图形认识初步思维导图

合集下载

二年级上册数学思维导图

二年级上册数学思维导图

例2 轴对称
例3 镜面对称
会在方格纸上 画对称图形
镜面对称(动作相同, 左右相反, 上下相同)
会减轴对称图形
会画对称轴
例1经历口诀 编制过程
例2初步理解一个数 的几倍是多少
实践活动:看一看摆一摆
整理与复习
7的乘法口诀
例3建立一个数的 几倍是多少的 计算思路
例4解决问题
第六单元 表内乘法(二)
例5 8的乘法口诀
厘米 和米
克和 千克
简单的 组合思 想和逻 辑推理 方法
认识 线段
用厘米 尺、米 尺测量
图形 和数 的排

认识角
对称
从不同 位置观 察物体
轴对称
统计知识
镜面 对称
我长 高了
剪 一 剪
表内 除法
看一看 摆一摆
有 Байду номын сангаас 重
估量长度, 建立长度概念
例1 统一长度单位
第一单元 统一长度单位
初步建立1厘米、 1米的长度观念。
乘法口诀表
例6 9的乘法口诀
编制9的口诀
编制8的乘法口诀
第七单元 统计与概率
数据统计活动初步
统计知识
体验数据的收集、 整理、描述和分析 的过程。初步了解 统计的意义。
学习简单的数 据收集和整理 的方法。进一 步了解统计的 意义。
统计图
认识以一当二的 条形统计图。
统计表
单式统计表
例1,摆数字卡片 有序
乘法的初步认识
例3感知用乘法 比较简便
第四单元 表内乘法(一)
整理与复习
例15的乘法口诀
例7 6的乘法口诀
例2 2的乘法口诀
2-6的乘法口诀

二年级上册数学思维导图二上数学思维导图(实用课件)

二年级上册数学思维导图二上数学思维导图(实用课件)

探 索
简 单
规的

组 合






理图
方形 法和



图 形 的测 认量 识
认 识 线 段
认识角
用 厘 米 尺 、 米 尺 测 量
图 形 与 变 换
图 形 与 位 置
对 称
轴 对 称
镜 面 对 称
概率
合应
我 用看

一 看
从 统计活 高 摆
不 动初步 了 一
同 位
剪 摆有

一多
观 察
剪重
物 体
统计知识
第四单元 表内乘法(一)
整理与复习
例15的乘法口诀
例7 6的乘法口诀
例2 2的乘法口诀
2-6的乘法口诀
例6 乘法应用题
例3 3的乘法口诀 例4 4的乘法口诀
例5 乘加乘减
二年级上册数学思维导图二上数学思维导图
6
从不同位置观察 物体形状不同
要全面观察
例1观察物体
第五单元 观察物体
认识轴对称图形
例2 轴对称
第六单元 表内乘法(二)
例5 8的乘法口诀
乘法口诀表
例6 9的乘法口诀
编制9的口诀
编制8的乘法口诀
二年级上册数学思维导图二上数学思维导图
8
第七单元 统计与概率
数据统计活动初步
统计知识
体验数据的收集、 整理、描述和分析 的过程。初步了解 统计的意义。
学习简单的数 据收集和整理 的方法。进一 步了解统计的 意义。
二年级上册数学思维导图二上数学思维导图
3
例1例2 不进位加
实践活动:我长高了

人教版小学数学四年级上册1-8单元思维导图

人教版小学数学四年级上册1-8单元思维导图

人教版小学数学四年级上册18单元思维导图一、第一单元:认识更大的数1. 数位顺序表2. 整数的读法和写法3. 整数的比较和大小关系4. 整数的加减法5. 乘法口诀表二、第二单元:角的初步认识1. 角的概念2. 角的分类3. 角的度量4. 角的加减法5. 角的周长三、第三单元:观察物体与几何图形1. 长方形和正方形的特征2. 三角形的特征3. 四边形的特征4. 圆的特征5. 立体图形的特征四、第四单元:分数的初步认识1. 分数的概念2. 分数的读法和写法3. 分数的比较和大小关系4. 分数的加减法5. 分数的应用五、第五单元:两位数乘两位数1. 乘法口诀表的应用2. 两位数乘两位数的计算方法3. 两位数乘两位数的进位和借位4. 两位数乘两位数的估算5. 两位数乘两位数的应用六、第六单元:小数的初步认识1. 小数的概念2. 小数的读法和写法3. 小数的比较和大小关系4. 小数的加减法5. 小数的应用七、第七单元:简易方程1. 方程的概念2. 方程的解法3. 方程的应用4. 一元一次方程5. 方程的变形八、第八单元:观察物体与几何图形(二)1. 立体图形的表面积2. 立体图形的体积3. 立体图形的切割与拼接4. 立体图形的应用5. 立体图形的拓展人教版小学数学四年级上册18单元思维导图一、第一单元:认识更大的数1. 数位顺序表:掌握数位的名称和顺序,了解数位之间的关系。

2. 整数的读法和写法:学习如何正确地读出和写出整数,掌握整数的基本表达方式。

3. 整数的比较和大小关系:通过比较整数的大小,建立数的大小概念,培养逻辑思维能力。

4. 整数的加减法:掌握整数加减法的计算方法,能够熟练地进行整数加减运算。

5. 乘法口诀表:学习乘法口诀表,掌握乘法的基本规律,提高计算速度和准确性。

二、第二单元:角的初步认识1. 角的概念:理解角的概念,掌握角的定义和特征。

2. 角的分类:学习不同类型的角,如锐角、直角、钝角等,了解它们之间的区别和联系。

小学数学空间类图形思维导图_简单清晰脑图分享-知犀

小学数学空间类图形思维导图_简单清晰脑图分享-知犀

空间类图形三视图
多个观察角度
解题原则
(1)观察到的三视图都是平面图
(2)原图有线就有线,原图没线就没线
(3)当被遮挡住时,看不见被遮挡部分
(4)某些角度下弧会被压平
小技巧
外部轮廓定方向,内部线条判对错
小方块类题目,找同一角度下的相同视图
截面图
解题原则一刀切
①刀无限大,一刀切到底
②不能拐弯
常见立体图形
六面体矩形、梯形、三角形等
圆柱圆、椭圆、矩形等
圆锥圆、椭圆、三角形等
圆台圆、椭圆、梯形等
注意
两个截面需要一刀完成
切到挖空面时,一定没有线封口
六面体一定切不出直角三角形
立体拼合
解题原则:凹凸一致
方块类拼合
选项个数不同,先数个数
选项个数相同,优先找最大/特殊块边进行拼合。

七年级数学上册第4章 几何图形初步思维导图

七年级数学上册第4章 几何图形初步思维导图

图形的初步认识立体图形的展开与折叠
几何体的展开
正方体的表面展开图
棱柱的表面展开图
圆柱的表面展开图
圆锥的表面展开图
折叠将平面展开图折叠成立体图形
常见的平面图形
直线两点确定一条直线
射线
线段
性质两点之间线段最短
中点
比较长短
度量法
叠合法

概念及表示方法
角的大小比较
度量法
1°=60'
1'=60''
叠合法
角的平分线
余角和补角
余角α与β互余:∠α+∠β=90°
补角α与β互补:∠α+∠β=180°
方向角和方位角
常见的立体图形
棱柱
圆柱上下底面是圆,侧面是曲面
棱柱
棱柱的所有侧棱长都相等
棱柱的上、下底面的形状相同
n棱柱有(n+2)个面、2n个顶点、3n条棱
锥体
圆锥底面是圆,侧面是曲面
棱锥底面是多边形,侧面是三角形
球由一个曲面围成
图形的构成元素
点点动成线
线线动成面
面面动成体
面与面相交得到线,
线与线相交得到点
立体图形的视图
主视图从正面看反映几何体的长和高
左视图从左面看反映几何体的宽和高
俯视图从上面看反映几何体的长和宽
视图到立体图形
七巧板的组成5块等腰直角三角形(2小形三角形、1块中形三角形和2块大形三角形)、
1块正方形和1块平行四边形
七年级数学上册 第四章 几何图形初步。

初中数学各章节知识图解思维导图(共9张PPT)

初中数学各章节知识图解思维导图(共9张PPT)

应用
特例
定理
勾股定理
证明 内容
文字.符号图形
互逆命题
内容
文字.符号图形
直角三角形
逆定理
全等
证明
应用
知三边定形状
锐角三角函数
有关线段
定义
三角 形
解直角三角形
锐角三角函数
定义
计算
三边关系锐角关 系边角关系
应用
坡度 仰.俯角 方位角
正弦
余弦
符号.几何意义. 特殊角的值
特殊值的运算
正切
作对称轴 作一点到两点距离相等 离相等(外心)
作等腰三角形 作一点到三点距
翻折后与 另一图形重 合
到两点距离相等的 点
点到两点 的距离 相等
性质
判定
应用
垂直平分线
定义
对称点
关于轴对称
基本 图形
对称 轴
特征
要素
利用轴对称制作图案


作:关于x轴、

y轴的对称点




解决几何中的

极值问题
基本图形
一条直线
翻折后与 两部分 重合
对称轴 定义
轴对称图形 静
与y轴交点位置 c>0.
对应角相等, 尺规作角 对应边成比例,
二次函数与 一元二次方程
对称轴垂直平分对称点的连线
作对直称线公轴理
直线
作等腰三角形
磁道问题
利润问题 拱桥问题
在表示原与点画法 c<0.
到寻三找射边线方的法 距离相射等线 在三角形内直线.射线.线段
一次函数与反比例函数
表示与画法
线段
计算与比较

人教版七年级数学(上册)知识点思维导图与总结

人教版七年级数学(上册)知识点思维导图与总结

人教版七年级数学上册知识点思维导图及总结人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的容.第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0a+b=0 a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1 a 、b 互为倒数;若ab=-1 a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

初中数学图解思维导图(共9张PPT)

初中数学图解思维导图(共9张PPT)

b x1= x2 =
2a
2a
无交
Δ<0

关系 二次函数
无实 根
解法
一元二次方程
应用
传播问题 行程问题 效率问题
与y轴交点位置 c>0.在正
开口上方a向<. 0.向a>下0.向对置称轴在左y同轴右的异位半 在轴 负半c=轴0.在原点
c<0.
解析
二次函数 与 一元二
次方程
定义
面积问题
y=ax2+bx+c (a.b.c为常数a≠0)
对表应示与点画法到旋转中心的距离相等
利用腰中点 割补射线成--- 全等三直线角.射线形.线、段 平行四边形 三寻边找射关线方系法 锐角关系边角关系
点表到示与直画线法
的距离
线段
多姿多彩的图形
图形认识初 步 相交线
计算与比较
平行线
性质
立体图形
平面图形
对邻

顶补

角角
画法
相交线
判定
条件
同位角相等 内错角相等
y axh2 k yaxx1xx2
(a 0)
a0
ax2+bx+c=0 (a≠0)
角平分线
余角.补角
性质
等角的余角相等 等角的补角相等
和 为1800

定义 性质

一“放”二“靠” 三“推”四“画”
叠合法
度量法
角的比较
对应点的坐标比为k或-k
角的比较与运算
在原点 c<0.
翻折后与 另一图定义形.表重示 合
y轴的对称点




解决几何中的

极值问题

常见的平面图形图示平面图形分类思维导图几何图形知识体系图

常见的平面图形图示平面图形分类思维导图几何图形知识体系图

平面图形:
有些几何图形(如线段、角、三角形、长方形、圆等)的各个部分都在同一平面内,它们是平面图形。

如直线、射线、角、三角形、平行四边形、长方形(正方形)、梯形和圆都是几何图形,这些图形所表示的各个部分都在同一平面内,称为平面图形。

例如:有一组对边平行的四边形一定是平面图形。

(两条平行线确定一个平面)
平面图形的大小,叫做它们的面积
点的形成是线,线的形成是面,面的形成是体。

平面图形:有些几何图形(如线段、角、三角形、长方形、圆等)的各个部分都在同一平面内,它们是平面图形。

常见的平面图形图示:
从左到右依次为:长方形、正方形、三角形、圆、椭圆、
菱形、五边形、六边形。

平面图形分类:
几何图形知识体系图:
平面图形有哪些
基本的平面图形:直线、射线、长方形、正方形、三角形、平行四边形、梯形、圆形等等。

平面图形是几何图形的一种。

平面几何图形可分为以下几类:1.圆形:包括正圆、椭圆等;2.多边形:三角形、四边形等;3.弓形:优弧弓、抛物线弓等;4.多弧形:月牙形、太极形、葫芦形等。

什么是平面图形
平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形、平形四边形等都是基本的平面图形。

平面图形是平面几何研究的对象。

几何图形,即从实物中抽象出的各种图形,可帮助人们有效的刻画错综复杂的世界。

生活中到处都有几何图形,我们所看见的一切都是由点、线、面等基本几何图形组成的。

几何源于西文西方的测地术,解决点线面体之间的关系。

无穷尽的丰富变化使几何图案本身拥有无穷魅力。

小学数学几何图形概念、公式大全-思维导图

小学数学几何图形概念、公式大全-思维导图

上次和孩子一起做了小学数学几何图形的思维导图,今天把这个导图彻底完善了下,把所有的计算公式都加进去了,整个导图画下来,等于把这些几何图形知识全部复习了一遍,同时找到不同几何图形之间的关联,加深了孩子的记忆。

里面还有些图形孩子目前还没学到,我在填充的时候,着重给孩子讲解了公式的由来,实在讲不出来的,就直接写上公式了,等于给孩子预习,也方便孩子以后的复习。

下面直接上图。

一、基本图形在认识线和角的基础上,主要回顾了计量单位以及换算。

线段的长度单位:千米:km、米:m、分米:dm、厘米:cm、毫米:mm换算:1千米=1000米、1米=10分米、1分米=10厘米、1厘米=10毫米、1米=100厘米、1米=1000毫米角的计量单位:(°)二、平面图形平面图形在认识三角形、四边形、圆的基础上,主要是回顾计量单位、周长、面积计算公式,还有些图形对应的性质。

面积的计量单位:1、周长:围成一个图形的所有边长的总和就是这个图形的周长周长的计量单位和换算和线段一样2、面积:物体的表面或围成的平面图形的大小,叫做它们的面积面积的计量单位:平方千米、公顷、平方米、平方分米、平方厘米单位换算:1平方千米=100公顷、1公顷=10000平方米、1平方米=100平方分米、1平方分米=100平方厘米长方形:周长:长方形周长=(长+宽)× 2面积:长方形面积=长×宽正方形:正方形周长= 边长× 4正方形面积= 边长×边长长方形和正方形的周长和面积公式,孩子都记得比较熟悉,所以直接列出来。

平行四边形:平行四边形的周长是四条边相加,但对边相等,所以只要是两条边相加×2就可以了。

面积:平行四边形的面积是通过剪切和平移,转化成一个长方形来计算,最后演变结果是:平行四边形面积=底×高。

即:S=ah梯形:周长比较好计算,四边相加即可。

梯形的面积演变过程,因为两个一样的梯形可以拼成一个平行四边形,所以梯形的面积就是:梯形面积=(上底+下底)×高÷2。

人教版七年级数学上册知识点思维导图与总结-七年级整数思维导图

人教版七年级数学上册知识点思维导图与总结-七年级整数思维导图

人教版七年级数学上册知识点思维导图及总结人教版七年级数学上册主要包含了有理数、个章节的内容.整式的加减、一元一次方程、图形的认识初步四第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成q 0)形式的数,都是有理数.正整数、0、负整数统称整数;正(p,q为整数且pp分数、负分数统称分数;整数和分数统称有理数.注意:即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;正有理数正整数正整数正分数整数零(2)有理数的分类: ①有理数零②有理数负整数负有理数负整数分数正分数负分数负分数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1 )只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是;(2)相反数的和为0 a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;a (a 0)(a 0)a(2)绝对值可表示为:a0(a 0)或a a (a0);绝对值的问题经常分类讨论;a (a 0)5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是1 ;a若ab=1 a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律: a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a无意义.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-a n或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=a n 或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

小学数学一年级下册第一单元思维导图

小学数学一年级下册第一单元思维导图
第方形、正方形、圆形和三角形
图形特点(平面的)
长方形:对边相等,4个角都是直直的 正方形:4边相等,4个角都是直直的 圆:没有角,即封闭的。 三角形:有三条边,三个角
拼一拼(一)
2个长方形(宽的长度是长的长度的一半)拼在一起
可拼成一个正方形 也可拼出一个长方形。
2个同样的三角形可以拼成一个平行四边形。
三角形拼图
2个同样的三角形可以拼成一个正方形。 6个同样的三角形(三条边一样长)可以拼成一个六边形。
4个同样的三角形(三条边一样长)可以拼成一个大的三角形。
正方形拼图
拼一拼(2)
认识七巧板 七巧板拼图
图形 实物 一套拼三角形 一套拼长方形

人教版七年级数学上册知识点思维导图及总结

人教版七年级数学上册知识点思维导图及总结

人教版七年级数学上册知识点思维导图及总结人教版七年级数学上册主要包含了有理数、个章节的内容 .整式的加减、一元一次方程、图形的认识初步四第一章有理数一、知识框架二.知识概念1.有理数:(1) 凡能写成q0) 形式的数,都是有理数.正整数、 0、负整数统称整数;正(p, q为整数且 pp分数、负分数统称分数;整数和分数统称有理数.注意: 0即不是正数,也不是负数; -a 不一定是负数, +a 也不一定是正数;不是有理数;正有理数正整数正整数正分数整数零(2)有理数的分类 :① 有理数零②有理数负整数负有理数负整数分数正分数负分数负分数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是0;(2)相反数的和为 0a+b=0a、 b 互为相反数 .4.绝对值:(1)正数的绝对值是其本身, 0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;a( a0)(a0)a(2) 绝对值可表示为: a0( a0) 或 a a(a0) ;绝对值的问题经常分类讨论;a(a0)5.有理数比大小:( 1)正数的绝对值越大,这个数越大;(2)正数永远比0 大,负数永远比0 小;(3)正数大于一切负数;( 4)两个负数比大小,绝对值大的反而小;( 5)数轴上的两个数,右边的数总比左边的数大;( 6)大数 -小数>0,小数 -大数< 0.6.互为倒数:乘积为 1 的两个数互为倒数;注意:0没有倒数;若a≠ 0,那么 a 的倒数是1;a若ab=1a、 b 互为倒数;若ab=-1a、 b 互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与 0 相加,仍得这个数 .8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;( 2)加法的结合律:( a+b)+c=a+ ( b+c) .9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+( -b) . 10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定 .11有理数乘法的运算律:(1)乘法的交换律: ab=ba;( 2)乘法的结合律:(ab) c=a( bc);(3)乘法的分配律: a( b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a无意义 . 013.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时 : (-a) n=-a n或 (a-b) n=-(b-a) n , 当 n 为正偶数时 : (-a)n =a n或 (a-b)n=(b-a) n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10 的数记成a×10n的形式,其中 a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字 .18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档
. 正方体的11种展开图。

常见的几何体圆柱
棱柱
立体图形圆锥
棱锥
多面体圆台
棱台

常见的平面图形
平面图形
多边形与三角形
三视图是观测者从三个不同位置观察
同一个空间几何体而画出的图形。

三视
图就是主视图、俯视图、左视图的总称。

三视图的投影规则是:
主视、俯视长对正
主视、左视高平齐
左视、俯视宽相等
线
直线
线射线
线段
锐角
直角
角钝角
平角
周角
公理总结
直线公理:经过两点,有且只有
一条直线。

(两点确定一条直
线)。

线段公里:两点之间,线段最短。

距离的定义:连接两点间的线段
的长度,叫做这两点的距离。

尺规作图法
无刻度的尺子圆规
多用于做一条线段等于已知线段的和差倍分。

相关文档
最新文档