水凝胶的制备及其药物控制释放的研究(可编辑)

温度和pH双重响应性水凝胶的制备及其药物控制释放的研究(可编辑)

温度和pH双重响应性水凝胶的制备及其药物控制释放的研究中国科学技术大学硕士学位论文温度和pH双重响应性水凝胶的制备及其药物控制释放研究姓名:潘婷婷申请学位级别:硕士专业:高分子化学与物理指导教师:何卫东2011-04-28摘要摘要智能水凝胶作为一种亲水性的刺激响应性聚合物材料,在药物控制释放领域引起了诸多研究者的关注。

近来,在多重刺激以及快速刺激响应聚合物水凝胶方面的深入研究,使得智能水凝胶的应用研究具有更广阔的前景。

本论文在前人工作的基础上,在温度和 pH双重响应性的网络-接枝水凝胶的制备和应用方面进行了有益的探索,具体的工作如下:1. 通过原子转移自由基聚合ATRP、可逆加成断裂链转移聚合RAFT和点击化学相结合的方法,成功制备了两种具有温度和 pH 双重响应性的网络-接枝水凝胶 PDMAEMA聚甲基丙烯酸二甲氨基乙酯-g-PNIPAM聚 N-异丙基丙烯酰胺和 PNIPAM-g-PDMAEMA。

在一个末端含有两个叠氮基团的 PNIPAM或者 PDMAEMA是通过 ATRP 反应得到的,带有炔侧基的 PDMAEMA或者PNIPAM的共聚物是通过相应单体与丙烯酸炔丙酯的 RAFT共聚反应得到的, 最后通过点击化学反应生成网络-接枝水凝胶。

通过对水凝胶在不同温度和pH条件下溶胀行为的研究,发现该水凝胶表现出对温度和 pH的快速刺激响应性、高溶胀比和溶胀收缩的可循环性。

2. 互换主网络和接枝链的位置,比较了两种的网络-接枝水凝胶在不同温度和pH介质中的溶胀行为,研究包括网络构筑、交联长度和接枝链长度等结构因素对水凝胶溶胀行为的影响。

3. 以头孢曲松钠作为模型药物,以不同交联程度的 PDMAEMA-g-PNIPAM 作为药物载体,研究了该网络-接枝水凝胶在不同温度和 pH 条件下的药物控制释放行为。

药物的释放速度和释放量随外界环境的改变而改变,并且交联结构的孔洞大小也对药物的装载和释放行为有影响。

实验证明了该网络-接枝水凝胶可以被用作智能药物控制释放体系。

刺激响应聚合物

刺激响应聚合物

刺激响应聚合物
刺激响应聚合物(stimuli-responsive polymers,SRP)是包括多种类型的聚合物,它们具有可见光、超声波、热量、化学信号等外界刺激的响应性。

SRP可以在受到刺激的情况下发生结构的变化,从而改变其外观、形状或物理性质。

SRP具有巨大的应用前景,有助于解决重要的挑战和问题。

它可以用作传感器、控制器和智能材料,从而实现机械设计中看不见的机制,从而可以根据外界信号制定响应策略,实现可控环境中的自适应行为。

此外,SRP还可以用来制备医学和生物学应用中响应外界刺激而改变结构的材料。

SRP技术也可以用于食品包装,以预防食品受污染,提高食品安全。

例如,当室内温度、包装环境内的有害气体水平等发生变化时,包装材料可变色,提示采取紧急措施或购买新的包装材料。

因此,可刺激的聚合物製造技术具有良好的前景并且已经得到了广泛的应用,它能够根据外界刺激而实现快速和有效的反应,从而改变外观、形状或性质。

由此可见,SRP技术是一项具有重大意义的技术,可以在许多领域开展创新的研究,取得惊人的成就。

双重响应两亲性聚前药的合成及其在药物控释方面的应用

双重响应两亲性聚前药的合成及其在药物控释方面的应用

双重响应两亲性聚前药的合成及其在药物控释方面的应用韩克;张国颖【摘要】通过可逆加成-断裂链转移(RA FT)聚合制备了能够对紫外光和还原环境进行双重响应,以聚乙二醇为亲水嵌段、以侧基中分别含有邻硝基苄硫醚结构的甲基丙烯酸酯衍生物单体及含二硫键结构的喜树碱(CPT)前药单体的共聚嵌段为疏水嵌段的两亲性聚前药.采用紫外-可见吸收光谱和动态光散射跟踪研究了由该聚前药自组装得到的复合囊泡组装体的光响应特性及喜树碱原药分子的释放过程.结果表明,紫外光照可以有效促进CPT 的释放,经紫外光照20 min后,CPT在96 h内的累积释放量可达近60%.%Polymeric assemblies capable of in-situ constructing redox microenvironments in the hydrophobic domains were designed and fabricated to promote the release of covalently conjugated camptothecin(CPT) drug molecules.The ultraviolet(UV)and redox responsive amphiphilic polyprodrug diblock copolymer, PEG-b-P(NTMA-co-CPTM), was synthesized via reversible addition-fragmentation chain transfer (RAFT)polymerization,in which the hydrophilic block was polyethylene glycol(PEG)and the hydrophobic block was copolymerized from two kinds of stimuli-responsive methacrylate derivative monomers,UV-responsive NTMA monomer and redox-sensitive CPTM monomer.In the side group of (2-(3-(4,5-dimethoxy-2-nitrobenzyl)mercapto-propanamido)ethoxycarbonylamino)ethyl methacrylate (NTMA)monomer,o-nitrobenzyl thioether moiety was introduced to protect the mercapto group;while in the side group of CPTM prodrug monomer,CPT drug moiety was linked to the ethyl group of ethylmethacrylate via disulfide linkage.T he chemical and chain structure of the corresponding monomers and diblock polymers were characterized by Nuclear Magnetic Resonance(NMR),High Performance Liquid Chromatography(HPLC),Electron Spray Ionization Mass Spectrometry(ESI-MS)and Gel Permeation Chromatography(GPC).The prepared amphiphilic PEG-b-P(NTMA-co-CPTM)diblock polyprodrug copolymer could self-assemble into compound vesicles in aqueous solution,as confirmed by Transmission Electron Microscope(TEM)and Dynamic LightScattering(DLS)measurements.The dual responsiveness of the P(NTMA-co-CPTM)compound vesicles and the release of CPT were monitored via Ultraviolet-Visible(UV-Vis)spectroscopy and DLS.It was found that under UV irradiation,in the side chains of P(NTMA-co-CPTM)blocks,mercapto groups could be decaged due to the photo-cleavage of the o-nitrobenzyl thioether moieties,thus in-situ constructing reductive microenvironments in the hydrophobic domains of the compound vesicles.Then,CPT drug molecules were released via the exchange reaction between the decaged mercapto groups and the adjacent disulfide linkages.After being subjected to UV irradiation for 20 min,the cumulative release of CPT drug molecules within 96 h from PEG-b-P(NTMA-co-CPTM)compound vesicles was as high as 60%,comparable to the result obtained within the same duration time after addition of 5 mmol/L glutathione(GSH)and without UV irradiation.【期刊名称】《功能高分子学报》【年(卷),期】2018(031)002【总页数】11页(P98-107,127)【关键词】双重响应性;两亲性聚前药;自组装;复合囊泡【作者】韩克;张国颖【作者单位】中国科学技术大学高分子科学与工程系,合肥230026;中国科学技术大学高分子科学与工程系,合肥230026【正文语种】中文【中图分类】O63刺激响应性聚合物是一类能够对外界的物理、化学和生物类等刺激做出响应的功能高分子。

响应性聚合物材料的合成与性能研究

响应性聚合物材料的合成与性能研究

响应性聚合物材料的合成与性能研究近年来,响应性聚合物材料作为一种新型的智能材料,在能源、环境保护、生物医学等领域展示出巨大的应用潜力。

它们具有自主响应、可控性和可逆性等特点,能够根据外界的刺激改变其物理或化学性质,从而实现对环境的快速响应和调控。

本文将从合成方法和性能研究两方面探讨响应性聚合物材料的研究进展。

一、合成方法响应性聚合物材料的合成方法多种多样,下面我们将介绍几种常见的方法。

1. 立体选择性聚合立体选择性聚合是一种通过定向控制单体结构以合成具有特定立体化学性质的聚合物的方法。

例如,通过手性诱导剂引发聚合反应可以合成具有手性结构的聚合物,这种立体结构可以赋予聚合物特殊的光学、电学或机械性能;另外,采用自由基聚合法也能够合成具有斑点结构的响应性聚合物材料,其斑点的大小和分布受到聚合过程中的扩散限制。

2. 共价键交换共价键交换是一种通过在聚合物链中引入可逆共价键,使聚合物能够在外界刺激下发生可逆性结构变换的方法。

目前常用的共价键交换方法有互穿网络聚合、嵌段共聚和主-客体作用等。

例如,通过在聚合物链中引入可逆的硫-硫键,可以实现响应性聚合物的可逆性结构变换和自修复能力。

3. 外场诱导聚合外场诱导聚合是一种通过外界的物理场诱导、控制聚合反应的方法,如光聚合、电聚合和磁聚合等。

例如,通过紫外光的照射能够引发光敏单体的聚合,从而合成具有光敏性和光控性质的聚合物材料;另外,通过电场的作用可以控制电活性单体的聚合速率,从而实现聚合物形貌和性能的可控调控。

二、性能研究响应性聚合物材料具有许多独特的性能,下面我们将从几个方面介绍其性能研究。

1. 响应性能响应性是响应性聚合物材料最重要的性能之一,它指的是材料能够对外部刺激做出快速而可逆的响应,如形状变化、颜色变化、溶胀或蓄能释放等。

研究和控制响应机理将有助于材料的应用拓展和性能的优化。

2. 可控性能可控性是响应性聚合物材料研究的一个重要方向,它指的是材料能够根据外界刺激自主调控其性质或行为。

RAFT一步法制备温度和pH双重响应的多孔智能水凝胶及其性能

RAFT一步法制备温度和pH双重响应的多孔智能水凝胶及其性能

RAFT一步法制备温度和pH双重响应的多孔智能水凝胶及其性能刘桂廷;杨云云;叶磊;闫付臻;徐伟;冉蓉【期刊名称】《高分子材料科学与工程》【年(卷),期】2012(28)12【摘要】通过可逆加成-断裂链转移聚合法(RAFT)一步反应成功合成了温度和pH 双重敏感的聚乙二醇甲基丙烯酸酯(OEGMA)-co-丙烯酸梳形/多孔智能水凝胶。

采用扫描电镜(SEM)对水凝胶结构进行表征,结果表明,随着加入的致孔剂聚乙二醇(PEG)分子量越大、加入量越多,所得多孔水凝胶的孔径就越大、孔的数目就越多。

对水凝胶进行溶胀测试,结果表明,在RAFT试剂的调控下所得凝胶的结构更均匀,因此所得凝胶的溶胀性能较好;经PEG致孔后的水凝胶,其溶胀程度和响应速率相对于致孔前都有所提高;此外OEGMA侧链PEG的长度和交联剂中间链段的长度都对凝胶的溶胀性能有显著的影响。

【总页数】4页(P13-16)【关键词】可逆加成;断裂链转移聚合法;梳形;多孔水凝胶;温度和pH双敏感;聚乙二醇【作者】刘桂廷;杨云云;叶磊;闫付臻;徐伟;冉蓉【作者单位】高分子材料工程国家重点实验室,四川大学高分子科学与工程学院【正文语种】中文【中图分类】TB381【相关文献】1.温度和 pH 双重刺激响应型水凝胶的溶胀性能研究 [J], 陈洪事;张薇;吴道江;陈广辉;韦晓云;王毓2.PEG致孔快速响应pH/温度双重敏感性PNIPAM/SA水凝胶的制备与性能 [J], 李兆乾;林建明;吴季怀;黄妙良;陆遥遥;冷晴3.pH-温度双重敏感性水凝胶的制备及溶胀性能研究 [J], 娄婷婷; 崔璐娟; 于京; 李志英; 李强文4.聚丙烯酸/聚乳酸复合多孔pH响应水凝胶的制备及性能 [J], 陈培珍;刘瑞来5.温度和pH双重敏感型聚氨酯水凝胶的制备及性能 [J], 周虎;熊一帜;余斌;刘玄;焦银春;周杰;王东东;漆志凌因版权原因,仅展示原文概要,查看原文内容请购买。

酸和谷胱甘肽的双重响应性聚合物胶束负载光敏剂用于肿瘤细胞的光动力治疗

酸和谷胱甘肽的双重响应性聚合物胶束负载光敏剂用于肿瘤细胞的光动力治疗

酸和谷胱甘肽的双重响应性聚合物胶束负载光敏剂用于肿瘤细胞的光动力治疗王秋生;曹红亮;杲云【摘要】将大分子引发剂溴代聚乙二醇单甲醚(PEG2KBr)和酸响应的单体二(2-丙烯酰氧基乙氧基)-(4-甲氧基苯基)甲烷(ACD)通过逆向增强-原子转移自由基聚合(DE-ATRP)得到新型的两亲性嵌段共聚物PEG-b-PACDs,再利用滴水法自组装形成纳米胶束及载有二氢卟吩e6(Ce6)的纳米胶束.通过核磁共振氢谱(1H-NMR)、动态光散射(DLS)、透射电子显微镜(TEM)等对聚合物的结构及胶束粒径和形貌进行了测试表征,并采用噻唑蓝(MTT)法验证了载有Ce6的胶束对细胞的毒性.结果表明,聚合物可自组装成均一的球形胶束,负载Ce6后载药量可达到6.04%;在模拟肿瘤微环境的条件下,载药胶束具有酸、谷胱甘肽(GSH)两重响应性,并且有着良好的载药缓释性能;细胞毒性实验证明了该载药胶束对癌细胞具有很好的光动力治疗(PDT)效果.【期刊名称】《华东理工大学学报(自然科学版)》【年(卷),期】2019(045)003【总页数】8页(P424-431)【关键词】逆向增强-原子转移自由基聚合;响应释放;光动力治疗【作者】王秋生;曹红亮;杲云【作者单位】华东理工大学材料科学与工程学院,上海市先进聚合物材料重点实验室,上海200237;华东理工大学材料科学与工程学院,上海市先进聚合物材料重点实验室,上海200237;华东理工大学材料科学与工程学院,上海市先进聚合物材料重点实验室,上海200237【正文语种】中文【中图分类】O632.12当今癌症已成为人类健康的第二大杀手,由于其高致死率导致人们谈癌色变,为此,科学工作者付出了巨大的努力来研究肿瘤治疗。

传统药物具有非特异性作用,在杀死癌细胞的同时对正常的细胞也造成巨大的损伤[1],这使得本就虚弱的病人更加虚弱、痛苦,而智能载体则能够选择性地将负载药物靶向到肿瘤组织及细胞中,再经过刺激响应释放药物。

双刺激响应型纳米载药系统的构建及性能

双刺激响应型纳米载药系统的构建及性能

双刺激响应型纳米载药系统的构建及性能贾梦虹;任天斌【摘要】采用聚乙二醇单甲醚(mPEG)为亲水段,聚赖氨酸(PzLL)为疏水段,通过二硫键和碳氮双键串联桥连合成了两嵌段共聚物(mPEG-CN-SS-PzLL),其中的二硫键具有还原敏感性,碳氮双键具有pH酸敏感性.通过红外光谱和核磁共振谱等手段测试分析了产物的化学结构.将聚合物通过透析法自组装制备得到双刺激响应型纳米载药粒子.结果表明:该纳米载药粒子的药物包封率较高,达到52%.该载药系统在还原环境或酸性环境下具有良好的体外释药性能.【期刊名称】《功能高分子学报》【年(卷),期】2015(028)001【总页数】6页(P85-90)【关键词】谷胱甘肽敏感;pH敏感;双刺激响应;纳米粒子【作者】贾梦虹;任天斌【作者单位】同济大学材料科学与工程学院,上海200092;同济大学材料科学与工程学院,上海200092【正文语种】中文【中图分类】O63化疗法是目前癌症治疗的主要方法,然而目前治疗效果并不理想。

化疗药物的疗效因为耐药性的出现而大打折扣。

耐药性产生的机理与药物释放转运蛋白(如P糖蛋白等)的调控有关,相关数据表明耐药性成为导致死亡的主要因素之一[12]。

到目前为止,相关专家已提出了大量的解决方案,包括直接抑制药物转运蛋白的过表达、基因沉默、转录水平上的调控以及药物包载[35]。

目前,聚合物纳米粒子包载药物的方法是解决耐药性问题的一种有效方法[68],以纳米粒子作为药物载体包裹的药物可避免耐药细胞的识别,使药物在病灶处有效聚集。

刺激响应型纳米粒子可以在外界信号刺激下产生物理或化学变化,包括分子链结构、溶解性、表面结构、溶胀、解离等行为,以达到释放药物的目的,从而实现药物的可控释放,降低药物的毒副作用并提高药物的生物利用度[910]。

根据肿瘤组织和正常组织的差别而设计的具有刺激响应性的纳米载体材料是目前生物医药领域的研究热点[1112]。

基于二硫键在还原环境下可以断裂的性质而设计的敏感性载体具有很好的应用前景,已被广泛应用于脱氧核糖核酸(DNA)的传输载体。

偶氮苯的多响应性超分子水凝胶

偶氮苯的多响应性超分子水凝胶

环境监测、光电器件等其他领域应用
环境监测
偶氮苯多响应性超分子水凝胶可以作为环境监测材料,通过对外界环境参数(如温度、湿度、光照等 )的响应,实现对环境变化的实时监测和报警。
光电器件
利用偶氮苯多响应性超分子水凝胶的光电性能,可以制备出具有特殊光电功能的器件,如光开关、光 调制器等,为光电信息技术的发展提供新的材料基础。
影响因素分析
偶氮苯衍生物结构的影响
不同结构的偶氮苯衍生物会对超分子 水凝胶的性能产生影响,如光响应速 度、稳定性等。
高分子化合物种类的影响
不同种类的高分子化合物会影响超分 子水凝胶的形成和性能,如凝胶强度、 透明度等。
制备条件的影响
制备过程中的温度、浓度、pH值等 条件会对超分子水凝胶的结构和性能 产生影响。
药物控释、生物传感器等生物医学领域应用
药物控释
偶氮苯多响应性超分子水凝胶可以作 为药物载体,通过外界刺激控制药物 的释放速率和剂量,实现精准治疗, 提高药物疗效和降低副作用。
生物传感器
利用偶氮苯多响应性超分子水凝胶的 敏感性和可逆性,可以制备出具有高 灵敏度和选择性的生物传感器,用于 生物分子的检测和分析。
外部环境的影响
如光照强度、温度等外部环境因素也 会对超分子水凝胶的性能产生影响。
03 偶氮苯多响应性超分子水 凝胶的光响应行为研究
光致变色现象及机理探讨
光致变色现象
偶氮苯及其衍生物在特定波长的光照射下,会发生可逆的顺反异构化反应,导 致颜色变化。
机理探讨
光致变色现象主要归因于偶氮苯分子中N=N双键的π-π*电子跃迁。在光照下, 偶氮苯从稳定的反式结构转变为不稳定的顺式结构,同时伴随着颜色的变化。
智能窗户、调光玻璃等建筑领域应用

光响应型主客体超分子聚合物

光响应型主客体超分子聚合物

光响应型主客体超分子聚合物刘秀军;马骧【摘要】通过主客体非共价键作用将光响应基团引入超分子聚合物体系中可以获得光响应型超分子聚合物,此类聚合物在自愈合体系、聚集诱导发光、光控组装等领域具有重要应用.综述了近期基于冠醚、环糊精、杯芳烃、柱芳烃和葫芦脲为主体的光响应超分子聚合物的合成与性质,并对此类主客体超分子聚合物的发展前景进行了展望.【期刊名称】《华东理工大学学报(自然科学版)》【年(卷),期】2019(045)004【总页数】11页(P517-527)【关键词】超分子聚合物;主客体作用;光响应【作者】刘秀军;马骧【作者单位】华东理工大学分析测试中心,上海 200237;华东理工大学精细化工研究所,上海 200237【正文语种】中文【中图分类】O621近年来,具有可控发光特性的材料已经在许多领域得到了应用,例如光电器件、荧光传感和成像[1]领域。

利用超分子化学构建高效发光材料不仅能简化制备过程,而且可以赋予这类发光材料刺激响应性和可逆性。

主客体非共价键相互作用(氢键、离子键、π-π堆积、疏水作用和静电相互作用等)是形成超分子聚合物的驱动力,二者的结合强度和性质决定了聚合机理和超分子聚合物的性质[2]。

由于非共价相互作用是可逆的,因此,可通过外界刺激(如pH变化、光刺激、温度等)调控超分子聚合物的构象、性质以及发光行为。

主客体系统主要由主体和客体两部分组成,主体分子通常具有一个空腔,它能通过尺寸、形状、电荷、极性等参数来选择性识别客体分子,这类分子一般有冠醚、环糊精(CD)、杯芳烃、柱芳烃和葫芦脲(CB);客体分子通常是可以进入主体空腔的有机化合物,如联吡啶盐、偶氮苯等。

本文综述了近期基于冠醚、CD、杯芳烃、柱芳烃以及CB为主体的光响应超分子聚合物,并对其功能和应用进行了总结和展望。

1 基于冠醚的光响应超分子聚合物冠醚是由多个醚键组成的第一代合成大环化合物。

利用冠醚和客体分子(通常是仲铵盐和联吡啶盐等)的相互作用可以构建模拟自然系统的智能材料。

一种刺激响应型两亲性环糊精聚合物载体、制备及其在制备缓控释药

一种刺激响应型两亲性环糊精聚合物载体、制备及其在制备缓控释药

专利名称:一种刺激响应型两亲性环糊精聚合物载体、制备及其在制备缓控释药物中的应用
专利类型:发明专利
发明人:钟世安,刘慧,李秀芳,陈建,孙燕华,许江峰,李建兵,黄玲,任涛,邓志伟
申请号:CN201810304175.X
申请日:20180404
公开号:CN108187059A
公开日:
20180622
专利内容由知识产权出版社提供
摘要:本发明属于药物制剂领域,具体公开了两亲性环糊精聚合物药物载体,其特征在于:以环糊精为核心,其中环糊精核心的至少一个糖环的6‑位修饰接枝有亲水性链段;至少一个糖环的2‑位和/或3‑位修饰有疏水性链段。

并且以对肿瘤微环境有刺激响应性的化学键连接亲水端与环糊精,达到定向释放的目的。

此外本发明还公开了所述的载体的制备方法和应用。

该方法制备的两亲性环糊精载药系统具有粒径适宜、形态均匀,载药量大,刺激响应性好,缓控释性能高的优点。

申请人:中南大学
地址:410083 湖南省长沙市岳麓区麓山南路932号
国籍:CN
代理机构:长沙市融智专利事务所
更多信息请下载全文后查看。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ArticlesA New Double-Responsive Block Copolymer Synthesized via RAFTPolymerization:Poly(N-isopropylacrylamide)-block-poly(acrylic acid)Christine M.Schilli,†Mingfu Zhang,†Ezio Rizzardo,‡San H.Thang,‡(Bill)Y.K.Chong,‡Katarina Edwards,§Go1ran Karlsson,§and Axel H.E.Mu1ller*,†Makromolekulare Chemie II,Universita¨t Bayreuth,95440Bayreuth,Germany,CSIRO MolecularScience,Bag10,Clayton South,Victoria3169,Australia,and Department of Physical Chemistry,Uppsala University,Box579,75123Uppsala,SwedenReceived December4,2003;Revised Manuscript Received July23,2004ABSTRACT:Poly(N-isopropylacrylamide)-block-poly(acrylic acid),PNIPAAm-b-PAA,with low polydis-persity was prepared by reversible addition-fragmentation chain transfer(RAFT)polymerization inmethanol.The block copolymers respond to both temperature and pH stimuli.The behavior of the double-responsive block copolymers in solution was investigated by dynamic light scattering,temperature-sweepNMR,cryogenic transmission electron microscopy,and IR spectroscopy.The block copolymers form micellesin aqueous solutions in dependence of pH and temperature.Cloud point measurements indicated theformation of larger aggregates at pH4.5and temperatures above the lower critical solution temperature(LCST)of PNIPAAm.The solution behavior is strongly influenced by hydrogen bonding interactionsbetween the NIPAAm and acrylic acid blocks.IntroductionBlock copolymers consisting of poly(acrylic acid),PAA,and poly(N-isopropylacrylamide),PNIPAAm,are ofinterest for a variety of reasons.First of all,poly(acrylicacid)is a polymer that responds to changes in pH andionic strength with changes in its properties;e.g.,at pH<4precipitation occurs in aqueous solutions due toprotonation of the carboxylate groups,which renders thepolymer sparsely soluble in water.Poly(N-isopropyl-acrylamide),PNIPAAm,shows lower critical solutiontemperature(LCST)behavior in aqueous solutions,anda sharp phase transition is observed at32°C in water.1The combination of pH-responsive PAA and temper-ature-responsive PNIPAAm creates systems that re-spond to combined external stimuli.Conjugation ofdrugs or proteins to PNIPAAm-b-PAA generates ther-mo-and pH-responsive entities that can be addressedthrough external stimuli.Furthermore,PNIPAAm-b-PAA may form micelles orother aggregates depending on solvent,temperature,pH,and block lengths(cf.Figure1).Temperature-orpH-sensitive micelles could eventually be used to confer bioadhesive properties;pH-sensitive micelles might be applied in the drug delivery to tumors,inflamed tissues, or endosomal compartments,where a pH lower than that in normal tissue is found.2For that reason,we synthesized the corresponding block copolymers by reversible addition-fragmentation chain transfer(RAFT)polymerization of NIPAAm in the presence of a PAA RAFT agent synthesized earlier.3We investigated the behavior of these block copolymers in DMF and aqueous solution using turbidimetry,dynamic light scattering,cryogenic transmission electron mi-croscopy,Raman and IR spectroscopy.Experimental SectionMaterials.N-Isopropylacrylamide(Aldrich,97%)was re-crystallized twice from benzene/hexane3:2(v:v)and dried under vacuum prior to use.Azobis(isobutyronitrile)(AIBN, Fluka,purum)was recrystallized twice from methanol.Poly-(acrylic acid)(polymeric RAFT agent)was obtained from RAFT*Corresponding author.Fax:+49-921-553393.E-mail:axel. mueller@uni-bayreuth.de.†Universita¨t Bayreuth.‡CSIRO Molecular Science.§UppsalaUniversity.Figure 1.Possible modes of aggregate formation forPNIPAAm-b-PAA in aqueous solution in dependence of pH andtemperature.7861 Macromolecules2004,37,7861-786610.1021/ma035838w CCC:$27.50©2004American Chemical SocietyPublished on Web09/21/2004polymerization of acrylic acid in methanol with1-cyanoethyl 2-pyrrolidone-1-carbodithioate as chain transfer agent.3It was purified by precipitating its methanol solution into ethyl acetate in order to remove residual monomer and to avoid formation of gradient copolymers in the subsequent block copolymerization with NIPAAm.The precursor had M n)7900 g/mol(DP n)110)and M w/M n)1.19.Polymerizations.RAFT polymerizations were carried out in methanol as solvent using AIBN as initiator at60°C. NIPAAm(1.5mol/L)and the other reagents(for concentrations see Table1)were mixed in a vial and aliquots were transferred to ampules,which were degassed by three freeze-thaw-evacuate cycles and then flame-sealed under vacuum.The ampules were immersed completely in an oil bath at the specified temperature.Analyses.Gel permeation chromatography(GPC)of the DMF-soluble PNIPAAm-b-PAA was performed using a series of four Styragel columns HT2,HT3,HT4,and HT5and an oven temperature of80°C.The solvent was DMF+ 0.05M LiBr at a flow rate of1.0mL/min.A Dawn EOS light scattering detector with Optilab DSP interferometer(both set at690nm)was used.GPC using water+0.05M sodium azide was conducted on PSS Suprema columns(300×8mm,10µm particle size)with 102,103,and104Åpore sizes.Poly(methacrylic acid)standards were used for calibration.The measurements were carried out at a flow rate of1mL/min at25°C or60°C,respectively,using RI and UV detection(λ)254nm).MALDI)TOF mass spectrometry was performed on a Bruker Reflex III spectrometer equipped with a337nm N2 laser in the reflector mode and20kV acceleration voltage. Sinapinic acid(Aldrich,97%)was used as the matrix material. No salt addition was necessary.Samples were prepared from ethanol solution by mixing matrix(20mg/mL)and sample(10 mg/mL)in a ratio of10:1.The number-average molecular weights,M n,of the polymer samples were determined in the linear mode.Dynamic light scattering(DLS)was performed on an ALV DLS/SLS-SP5022F compact goniometer system with an ALV5000/E correlator and a He-Ne laser(λ)632.8nm). The polymer solutions were prepared from0.1M citrate buffered aqueous solutions with polymer concentration c≈1.1mg/mL.The solutions were filtered twice through Millipore nylon filters(pore size0.45µm).The normalized intensity autocorrelation function g2(t)was measured experimentally. The CONTIN method was used for data analysis of g2(t).The following nonlinear fit model was used:G(t)denotes the decay rate distribution function.This analysis results in a discrete,intensity-weighted distribution function of logarithmically equidistant-spaced decay time.The hydro-dynamic radii were calculated from the corresponding decay time applying the Stokes-Einstein equation,based on the assumption that the scattering particles behave as hard spheres in dilute solution and within the Rayleigh-Debye theory.IR spectra were recorded on a Bruker Equinox55/S FT-IR spectrometer.The measurements were performed on films on CaF2plates cast from aqueous solutions.Raman spectra were recorded using a confocal optical setup consisting of a He-Ne laser(λ)632.8nm),objectives of numerical aperture0.45and0.20,and a50µm pinhole replacing the entrance slit of the monochromator.A CCD line detector in the exit focal plane of the monochromator was used for recording the spectra.Cloud point measurements were performed in0.2wt% (buffered)aqueous polymer solutions.For details,see ref3.Cryogenic transmission electron microscopy(cryo-TEM)measurements were performed on a Zeiss EM902A instrument with operation in the zero-loss bright-field mode and an acceleration voltage of80kV.Digital images were recorded with a BioVision Pro-SM Slow Scan CCD camera system.A climate chamber was used for sample preparation in order to control temperature and relative humidity.The temperature was set to25or45°C,respectively,and the relative humidity was set to99%.Samples were prepared by placing a drop of the aqueous solution on a copper grid,which was covered with a perforated polymer film and coated with carbon on both sides.The sample film was thinned by blotting and was vitrified in liquid ethane.Results and DiscussionPNIPAAm-b-PAA was synthesized by the RAFT process for the first time.The block copolymerization was performed using poly(acrylic acid)as a macromo-lecular chain transfer agent.The obtained polydisper-sities are very low.Table1summarizes the results obtained for block copolymers with a PAA block length equal to110monomer units.MALDI-TOF mass spectrometry,used for determi-nation of number-average molecular weights,led not only to singly charged but also to multiply charged molecules due to the ease of ionization of the acrylic acid blocks.In general,two major peaks were found in the MALDI-TOF spectra,which were attributed to single-and double-charged polymers.Both DMF and water were used as solvents for GPC to determine molecular weight averages and polydis-persities of the block copolymers from entries1and2 in Table1.In all cases,the molecular weights deter-mined by GPC are about one order of magnitude higher than the theoretical and MALDI values.Light scatter-ing detection yields even higher values(entries1and2 in Table1).This was attributed to the formation of aggregates in solution and will be discussed along with further details on aqueous GPC.It was also confirmed by1H NMR in DMF-d7.3In the following,the characteristics of block copoly-mers with a fixed AA block length of110units and a varying NIPAAm block length of n units is discussed, and polymers will be abbreviated as(NIPAAm)n-b-(AA)110.Gel permeation chromatography with DMF as eluent, using a light scattering detector,was used to evaluate the molecular weights of the block copolymers.The obtained M n values were about two orders of magnitudeTable1.Experimental Conditions and Results of the Block Copolymerization of PAA with PNIPAAm(1.5M)Using PAA (DP n)110,M n)7900g/mol,M w/M n)1.19)as Macromolecular Chain Transfer Agent in Methanol at60°Centry PAA(mM)AIBN(mM)time(h)convn(%)10-4M n,theor(g/mol)10-4M n,MALDI(g/mol)n c10-4M n,GPC a(g/mol)M w/M n114.87.01064 1.51 1.365022.8(237)b 1.11 214.87.01682 1.72 1.405426.6(275)b 1.0939.47.01648 1.65 1.637422.2 1.06413.0 4.61075 1.77 1.43578.57 1.155 6.5 4.61065 2.49 2.3413729.2 1.03a In DMF/LiBr with PMMA calibration.b Absolute molecular weights using a light scattering detector.c DP n of PNIPAAm block,n) (M n,MALDI-M n,PAA)/M NIPAAm.g 2(t)-1)(∫t min t max e-t G(t)d t)27862Schilli et al.Macromolecules,Vol.37,No.21,2004higher than the calculated ones.Therefore,it was assumed that aggregation takes place.This is not quite expected as DMF should be a good solvent for both the PNIPAAm and the PAA block.To prove this assump-tion,aqueous GPC of the polymer samples was per-formed at 25and 60°C.At 25°C,only one peak is observed,whereas two peaks were found at 60°C,namely one in the high-molecular weight region and one at the same elution volume as the peak observed at 25°C (Figure 2).The absence of a peak at higher elution volume at 25°C indicates the absence of homo-PAA or homo-PNIPAAm.This observation strongly indicates the formation of micelles at 60°C,which is above the cloud point of PNIPAAm.At this temperature,PNIPAAm is insoluble in aqueous solution,and it is assumed that it forms the core of a micelle with PAA forming the corona (Figure 1).Micelle formation at elevated temperature was also confirmed by dynamic light scattering (see below).Thus,the peak at lower elution volume in Figure 2corre-sponds to micelles.The combination of pH-responsive poly(acrylic acid),PAA,and thermoresponsive poly(N -isopropylacryl-amide),PNIPAAm,in a block copolymer leads to a system that responds to both pH and temperature.The solubility of the PAA block in aqueous solutions depends on the pH of the medium.The lower the pH,the more carboxylate groups of the PAA blocks are protonated and the less soluble this block becomes in aqueous media.At pH >8,virtually all carboxylate groups are deprotonated,and the PAA segment is readily soluble in water.From the PNIPAAm point of view,its LCST is altered through the attachment of acrylic acid chains and it is expected to be raised if the acrylic acid block is hydrophilic and lowered if the acrylic acid block is hydrophobic.In some cases,LCST behavior can even be lost if the length of the acrylic acid block is too large.4The influence of different pH values on the cloud point,T c ,was investigated on 0.2wt %buffered aqueous solutions with pH values ranging from 7to 4.5.For pH )5.0-7.0,0.1M phosphate buffer and for pH )4.5-5.0,0.1M citrate buffer were used.No influence of the type of buffer (phosphate or citrate buffer)on the appearance of the turbidimetric curves was found so that small differences in ionic strength owing to the different buffer systems can be neglected.Figure 3shows the turbidimetric curves of PNIPAAm-b -PAA at different pH values.The transmission de-creases only slightly at pH values 5.0-7.0when the temperature is raised above the LCST of PNIPAAm.This suggests the presence of micelles with PNIPAAm forming the micellar core at T >T c and PAA forming the corona.Dynamic light scattering confirms these findings (see following section).At pH 4.5,transmission decreases to 0%when the temperature is raised above T c ,indicating the formation of larger aggregates due to increasing insolubility of the protonated PAA corona.Consequently,the formation of this type of micelles is dependent on both pH and temperature.Such a doubly responsive behavior in aqueous media has also been described by Armes et al.for the system poly(2-diethyl-aminoethyl methacrylate)-block -poly(propylene oxide)5and by Laschewsky et al.for poly(2-[N -(3-methacryla-midopropyl)-N ,N -dimethyl]ammoniopropanesulfonate)-block -poly(N -isopropylacrylamide).6Figure 3also shows that the cloud point of PNIPAAm is raised from T c )32°C for the pure polymer to ca.35°C at pH 5-7,whereas it is slightly lowered to ca.29°C at pH 4.5.This is due to acrylic acid segments that are hydrophilic at pH 5-7and thereby increase the cloud point,but the acrylic acid segments are relatively hydrophobic at pH 4.5due to protonation of the carboxylate groups,which decreases T c .Dynamic light scattering (DLS)measurements were performed on buffered aqueous solutions of PNIPAAm-b -PAA of pH 5.6at different temperatures.The typical field correlation functions are shown in Figure 4.At 20°C e T e 35°C,three peaks are found in the intensity-weighed (z -)hydrodynamic radius distribution function (Figure 5,top),which are believed to cor-respond to unimers,aggregates,and larger aggregates.Since the CONTIN analysis renders intensity-weighted distributions,the proportion of the large particles is strongly exaggerated,as the scattering intensity is strongly dependent on the radius of the particle (∼R 3for spherical particles).Thus,the weight fraction of the aggregates is actually rather small.In a corresponding mass distribution plot,w (log R h )∼z (log R h )/R h 3,the peak for the unimer is dominant along with a small peak for aggregates located at R h ∼20nm,and the peak for large aggregates (R h >100nm)almost disappears.The nature of the aggregates will be discussed below.With increasing temperature,the scattering intensity was observed to be nearly constant within the temper-ature range of 20°C e T e 35°C.When the tempera-ture was increased to 42°C,which is above T c of PNIPAAm in the block copolymer,there was a dramatic increase in the scattering intensity (more than two times).At this temperature a bimodal distribution is found in the intensity-weighed hydrodynamic radius distribution function and the unimer peak disappears.Additionally,the peak at R h ∼20nm is dominant in this case.When the temperature increased to 50°C,theFigure 2.GPC traces (RI detector)of (NIPAAm)50-b -(AA)110at 25(top)and 60°C (bottom)in water +0.05M NaN 3.3Figure 3.Turbidimetry of buffered aqueous solutions of (NIPAAm)50-b -(AA)110:(b )pH 4.5;(9)pH 5-7.3Macromolecules,Vol.37,No.21,2004New Double-Responsive Block Copolymer 7863scattering intensity increased further (about 1.5times of that at 42°C),and only one very narrow peak is observed in the hydrodynamic radius distribution curve (Figure 5,bottom).In this case,micelles with hydro-phobic PNIPAAm constituting the micellar core and hydrophilic PAA forming the corona are most likely formed.DLS suggests the formation of aggregates at room temperature as the hydrodynamic radii of the particles are smaller than those of the micelles observed at higher temperature but too large for unimers.In the literature,hydrogen-bonded interpolymer complexes between poly-(acrylic acid)and poly(acrylamide)derivatives have been reported,where acrylamide acts as a strong hydrogen acceptor and acrylic acid provides hydrogen for bind-ing.7,8Taking these findings into consideration,it can be assumed that intermolecular hydrogen bonding takes place between PAA and PNIPAAm.To prove hydrogen bonding between amide and carboxylic acid,Shibanuma et al.applied FT-IR spectroscopy using the ATR (attenu-ated total reflectance)technique that allows for mea-surement in aqueous solutions.8,9In this work,Raman spectroscopy was considered as a substitute for the ATR technique.One of the advantages of Raman spectro-scopy is that water can be used as a solvent,which is almost impossible in IR transmission spectroscopy due to the strong absorption of water.Raman spectroscopy is usually best suited for the characterization of nonpol-ar or only slightly polar bonds.The strong and charac-teristic IR bands of polar groups,such as C d O or O -H,are usually reduced in the Raman spectra so that rela-tively weak carbonyl stretching bands are expected.10Figure 6shows the Raman spectrum obtained for a 2wt %solution of PNIPAAm-b -PAA in citrate buffer pH 5.6along with that of a 2wt %aqueous PNIPAAm solution for comparison.To eliminate buffer signals,pure 0.1M citrate buffer was recorded and the spectrum was subtracted from the Raman spectrum of the blockcopolymer.Figure 4.Field correlation functions of (NIPAAm)74-b -(AA)110in 0.1M citrate buffer pH 5.6at a scattering angle of 30°:(a)T )35°C;(b)T )50°C.Figure 5.Hydrodynamic radii distribution of (NIPAAm)74-b -(AA)110in 0.1M citrate buffer pH 5.6(CONTIN analysis;θ)30°).Top:T )35°C.Bottom:T )50°C.Figure 6.Raman spectra of aqueous solutions of (NIPAAm)137-b -(AA)110at pH 6and of PNIPAAm.7864Schilli et al.Macromolecules,Vol.37,No.21,2004The carbonyl and amide stretching bands in the Raman spectrum appear at a somewhat lower wave-number as compared to IR spectroscopy.The respective stretching bands are relatively weak,as was expected for a polar group in Raman paring the spectrum of the homopolymer PNIPAAm with thatof the block copolymer PNIPAAm-b -PAA,the bands at 1556and 1613cm -1in the PNIPAAm spectrum were attributed to amide stretching,which is found at 1556and 1616cm -1in the block copolymer spectrum.The band at 1682cm -1arises from carbonyl stretching of the acrylic acid carboxyl groups in PNIPAAm-b -PAA.On comparison of the stretching bands in the PNIPAAm and PNIPAAm-b -PAA spectra,it is evident that the stretching bands in the block copolymer spectrum are broadened with respect to the PNIPAAm spectrum.This is an indication for some complexation or hydrogen bonding taking place between the two blocks.Such a broadening of stretching bands due to cooperative H ‚‚‚O interactions has also been observed by other authors.11To confirm the conclusion drawn from the Raman spectra,IR spectroscopy was used on block copolymer samples that were cast on calcium fluoride plates from 2wt %aqueous phosphate-buffered solutions.Figure 7shows an exemplary IR spectrum as compared with those of the homopolymers.On comparison of the different spectra,a splitting of the amide stretching band in PNIPAAm-b -PAA is evident and the band is shifted to lower wavenumbers,whereas the split carbonyl stretching band of the block copolymer is shifted to higher wavenumbers with re-spect to the homopolymer spectra.These observations agree with those reported in the literature for hydrogen bonding between acrylic acid and acrylamides.8The carbonyl stretching band in the PAA homopolymer spectrum is already somewhat split due topartialFigure 7.IR spectrum of solid (NIPAAm)137-b -(AA)110with spectra of the homopolymers PNIPAAm and PAA for compari-son.Figure 8.Cryo-TEM images for (NIPAAm)74-b -(AA)110cast from buffered aqueous solutions of pH 4.5or pH 5.6,respectively,at temperatures below and above LCST of PNIPAAm.The arrow denotes an ice crystal attached to the surface after vitrification.Macromolecules,Vol.37,No.21,2004New Double-Responsive Block Copolymer 7865hydrogen bonds between the carboxylic acid groups. This also agrees with results reported in the literature.8 In conclusion,interpolymer hydrogen bonding in PNIPAAm-b-PAA leads to the formation of aggregates at room temperature.Micelles are formed at tempera-tures above ca.40°C with PNIPAAm forming the micellar core and PAA constituting the corona.To further investigate the structures of micelles and aggregates in solution,cryogenic transmission electron microscopy(cryo-TEM)measurements were performed on buffered PNIPAAm-b-PAA solutions of pH4.5and pH5.6at20°C and45°C.These temperatures were chosen to study the solutions below and above the LCST of PNIPAAm.Figure8shows the corresponding cryo-TEM images.The transmission electron micrograph at pH4.5and 20°C(Figure8a)shows particles of diameters in the range of10-30nm,which might correspond to micelles with PAA core.From the size and fact that these particles sometimes touch each other(e.g.,in the upper right part of the image)one may conclude that not only the core but also the shell is seen.Some smaller structures can be observed but their size cannot be quantified due to lack of sufficient contrast.At pH4.5 and45°C(b),large particles with diameters of about 130nm are seen in the micrographs.These are assigned to larger aggregates.No hydrogel formation seems to take place(also confirmed by the low viscosity)as one might have expected due to the insolubility of both PNIPAAm and PAA at high temperature and low pH values.Hydrogel formation may require a higher con-centration than that of2wt%,which was used for the block copolymer solutions and will occur more easily with ABA triblock copolymers.The transmission electron micrograph at pH5.6and 20°C shows large aggregates(d>300nm)and barely visible,smaller particles,confirming the DLS results that indicated aggregates of different sizes.The smallest particles observed in the DLS studies are invisible due to lack of sufficient contrast in the images.At pH5.6 and45°C,aggregates of diameters in the range of10-30nm are observed.This is in good agreement with DLS measurements,where a coexistence of micelles and unimers was found.Again,small particles,i.e.,unimers, are not detected due to the low contrast. ConclusionsHydrogen bonding between N-isopropylacrylamide and acrylic acid units in PNIPAAm-b-PAA block copoly-mers influences strongly their behavior in solution.The block copolymers form starlike micelles in aqueous solutions in dependence on pH and temperature.Cloud point measurements indicated the formation of larger aggregates at pH4.5and temperatures above LCST, whereas micelles formed at pH5-7and temperatures above LCST.At pH5.6and50°C,only micelles were found,whereas at lower temperatures,larger aggre-gates and micelles coexist.Formation of larger ag-gregates by hydrogen bonding interactions was revealed by IR and Raman spectroscopy as well as by cryogenic transmission electron microscopy and dynamic light scattering.Acknowledgment.The authors thank Prof.Lothar Kador and Carmen Perez-Leon,Experimental Physics IV,Universita¨t Bayreuth,for their efforts with Raman spectroscopy and Cornelia Lauble for the MALDI-TOF measurements.This work was supported by the Deut-sche Forschungsgemeinschaft(DFG).References and Notes(1)Hsu,S.-H.;Yu,T.-L.Macromol.Rapid Commun.2000,21,476-480.(2)Jones,M.-C.;Leroux,J.-C.Eur.J.Pharmacol.Biopharm.1999.(3)Schilli,C.;Mu¨ller,A.H.E.;Rizzardo,E.;Thang,S.H.;Chong,B.Y.K.In Advances in controlled/living radical polymeri-zation;Matyjaszewski,K.,Ed.;ACS Symposium Series854;American Chemical Society:Washington,DC,2003;pp603-618.(4)Bulmus,V.;Ding,Z.;Long,C.J.;Stayton,P.S.;Hoffman,A.S.Bioconjugate Chem.2000,11,78-83.(5)Liu,S.;Billingham,N.C.;Armes,S.P.Angew.Chem.,Int.Ed.2001,40,2328-2331.(6)Arotcarena,M.;Heise,B.;Ishaya,S.;Laschewsky,A.J.Am.Chem.Soc.2002,124,3787-3793.(7)Wang,Y.;Morawetz,H.Macromolecules1989,22,164-167.(8)Shibanuma,T.;Aoki,T.;Sanui,K.;Ogata,N.;Kikuchi,A.;Sakurai,Y.;Okano,T.Macromolecules2000,33,444-450.(9)Ramon,O.;Kesselman,E.;Berkovici,R.;Cohen,Y.;Paz,Y.J.Polym.Sci.,Part B:Polym.Phys.2001,39,1665-1677.(10)Hesse,M.;Meier,H.;Zeeh,B.Spektroskopische Methodenin der organischen Chemie,5th ed.;Georg Thieme Verlag: Stuttgart,Germany,1995.(11)Blatchford,M.A.;Raveendran,P.;Wallen,S.L.J.Am.Chem.Soc.2002,124,14818-14819.MA035838W7866Schilli et al.Macromolecules,Vol.37,No.21,2004。

相关文档
最新文档