2018年全国高考新课标1卷理科数学试题(解析版)

合集下载

2018高考全国1卷理科数学试卷及答案,推荐文档

2018高考全国1卷理科数学试卷及答案,推荐文档

绝密★启用前2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题,本题共 12小题,每小题5份,在每小题给出的四个选项中,只有一项是符合 题目要求的。

1 i1.设 z -------- 2i ,贝U z1 i 1 A.0 B. —C.1D. 222. 已知集合Ax |x 2 x 20,则 C R AA. x | 1 x 2B. x | 1 x 2C. x | x 1 x |x 2D. x| x 1 x| x 23•某地区经过一年的新农村建设,农村的经济收入增加了一杯,实现翻番。

为更好地了解 该地区农村的经济收入变化情况,统计和该地图新农村建设前后农村的经济收入构成比例, 得到如下饼图:A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4•记S n 为等差数列 a n 的前n 项和,若3S 3 S 2 S 4, a 12,则a 5A.-12B.-10C.10D.125•设函数f xx 3 a 1 x 2 ax ,若f x 为奇函数,则曲线 y f x 在点0,0处的切建设后经济攻入构戌比例其他辰入.线方程为6•在 ABC 中,AD 为BC 边上的中线,E 为AD 的中点,贝U EB7•某圆柱的高为2,地面周长为16,其三视图如右图,圆柱表面 上的点M 在正视图上的对应点为A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到N 的路径中,最短路径的长度为 A.2 .17 B. 2 . 5C.3D.228•设抛物线C: y4x 的焦点为F ,过点22,0且斜率为一的直线与C 交于3M ,N 两点,则 FM FNA.5B.6C.7D.89.已知函数f XXe ,x 0,g x f XIn x, x 0x a ,若g x 存在2个零点,则a 的取值范围是A. 1,0B. 0,C. 1,D. 1,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成。

2018年高考全国一卷理科数学答案及解析(可编辑修改word版)

2018年高考全国一卷理科数学答案及解析(可编辑修改word版)

2018 年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有 12 小题,每小题 5 分,共 60 分。

1、设 z= ,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得z =( - i )+ 2i 【考点定位】复数= i ,所以|z|=12、已知集合 A={x|x 2-x-2>0},则 A =A 、{x|-1<x<2}B 、{x|-1 x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x2}【答案】B【解析】由题可得 C R A={x|x 2-x-2≤0},所以{x|-1 x2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。

B 、新农村建设后,其他收入增加了一倍以上。

C 、新农村建设后,养殖收入增加了一倍。

D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

【答案】A【解析】由题可得新农村建设后,种植收入 37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前 n 项和,若 3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=( a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0 ; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数 f(x)=x3+(a-1)x2+ax,若 f(x)为奇函数,则曲线 y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有 f(x)+f(-x)=0 整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=A、- -B、- -C、- +D 、-【答案】A1【解析】AD 为 BC 边∴上的中线 AD= 2 1 AB +11 AC2 1 E 为 AD 的中点∴AE= AD = 21 AB + AC4 4 1 3 1EB=AB-AE= = AB -( 4 AB + AC )= 4AB - AC4 4 【考点定位】向量的加减法、线段的中点7、某圆柱的高为 2,底面周长为 16,其三视图如右图,圆柱表面上的点 M 在正视图上的对应点为 11A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N的路径中,最短路径的长度为A 、B 、C 、3D 、2 【答案】B1 【解析】将圆柱体的侧面从 A 点展开:注意到 B 点在 圆周处。

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2018高考全国1卷理科数学试卷及答案

2018高考全国1卷理科数学试卷及答案

2018 年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题,本题共12小题,每小题 5 份,在每小题给出的四个选项中,只有一项是符合题目要求的。

1i1. 设z 2i ,则z1i1A.0B.C.1D.222. 已知集合A x|x2 x 20 ,则C R AA. x | 1 x 2B. x|1x2C. x|x 1 x|x2D. x|x 1 x| x 23.某地区经过一年的新农村建设,农村的经济收入增加了一杯,实现翻番。

为更好地了解该地区农村的经济收入变化情况,统计和该地图新农村建设前后农村的经济收入构成比例,得到如下饼图:A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记S n为等差数列a n 的前n项和,若3S3 S2 S4,a1 2,则a5A.-12B.-10C.10D.125.设函数f x x3 a 1 x2 ax ,若f x 为奇函数,则曲线y f x 在点0,0 处的切绝密★启用前则下面结论中不正确的是线方程为10. 下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成。

三个半圆的直径分别为直角三角形 ABC 的斜边 BC ,直角边 AB,AC , ABC 的三边所围成的区域 记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。

在整个图形中随机取一点,此点取自的概率分 别记为 p 1, p 2, p 3 ,则A. y 2xB.y xC.y 2xD. y x6.在 ABC 中, AD 为BC 边上的中线, E 为 AD 的中点,则 EB3 1 1 3 A. AB AC B. AB AC4 4 4 4 3 1 1 3 C. AB AC D. ABAC 4 4 4 47.某圆柱的高为 2,地面周长为 16,其三视图如右图,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视 图上的对应点为 B ,则在此圆柱侧面上,从 M 到N 的路径中, 最短路径的长度为A.2 17B.2 5C.3D.2则 FM FNA.5B.6C.79.已知函数 fe x ,x 0 x ,g x ln x,x 0fx围是A. 1,0B. 0,22,0 且斜率为 的直线与 C 交于 M ,N 两点,3D.8x a ,若 g x 存在 2 个零点,则 a 的取值范C. 1,D. 1,8.设抛物线 C: y 24 x 的焦点为 F ,过点A. p 1 p 2B.p 1 p 3C.p 2 p 3D.p 1 p 2 p 3211. 已知双曲线 C: y 2 1 , O 为坐标原点, F 为C 的右焦点, 过F 的直线与 C 的两条渐3近线的交点分别为 M ,N 。

(完整版)2018年全国卷Ⅰ理科数学高考试题及答案,推荐文档

(完整版)2018年全国卷Ⅰ理科数学高考试题及答案,推荐文档

{}ð2018 年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12 小题,每小题5 分,共60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

z =1- i+ 2i1. 设1+ i ,则| z |=1A.0 B.2 C.1 D.2.已知集合A =x x2 -x - 2 > 0,则R{x -1 <x < 2}A.C.{x | x <-1} {x | x > 2}{x -1 ≤x ≤ 2}B.D.{x | x ≤-1} {x | x ≥ 2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A.新农村建设后,种植收入减少2A =17 5 B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4. 记S n 为等差数列{a n }的前n 项和.若3S 3 = S 2 + S 4 , a 1 = 2 ,则 a 5 =A .-12 B .-10 C .10D .125. 设函数 f (x ) = x 3 + (a -1)x 2 + ax .若 f (x ) 为奇函数,则曲线 y = f (x ) 在点(0, 0) 处的切线方程为A.y = -2x D .y = xB.y = -xC.y = 2x6. 在△ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则 EB = 3 1 1 33 1A. 4 AB - 4 ACB. 4 AB - 4 ACC. 4 AB + 4AC1 AB + AC D .4 4 7. 某圆柱的高为 2,底面周长为 16,其三视图如图.圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到N 的路径中,最短路径的长度为A .2 B .2 C .3D .228.设抛物线 C :y 2=4x 的焦点为 F ,过点(–2,0)且斜率为 3 的直线与 C 交于 M ,N 两点,则 FM ⋅ FN =A .5B .6C .7D .833 ⎨ ⎩9.已知函数⎧e x ,,≤ 0 f (x ) = ⎨⎩ln x ,,> 0 g (x ) = f (x ) + x + a .若 g (x )存在 2 个零点,则 a 的 取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形 ABC 的斜边 BC ,直角边 AB ,AC . △ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点 取自Ⅰ,Ⅱ,Ⅲ的概率分别记为 p 1,p 2,p 3,则A. p 1=p 2 B .p 1=p 3 C .p 2=p 3D .p 1=p 2+p 311. 已知双曲线 C :x 2 - 23= 1 ,O 为坐标原点,F 为 C 的右焦点,过 F 的直线与 C 的两条渐近线的交点分别为 M 、N .若△OMN 为直角三角形,则|MN |=A.3 2B .3C . 2D .412. 已知正方体的棱长为 1,每条棱所在直线与平面 α 所成的角都相等,则 α 截此正方体所得截面面积的最大值为A. 3 34B. 2 33C. 3 24D.2二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2018年普通高等学校招生全国统一考试数学试题理(全国卷1,解析版)

2018年普通高等学校招生全国统一考试数学试题理(全国卷1,解析版)

所以所求的最短路径的长度为
,故选 B.
点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两 个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平 面图形的相关特征求得结果.
8. 设抛物线 C:y2=4x 的焦点为 F,过点(–2,0)且斜率为 的直线与 C 交于 M,N 两点,则
而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、
距离型;根据不同的形式,应用相应的方法求解.
14. 记 为数列 的前 项和,若
之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关
系,从而得出正确的选项.
详解:设新农村建设前的收入为 M,而新农村建设后的收入为 2M,
则新农村建设前种植收入为 0.6M,而新农村建设后的种植收入为 0.74M,所以种植收入增加了,所以 A 项
不正确;
新农村建设前其他收入我 0.04M,新农村建设后其他收入为 0.1M,故增加了一倍以上,所以 B 项正确;
则下面结论中不正确的是
A. 新农村建设后,种植收入减少
B. 新农村建设后,其他收入增加了一倍以上
C. 新农村建设后,养殖收入增加了一倍
D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
【答案】A
【解析】分析:首先设出新农村建设前的经济收入为 M,根据题意,得到新农村建设后的经济收入为 2M,
13. 若 , 满足约束条件
,则
的最大值为_____________.
【答案】6
【解析】分析:首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式

(完整版)2018高考全国卷1理科数学试题及答案解析,推荐文档

(完整版)2018高考全国卷1理科数学试题及答案解析,推荐文档
WORD 格式整理
2018 年普通高等学校招生全国统一考试 理科数学
注意事项: 1. 答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡
皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
y
0
D.
3 2

14. 记 Sn 为数列an的前 n 项和,若 Sn 2an 1 ,则 S6

15. 从 2 位女生,4 位男生中选 3 人参加科技比赛,且至少有 1 位女生入选,则不同的选法共有
种.(用数字填写答案)
16. 已知函数 f x 2sin x sin 2x ,则 f x的最小值是
A. y 2x
B. y x
C. y 2x
6. 在△ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则 EB
3 1 AB AC
A. 4
4
1 3 AB AC
B. 4
4
3 1 AB AC
C. 4
4
D. y x
1 3 AB AC
D. 4
4
7. 某圆柱的高为 2,底面周长为 16,其三视图如图.圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱 表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目
要求的。 z 1 i 2i
1. 设 1 i ,则| z |

2018年高考全国1卷理科数学试题与答案详细解析(word版_精校版)

2018年高考全国1卷理科数学试题与答案详细解析(word版_精校版)

15 / 17系,求得赔偿费用的期望;在解〔 ii 〕的时候,就通过比拟两个期望的大小,得到结果.解:〔 1〕 20 件产品中恰有2 件不合格品的概率为f ( p) C 202 p 2 (1 p)18.因此21 821 721 7). p( 1 1 0 )f ( p) C 2 0 [ 2p ( 1 p )1p 8 ( p1 ) 2]0 p2 C p( 1令 f ( p) 0 ,得 p 0.1 .当 p(0,0.1) 时, f ( p )0 ;当 p (0.1,1) 时, f ( p) 0 .所以 f ( p) 的最大值点为 p 00.1.〔 2〕由〔 1〕知,p0.1 .〔ⅰ〕令 Y 表示余下的 180 件产品中的不合格品件数,依题意知Y B(180,0.1) , X 20 2 25Y ,即 X 40 25Y .所以 EXE (40 25Y ) 40 25EY 490 .〔ⅱ〕如果对余下的产品作检验,那么这一箱产品所需要的检验费为 400 元.由于 EX400 ,故应该对余下的产品作检验.点睛:该题考察的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论 .21.【解析】分析: (1)首先确定函数的定义域,之后对函数求导,之后对进展分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;(2) 根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.解: 〔 1〕f ( x)的定义域为(0,) ,f ( x)12x〔ⅰ〕假设 a ≤ 2 ,那么 f ( x) ≤ 0 ,当且仅当 a 〔ⅱ〕假设 a 2 ,令 f ( x) a a20 得, x2aa 2 4 a a 2 4) 时,当 x (0,2) U (2,1 ax 2 axxx 22 , x 1 时 f( x)4a a 2或 x2f ( x)0 ;1.0 ,所以 f ( x) 在 (0,) 单调递减.4 .当 x(aa 24 , aa 24 ) 时, f ( x)0 . 所以 f ( x) 在 (0,aa 24 ) , (aa 2 4 , ) 单调递2222减,在 (a2, a2a 4 a 4 ) 单调递增.2 2〔 2〕由〔 1〕知,f ( x)存在两个极值点当且仅当a 2 .由于 f ( x) 的两个极值点2ax1 0 ,所以 x 1 x2 1 ,不妨设 x 1 x 2 ,那么 x 21 . 由于x 1, x 2满足 x理科数学试题第 15 页〔共 17 页〕系,求得赔偿费用的期望;在解〔 ii 〕的时候,就通过比拟两个期望的大小,得到结果.解:〔 1〕 20 件产品中恰有2 件不合格品的概率为f ( p) C 202 p 2 (1 p)18.因此21 821 721 7). p( 1 1 0 )f ( p) C 2 0 [ 2p ( 1 p )1p 8 ( p1 ) 2]0 p2 C p( 1令 f ( p) 0 ,得 p 0.1 .当 p(0,0.1) 时, f ( p )0 ;当 p (0.1,1) 时, f ( p) 0 .所以 f ( p) 的最大值点为 p 00.1.〔 2〕由〔 1〕知,p0.1 .〔ⅰ〕令 Y 表示余下的 180 件产品中的不合格品件数,依题意知Y B(180,0.1) , X 20 2 25Y ,即 X 40 25Y .所以 EXE (40 25Y ) 40 25EY 490 .〔ⅱ〕如果对余下的产品作检验,那么这一箱产品所需要的检验费为 400 元.由于 EX400 ,故应该对余下的产品作检验.点睛:该题考察的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论 .21.【解析】分析: (1)首先确定函数的定义域,之后对函数求导,之后对进展分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;(2) 根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.解: 〔 1〕f ( x)的定义域为(0,) ,f ( x)12x〔ⅰ〕假设 a ≤ 2 ,那么 f ( x) ≤ 0 ,当且仅当a〔ⅱ〕假设a 2 ,令 f ( x) a a20 得, x2aa 2 4 a a 2 4) 时, 当 x (0,2) U (2,1 a x2axxx 22 , x 1 时 f( x)4a a 2或 x2f ( x)0 ;1.0 ,所以 f ( x) 在 (0,) 单调递减.4 .当 x(aa 24 , aa 24 ) 时, f ( x)0 . 所以 f ( x) 在 (0,aa 24 ) , (aa 2 4 , ) 单调递2222减,在 (a2, a2a 4 a 4 ) 单调递增.2 2〔 2〕由〔 1〕知,f ( x)存在两个极值点当且仅当a 2 .由于 f ( x) 的两个极值点2ax1 0 ,所以 x 1 x2 1 ,不妨设 x 1 x 2 ,那么 x 21 . 由于x 1, x 2满足 x理科数学试题第 15 页〔共 17 页〕系,求得赔偿费用的期望;在解〔 ii 〕的时候,就通过比拟两个期望的大小,得到结果.解:〔 1〕 20 件产品中恰有2 件不合格品的概率为f ( p) C 202 p 2 (1 p)18.因此21 821 721 7). p( 1 1 0 )f ( p) C 2 0 [ 2p ( 1 p )1p 8 ( p1 ) 2]0 p2 C p( 1令 f ( p) 0 ,得 p 0.1 .当 p(0,0.1) 时, f ( p )0 ;当 p (0.1,1) 时, f ( p) 0 .所以 f ( p) 的最大值点为 p 00.1.〔 2〕由〔 1〕知,p0.1 .〔ⅰ〕令 Y 表示余下的 180 件产品中的不合格品件数,依题意知Y B(180,0.1) , X 20 2 25Y ,即 X 40 25Y .所以 EXE (40 25Y ) 40 25EY 490 .〔ⅱ〕如果对余下的产品作检验,那么这一箱产品所需要的检验费为 400 元.由于 EX400 ,故应该对余下的产品作检验.点睛:该题考察的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论 .21.【解析】分析: (1)首先确定函数的定义域,之后对函数求导,之后对进展分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;(2) 根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.解: 〔 1〕f ( x)的定义域为(0,) ,f ( x)12x〔ⅰ〕假设 a ≤ 2 ,那么 f ( x) ≤ 0 ,当且仅当a〔ⅱ〕假设a 2 ,令 f ( x) a a20 得, x2aa 2 4 a a 2 4) 时, 当 x (0,2) U (2,1 a x2axxx 22 , x 1 时 f( x)4a a 2或 x2f ( x)0 ;1.0 ,所以 f ( x) 在 (0,) 单调递减.4 .当 x(aa 24 , aa 24 ) 时, f ( x)0 . 所以 f ( x) 在 (0,aa 24 ) , (aa 2 4 , ) 单调递2222减,在 (a2, a2a 4 a 4 ) 单调递增.2 2〔 2〕由〔 1〕知,f ( x)存在两个极值点当且仅当a 2 .由于 f ( x) 的两个极值点2ax1 0 ,所以 x 1 x2 1 ,不妨设 x 1 x 2 ,那么 x 21 . 由于x 1, x 2满足 x理科数学试题第 15 页〔共 17 页〕。

2018年高考理科数学全国卷1(含详细答案)

2018年高考理科数学全国卷1(含详细答案)

理科数学试题A 第1页(共26页)理科数学试题A 第2页(共26页)绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码张贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液,不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121i z i i-=++,则z =( )A .0B .12C .1 D2.已知集合{}2|20A x x x =-->,则A =R ð( ) A .{}|12x x -<< B .{}|12x x -≤≤ C .{}{}|1|2x x x x <->D .{}{}|1|2x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N的路径中,最短路径的长度为( )A. B. C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a的取-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________理科数学试题A 第3页(共26页)理科数学试题A 第4页(共26页)值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( )A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )ABCD二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
131
AC=AB=2 ,

222
15
BC=
22
∴以AC和AB为直径的两个半圆面积之和为
1
2
×π×(
3
2
)
125
22
+×π×2=
π
28
∴以BC为直径的半圆面积与三角形ABC的面积之差为
1
2
×π×(
5
)
2
2-
125
×3×4=π-6;
28
∴两个月牙形(图中阴影部分)的面积之和等于
25
8
π-(
25
8
π-6)=6=ΔABC面积
(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.
(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品
的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.学.科网
(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;
3
3
M(,-
2
3
),N(3,3),∴|MN|=3
2
12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最
大值为
33
4
A.
B.
23
3
C.
32
4
D.
3
2
解析:选A如图正六边形与正方体每条棱缩成角相等。当正六边形过正方体棱的中点时,面积最大
此时正六边形的边长为
2
,其面积为6×
2
3
×(
4
2
)
2
33
2
=
4
二、填空题:本题共4小题,每小题5分,共20分。
x-2y-2≤0
13.若x,y满足约束条件x-y+1≥0,则z=3z+2y的最大值为_____________.
y≤0
解析:答案为6
14.记Sn为数列{an}的前n项和,若Sn=2an+1,则S6=_____________.
ex,x≤0
x,x≤0
lnx,x>0
,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是
A.[–1,0)B.[0,+∞)C.[–1,+∞)D.[1,+∞)
解析:选Cg(x)=0即f(x)=-x-a,即y=f(x)图象与直线y=-x-a有2个交点,结合y=f(x)图象可知-a<1
10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直
解析:a1=-1,n≥2时,an=Sn-Sn-1=2an-1,an=-2
n-1,S6=2a6+1=-64+1=-63
6=2a6+1=-64+1=-63
15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________
种.(用数字填写答案)
解析:合条件的选法有C6

解析:选A结合图形,EB(BABABCBA(ACABAC
2242444
7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面
上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为
A.217B.25C.3D.2
解析:选B所求最短路径即四份之一圆柱侧面展开图对角线的长
3-C3=16
4
16.已知函数f(x)=2sinx+sin2x,则f(x)的最小值是_____________.
解析:由题意可得T=2π是f(x)=2sinx+sin2x的一个周期,故只需考虑f(x)=2sinx+sin2x在[0,2π)
上的最小值。
∵f′(x)=2cosx+2cos2x=2cosx+2(2cos
∴p1=p2
2
x
11.已知双曲线C:
3
- y
2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别
为M、N.若ΔOMN为直角三角形,则|MN|=
第2页共7页
高考真题高三数学
3
2
A.
B.3C.23D.4
解析:选B依题F(2,0),曲线C的渐近线为y=±
3
x,MN的斜率为3,方程为y=3(x-2),联立方程组解得
2
8.设抛物线C:y=4x的焦点为F,过点(–2,0)且斜率为
2
3
→→
的直线与C交于M,N两点,则FM·FN=
A.5B.6C.7D.8
2
3
解析:选DF(1,0),MN方程为y=
→=(0,2),FN→=(3,4)
(x+2),代入抛物线方程解得交点M(1,2),N(4,4),则FM
∴F→M·→FN=8
9.已知函数f(x)=
综上,∠OMA=∠OMB.
20.(12分)
某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,
则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作
检验,设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.学科&网
18.(12分)
如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把ΔDFC折起,使点C到达点P的位
置,且PF⊥BF.
(1)证明:平面PEF⊥平面ABFD;
(2)求DP与平面ABFD所成角的正弦值.
解:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.
又BF平面ABFD,所以平面PEF⊥平面ABFD.
(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.
以H为坐标原点,→HF的方向为y轴正方向,|B→F|为单位长,建立如图所示的空间直角坐标系H-xyz.
由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=3.又PF=1,EF=2,故PE⊥PF.可得PH=
33
,EH=.
22
则H(0,0,0),P(0,0,
f(x1)-f(x2)
x1-x2
<a-2.
解:(1)f(x)的定义域为(0,+∞),f′(x)= -
1
(x1-2)( x2-2)
将y=k(x-1)代入
2
x
2
+ y
2=1得(2k2+1)x2-4k2x+2k
2-2=0所以,x1+x2=
1+x2=
2
4k
, x1x2=
2
2k+1
2k
2-2
.
2
2k+1
则2kx1x2-3k(x1+x2)+4k =
333
4k-4k-12k+8k+4k
=0
2k2+1
2+1
从而kMA+kMB=0,故MA,MB的倾斜角互补,所以∠OMA∠=OMB.
当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),
第4页共7页
高考真题高三数学
y1
则x1<2,x2<2,直线MA,MB的斜率之和为kMA+kMB=
x1-2
y2
+
x2-2
.
2kx1x2-3k(x1+x2)+4k
由y1=kx1-k, y2=kx2-k得kMA+kMB=
2p(1-p)
17(1-10p)
令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.
所以f(p)的最大值点为p0=0.1.
(2)由(1)知,p=0.1.
(i)令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=40+25Y,
(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
解:(1)20件产品中恰有2件不合格品的概率为f(p)=C202p2(1-p)
2p2(1-p)
18.
因此f′(p)= C202[2p(1-p)
2[2p(1-p)
18-18p2(1-p)17]=2 C
202p(1-p)
所以EX=E(40+25Y)=40+25EY=40+25×180×0.1=490.
(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.
由于EX>400,故应该对余下的产品作检验.
21.(12分)
已知函数f(x)=
1
x
- x+alnx.
(1)讨论f(x)的单调性;
(2)若f(x)存在两个极值点x1,x2,证明:
RA=
A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}
解析:选BA={x|x<-1或x>2}
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济
收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
(1)当l与x轴垂直时,求直线AM的方程;
(2)设O为坐标原点,证明:∠OMA=∠OMB.
相关文档
最新文档