鸽巢问题PPT课件-
合集下载
《鸽巢问题例》课件
![《鸽巢问题例》课件](https://img.taocdn.com/s3/m/ff9645bf9f3143323968011ca300a6c30d22f161.png)
对鸽巢问题的未来展望
随着科学技术的发展,鸽巢原理的应用范围将越来越广泛, 其重要性也将越来越突出。
在未来,随着数学和其他学科的交叉融合,鸽巢原理将会有 更多的应用场景和可能性,值得进一步探索和研究。
谢谢您的聆听
THANKS
鸽巢问题的应用场景
组合数学
在组合数学中,鸽巢原理 用于解决计数和排列组合
的问题。
概率论
在概率论中,鸽巢原理用 于计算概率和期望值。
计算机科学
在计算机科学中,鸽巢原 理用于设计和分析算法, 特别是在数据结构和算法
分析方面。
02
鸽巢问题的基本原理
鸽巢原理的数学表述
鸽巢原理的数学表述
如果 n 个物体要放入 n 个容器中,且至少有一个容器包含两个或两个以上的 物体,那么至少有一个容器包含的物体个数不少于两个。
资源分配
在日常生活中,我们经常遇到资源分 配的问题,如时间、金钱等。如何合 理地分配这些资源以最大化其效用, 就是一个典型的鸽巢问题。
排队理论
在排队理论中,鸽巢问题也经常出现 。例如,如何设计一个服务系统,使 得顾客等待的时间最短,就是一个典 型的鸽巢问题。
05
总结与思考
对鸽巢问题的理解和认识
鸽巢问题是一种经典的数学原理,它 表明在一定数量的物体和有限数量的 容器之间,至少有一个容器包含两个 或两个以上的物体。
鸽巢原理的证明方法二
数学归纳法。通过数学归纳法证明,当有 n 个物体和 n 个容器时,至少有一个容器包含两个或更多的物体。
鸽巢原理的推论和扩展
鸽巢原理的推论一
鸽巢原理的扩展
如果把 m 个物体放入 n 个容器中( m > n),那么至少有一个容器包含 两个或两个以上的物体。
鸽巢问题课件
![鸽巢问题课件](https://img.taocdn.com/s3/m/d0042a2ef08583d049649b6648d7c1c708a10b22.png)
02
鸽巢问题的基本形式
鸽巢问题的数学模型
定义:如果 n 个鸽子飞进 n-1 个鸽巢,且每个鸽 巢内至少有一只鸽子,那么存在至少两个鸽巢内 含有相同数量的鸽子。
x1 + x2 + ... + xn-1 >= n
数学表示:设 x1, x2, ..., xn-1 是每个鸽巢内的鸽 子数量,则有以下不等式
扩展鸽巢问题的应用领域
除了在计算机科学、密码学、数据存储等领域的应用外,我们还可以 将鸽巢问题的思想应用到其他领域中,例如生物学、物理学等。
03
研究新的解决算法
随着计算机科学的不断发展,我们也可以尝试研究新的解决算法来解
决鸽巢问题。例如,使用机器学习的方法来寻找最优解。
THANK YOU.
解决策略
对于不完全鸽巢问题,可以通过 增加鸽巢数量或减少待分配的鸽 子数量来寻找解决方案。
应用场景
不完全鸽巢问题在现实生活中也很 常见,例如在分配资源或安排人员 时,可能需要根据实际情况调整分 配方案。
多重鸽巢问题
定义
01
当每只鸽子都有多个可选的鸽巢时,这个问题被称为多重鸽巢
问题。
解决策略
02
对于多重鸽巢问题,需要考虑到每只鸽子的多个选择,并寻找
鸽巢问题的解决方法
鸽巢问题的解决方法包括数学方法和计算机算法。数学方法包括数学归纳法和反证法等, 而计算机算法则包括贪心算法和动态规划等。这些方法在不同的场景下有着不同的优劣和 应用。
未来研究方向和展望
01 02
深入探讨鸽巢问题的性质
尽管我们已经对鸽巢问题有了一定的了解,但是还有很多未解决的问 题和性质需要进一步探讨。例如,是否存在一种更简单的证明方法来 解决鸽巢问题?
鸽巢问题原理PPT课件
![鸽巢问题原理PPT课件](https://img.taocdn.com/s3/m/78f28c5c5e0e7cd184254b35eefdc8d377ee147e.png)
感谢您的观看
THANKS
密码学中的应用
密码学是研究如何保护信息安全的一门科学,而鸽巢原理在密码学中也 有一定的应用。例如,在分析某些加密算法的安全性时,可以利用鸽巢 原理来证明某些攻击方法的有效性或无效性。
05
鸽巢问题原理拓展与延伸
广义鸽巢原理
原理表述
如果n个物体放入m个容器,且n>m,则至少有一 个容器包含两个或两个以上的物体。
掌握鸽巢原理的证明方法是学习该原理的关键。 建议学习者多阅读相关教材或论文,了解不同证 明方法的思路和应用场景。
多做练习题
通过大量的练习题可以加深对鸽巢原理的理解和 掌握。建议学习者多做一些难度适中的练习题, 逐步提高自己的解题能力。
未来研究方向展望
拓展应用领域
随着计算机科学和信息技术的发展,鸽巢原理的应用领域也在不断拓展。未来可以进一步探索鸽巢原理在人工智能、 大数据等领域的应用。
鸽巢问题原理ppt课件
目录
• 鸽巢问题原理概述 • 鸽巢问题原理基本概念 • 鸽巢问题原理证明方法 • 鸽巢问题原理应用举例 • 鸽巢问题原理拓展与延伸 • 总结与回顾
01
鸽巢问题原理概述
定义与背景
鸽巢原理定义
如果 n 个鸽子要放进 m 个鸽巢,且 n > m,则至少有一个鸽巢里有多于一 个鸽子。
重要性
理论价值
鸽巢原理是数学中的基本 原理之一,对于理解更高 级的数学概念和证明具有 重要意义。
实际应用
在计算机科学、工程等领 域中,鸽巢原理为解决复 杂问题提供了有效的思路 和方法。
拓展思维
通过学习鸽巢原理,可以 培养逻辑思维和抽象思维 能力,提高分析问题和解 决问题的能力。
02
鸽巢问题原理基本概念
六年级数学下册课件 5 数学广角——鸽巢问题 -人教新课标PPT(共15页)
![六年级数学下册课件 5 数学广角——鸽巢问题 -人教新课标PPT(共15页)](https://img.taocdn.com/s3/m/44a2325e16fc700abb68fcf0.png)
四、应用原理 解决问题
把7个苹果放进4个抽屉里,不管怎么放, 总有一个抽屉里至少有( 2 )个苹果。
六年级数学下册课件 5 数学广角——鸽巢问题 -人教新课标PPT(共15页)
六年级数学下册课件 5 数学广角——鸽巢问题 -人教新课标PPT(共15页)
四、应用原理 解决问题
随意找13位老师,他们中至少有2个人的属相 相同。为什么?
六年级数学下册课件 5 数学广角——鸽巢问题 -人教新课标PPT(共健康、和谐发 展。新 课程三 维度目 标也把 情感态 度和价 值观的 培养提 到与知 识技能 、过程 方法同 等重要 的地位 上来。 基于这 样的理 念,和 谐教育 便以受 教育者 的全面 、健康 、和谐 发展为 目标, 以人的 自身发 展需求 与社会 发展需 要相和 谐为宗 旨协调 组织各 种教育 要素。
•
2.同学们,相信你们大多数同学都有 旅游的 经历, 请大家 交流一 下,到 过哪些 名山大 川,有 什么感 受?大 自然中 的山水 ,不仅 能给我 们带来 美感也 给我们 带来灵 感,今 天让我 们从诸 子大家 对山水 的体悟 中,学 习为人 为事的 道理。
•
3.说起胡同,我们并不陌生,有的甚 至熟视 无睹了 ,不论 是农村 还是城 镇,往 来于胡 同之中 的经验 是有的 。但对 于胡同 中蕴含 的文化 内涵却 不大注 意。
五、全课总结
回顾这节课的学习,有什么收获?
六年级数学下册课件 5 数学广角——鸽巢问题 -人教新课标PPT(共15页)
六年级数学下册课件 5 数学广角——鸽巢问题 -人教新课标PPT(共15页)
•
1.训练创新思维能力,培养他们的写 作能力 。写文 章表达 感情时 ,不一 定要选 择雄伟 壮观的 景物和 轰轰烈 烈的事 情,只 要我们 的情感 是真实 的,是 浓厚的 ,那么 从小处 着手, 涓涓细 流同样 也能打 动人心 ,所以 ,我们 平时在 写作时 也可以 学以致 用,努 力做到 “情到 自然最 为真”.
鸽巢问题例PPT课件
![鸽巢问题例PPT课件](https://img.taocdn.com/s3/m/3433b39ec0c708a1284ac850ad02de80d4d806ce.png)
鸽巢问题的起源可以追溯到古希腊数学家欧几里得,他在《 几何原本》中提出了一个著名的鸽巢原理:“如果n个物体放 入n-1个容器中,至少有一个容器包含两个或两个以上的物体 。”
鸽巢问题的基本概念
鸽巢问题是一种组合数学问题,它涉及到将一定数量的物体分配到一定 数量的容器中,并确定是否存在一个容器包含两个或更多的物体。
02
鸽巢问题的应用场景
分配问题
总结词
分配问题是指将一定数量的物品或人 分配到一定数量的容器或位置中,使 得每个容器或位置都有物品或人,且 数量相等或尽可能相等。
详细描述
例如,将n个物品分配到m个容器中, 每个容器最多可以容纳k个物品,要求 每个容器至少有一个物品,问最少需 要多少个容器?
排列组合问题
01
引入不等式和不等关系
对于更复杂的鸽巢问题,可以通过引入不等式和不等关系来求解。例如,
在某些情况下,鸽巢的数量可能不是固定的,而是存在一定的范围,这
时就需要利用不等式来表示这种关系。
02
考虑多种情况
对于更复杂的鸽巢问题,可能存在多种情况需要考虑。例如,鸽巢的数
量和大小可能不同,或者鸽子的大小和数量可能不同,这时就需要分别
鸽巢问题通常用鸽子和巢穴的比喻来描述,其中每个巢穴代表一个容器 ,每个鸽子代表一个物体。如果至少有一个巢穴中有两只鸽子,则存在
一个“鸽巢问题”。
解决鸽巢问题的方法通常涉及到计数原理、排列组合和概率论等数学工 具。通过分析物体的数量、容器的数量以及每个容器能够容纳的最大物 体数量,可以确定是否存在一个“鸽巢问题”。
04
鸽巢问题的实例解析
三个鸽子飞进两个鸽巢的问题
总结词
等可能性和概率
详细描述
在这个问题中,有3只鸽子飞进2个鸽巢,每个鸽巢被选中 的概率是相等的,所以每个鸽巢中鸽子的数量有2种可能, 即0只或3只。
鸽巢问题的基本概念
鸽巢问题是一种组合数学问题,它涉及到将一定数量的物体分配到一定 数量的容器中,并确定是否存在一个容器包含两个或更多的物体。
02
鸽巢问题的应用场景
分配问题
总结词
分配问题是指将一定数量的物品或人 分配到一定数量的容器或位置中,使 得每个容器或位置都有物品或人,且 数量相等或尽可能相等。
详细描述
例如,将n个物品分配到m个容器中, 每个容器最多可以容纳k个物品,要求 每个容器至少有一个物品,问最少需 要多少个容器?
排列组合问题
01
引入不等式和不等关系
对于更复杂的鸽巢问题,可以通过引入不等式和不等关系来求解。例如,
在某些情况下,鸽巢的数量可能不是固定的,而是存在一定的范围,这
时就需要利用不等式来表示这种关系。
02
考虑多种情况
对于更复杂的鸽巢问题,可能存在多种情况需要考虑。例如,鸽巢的数
量和大小可能不同,或者鸽子的大小和数量可能不同,这时就需要分别
鸽巢问题通常用鸽子和巢穴的比喻来描述,其中每个巢穴代表一个容器 ,每个鸽子代表一个物体。如果至少有一个巢穴中有两只鸽子,则存在
一个“鸽巢问题”。
解决鸽巢问题的方法通常涉及到计数原理、排列组合和概率论等数学工 具。通过分析物体的数量、容器的数量以及每个容器能够容纳的最大物 体数量,可以确定是否存在一个“鸽巢问题”。
04
鸽巢问题的实例解析
三个鸽子飞进两个鸽巢的问题
总结词
等可能性和概率
详细描述
在这个问题中,有3只鸽子飞进2个鸽巢,每个鸽巢被选中 的概率是相等的,所以每个鸽巢中鸽子的数量有2种可能, 即0只或3只。
数学第五单元《数学广角》鸽巢问题PPT
![数学第五单元《数学广角》鸽巢问题PPT](https://img.taocdn.com/s3/m/18c0301b3a3567ec102de2bd960590c69ec3d883.png)
练习题三
05
CHAPTER
总结与思考
鸽巢问题的重要性和意义
培养逻辑思维
鸽巢问题涉及逻辑推理和排列组合,通过解决这类问题,可以培养学生的逻辑思维和推理能力。
数学建模
鸽巢问题是一种典型的数学建模问题,通过解决这类问题,学生可以学习如何将实际问题转化为数学模型,提高数学应用能力。
数学文化的传承
代数法
03
CHAPTER
鸽巢问题的实际案例
总结词:等量分配
详细描述:有10个小朋友要分20个苹果,每个小朋友至少要分到一个苹果,问怎么分最合适?
分苹果的问题
总结词:位置限制
详细描述:有8把椅子摆成一排,现有3人随机就座,任何两人不相邻的坐法种数为多少?
安排座位的问题
总结词
有限资源分配
详细描述
详细描述
枚举法
总结词
通过假设结论不成立,然后推导出矛盾,从而证明结论成立。
详细描述
反证法是一种常用的数学证明方法。在解决鸽巢问题时,我们可以先假设结论不成立,即假设至少有一个鸽巢没有鸽子或者有多于n个鸽子(n为鸽巢数量)。然后通过逻辑推理和计算,推导出矛盾,从而证明结论成立。这种方法可以避免枚举法的繁琐,适用于问题规模较大或者情况较为复杂的情况。
03
02
01
如何更好地理解和掌握鸽巢问题
鸽巢问题可以应用于资源分配问题,例如在有限的时间内分配任务给多个员工。
资源分配
在数据分析中,如果需要将数据分类或分组,鸽巢问题可以提供思路和方法。
数据分析
在城市交通规划中,鸽巢问题可以用于解决车辆路径规划、停车位分配等问题。
交通规划
鸽巢问题在实际生活中的应用
数学第五单元《数学广角》鸽巢问题
六年级下册鸽巢ppt课件
![六年级下册鸽巢ppt课件](https://img.taocdn.com/s3/m/8ab5eeb605a1b0717fd5360cba1aa81144318ff3.png)
鸽巢原理可以通过反证法进行证明,假设存在一个容器没有两个或以上
的物体,那么可以重新分配物体,使得每个容器只包含一个物体,从而
证明鸽巢原理的正确性。
对未来学习的展望
深入理解鸽巢原理
学习其他数学原理
学生可以进一步深入学习鸽巢原理,了解 其在不同领域的应用,并尝试解决一些复 杂的数学问题。
学生可以学习其他数学原理,如归纳推理 、演绎推理、集合论等,以扩大自己的数 学视野。
有1000个乒乓球,需要 放入10个盒子中,每个 盒子至少有一个球,问 最多可以放入多少个盒 子有超过100个乒乓球 ?
根据鸽巢原理,1000个 乒乓球放入10个盒子中 ,每个盒子至少有一个 球,最多只能有9个盒子 有超过100个乒乓球。
有50名学生参加数学竞 赛,需要分成若干小组 进行讨论,每个小组至 少有一名学生,问最多 可以分成多少个小组?
01
解析
根据鸽巢原理,10个苹果放入3个盘 子中,每个盘子至少有一个,有7种 分法。
05
03
解析
根据鸽巢原理,7支钢笔放入3个笔筒 中,每个笔筒至少有1支,最多只能放 2支。
04
题目2
有10个苹果放入3个盘子里,每个盘子 至少有一个,问有多少种分法?
进阶练习题
总结词
题目1
解析
题目2
解析
考察鸽巢原理的复杂应 用和实际问题的解决
在游戏设计中,鸽巢原理可以用于设 计关卡和任务,以增加游戏难度和趣 味性。
资源分配
在企业管理中,鸽巢原理可以用于人 力资源、物资、时间和空间的合理分 配和调度。
04
鸽巢原理的练习题及解析
基础练习题
总结词
考察鸽巢原理的基本每个笔筒 至少有1支,最多放几支?
《鸽巢问题》课件
![《鸽巢问题》课件](https://img.taocdn.com/s3/m/fe8344be9f3143323968011ca300a6c30d22f16b.png)
鸽巢原理的推广
鸽巢原理的推广ຫໍສະໝຸດ 容斥原理在鸽巢原理的基础上,可以推导出许 多组合数学中的定理和公式,如抽屉 原理、容斥原理等。
在集合论中,容斥原理是用来计算集 合数量的一个重要原理,其基本思想 就是利用鸽巢原理来解决问题。
抽屉原理
如果 n+1 个物体放入 n 个抽屉中, 则至少有一个抽屉中放有两个或两个 以上的物体。
鸽巢原理的数学表达形式
如果 N 个物体放入 M 个鸽巢,且 N > M,则至少有一个鸽巢包含两个或两个 以上的物体。
鸽巢原理的证明
反证法证明
假设所有鸽巢中最多只放一个物 体,但总共有 N 个物体,而只有 M 个鸽巢,因此至少有一个鸽巢 需要放两个或更多的物体。
实例证明
例如有 10 只鸽子要飞进 3 个鸽 巢,那么至少有一个鸽巢里至少 有 4 只鸽子。
鸽巢问题在数学领域的应用
在概率论中的应用
在概率论中,鸽巢原理常被用来解释 和推导一些随机事件的概率,如伯努 利试验和二项分布的性质。
在几何学中的应用
在几何学中,鸽巢原理可以用来研究 空间的填充方式和几何体的排列问题 ,如在计算凸多面体的内角和时可以 用到鸽巢原理。
CHAPTER 05
练习和思考题
不同场景下的应用
鸽巢原理不仅适用于整数和抽屉的场 景,还可以应用于其他领域,如概率 论、统计学和计算机算法等。
鸽巢问题与其他数学概念的联系
与集合论的联系
鸽巢原理与集合论有密切的联系,尤其是在处理子集和集合 关系时,鸽巢原理提供了一种有效的思考方式。
与组合数学的联系
组合数学是研究计数、排列和组合问题的数学分支,鸽巢原 理在解决这类问题时常常被用到,如组合恒等式和计数原理 等。
5.1-鸽巢问题课件(共26张PPT)六年级下册数学人教版
![5.1-鸽巢问题课件(共26张PPT)六年级下册数学人教版](https://img.taocdn.com/s3/m/bcc9630c59fafab069dc5022aaea998fcd224068.png)
( 枚举法)
(4,0,0)
(3,1,0)
(2,2,0)
(2,1,1)
能不能只摆一种情况就能找到至 少数呢?
可以这样想:先在每个笔筒中各 放 1 支,共放了3支。剩下ቤተ መጻሕፍቲ ባይዱ 1 支也要放进其中的一个笔筒里。 所以至少有一个笔筒中有 2 支铅 笔。
4÷3﹦1(支)……1(支) 1+1=2(支)
①把5支铅笔放到4个笔筒里,总有一个笔筒里至少放多少支
把25个小朋友看成25抽屉,把60件玩具放进25个 抽屉里,60÷25=2(件)……10(件),2+1=3 (件)总有一个抽屉中至少放了3件玩具,因此会 有小朋友得到3件或3件以上的玩具。
假设法
如果把5支笔放在3个笔筒里,总有 一个笔筒里至少放了多少支笔?
5÷3﹦1(支)……2 (支) 1+1﹦2(支)
为什么加“1”?
如果把笔的支数和笔筒的个数继续增加:
①7支铅笔放进3个笔筒里,总有一个笔筒里至少放进多少 支笔?
7÷3=2(支)……1(支) 2+1=3(支)
②17支铅笔放进6个笔筒里,总有一个笔筒里至少放进多 少支笔?
数学广角——鸽巢问题
一、游戏引入
我给大家表演一个“魔 术”。一副牌,取出假 牌,大王和小王,还剩 52张,请一位同学上来 随意抽出五张,我知道 至少有2张牌是同花色 的。相信吗?
二、探究新知
把3支铅笔放进2个笔筒中,有哪 些放法呢?
可把3支铅笔都放在左边的笔筒里。
可以在左边笔筒里放 2 支,右边笔 筒里放 1支。
“不管怎么放,总有一个笔筒里至少 有2支铅笔”这样的说法对吗?
“总有”和 “至少”是 什么意思?
总有:一定有。 至少:最少。
如果把4支铅笔放进3个笔筒里,会有 怎样的结论呢?
(4,0,0)
(3,1,0)
(2,2,0)
(2,1,1)
能不能只摆一种情况就能找到至 少数呢?
可以这样想:先在每个笔筒中各 放 1 支,共放了3支。剩下ቤተ መጻሕፍቲ ባይዱ 1 支也要放进其中的一个笔筒里。 所以至少有一个笔筒中有 2 支铅 笔。
4÷3﹦1(支)……1(支) 1+1=2(支)
①把5支铅笔放到4个笔筒里,总有一个笔筒里至少放多少支
把25个小朋友看成25抽屉,把60件玩具放进25个 抽屉里,60÷25=2(件)……10(件),2+1=3 (件)总有一个抽屉中至少放了3件玩具,因此会 有小朋友得到3件或3件以上的玩具。
假设法
如果把5支笔放在3个笔筒里,总有 一个笔筒里至少放了多少支笔?
5÷3﹦1(支)……2 (支) 1+1﹦2(支)
为什么加“1”?
如果把笔的支数和笔筒的个数继续增加:
①7支铅笔放进3个笔筒里,总有一个笔筒里至少放进多少 支笔?
7÷3=2(支)……1(支) 2+1=3(支)
②17支铅笔放进6个笔筒里,总有一个笔筒里至少放进多 少支笔?
数学广角——鸽巢问题
一、游戏引入
我给大家表演一个“魔 术”。一副牌,取出假 牌,大王和小王,还剩 52张,请一位同学上来 随意抽出五张,我知道 至少有2张牌是同花色 的。相信吗?
二、探究新知
把3支铅笔放进2个笔筒中,有哪 些放法呢?
可把3支铅笔都放在左边的笔筒里。
可以在左边笔筒里放 2 支,右边笔 筒里放 1支。
“不管怎么放,总有一个笔筒里至少 有2支铅笔”这样的说法对吗?
“总有”和 “至少”是 什么意思?
总有:一定有。 至少:最少。
如果把4支铅笔放进3个笔筒里,会有 怎样的结论呢?
《鸽巢问题》完整ppt课件
![《鸽巢问题》完整ppt课件](https://img.taocdn.com/s3/m/4d3a0c8b4128915f804d2b160b4e767f5acf801b.png)
模型扩展
可以将鸽巢原理扩展到多维空间 、非均匀分布等复杂情况。
应用领域
鸽巢原理在计算机科学、组合数 学、概率论等领域有着广泛的应 用,如哈希表设计、算法分析、
概率不等式证明等。
实例分析
通过具体实例分析鸽巢原理的应 用,如生日悖论、抽屉原理等。
2024/1/29
10
2024/1/29
03
典型案例分析
《鸽巢问题》完整 ppt课件
2024/1/29
1
目录
• 鸽巢问题概述 • 鸽巢问题数学模型 • 典型案例分析 • 鸽巢问题求解方法 • 计算机在鸽巢问题中的应用 • 鸽巢问题拓展研究
2024/1/29
2
2024/1/29
01
鸽巢问题概述
3
问题背景与提
鸽巢问题的历史渊源
最早由德国数学家狄利克雷提出,也 称作抽屉原理或狄利克雷原理。
原理的推广形式
可以推广到多个物体和多个容器的 情况,只要物体数量多于容器数量 ,就必然存在至少一个容器包含两 个或以上的物体。
原理的逆否命题
如果每个容器内最多只有一个物体 ,则物体总数不超过容器数。
5
应用领域及意义
2024/1/29
组合数学中的应用
01
用于解决存在性证明问题,如证明某类组合对象必然存在某种
实际问题的抽象化
问题的提出方式
通常表述为“如果有n个鸽巢和n+1 只鸽子,至少有一个鸽巢里有两只鸽 子。”
将现实生活中分配物品到容器的问题 抽象为数学模型。
2024/1/29
4
鸽巢原理基本概念
鸽巢原理的定义
如果将多于n个物体放到n个容器 中去,则至少有一个容器里放有
人教版六年级数学下册《鸽巢问题》ppt课件
![人教版六年级数学下册《鸽巢问题》ppt课件](https://img.taocdn.com/s3/m/cd68dd47f02d2af90242a8956bec0975f465a4b1.png)
• 题目2答案:41本。如果 每个同学借一本书,那么 最多借出40本,要保证至 少有一名同学能借到两本 或两本以上的书,那么书 的总数至少要40+1=41 本。
• 题目3答案:4个。把16 个小朋友看作16个抽屉, 把135块饼干看作135个 元素。因为 135÷16=8…7,即每个 小朋友至少分到8块饼干 后还剩下7块饼干。这7块 饼干无论怎么分,都会使 得至少有一个小朋友得到 的饼干数与其它小朋友不 同。因此至少有4个小朋 友得到的饼干的块数相同 。
结论
在解决综合应用问题时,需要灵活运用鸽巢原理,并从最不利的情况出发进行推理和计算。
2024/1/30
14
04 练习题与答案
2024/1/30
15
练习题一:基础题型
题目1
有11只鸽子飞进9个鸽巢 ,至少有几只鸽子要飞进 同一个鸽巢?
2024/1/30
题目2
有13只鸽子飞进5个鸽巢 ,至少有几只鸽子要飞进 同一个鸽巢?
题错误。
22
错误原因分析
知识掌握不扎实
学生对鸽巢原理的相关知识掌握 不够扎实,是导致理解不清和应
用错误的主要原因。
2024/1/30
思维方式固化
学生可能受到固有思维方式的影响 ,难以灵活运用鸽巢原理解决问题 。
审题不仔细
学生在审题时未能仔细分析题目中 的条件,是导致忽视限制条件的主 要原因。
23
纠正方法和建议
20
05 学生常见错误及 纠正方法
2024/1/30
21
常见错误类型
2024/1/30
对鸽巢原理理解不清
01
学生可能对鸽巢原理的基本概念理解不透彻,导致在解决问题
时出现偏差。
六年级数学下册课件-5 鸽巢问题-人教版(共16张PPT)
![六年级数学下册课件-5 鸽巢问题-人教版(共16张PPT)](https://img.taocdn.com/s3/m/6493b446cc22bcd127ff0c47.png)
六年级下册第五章例1
课题:鸽巢问题
难点名称:理解鸽巢问题的规律
目录
CONTENTS
导入知识讲解课堂练习 Nhomakorabea小节
导入
导入
根据实际需要新增页
料事如神
3
知识讲解
小红在整理自己的学习用品时有这样的发现,如果 把4枝笔放在3个笔筒里,不管怎么放,总有一个笔 筒里至少有两枝铅笔。
(4,0,0)
(3,1,0)
我们把n+1个物体放进n个抽屉 里(n是非 零的自然数),总有一个抽屉里至少 有2个物 体。其实在我们的生活中还存在很多可以用鸽 巢原理去解决的问题, 最后老师还给大家推荐一 个有关鸽巢原理的二桃杀三士的故事,我们课 下可以去看看,期待同学们下次更精彩的表现! 同学们再见!
知识讲解
n+1
n
物体数 比 抽屉数
多1
把n+1个物体放进n个抽屉 里,总有一个抽屉里至少 有2个物体。
抽屉原理是组合数学中的一个重要原理,它最早由 德国数学家狄利克雷提出并运用于解决数论中的问题, 所以该原理又称“狄利克雷原理”。这个原理有两个经 典案例,一个是把10个苹果放进9个抽屉里,总有一个 抽屉至少放了2个苹果,所以这个原理又称为“抽屉原 理”;另一个是6只鸽子飞进5个鸽巢,总有一个鸽巢至 少飞进2只鸽子,所以也称为“鸽巢原理”。
(2,1,1)
(2,2,0)
总有一个笔筒里至少放2枝笔。
知识讲解
枚举法
知识讲解
怎样才能最快地知道这个放得最多的笔筒里至少有2枝笔?
平均分
先平均分,每个笔筒里都放一枝,剩下的一枝不管怎么放,总有一个文具盒里至少 放进2枝铅笔。
知识讲解
假设法
课题:鸽巢问题
难点名称:理解鸽巢问题的规律
目录
CONTENTS
导入知识讲解课堂练习 Nhomakorabea小节
导入
导入
根据实际需要新增页
料事如神
3
知识讲解
小红在整理自己的学习用品时有这样的发现,如果 把4枝笔放在3个笔筒里,不管怎么放,总有一个笔 筒里至少有两枝铅笔。
(4,0,0)
(3,1,0)
我们把n+1个物体放进n个抽屉 里(n是非 零的自然数),总有一个抽屉里至少 有2个物 体。其实在我们的生活中还存在很多可以用鸽 巢原理去解决的问题, 最后老师还给大家推荐一 个有关鸽巢原理的二桃杀三士的故事,我们课 下可以去看看,期待同学们下次更精彩的表现! 同学们再见!
知识讲解
n+1
n
物体数 比 抽屉数
多1
把n+1个物体放进n个抽屉 里,总有一个抽屉里至少 有2个物体。
抽屉原理是组合数学中的一个重要原理,它最早由 德国数学家狄利克雷提出并运用于解决数论中的问题, 所以该原理又称“狄利克雷原理”。这个原理有两个经 典案例,一个是把10个苹果放进9个抽屉里,总有一个 抽屉至少放了2个苹果,所以这个原理又称为“抽屉原 理”;另一个是6只鸽子飞进5个鸽巢,总有一个鸽巢至 少飞进2只鸽子,所以也称为“鸽巢原理”。
(2,1,1)
(2,2,0)
总有一个笔筒里至少放2枝笔。
知识讲解
枚举法
知识讲解
怎样才能最快地知道这个放得最多的笔筒里至少有2枝笔?
平均分
先平均分,每个笔筒里都放一枝,剩下的一枝不管怎么放,总有一个文具盒里至少 放进2枝铅笔。
知识讲解
假设法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把10支笔放进9个笔筒里,不管怎么放,总有一个笔筒里至少放进2支笔.
n+1个 n个抽
物体
屉
我的发 现
把n+1个物体放进n个抽屉里,总有一个抽 屉里至少放进2个物体。
老师魔术的秘密
一副牌,取出大小王,
5位同学每人随意抽 出一张。
至少有2张牌是同花色的。
二、探究新知
例2
例2 把7本书放进3个抽屉,不管怎么 放,总有一个抽屉至少放进( )本 书。练习.swf
请同学们在学生平板教材中打开探究二, 根据要求,进行拖动,找出答案。
7本书放进3个抽屉,总有一个抽 屉至少放3本书。
7÷3=2……1 2+1=3
把8本书放进3个抽屉里,会怎么样呢? 8÷3=2……2 2+1=3 10本呢? 10÷3=3……1
你是这样想的吗?你有什么发现?
我发现……
物体数÷抽屉数=商……余数 被装的÷装东西的=商……余数
答:假设每个笔筒里先放1支笔, 最多可放4支。
剩下的1支还要放进其中的一个笔筒里。 所以不管怎么放,总有一个笔筒里至少放进2支笔。
我能说 把6支笔放进5个笔筒里,不管怎么 放,总有一个笔筒里至少放进( )支 笔,为什么?
答:假设每个笔筒里先放1支笔,5个笔筒最多可放5支笔。
剩下的1支还要放进其中的一个笔筒里。 所以不管怎么放,总有一个笔筒里至少放进2支笔。
三、知识应用
从马路上随意找13个人,他们中至少有 几个人的属相相同。为什么?
12属相 13个人
12个抽屉 13个物体
13÷12=1……1 1+1=2
三、知识应用 课本第68页“做一做”
1. 5只鸽子飞进了3个鸽笼,总有一
个鸽笼至少飞进了( )只鸽子。 为什么?
5÷3=1……2 1+1=2
三、知识应用 课本第69页“做一做”
至少数=商+1
“抽屉原理”是组合数学中的 重要原理,最先是由德国数学家狄 利克雷提出来的,所以又称“狄利 克雷原理”。有两个经典案例,一 个是把10个苹果放进9个抽屉里, 德国数学家 总有一个抽屉里至少放了2个苹果, 狄利克雷 (1805.2.13~1859.5.5) 所以这个原理又称“抽屉原理”; 另一个是6只鸽子飞进5个鸽巢,总 有一个鸽巢至少飞进2只鸽子,所 以也称“鸽巢原理”
四、布置作业
作业:第71页练习十三,第2题、第3题。
从最不利的情况来考虑, 先放入相同的最多数。
先平均分
假设法说理
假设每个笔筒里 先放1支铅笔,最 多放3支,剩下的 1支无论放在哪个 进笔筒里,总有 一个笔筒里至少 放2支笔。
鸽巢问题
4只鸽子飞回3个鸽笼,总有一个鸽笼至少 飞进了(2 )只鸽子。
我能说 把5支笔放进4个笔筒里,不管怎么 放,总有一个笔筒里至少放进( ) 支笔,为什么?
我能说 把10支笔放进9个笔筒里,不管怎 么放,总有一个笔筒里至少放进( ) 支笔,这是为什么?
答:假设每个笔筒里先放1支笔,9个笔筒最多可放9支笔。
剩下的1支还要放进其中的一个笔筒里。 所以不管怎么放,总有一个笔筒里至少放进2支笔。
把4支笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少放进2支笔。
2. 11只鸽子飞进了4个鸽笼,总有 一个鸽笼至少飞进了( )只鸽 子。为什么?
11÷4=2……3 2+1=3
三、知识应用 课本第69页“做一做”
3. 5个人坐4把椅子,总有一把椅子 上至少坐2人。为什么?
5÷4=பைடு நூலகம்……1 1+1=2
你认为雀巢问题的解题关键是什么?
• 找准哪个是物体,也就是被装的 • 哪个是抽屉,也就是装东西的 • 以及它们的个数。
把5支笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少放进2支笔。
把6支笔放进5个笔筒里,不管怎么放,总有一个笔筒里至少放进2支笔。
把10支笔放进9个笔筒里,不管怎么放,总有一个笔筒里至少放进2支笔。
我的发 现
只要放的铅笔数比笔筒的数量多1, 总有一个笔筒里至少放进2枝笔。
把4支笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少放进2支笔. 把5支笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少放进2支笔. 把6支笔放进5个笔筒里,不管怎么放,总有一个笔筒里至少放进2支笔.
物体数÷抽屉数
至少数
有余数 没有余数
• 1、从马路上随意找25个人,他们中至少有 几个人的属相相同?为什么?
• 2、从电影院随意找24个人,他们中至少有 几个人的生日在同一个月?
• 3、给一个正方体木块的6个面分别涂上黄 、蓝两种颜色。不论怎么涂至少有几个面 颜色相同?
• 谈谈关于抽屉原理你的收获
数学广角
一、看看谁能赢?
一副扑克牌54张,取出大王和小王,还 剩52张。你抽到你想要的花色就算你赢。
老师的魔术
一副牌,取出大小王,
5位同学每人随意抽 出一张。
至少有2张牌是同花色的。
活动内容:将4支铅笔放进3个笔筒里。 活动目的:无论怎么放,
总有一个笔筒里至少有( )支笔。
注意:不考虑顺序
将4支铅笔放进3个笔筒里。 鸽巢问题探究记录单
第一种情况 第二种情况 第三种情况 第四种情况
第一种情况:把4支笔都放进一个笔筒里。
第二种情况:先把3笔放进一个笔筒里。
第三种情况:先把2支笔放进一个笔筒里。
第四种情况:先把2支笔放进1个笔筒里。
枚举法
无论怎么放, 总有一个笔筒里 至少放进2支笔
怎样才能最快地知道这个放得最多的笔 筒里至少有几支笔?