任意角的三角函数(单位圆定义法)

合集下载

单位圆与任意角的三角函数课件-高一下学期数学北师大版(2019)必修第二册

单位圆与任意角的三角函数课件-高一下学期数学北师大版(2019)必修第二册
已知任意角终边上除原点外的另外一点 , ,求角的正弦函数值和余弦函数值。
分析:如图设角的终边与单位圆交于点,则点
, ,且 = 1。点 , 在角的终边上,
则 = 2 + 2 ,分别过点, 作轴的垂线, ,
垂足为, ,易知△ ∽△ ,所以
点 , ,那么:
三角函数
的正弦函

的余弦函

定义
记法
符号表示
点的纵坐标

=
点的横坐标
=
概念剖析:
(1)是一个任意角,也就是实数(弧度数)所以,设是一个任意角实际上就
是说明它是一个任意的实数
(2)终边与单位圆的交点 , ,实际上给出了两对对应关系
2 11
,
3
6
上的最值。
例7、比较函数值的大小
(1)下列结论正确的是( )
A、400 > 50
B、220 < 590
C、130 > 500
D、 −40 < 310
(2)比较下列各组数的大小
6
6
①3, 4
② ,
对 点 练 习

1、在单位圆中, = − :(1)画出角;(2)求角的正弦函数值和余弦函数
4
值。
2、若角的终边过点
1 3
,
2 2
,求,。
3、已知角的顶点为坐标原点,始边为轴的非负半轴,若 4, 是角终边上一
点,且 =
2 5
− ,求的值。
5
3、常见的特殊角的三角函数值
实数对应点的纵坐标,实数对应点的横坐标。
由于对于任意一个角,它的终边是唯一确定的,所以交点 , 唯一确定,也

数学素材:为什么用单位圆上点的坐标定义任意角的三角函数

数学素材:为什么用单位圆上点的坐标定义任意角的三角函数

为什么用单位圆上点的坐标定义任意角的三角函数在人教版《普通高中实验教科书·数学4·必修(A版)》(简称“人教A 版”)中,三角函数采用了如下定义(简称“单位圆定义法”):“如图1,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y叫做α的正弦,记作sinα,即sinα=y;(2)x叫做α的余弦,记作cosα,即cosα=x;(3)叫做α的正切,记作tanα,即tanα=(x≠0).可以看出,当α=(k∈Z)时,α的终边在y轴上,这时点P的横坐标x等于0,所以无意义.除此之外,对于确定的角α,上述三个值都是唯一确定的.所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.”1.部分教师的疑惑和意见由于种种原因,实验区有的教师对上述定义不理解,认为该定义不如以往教材采用的定义,即在角α的终边上任取一点P(x,y),P到原点的距离为r,比值,,分别定义为角α的正弦函数、余弦函数和正切函数(简称“终边定义法”).其理由主要有以下几点:第一,“单位圆定义法”中,“交点是特殊的,缺乏一般性,不符合数学定义的要求”;“终边定义法”中,“所取得点是任意的,具有一般性,符合数学定义的要求”.有的老师说,“单位圆上的点毕竟是特殊点,用它定义三角函数有失一般性”.第二,“单位圆定义法”不利于将锐角三角函数推广到任意角三角函数;“终边定义法”有利于这种推广.有的老师说,“用单位圆上点的坐标定义正弦、余弦函数带来了不少便利,其根本原因是它化简了三角函数的比值.而用单位圆上点的坐标定义正切函数,由于它未能化简三角函数的比值,所以它就没有什么特别的意义.”第三,“单位圆定义法”不利于解题.有的老师说,在解“已知角α终边上一点的坐标是(3a,4a),求角α的三角函数值”时,用“终边定义法”非常方便,而用“单位圆定义法”很不方便.为了解答老师们的疑问,我们首先从回顾三角函数的发展历史开始.2.对三角函数发展历史的简单回顾回顾三角学发展史,可以发现它的起源、发展与天文学密不可分,它是一种对天文观察结果进行推算的方法.1450年以前,三角学主要是球面三角,这是航海、立法推算以及天文观测等人类实践活动的需要,同时也是宇宙的奥秘对人类的巨大吸引力所至,这种“量天的学问”确实太诱人了.后来,由于间接测量、测绘工作的需要而出现了平面三角.三角学从天文学中独立出来的标志是德国数学家雷格蒙塔努斯(J. Regiomontanus,1436—1476)于1464年出版《论各种三角形》,这部著作首次对三角学做出了完整、独立的阐述.其中采用印度人的正弦,即圆弧的半弦,明确使用了正弦函数,讨论了一般三角形的正弦定理,提出了求三角形边长的代数解法,给出了球面三角的正弦定理和关于边的余弦定理.这部著作为三角学在平面与球面几何中的应用奠定了牢固基础.后来,哥白尼的学生雷提库斯(G. J. Rhaeticus,1514—1576)将传统的圆中的弧与弦的关系改进为角的三角函数关系,把三角函数定义为直角三角形的边长之比,从而使平面三角学从球面三角学中独立出来,并采用了六个函数(正弦、余弦、正切、余切、正割、余割).法国数学家韦达(F. Vieta,1540—1603)总结了前人的三角学研究成果,将解平面直角三角形和斜三角形的公式汇集在一起,还补充了自己发现的新公式,如正切公式、和差化积公式等,并将解斜三角形的问题转化为解直角三角形的问题等,这是对三角学的进一步系统化.总之,16世纪,三角学从天文学中分离出来,成为数学的一个独立分支.不过,值得注意的是,这时所讨论的“三角函数”仅限于锐角三角函数,而且研究锐角三角函数的目的在于解三角形和三角计算.任意角的三角函数的研究,与圆周运动的研究有直接关系.17世纪,“数学从运动的研究中引出了一个基本概念.在那以后的二百年里,这个概念在几乎所有的工作中占中心位置,这就是函数──或变量间的关系──的概念.” “正弦、余弦函数是一对起源于圆周运动,密切配合的周期函数,它们是解析几何学和周期函数的分析学中最为基本和重要的函数;而正弦、余弦函数的基本性质乃是圆的几何性质(主要是其对称性)的直接反映.”任意角的三角函数的系统化是在18世纪的微积分研究中完成的.“微积分的一般工作的结果是:初等函数被充分地认识了,并实际已将它们发展成为我们今天所见到的样子.”“三角函数的数学也系统化了.Newton和Leibniz给出了这些函数的级数展开式.两个角的和与差的三角函数sin(x+y),sin(x-y)……的公式的发展应归功于一批人……最后,Euler于1748年在关于木星和土星运动中的不等式的一篇得奖文章中给出了三角函数的一个十分系统的处理.在Euler1748年的《引论》中已经搞清了三角函数的周期性,并引入了角的弧度制.” 3.任意角的三角函数与锐角三角函数的关系从上述简单回顾可以看到,任意角的三角函数虽然与三角学(锐角三角函数)有渊源关系,某种意义上可以把前者看成是后者的进一步发展,但它们研究的是两类不同的问题.“三角学所讨论的课题是三角形的各种各样的几何量之间的函数关系” ,锐角三角函数是解三角形的工具;而任意角的三角函数却不限于此,它是一个周期函数,是研究现实世界中周期变化现象的“最有表现力的函数”.另外,从数学发展的历史看,任意角的三角函数在18世纪之所以得到系统研究(其中很重要的是函数的三角级数展开式问题),一个主要原因是三角函数具有周期性,这一特殊属性在天文学、物理学中有大量的应用.三角级数“在天文学中之所以有用,显然是由于它们是周期函数,而天文现象大都是周期的” ,而这种应用又与当时的数学研究的中心工作──微积分紧密结合,人们在研究行星运动的各种问题时,需要确定函数的Fourier展开式,而这种展开式(三角级数)的系数是用定积分表示的.所以,锐角三角函数是研究三角形各种几何量之间的关系而发展起来的,任意角三角函数是研究现实中的周期现象而发展起来的.它们研究的对象不同,表现的性质也不同.我们既不能把任意角的三角函数看成是锐角三角函数的推广(或一般化),又不能把锐角三角函数看成是任意角的三角函数在锐角范围内的“限定”.4.用“单位圆定义法”的理由用单位圆上点的坐标定义任意角的三角函数有许多优点.(1)简单、清楚,突出三角函数最重要的性质──周期性.采用“单位圆定义法”,对于任意角a,它的终边与单位圆交点P(x,y)唯一确定,这样,正弦、余弦函数中自变量与函数值之间的对应关系,即角a(弧度)对应于点P的纵坐标y──正弦,角a(弧度)对应于点P的横坐标x──余弦,可以得到非常清楚、明确的表示,而且这种表示也是简单的.另外,“x= cosa,y= sina是单位圆的自然的动态(解析)描述,由此可以想到,正弦、余弦函数的基本性质就是圆的几何性质(主要是对称性)的解析表述”,其中,单位圆上点的坐标随着角a每隔2π(圆周长)而重复出现(点绕圆周一圈而回到原来的位置),非常直观地显示了这两个函数的周期性.“终边定义法”需要经过“取点──求距离──求比值”等步骤,对应关系不够简洁;“比值”作为三角函数值,其意义(几何含义)不够清晰;“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系不一致,而且“比值”需要通过运算才能得到,任意一个角所对应的比值的唯一性(即与点的选取无关)也需要证明;“比值”的周期性变化规律也需要经过推理才能得到.以往的教学实践表明,许多学生在结束了三角函数的学习后还对三角函数的对应关系不甚了了,与“终边定义法”的这些问题不无关系.(2)有利于构建任意角的三角函数的知识结构.“单位圆定义法”以单位圆为载体,自变量a与函数值x,y的意义非常直观而具体,单位圆中的三角函数线与定义有了直接联系,从而使我们能方便地采用数形结合的思想讨论三角函数的定义域、值域、函数值符号的变化规律、同角三角函数的基本关系式、诱导公式、周期性、单调性、最大值、最小值等.例如:● P(x,y)在单位圆上|x|≤1,|y|≤1,即正弦、余弦函数的值域为[-1,1];● |OP|2=1sin2a +cos2a =1;●对于圆心的中心对称性sin(π+a)=-sina,cos(π+a)=-cosa;●对于x轴的轴对称性sin(-a)=-sina,cos(-a)=cosa;●对于y轴的轴对称性sin(π-a)=sina,cos(π-a)=-cosa;●对于直线y=x的轴对称性sin(-a)=cosa,cos(-a)=sina;● sina在[-,]内的单调性a:- 0 πx:-1010-1 sina在[-,]上单调递增,在[,]上单调递减;……另外,学生在学习弧度制时,对于引进弧度制的必要性较难理解.“单位圆定义法”可以启发学生反思:采用弧度制度量角,就是用单位圆的半径来度量角,这时角度和半径长度的单位一致,这样,三角函数就是以实数(弧度数)为自变量,以单位圆上点的坐标(也是实数)为函数值的函数,这就与函数的一般定义一致了.另外,我们还可以这样来理解三角函数中自变量与函数值之间的对应关系:把实数轴想象为一条柔软的细线,原点固定在单位点A(1,0),数轴的正半轴逆时针缠绕在单位圆上,负半轴顺时针缠绕在单位圆上,那么数轴上的任意一个实数(点)a被缠绕到单位圆上的点P(cosa,sina).(3)符合三角函数的发展历史.前述三角函数发展史已经表明,任意角的三角函数是因研究圆周运动的需要而产生的,数学史上,三角函数曾经被称为“圆函数”.所以,采用“单位圆定义法”能更真实地反映三角函数的发展进程.(4)有利于后续学习.前已述及,“单位圆定义法”使三角函数反映的数形关系更直接,为后面讨论三角函数的性质和图像奠定了很好的直观基础.不仅如此,这一定义还能为“两角和与差的三角函数”的学习带来方便,因为和(差)角公式实际上是“圆的旋转对称性”的解析表述,和(差)化积公式也是圆的反射对称性的解析表述.另外,这一定义中角的度量直接采用了弧度制,能为微积分的学习带来方便.例如,重要极限=1几乎就是定义的一个“推论”.5.教科书中的任意角的三角函数的引入方式“人教A版”首先通过“思考”,提出用直角坐标系中角的终边上点的坐标表示锐角三角函数的问题,以引导学生回忆锐角三角函数概念,体会引进象限角概念后,用角的终边上点的坐标比表示锐角三角函数的意义.教科书在定义任意角的三角函数之前,作了如下铺垫:直角三角形为载体的锐角三角函数→象限角为载体的锐角三角函数→单位圆上点的坐标表示的锐角三角函数这样做的目的主要是为了以锐角三角函数为认知基础来学习任意角的三角函数,使学生初步体会用单位圆上点的坐标表示锐角三角函数所具有的简单、方便并反映本质的好处,从而为“单位圆定义法”做好认知准备.需要注意的是,这样做并不表明任意角的三角函数与锐角三角函数之间有一般与特殊的关系.事实上,用“单位圆定义法”单刀直入给出定义,然后再在适当时机联系锐角三角函数,这也是一种不错的选择.6.几点说明(1)“单位圆定义法”与“终边定义法”本质上是一致的.正因为此,各种数学出版物中,两种定义方法都有采用.例如,由苏联科学院院士、世界著名数学家И.М.维诺格拉多夫主编,苏联百科全书出版社出版,被陈省身先生誉为“对数学的贡献,将无法估计”的、具有世界性权威的《数学百科全书》(中译本在2000年由科学出版社出版)中,采用了“单位圆定义法”;中国大百科全书出版社的《中国大百科全书·数学》(1992年版)中采用了“终边定义法”.应当说,采用哪一种定义方法是一个取舍问题,没有对错之分,并不存在商榷的问题.因此,“单位圆上的点毕竟是特殊点,用它定义三角函数有失一般性”的认识是不正确的.值得强调的是正弦、余弦和正切函数在R(正切除a=(k∈Z) 外)上处处有定义,而不是角a的终边上取点的任意性.事实上,在老师们熟悉的“终边定义法”中,给出定义后有如下说明:“根据相似三角形的知识,对于确定的角a,这三个比值(如果有的话)都不会随点P 在a的终边上的位置的改变而改变……对于确定的角a,上面三个比值都是唯一确定的.这就是说,正弦、余弦、正切都是以角为自变量,以比值为函数值的函数.”这恰恰说明了“以角a的终边与单位圆的交点坐标为‘比值’”是不失一般性的.另外,用“单位圆定义法”直截了当、简洁易懂,不需要这样的说明,就更显出其好处了.(2)《高中数学课程标准(实验)》只要求正弦、余弦和正切三个函数,其目的是削枝强干,是非常正确的.进一步地,三角函数中,正弦、余弦函数是“基本三角函数”,其余都是通过这两个函数的运算(相除、取倒数等)而得到的,或者说是从这两个函数“派生”出来的.这样理解各三角函数的关系,那么“用单位圆上点的坐标定义正切函数,由于它未能化简三角函数的比值,所以它就没有什么特别的意义”的担心也就不必要了.(3)“人教A版”在给出三角函数定义后,有如下两个例题:例1 求的正弦、余弦和正切值.例2 已知角a的终边经过点P0(-3,-4),求角a的正弦、余弦和正切值.它们的作用主要是让学生熟悉定义.例1的解答要用锐角三角函数知识,例2的解答要用一定的平面几何知识,而许多学生的平面几何基础较差,所以有一定的困难,这是教学中需要注意的.另外,例2还有让学生研究“终边定义法”的意图,教科书“边空”的“小贴士”表明了这一点:“由例2可知,只要知道角a 终边上任意一点的坐标,就可以求出角a的三角函数值.因此,利用角a终边上任意一点的坐标也可以定义三角函数.你能自己给出这种定义吗?”至于类似“已知角a终边上一点的坐标是(3a,4a),求角a的三角函数值”的问题,显然是一个细枝末节问题,与三角函数的核心知识无关.参考文献:① [美]M. 克莱因. 古今数学思想(第二册)[M]. 上海:上海科学技术出版社,1979,43②项武义. 基础数学讲义丛书?基础几何学[M]. 北京:人民教育出版社,2004,82③同①,122~123④同②,82⑤同①,182⑥详见②,84~87。

用单位圆定义任意角三角函数的深层次领悟

用单位圆定义任意角三角函数的深层次领悟

用单位圆定义任意角三角函数的深层次领悟作者:李志敏来源:《师道·教研》2012年第05期以直角三角形为载体的锐角三角函数是解三角形的工具,而任意角的三角函数是研究现实中的周期现象而发展起来的,两者之间的研究对象不同,表现的性质不同,但结合直角三角形中锐角三角函数有助于任意角三角函数的研究.一、“单位圆定义法”有利于直观领悟角与实数之间的对应关系三角函数是建立在两个变量之间对应关系的基础上的.为了直观理解这种对应关系,我结合自制教具,如图1,用木头制作的圆盘,用一条彩带从圆上定点O开始缠绕于圆盘上,若将圆盘的半径看作一个单位长度,根据弧长公式:弧OP的长?謀=r·|?琢|=|?琢|,这样,角(弧度数)与弧长之间就建立了对应关系,两者之间单位一致;同时,若将缠绕于圆盘上的弧OP以O为起点拉直,对应数轴上的有向线段OQ,则弧长与数轴上的点建立了对应关系,而缠绕方向可以顺时针或逆时针方向,所以角(弧度数)与实数之间可以建立一对一关系.二“单位圆定义法”有利于后续内容学习“单位圆定义法”直接反映了三角函数定义中的数形关系,为后续研究三角函数线、三角函数的图像和性质、两角和与差的三角函数公式、和(差)化积公式等奠定了直观基础.1. 有利于诱导公式的学习“单位圆定义法”以单位圆为载体,点P(x,y)即P(cos?琢,sin?琢),根据单位圆上点旋转的周期性、点的对称性,能方便地得出:⑴点P(cos?琢,sin?琢)的位置相同:sin(?琢+k·2?仔)=sin?琢,cos(?琢+k·2?仔)=cos?琢,tan(?琢+k·2?仔)=tan?琢,(k∈z);⑵点P(cos?琢,sin?琢)关于原点对称:sin(?仔+?琢)=-sin?琢,cos(?仔+?琢)=-cos?琢,tan(?仔+?琢)=tan?琢;⑶点P(cos?琢,sin?琢)关于x轴对称:sin(-?琢)=-sin?琢,cos(-?琢)=cos?琢,tan(-?琢)=-tan?琢;⑷点P(cos?琢,sin?琢)关于y轴对称:sin(?仔-?琢)=sin?琢,cos(?仔-?琢)=-cos?琢,tan(?仔-?琢)=-tan?琢;⑸点P(cos?琢,sin?琢)关于直线y=x对称:sin(■-?琢)=cos?琢, cos(■-?琢)=sin?琢;⑹点P(cos?琢,sin?琢)关于直线y=-x对称:sin(■-?琢)=-cos?琢,cos(■-?琢)=-sin?琢.2. 有利于三角函数线的学习三角函数线是三角函数的几何表示,它直观地刻画了三角函数概念.如图2,单位圆中,根据三角函数定义:|OM|=|x|=|cos?琢|,而有向线段OM的方向与x轴的正方向一致,与cos?琢的符号一致,于是,有向线段OM可以表示角?琢的余弦值,叫做角?琢的余弦线;同理,MP,AT分别是角?琢的正弦线、正切线.3. 有利于两角和与差的三角函数的学习两角和与差公式实际上是“圆的旋转对称性”的解析表示,也是圆的反射对称性的解析表述.如图3,在平面直角坐标系xOy中,角?琢的终边与单位圆交于?琢(cos?琢,sin?琢)点,角?茁的终边与单位圆交于点B(cos?茁,sin?茁),设向量■与■的夹角为?兹,易知|?兹|=|?琢-?茁±k·2?仔|(k∈z),则cos?兹=cos(?琢-?茁±k·2?仔)=cos(?琢-?茁).∴■·■=■|·■|cos?兹=cos?兹=cos?琢cos?茁+sin?琢sin?茁.∴cos(?琢-?茁)=cos?琢cos?茁+sin?琢sin?茁.“单位圆定义法”与“终边定义法”本质上是一致的.“单位圆定义法”是任意角?琢的终边与单位圆的交点P(x,y),以单位长为半径;“终边定义法”是任意角?琢的终边上任意一点P(x,y),相当于以r=■为半径.因此,它们两者之间是一致的.但是单位圆定义法有利于完善学生的认知结构,更简单、清楚地突出三角函数的周期性且有利于三角函数的后续学习.。

三角函数单位圆的定义

三角函数单位圆的定义

三角函数单位圆的定义§1.2.1 任意角的三角函数第一课时任意角的三角函数的定义三角函数的定义域和函数值【学习目标、细解考纲】1、借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;2、从任意角三角函数的定义认识其定义域、函数值的符号。

【知识梳理、双基再现】1、在直角坐标系中,叫做单位圆。

2、设α是一个任意角, 它的终边与单位圆交于点P(x,y),那么: ⑴ 叫做α的正弦, 记作 ,即. ⑵ 叫做α的余弦, 记作 ,即. ⑶ 叫做α的正切, 记作 ,即 .当α= 时, α的终边在y 轴上, 这时点P 的横坐标等于 ,所以无意义. 除此之外, 对于确定的角α, 上面三个值都是 . 所以, 正弦、余弦、正切都是以为自变量, 以为函数值的函数, 我们将它们统称为 . 由于与之间可以建立一一对应关系, 三角函数可以看成是自变量为的函数.3、根据任意角的三角函数定义,先将正弦余弦正切函数在弧度制下的定义域填入下表,再将这三种函数的值在各象限的符号填入括号。

y =sin α y = cos αy =tan α【小试身手、轻松过关】4、已知角α的终边过点P (-1,2),cos α的值为() A .-5 B 5 C .25 D .25、α是第四象限角,则下列数值中一定是正值的是() A .sin α B .cosαC .tan α D .1tan α6、已知角α的终边过点P (4a , -3a )(aA .25B 25 C .0 D .与α的取值有关7、α是第二象限角,P (x , 5 )为其终边上一点,且cos α= 24x ,则sin α的值为(A .4 B .24 C .4 D .-4【基础训练、锋芒初显】8、函数y =x +-cos x 的定义域是()A .(2k π, (2k +1) π) ,k ∈ZB .[2k π+π2, (2k +1) π],k ∈Z)C .[k π+π2, (k +1) π],k ∈ZD .[2kπ,(2k+1)π],k ∈Z()9、若θ是第三象限角,且cosθ2θ是 2A .第一象限角B .第二象限角C .第三象限角 10、已知点P (tan α, cos α)在第三象限,则角α在A .第一象限B .第二象限C .第三象限D .第四象限角() D .第四象限11、已知sin αtan α≥0,则α的取值集合为 12、角α的终边上有一点P (m ,5),且cos α=m, (m ≠0) ,则sin α+cosα=______. 1313、已知角θ的终边在直线y =x 上,则sin θtan θ 314、设θ∈(0,2π),点P (sin θ,cos2θ)在第三象限,则角θ的范围是 15、函数y =A .{1}sin x |cos x |tan x++的值域是|sin x |cos x |tan x |B .{1,3}()C .{-1}D .{-1,3}【举一反三、能力拓展】17、(1) 已知角α的终边经过点P(4,-3) ,求2sin α+cosα的值;【名师小结、感悟反思】当角α的终边上点的坐标以参数形式给出时, 要根据问题的实际及解题的需要对参数进行分类讨论.§1.2.1 任意角的三角函数第二课时诱导公式一三角函数线【学习目标、细解考纲】灵活利用利用公式一;掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。

任意角的三角函数及基本公式

任意角的三角函数及基本公式

任意角的三角函数及基本公式三角函数是数学中的一个重要概念,它们描述了角度与三角比之间的关系。

任意角的三角函数包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。

下面将详细介绍这些函数的定义、基本公式以及它们之间的关系。

1. 正弦函数(sine function):在单位圆上,从x轴正向到射线与单位圆的交点之间的弧度即为角的弧度。

正弦函数将给定角度的正弦值映射到数轴上。

其定义如下:sin(θ) = y/r其中θ为角度,y为对边,r为斜边。

2. 余弦函数(cosine function):余弦函数表示角的余弦值在数轴上的投影长度。

其定义如下:cos(θ) = x/r其中θ为角度,x为邻边,r为斜边。

3. 正切函数(tangent function):正切函数表示角的正切值在数轴上的投影比。

其定义如下:tan(θ) = y/x其中θ为角度,y为对边,x为邻边。

4. 余切函数(cotangent function):余切函数表示角的余切值在数轴上的投影比。

其定义如下:cot(θ) = x/y其中θ为角度,y为对边,x为邻边。

5. 正割函数(secant function):正割函数表示角的正割值在数轴上的投影长度。

其定义如下:sec(θ) = r/x其中θ为角度,x为邻边,r为斜边。

6. 余割函数(cosecant function):余割函数表示角的余割值在数轴上的投影长度。

其定义如下:csc(θ) = r/y其中θ为角度,y为对边,r为斜边。

这些函数在不同的角度上有不同的值,可以通过查表或计算器得到具体数值。

同时,它们之间存在一些基本公式和关系,如下:1. 互余关系(co-function identities):sin(θ) = cos(90° - θ)cos(θ) = sin(90° - θ)tan(θ) = cot(90° - θ)cot(θ) = tan(90° - θ)sec(θ) = csc(90° - θ)csc(θ) = sec(90° - θ)2.三角函数的平方和差:sin²(θ) + cos²(θ) = 1tan²(θ) + 1 = sec²(θ)cot²(θ) + 1 = csc²(θ)3.三角函数的倒数:sec(θ) = 1/cos(θ)csc(θ) = 1/sin(θ)cot(θ) = 1/tan(θ)4.符号关系:根据角度的位置和象限,三角函数的值可能为正或负。

1.2.1 任意角的三角函数(2)

1.2.1 任意角的三角函数(2)
课件演示
例1.作出下列各角的正弦线、余弦线、正切线 .
(1)
3

(2)
2
3
.
解:
y
的终边
T3
y
T
P
O M A(1, 0) x
M
O A(1, 0) x
2 的终边 P
3
(1)
3
正弦线是
MP,
(2)
2
3
正弦线是 MP,
余弦线是 OM,
余弦线是 OM,
正切线是 AT .
正切线是 AT .
例2. 求证:当 为锐角时,sin tan .
3 ,y),且sin
2 4
y,
求cos、tan 的值。
解:由已知得 r ( 3)2 y2 3 y2
sin y y ,又 sin 2 y
r 3 y2
4
y 3 y2
2y 4

y 0或
3 y2 2 2
解得 y 0 或 y 5.
(1) 当 y 0时,P( 3 ,0),r 3 ,
作 业:
1. 教材 P22 习题4.3 1 ~ 2 2. 步步高:P9~12
高活页:§4.3 任意角的三角函数第一课时
练习1:若角α的终边落在射线 y 3x (x 0) 上,
求 sin ,cos ,tan .
解:在 射线 y 3x (x 0) 上取一点 P(1,3),
则 r 12 32 10 ,
α的终边
y
P
y
T α的终边 P
MO
A(1, 0) x
T
O M A(1, 0) x
y
y
T
α的终边
M O
P
A(1, 0) x

1.2 任意角的三角函数

1.2    任意角的三角函数

b
a
高中同步新课标²数学
创新方案系列丛书
1 2.已知角 α 的终边与单位圆交于 P(x, ),则 cos α = 2 ________. 1 3 3 2 解析:由 x +4=1,得 x=± 2 ,故 cos α=x=± 2 . 3 答案:± 2
高中同步新课标²数学
创新方案系列丛书 考点3 三角函数值的符号问题
角函数值.
高中同步新课标²数学
创新方案系列丛书
1.求下列三角函数值. 17π 47π 17π (1)sin- ; (2)cos ; (3)tan- . 6 3 4
47π π π 1 解:(1)sin- 6 =sin-8π+6=sin = ; 6 2 π 17π π 2 (2)cos =cos4π+4=cos = ; 4 4 2 17π π (3)tan- 3 =tan-6π+3 =tan
1 解析:由三角函数定义知,sin α=-2. 1 答案:-2
高中同步新课标²数学
创新方案系列丛书
5.cos 6²tan 6的符号为________(填“正”、“负”或“不确
定”).
3π 解析:∵ <6<2π,∴6 是第四象限角. 2 ∴cos 6>0,tan 6<0,则 cos 6· tan 6<0. 答案:负
解析:②③④均错,①正确.
答案:A
高中同步新课标²数学
创新方案系列丛书
2.已知tan x>0,且sin x+cos x>0,那么角x是( A.第一象限角 B.第二象限角 C.第三象限角 )
D.第四象限角
解析:由tan x>0,得α为第一、三象限角.而α为第三象限角时,

三角函数任意角的三角函数

三角函数任意角的三角函数

两角差余弦公式
$\cos(x-y)=\cos x\cos y+\sin x\sin y$
两角和与差的正弦公式
两角和正弦公式
$\sin(x+y)=\sin x\cos y+\cos x\sin y$
两角差正弦公式
$\sin(x-y)=\sin x\cos y-\cos x\sin y$
两角和与差的正切公式
对于任意角α,有以下基本 公式
sin²α+cos²α=1, 1+tan²α=sec²α, 1+cot²α=csc²α
04
05
两角和与差的 倍角和半角公 三角函数公式 式
sin(α+β)=sinαcosβ+cos αsinβ。 cos(α+β)=cosαcosβsinαsinβ
sin(2α)=2sinαcosα, cos(2α)=cos²α-sin²α, tan(2α)=(2tanα)/(1tan²α)
三角函数的图象与性质
01
三角函数的图象是在单位圆上点的轨迹,具有周期nx的图象是一条波形曲线,具有周期性,最小正周期为2π;余弦 函数y=cosx的图象也是一条波形曲线,也具有周期性,最小正周期为2π;正切 函数y=tanx的图象是一条直线,没有周期性。
交流电
交流电的电压和电流是时间的周期函数,可以用三角函数来 表示。
控制工程
在控制工程中,系统的传递函数和稳定性分析需要用到三角 函数的知识。
THANK YOU.
在解三角形中,三角函数可以用于求角度、长度 等,例如利用余弦定理求三角形面积: S=1/2bcsinA。
在微积分中,三角函数可以用于求函数的积分和 导数等,例如求圆的面积:A=πr²。

三角函数的概念(1)三角函数的定义(讲)高一数学同步讲练测(新教材人教A版必修第一册)

三角函数的概念(1)三角函数的定义(讲)高一数学同步讲练测(新教材人教A版必修第一册)

专题19三角函数的概念(1)三角函数的定义(讲)本节知识点与题型快速预览知识点课前预习与精讲精析1.任意角的三角函数的定义(1)单位圆在直角坐标系中,我们称以原点为圆心,以单位长度为半径的圆为单位圆.(2)三角函数的定义①如图,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:y 叫做α的正弦,记作sin α,即sin α=y ;x 叫做α的余弦,记作cos α,即cos α=x ; y x 叫做α的正切,记作tan α,即tan α=y x(x ≠0). 正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.②我们也可以利用角α终边上任意一点的坐标来定义三角函数.设α是一个任意角,α的终边上任意一点P 的坐标是(x ,y ),它与原点的距离是r (r =x 2+y 2>0),那么:比值y r 叫做α的正弦,记作sin α,即sin α= y r; 比值x r 叫做α的余弦,记作cos α,即cos α= x r; 比值y x 叫做α的正切,记作tan α,即tan α= y x. 正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数(trigonometric function).[知识点拨](1)在任意角的三角函数的定义中,应该明确:α是一个任意角,其范围是使函数有意义的实数集.(2)要明确sin α是一个整体,不是sin 与α的乘积,它是“正弦函数”的一个记号,就如f (x )表示自变量为x 的函数一样,离开自变量的“sin ”“cos ”“tan ”等是没有意义的.(3)由于角的集合与实数集之间可以建立一一对应的关系,所以三角函数可以看成是自变量为实数的函数.(3)定义域:如表所示三角函数解析式 定义域 正弦函数y =sin x R 余弦函数y =cos x R 正切函数y =tan x {x |x ≠k π+π2,k ∈Z }2.三角函数值的符号sin α、cos α、tan α在各个象限的符号如下:[知识点拨]正弦、余弦和正切函数在各象限的符号可用以下口诀记忆:“一全正,二正弦,三正切,四余弦”.其含义是在第一象限各三角函数值全为正,在第二象限只有正弦值为正,在第三象限只有正切值为正,在第四象限只有余弦值为正.3.公式一(k∈Z)sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα.[知识点拨]该组公式说明:终边相同的角的同名三角函数值相等;如果给定一个角,它的三角函数值是唯一确定的(不存在者除外),反过来,如果给定一个三角函数值,却有无数多个角与之对应.4.有向线段一条线段有两个端点,如果规定其中一个端点为起点,另一个为终点,这条线段被看做带有方向,于是把它叫做有向线段.表示有向线段时,要先写起点的字母,后写终点的字母.当有向线段与数轴平行时,我们可根据此线段的方向(从起点向终点)与数轴的方向相同或相反,分别把它的长度加上正号或负号,这样所得的数,就是此有向线段的数值,它是一个实数,如图所示,有向线段AB=2,CD=1,而有向线段BA=-2,DC=-1.5.三角函数线的作法如图,设单位圆与x轴的正半轴交于点A,与角α的终边交于点P(角α的顶点与原点重合,角α的始边与x 轴的非负半轴重合).过点P作x轴的垂线PM,垂足为M,过点A作单位圆的切线交OP的延长线(或反向延长线)于T点,这样就有sinα=MP,cosα=OM,tanα=AT.单位圆中的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.[知识点拨]①三角函数线的位置:正弦线为α的终边与单位圆的交点到x轴的垂直线段;余弦线在x轴上;正切线在过单位圆与x轴正方向的交点的切线上,三条有向线段中正弦线和余弦线在单位圆内,正切线在单位圆外.②三角函数线的方向:正弦线由垂足指向α的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向切线与α的终边(或反向延长线)的交点.③三角函数线的正负:三条有向线段凡与x轴正方向或y轴正方向同向的为正值,与x轴正方向或y轴正方向反向的为负值.④三角函数线的书写:有向线段的起点字母在前,终点字母在后.⑤三角函数线的意义:三角函数线的方向表示三角函数值的符号;三角函数线的长度等于所表示的三角函数值的绝对值.6.三角函数线的作用(1)用三角函数线可以比较两数的大小.在代数中,我们经常采用作差、作商、利用函数的单调性等方法比较大小,而三角函数线就表示了三角函数值的大小,所以在比较一些三角函数值的大小时,常采用比较三角函数线的方法,更加方便与直观.(2)利用三角函数线可以求角或角的范围,即解简单的三角方程或三角不等式.即由三角函数线得三角函数值,再找角的终边,进而找到角的值或取值范围.1.若点P在角的终边上,且|OP|=2(点O为坐标原点),则点P的坐标为.【解析】解:点P在角的终边上,且|OP|=2(点O为坐标原点),设点P的坐标为(a,b),a<0,b>0.则a2+b2=4,且tan,求得a,b=﹣1(舍去),或a,b=1,故点P的坐标为(,1),故答案为:(,1).2.已知角α终边落在直线上,求值:.【解析】解:当角α终边落在直线(x≥0)上,α为锐角,sinα cosα均为正值,且tanα,再结合sin2α+cos2α=1,求得sinα,cosα,则2.当角α终边落在直线(x<0)上,α∈(π,),sinα cosα均为负值,且tanα,再结合sin2α+cos2α=1,求得sinα,cosα,则,故答案为:2或.3.函数的值域为.【解析】解:当角是第一象限中的角时,y=1+1=2,当角是第二象限的角时,y=﹣1﹣1=﹣2,当角是第三象限的角时,y=﹣1+1=0,当角是第四象限的角时,y=1﹣1=0,可知函数的值域是{﹣2,0,2},故答案为:{﹣2,0,2}.4.若cosα>0,tanα<0,则α在第象限.【解析】解:∵cosα>0,∴α在第一象限或第四象限或x轴正半轴,∵tanα<0,∴α在第二象限或第四象限,综上,α在第四象限.故答案为:四.5.若,则点P(tanθ,sinθ)位于第象限.【解析】解:∵,∴tanθ<0,sinθ>0,故点P(tanθ,sinθ)位于第二象限,故答案为:二.典型题型与解题方法重要考点一:利用三角函数的定义求三角函数值【典型例题】已知角α和角β的终边垂直,且角α终边上一点坐标P(1,2),则tanα=,cosβ=.【解析】解:由任意角的三角函数的定义可知tanα2,可得sinα,所以cosβ=cos(α±)=±sinα=±.故答案为:2,±.【题型强化】已知a<0,角α的终边上有一点P(3a,﹣4a),则sinα=.【解析】解:由三角函数的定义可知sinα,当a<0时,sinα.故答案为:.【收官验收】已知角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(,),则tanα=,cos2α=.【解析】解:∵角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(,),则tanα,cos2α,故答案为:;.【名师点睛】(1)已知角α的终边在直线上的问题时,常用的解题方法有以下两种:①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.②注意到角的终边为射线,所以应分两种情况处理,取射线上任意一点坐标(a,b),则对应角的正弦值sinα=ba2+b2,余弦值cosα=aa2+b2,正切值tanα=ab.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.重要考点二:三角函数在各象限内符号的应用【典型例题】如果sinθ>0,tanθ<0,那么角θ所在象限是.【解析】解:根据题意,若sinθ>0,θ为第一二象限的角,tanθ<0,θ为第二四象限的角,则sinθ>0,tanθ<0,则θ为第二象限的角,故答案为:第二象限【题型强化】若点P(sin2θ,2sinθ)位于第三象限,那么角θ终边落在第象限.【解析】解:根据题意,点P(sin2θ,2sinθ)位于第三象限,则有,即,则有,则角θ终边落在第四象限;故答案为:四【收官验收】已知α是第三象限的角,则sin(cosα)•cos(sinα)的符号是号(填正或负)【解析】解:∵α是第三象限的角,∴﹣1<cosα<0,﹣1<sinα<0,则sin(cosα)<0,cos(sinα)>0,即则sin(cosα)•cos(sinα)<0,故答案为:负.【名师点睛】(1)能准确判定角的终边位置是判断该角的三角函数值符号的关键;(2)要熟记三角函数值在各象限的符号规律.重要考点三:分类讨论思想在化简三角函数式中的应用【典型例题】已知扇形的圆心角为θ,其弧长是其半径的2倍,则.【解析】解:圆心角θ2,∵2<π,∴sinθ>0,cosθ<0,tanθ<0,∴1﹣1﹣1=﹣1,故答案为:﹣1【题型强化】函数y的值域是.【解析】解:由题意可得:sin x≠0,cos x≠0,tan x≠0,角x的终边不在坐标轴上,当x∈(2kπ,2kπ),k∈Z时,y1+1+1=3;当x∈(2kπ,2kπ+π),k∈Z时,y1﹣1﹣1=﹣1;当x∈(2kπ+π,2kπ),k∈Z时,y1﹣1+1=﹣1;当x∈(2kπ,2kπ+2π),k∈Z时,y1+1﹣1=﹣1.可得:函数y的值域是{3,﹣1}.故答案为:{3,﹣1}.【收官验收】设α角属于第二象限,且|cos|=﹣cos,则角属于象限.【解析】解:∵|cos|=﹣cos,∴cos0,∵α角属于第二象限,∴属于第一或三象限,∴角属于第三象限,故答案为:三【名师点睛】对于多个三角函数符号的判断问题,要进行分类讨论.重要考点四:三角函数定义理解中的误区【典型例题】已知角α的终边经过点P(x,﹣6),且cosα,则x=.【解析】解:由题意可得cosα,求得x=﹣8,故答案为:﹣8.【题型强化】已知点P(cosθ,sinθ)在第三象限,则角θ的终边落在第象限.【解析】解:∵点P(cosθ,sinθ)在第三象限,∴cosθ<0,θ可能在第三象限或者第二象限或x轴的负半轴,sinθ<0,θ可能在第三象限或者第四象限或y轴的负半轴,所以θ在第三象限.故答案为:三.【收官验收】α,β∈{1,2,3,4,5},那么使得sinα•cosβ<0的数对(α,β)有个.【解析】解:∵1在第一象限,2,3在第二象限,3,4在第三象限,5在第四象限,若sinα•cosβ<0,则若α是第一象限,则β是第三象限,此时为(1,3),(1,4),若α是第二象限,则β是第三象限,此时为(2,3),(2,4),(3,3),(3,4),若α是第三象限,则β是第一或第四象限,此时为(3,1),(4,1),(3,5),(4,5),若α是第四象限,则β是第一或第四象限,此时为(5,1),(5,3),(5,4),综上共有13个,故答案为:13重要考点五:利用三角函数线比较大小【典型例题】设a=sin24°,b=tan38°,c=cos52°,则()A.a<b<c B.b<a<c C.c<a<b D.a<c<b【解析】解:a=sin24°,b=tan38°,c=cos52°=sin28°,根据单位圆的三角函数线:AB=b,EF=c,CD=a,即:tan38°>sin28°>sin24°,即a<c<b,故选:D.【题型强化】sin4,cos4,tan4的大小关系是()A.sin4<tan4<cos4 B.tan4<sin4<cos4C.cos4<sin4<tan4 D.sin4<cos4<tan4【解析】解:如图作单位圆,∵4,∴tanα=AT>0,sinα=BP<0,cosα=OB<0;故BP<OB<AT;故sin4<cos4<tan4;故选:D.【收官验收】已知sinθ,利用单位圆中的三角函数线,确定角θ的范围.【解析】解:画出三角函数线如图.由图可知角θ的范围是{θ|2kπθ≤2kπ或2kπx≤2kπ,k∈Z}【名师点睛】利用三角函数线比较函数值大小的关键及注意点:(1)关键:在单位圆中作出所要比较的角的三角函数线.(2)注意点:比较大小,既要注意三角函数线的长短,又要注意方向.重要考点六:利用三角函数线求解不等式【典型例题】利用单位圆和三角函数线,分别求出使下列各组条件成立的x的集合.(1);(2)tan x.【解析】解:(1)画出图形,如图所示;单位圆中的三角函数线同时满足sin x,cos x的x是,k∈z;即x的取值范围是{x|2kπx≤2kπ,k∈z}.(2)(2)如图①所示,过点(1,)和原点作直线交单位圆于P和P′,则射线OP、OP′就是满足tan x的角x的终边,∵在[0,2π)内,满足条件的∠POx=π,∠P′Ox;∴满足条件tan x的角x的集合是{x|x kπ,k∈Z},则满足tan x的角x的集合是{x|kπ≤x kπ,k∈Z}.【题型强化】利用三角函数线比较下列各组三角函数值的大小:(1)sin与sinπ(2)cos与cos()(3)tan与tanπ【解析】解:(1)sin与sinπ,sin与sinπ对应的三角函数线如图①所示:即sin NB,sinπ=MA,则有sinπ>sin;(2)cos与cos()cos与cos()对应的三角函数线如图②所示:cos OM,cos()=ON,则有cos cos();(3)tan与tanπ,tan与tanπ对应的三角函数线如图③所示:即有tan AM,tanπ=AN,则有tanπ>tan.【收官验收】利用单位圆,求适合下列条件的角的集合.(1)cosα;(2)sinα.【解析】解:(1)在单位圆内作出cosα的三角函数线如图1所示;在[0,2π)内,cos cos,OA,OB分别为,的终边,由余弦线可知,满足cosα的角的取值集合是{α|α2kπ或α2kπ,k∈Z};(2)在单位圆内作出sinα的三角函数线如图2所示;在[0,2π)内,sin sin,OA,OB分别为,的终边,由正弦线可知,满足sinα的角的解集为{α|2kπ≤α2kπ,k∈Z}.【名师点睛】利用三角函数线解sinα≥a,sinα≤a(|a|<1)型不等式的具体方法为:①如图所示,画出单位圆;②过y轴上一点M(0,a)作y轴的垂线,交单位圆于P,P′两点,作射线OP,OP′;③写出射线OP与OP′对应的角;④图中阴影部分(包括边界)即满足sinα≤a(|a|<1)的角α的终边所在的范围,空白部分(包括边界)即满足sinα≥a(|a|<1)的角α的终边所在的范围.重要考点七:利用三角函数线证明几何结论【典型例题】当α∈(0,)时,求证:sinα<α<tanα.【解析】证明:方法一:由0<α,可得sinα、α、tanα都是正实数.设f(α)=α﹣sinα,求导得:f′(α)=1﹣cosα>0,因此,f(α)=α﹣sinα在α∈(0,)上是个增函数,则有f(α)=α﹣sinα>f(0)=0,即sinα<α.同理,令g(α)=tanα﹣α,则g′(α)1>0,∴,g(α)=tanα﹣α在α∈(0,)上也是个增函数,也有g(α)=tanα﹣α>g(0)=0,即tanα>α.综上,当α∈(0,)时,sinα<α<tanα.方法二:如图,设角a的终边与单位圆相交于点P,单位圆与X轴正半轴的交点为A,过点A作圆的切线交OP的延长线于T,过P作PM⊥OA于M,连结AP,则sinα=MP,,tanα=AT,∵S△POA<S扇形POA<S△OAT,∴,∴MP AT,∴sinα<α<tanα.【题型强化】设α是锐角,利用单位圆证明下列不等式:(1)sinα+cosα>l;(2)sinα<α<tanα.【解析】证明:(1)α为锐角,角α的终边落在第一象限,设角α的终边与单位圆交于点P(x,y)时,过P作PM⊥x轴于点M,作PN⊥Y轴于点N(如图),则sinα=MP,cosα=OM=NP,利用三角形两边之和大于第三边有:sinα+cosα=MP+OM>1,得证.(2)∵如图所示:S△OP A<S扇形OP A<S△OAE,S△OP A•1•BP,S扇形OP A•1•,S△OAE•1•AE,∴BP AE,∴sinα<α<tanα.【收官验收】利用三角函数线证明:若0<α<β,则有β﹣α>sinβ﹣sinα.【解析】证明:如图所示,∠AOQ=α,∠AOP=β,单位圆O与x轴正半轴交于点A,与角α,β的终边分别交于点Q,P,过Q,P分别作OA的垂线,设垂足分别为M,N,则由三角函数线的定义可知,sinα=NQ,sinβ=MP,过点Q作OH⊥MP,垂足为H,于是MH=NQ,则HP=MP﹣MH=MP﹣NQ=sinβ﹣sinα.设的长分别为m,p,q,则由图可知HP<m=p﹣q=β﹣α,即β﹣α>sinβ﹣sinα.【名师点睛】解答利用三角函数线求解不等式这类题目时,一般先根据三角函数值的范围找出角的终边所在的区域,在找角的终边所在的区域时,注意对正弦要找单位圆上的纵坐标,对余弦应在单位圆上找横坐标,根据这些坐标找出单位圆上满足要求的弧,即可找到角的终边所在的区域,再根据角的终边所在的区域写出角的范围.。

三角函数相关知识点总结

三角函数相关知识点总结

三角函数相关知识点总结一、三角函数的定义。

1. 锐角三角函数。

- 在直角三角形中,设一个锐角为α。

- 正弦sinα=(对边)/(斜边)。

例如,在直角三角形ABC中,∠ C = 90^∘,∠A=α,BC为∠ A的对边,AB为斜边,则sinα=(BC)/(AB)。

- 余弦cosα=(邻边)/(斜边),对于上述三角形,AC为∠ A的邻边,cosα=(AC)/(AB)。

- 正切tanα=(对边)/(邻边)=(BC)/(AC)。

2. 任意角三角函数(单位圆定义)- 设角α终边上一点P(x,y),r=√(x^2)+y^{2}。

- sinα=(y)/(r)。

- cosα=(x)/(r)。

- tanα=(y)/(x)(x≠0)。

二、三角函数的基本性质。

1. 定义域。

- y = sin x和y=cos x的定义域都是R(全体实数)。

- y=tan x的定义域是<=ft{xx≠ kπ+(π)/(2),k∈ Z}。

2. 值域。

- y = sin x和y=cos x的值域都是[ - 1,1]。

- y=tan x的值域是R。

3. 周期性。

- y = sin x和y=cos x的最小正周期都是2π。

即sin(x + 2kπ)=sin x,cos(x +2kπ)=cos x,k∈ Z。

- y=tan x的最小正周期是π,tan(x + kπ)=tan x,k∈ Z。

4. 奇偶性。

- y=sin x是奇函数,因为sin(-x)=-sin x。

- y = cos x是偶函数,因为cos(-x)=cos x。

- y=tan x是奇函数,因为tan(-x)=-tan x。

5. 单调性。

- y=sin x在<=ft[-(π)/(2)+2kπ,(π)/(2)+2kπ](k∈ Z)上单调递增,在<=ft[(π)/(2)+2kπ,(3π)/(2)+2kπ](k∈ Z)上单调递减。

- y=cos x在[2kπ-π,2kπ](k∈ Z)上单调递增,在[2kπ,2kπ + π](k∈ Z)上单调递减。

对任意角三角函数的两种定义方法的思考

对任意角三角函数的两种定义方法的思考

对任意角三角函数的两种定义方法的思考任意角三角函数的定义有两种方法,分别是“终边定义法”和“单位圆定义法”,这两种方法本质上是一样的,新课标人教版教材采用的是后者。

为什么要采用“单位圆定义法”?它的优点在哪里?本文就两篇文章《“单位圆定义法”VS“终边坐标法”》和《为什么用单位圆上的点的坐标定义任意角的三角函数》所提的观点,提出一些个人的看法,以求教于广大同行。

任意角三角函数的定义有两种方法,分别是“终边定义法”和“单位圆定义法”,这两种方法本质上是一样的,新课标人教版教材采用的是后者。

为什么要采用“单位圆定义法”?它的优点在哪里?抱着学习的目的,在拜读了专家层面的两篇文章《“单位圆定义法”VS“终边坐标法”》(以下简称文1)和《为什么用单位圆上的点的坐标定义任意角的三角函数》(以下简称文2)之后,笔者发现,他们对两种定义法存在着重大分歧,为什么会出现这么大的分歧呢?到底哪一种方法更适用于三角函数的教与学呢?本文试对二者的分歧一探究竟。

1 两种观点的分歧两种观点的分歧主要体现在以下几个方面:①从三角函数历史发展的角度,各自论述了“单位圆定义法”和“终边坐标法”谁更符合概念的本质;②文1从认知结构和认知习惯的角度论述了“终边坐标法”的优点,而文2则从认知效率以及构建知识结构的角度论述了“单位圆定义法”的优点。

至于哪种方法更有利于解题实践(以人教A版例2为例),显然是“终边坐标法”更好,本文就不再赘述,而只从上述两点对双方各自的论述提几点看法。

2 从任意角的三角函数历史发展的角度看从17世纪起,由于数学注重了对运动的研究而引出了很多重要的数学概念,函数就是其中之一。

而任意角的三角函数就是源于对匀速圆周运动的研究,也称为圆函数。

数学上研究匀速圆周运动,根本的是研究圆周上的一点P(x,y)与时间t的函数关系(假设点P的初始位置在x轴的正半轴上)。

点P的位置要由两个量x与y来确定,设角速度为w,容易由锐角三角函数的定义想到,x/y=coswt,y/r=sinwt(r为圆半径0,则x=rcoswt,y=rsinwt。

任意角的三角函数

任意角的三角函数

利用单位圆有关的有向线段,作出正弦线,余弦线, 正切线.
三角函数的几何表示课件
三角函数的一种几何表示
当角 的终边不在坐标轴上时,我们把 OM , MP 都看 成带有方向的线段,这种带方向的线段叫有向线段.由正 弦、余弦、正切函数的定义有:
y y sin y MP r 1
x x cos x OM r 1
而 48 °第一象限角, 所以tan(-672 °)>0
解:
因为tan(11π/3)=4)tan(5π/3+2π )=tan(5π/3)
而 5π/3第四象限角, 所以tan(11π/3)<0
变式
判断 cos(sinα)的符号
分析:
求 sinα 的大小; 弧度制把角度与实数相联系
解:
因为 sinα 的取值为 [-1,1]; 而 -1>-π /2 , 1< π/2 ;
弦 csc
tan 切 cot
全为+ 函 o x cos

函:所有的三角函数 弦:正弦 (倒数余割) 切:正切 (倒数余切) 余:余弦 (倒数正割)
sec
例3
确定下列三角函数值的符号
(1) cos250° (2) sin(-π /4)
解: 因为250°是第三象限角, 所以cos250°<0 解: 因为-π/4是第四象限角, 所以sin(-π/4) <0 练习4 口答
务正业了,每天坐在飞船当中,正在朝南皇国赶路."罢了,你们主内,咱主外吧..."根汉无奈の自嘲,她们在体验不同の人生,或许对她们の道法有所帮助,因为她们可能之前从来没想到会经历这样の生活.不过因为在这里已经呆了有段时间了,根汉必须要着眼开始找到这星海大陆の出口了,若是 再

三角函数-任意角的三角函数

三角函数-任意角的三角函数

第二节 任意角的三角函数知识点1.利用单位圆定义任意角的三角函数如图,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:(1)y 叫做α的正弦,记作sin α,即sin α=y ;(2)x 叫做α的余弦,记作cos α,即cos α=x ;(3)y x 叫做α的正切,记作tan α,即tan α=y x(x ≠0). 对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.2.一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=y r ,cos α=x r ,tan α=y x. 2.正弦、余弦、正切函数值在各象限的符号口诀概括为:一全正、二正弦、三正切、四余弦(如图).3.三角函数的定义域4.诱导公式一终边相同的角的同一三角函数的值相等,即:sin(α+k ·2π)=sin α,cos(α+k ·2π)=cos α,tan(α+k ·2π)=tan α,其中k ∈Z .5.三角函数线如图,设单位圆与x 轴的正半轴交于点A ,与角α的终边交于P 点.过点P 作x 轴的垂线PM ,垂足为M ,过A 作单位圆的切线交OP 的延长线(或反向延长线)于T 点.单位圆中的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线.记作:sin α=MP ,cos α=OM ,tan α=AT .6.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α (α≠k π+π2,k ∈Z ).同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式:sin 2α=1-cos 2α;cos 2α=1-sin 2α.(2)tan α=sin αcos α的变形公式:sin α=cos αtan α;cos α=sin αtan α.题型一:三角函数的定义【例1】已知θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ.【例2】已知角α的终边上一点的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为() A.5π6 B.2π3 C.5π6 D.11π6【过关练习】1.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( )A .3B .-3C .±3D .52.已知角α的终边经过点P (-4a,3a )(a ≠0),求sin α,cos α,tan α的值;3.已知角α的终边在直线y =3x 上,求sin α,cos α,tan α的值.题型二:三角函数在各象限的符号【例1】判断下列三角函数值的符号:(1)sin 3,cos 4,tan 5;(2)sin(cos θ)(θ为第二象限角).【过关练习】1.若sin θ<0且tan θ<0,则θ是第 象限的角.2.若tan x <0,且sin x -cos x <0,则角x 的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限题型三:诱导公式一的应用【例1】求下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin ⎝⎛⎭⎫-11π6+cos 12π5·tan 4π.【过关练习】1.求下列各式的值:(1)cos 25π3+tan ⎝⎛⎭⎫-15π4; (2)sin 810°+tan 765°-cos 360°.2.求下列各式的值.(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°);(2)tan 405°-sin 450°+cos 750°.题型四:三角函数线的应用【例1】在单位圆中画出满足sin α=12的角α的终边,并求角α的取值集合.【例2】利用单位圆中的三角函数线,分别确定角θ的取值范围.(1)sin θ≥32;(2)-12≤cos θ<32.【例3】求下列函数的定义域.(1)f (x )=sin x ·tan x ;(2)f (x )=lg sin x +9-x 2.【过关练习】1.根据下列三角函数值,作角α的终边,然后求角的取值集合:(1)cos α=12;(2)tan α=-1.2.如果π4<α<π2,那么下列不等式成立的是( ) A .cos α<sin α<tan αB .tan α<sin α<cos αC .sin α<cos α<tan αD .cos α<tan α<sin α3.求函数f (x )=1-2cos x +ln ⎝⎛⎭⎫sin x -22的定义域.4.设a =sin(-1),b =cos(-1),c =tan(-1),则有( )A .a <b <cB .b <a <cC .c <a <bD .a <c <b 5.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A .(-π3,π3) B .(0,π3) C .(5π3,2π) D .(0,π3)∪(5π3,2π)题型五:同角三角函数关系的应用【例1】已知cos α=-817,求sin α,tan α的值.【例2】已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α; (2)14sin 2α+13sin αcos α+12cos 2α.【例3】已知sin θ+cos θ=15,θ∈(0,π),求: (1)sin θ-cos θ;(2)sin 3θ+cos 3θ.【过关练习】1.已知tan α=43,且α是第三象限角,求sin α,cos α的值.2.已知sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( ) A.34 B .±310 C.310 D .-3103.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-15 B .-35 C.15 D.354.已知tan α=3,求下列各式的值.(1)3cos α-sin α3cos α+sin α; (2)2sin 2α-3sin αcos α.5.已知sin θ、cos θ是关于x 的方程x 2-ax +a =0的两个根(a ∈R ).(1)求sin 3θ+cos 3θ的值;(2)求tan θ+1tan θ的值.题型六:三角函数化简【例1】若α是第三象限角,化简1+cos α1-cos α+1-cos α1+cos α.【例2】求证:2sin x cos x -1cos 2x -sin 2x =tan x -1tan x +1.【过关练习】1.化简:1cos 2α1+tan 2α-1+sin α1-sin α(α为第二象限角).2.证明:sin α-cos α+1sin α+cos α-1=1+sin αcos α;课后练习【补救练习】1.若sin θcos θ>0,则θ在( )A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限2.设角α终边上一点P (-4a,3a )(a <0),则2sin α+cos α的值为() A.25 B.25或-25 C .-25 D .与a 有关3.判断下列各式的符号:(1)sin 340°cos 265°;(2)sin 4tan ⎝⎛⎭⎫-23π4;4.在[0,2π]上,满足sin x ≥12的x 的取值范围为( )A.⎣⎡⎦⎤0,π6B.⎣⎡⎦⎤π6,5π6C.⎣⎡⎦⎤π6,2π3D.⎣⎡⎦⎤5π6,π5.利用三角函数线比较下列各组数的大小(用“>”或“<”连接):(1)sin 23π________sin 45π;(2)cos 23π________cos 45π;(3)tan 23π________tan 45π.6.已知α是第四象限角,cos α=1213,则sin α等于( )A.513 B .-513 C.512 D .-512【巩固练习】1.已知角θ的终边上一点(,2)P m -,且||4OP =,则tan θ=__________。

三角函数任意角的三角函数

三角函数任意角的三角函数
长度。
sin45°和cos45°分别表示单 位圆上从原点到正x轴和正y
轴45°的线段长度。
sin60°和cos60°分别表示单位 圆上从原点到正x轴和正y轴 60°的线段长度。
利用计算器求三角函数值的方法
选择合适的角度模式
大多数计算器都有度数、弧度 、梯度等模式可供选择,根据
需要选择合适的模式。
选择三角函数类型
三角函数在单位圆上的表示
正弦函数、余弦函数和正切函数在单位圆上都有对应的表示。具体来说,正弦 函数和余弦函数的图像都在单位圆上,而正切函数的图像则是单位圆在第一象 限和第三象限的切线。
三角函数在单位圆上的表示
正弦函数在单位圆上的表示
正弦函数的图像是单位圆上点的纵坐标,即y坐标。当角度θ从0°增加到360°时,正弦函 数的值从0增加到1,再减小到0,再增加到-1,再减小到0,呈现出周期性变化。
奇偶性
正弦函数的奇偶性
正弦函数是奇函数,因为对于任意实 数x,都有sin(-x)=-sin(x)。
余弦函数的奇偶性
余弦函数是偶函数,因为对于任意实 数x,都有cos(-x)=cos(x)。
有界性
01
有界性的定义
三角函数在定义域内具有有界性,即它们的取值范围都在一定的界限之
内。
02
正弦函数的有界性
正切函数图像
正切函数的图像是一个周期为$pi$ 的曲线,它在每个开区间$(kpi frac{pi}{2}, kpi + frac{pi}{2})$内是 单调递增的。
余切函数图像
余切函数的图像也是一个周期为$pi$ 的曲线,它在每个开区间$(kpi frac{pi}{2}, kpi + frac{pi}{2})$内是单 调递减的。

单位圆与任意角的正余弦函数定义

单位圆与任意角的正余弦函数定义
点P的_横___坐__标__u叫作角α的余弦函数,记作_u_=_ cosα_.
【探究4】 正弦、余弦函数值在各象限的符号
上 正 弦 右 余 弦
【知识梳理】
正弦ቤተ መጻሕፍቲ ባይዱ余弦函数在各象限的符号
三角函数
象限 第一象限 第二象限 第三象限 第四象限
sin α cos α
+
+


+


+
【应用】 特殊角的正、余弦函数值
若取|OP|=1时,sin α,cos α的值怎样表示?
sin y y y
r1
cos x x x
r1
【探究2】 单位圆与锐角正、余弦函数的关系
y
1 P(u,v)
sin v v
1
O
x
cos u u
1
【探究3】 单位圆与任意角正、余弦函数的定义
任给角
终边OP
点P
y
P
v
uO
x
v sin
解: sin 0
cos -1
y
-1
O
x
【作业】 求特殊角的正、余弦函数值(课本第16页表格)
0 2 5 7 4 3 5 11 2
6 4 32 36
6 32 3 6
sin
cos
思维导图
锐角的正、 余弦函数
r O
P(x,y)
任意角的正、 余弦函数
v sin
u cos
上正弦 右余弦
A
α
C
【探究1】用坐标来表示锐角的正弦函数和余弦函数
角α的正弦、余弦分别等于什么?
sin y
r
cos x

任意角的三角函数在单位圆上定义的优势

任意角的三角函数在单位圆上定义的优势

任意角的三角函数在单位圆上定义的优势单位圆是一个半径为1的圆,位于坐标系的原点。

通过在单位圆上找到一个点,在该点上绘制一条射线,该射线与圆心形成的角即为任意角。

在单位圆上定义任意角的三角函数具有以下优势:1.规范性:单位圆上定义的任意角的三角函数是一种规范化的方式,不依赖于任何特定的角度单位制。

由于单位圆的半径为1,所以不同的角度单位制可以互相转换,而不会影响三角函数的值。

这使得在不同的数学领域和不同的计算机科学应用中,三角函数的统一定义成为可能。

2. 直观性:单位圆上定义的任意角的三角函数能够提供直观的几何解释。

对于一个给定的角度,可以在单位圆上找到一个对应的点,该点的坐标值正是相关三角函数的值。

例如,对于sin角度90度,可以在单位圆上找到一个点(0, 1),其纵坐标值正是sin 90度的值。

这种几何解释有助于理解三角函数的性质和运算规则。

3.可视化:在单位圆上定义的任意角的三角函数可以方便地进行可视化表示。

通过绘制圆形,标记角度和对应的三角函数值,可以更直观地展示三角函数的周期性、对称性和变化规律。

这对于学生学习和理解三角函数非常有帮助,也使得在探索三角函数的性质和图像时更加直观。

4.四象限关系:单位圆上定义的任意角的三角函数使得四象限关系更加明确和直观。

在单位圆上,角度可以从正向逆时针方向测量,这样就可以很清楚地将角度分为四个象限。

在不同的象限,三角函数的正负关系也有所不同,这使得角度的变化和三角函数值的变化之间的关系更加清晰。

5.函数关系:单位圆上定义的任意角的三角函数的值与角度之间存在着一种函数关系。

通过这种函数关系,可以推导出三角函数之间的恒等式、性质和运算规则。

这对于解析几何、三角学和物理学等学科非常重要,也使得人们能够更好地理解三角函数的运算性质和应用。

在总结上述优势的基础上,可以得出结论:单位圆上定义的任意角的三角函数具有规范性、直观性、可视化、四象限关系和函数关系的优势。

这些优势使得在数学和科学领域中广泛应用三角函数变得更加方便和直观,也有助于人们更好地理解和应用三角函数的概念和性质。

单位圆与任意角的正弦函数、余弦函数的定义

单位圆与任意角的正弦函数、余弦函数的定义
(2)①200°为第三象限的角,所以cos 200°<0. ②160°为第二象限的角,所以sin 160°>0.-40°为第四象限的
角,所以cos(-40°)>0,所以sin 160°+cos(-40°)>0. ③210°为第三象限的角,sin 210°<0,260°为第三象限的角,
所以cos 260°<0,所以sin 210°·cos 260°>0.
(2)角α的终边经过点P(m,4),且cos α= -3,则m=_______.
5
(3)角α满足sin α>0,cos α<0,则α在第______象限.
【解析】(1) r 3 2 12 2,sin y 1 , r2
所以α的最小正值为 . 答案:
6
. 6
(2)r= m2 因16, 为cosα=
再 见!
感谢指导!
5a 5
答案: 3或 3
55
课堂总 1、任意角三角函结数的定义:
若已知角α终边与单位圆交于点P(u,v),则:
sin v cos u
2、解题方法总结
(1)已知交点P的坐标,直接用定义 (2)已知角,则先求交点P的坐标再用定义
3、正弦、余弦函数值的正负规律 正弦上正下负,余弦右正左负。
2
a2 ( 1所)2以 1,
2
a 3. 2
(2)因为点P(-2,-4)在角α的终边上,故u1=-2,
v1=-4,可知r= OP =-22 -42 2 5.
所以sin α= v1 -4 α= u1 -2 - 5 .
r 25 5
【变式训练】已知角α的终边经过点P(2,-3),则cos α的值
【题型示范】
类型一 任意角的正弦函数、余弦函数

为什么用单位圆上点坐标定义任意角三角函数

为什么用单位圆上点坐标定义任意角三角函数

为什么用单位圆上点的坐标定义任意角的三角函数人民教育出版社中学数学室章建跃在人教版《普通高中实验教科书·数学4·必修(A 版)》(简称“人教A版”)中,三角函数采用了如下定义(简称“单位圆定义法”):“如图1,设α是一个任意角,它的终边与单位圆交于点P(x ,y),那么:(1)y 叫做α的正弦,记作sin α,即sin α=y;(2)x 叫做α的余弦,记作cosα,即cosα=x ;3)叫做α 的正切,记作tan α ,即tan α = (x≠ 0)可以看出,当α= (k ∈ Z)时,α的终边在y 轴上,这时点P的横坐标x 等于0,所以无意义.除此之外,对于确定的角α,上述三个值都是唯一确定的.所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.1.部分教师的疑惑和意见由于种种原因,实验区有的教师对上述定义不理解,认为该定义不如以往教材采用的定义,即在角α的终边上任取一点P(x ,y),P到原点的距离为r,比值,,分别定义为角α的正弦函数、余弦函数和正切函数(简称“终边定义法”).其理由主要有以下几点:第一,“单位圆定义法” 中,“交点是特殊的,缺乏一般性,不符合数学定义的要求” ;“终边定义法”中,“所取得点是任意的,具有一般性,符合数学定义的要求”.有的老师说,“单位圆上的点毕竟是特殊点,用它定义三角函数有失一般性”.第二,“单位圆定义法”不利于将锐角三角函数推广到任意角三角函数;“终边定义法”有利于这种推广.有的老师说,“用单位圆上点的坐标定义正弦、余弦函数带来了不少便利,其根本原因是它化简了三角函数的比值.而用单位圆上点的坐标定义正切函数,由于它未能化简三角函数的比值,所以它就没有什么特别的意义.”第三,“单位圆定义法”不利于解题.有的老师说,在解“已知角α终边上一点的坐标是(3a,4a ),求角α的三角函数值”时,用“终边定义法”非常方便,而用“单位圆定义法”很不方便.为了解答老师们的疑问,我们首先从回顾三角函数的发展历史开始.2.对三角函数发展历史的简单回顾回顾三角学发展史,可以发现它的起源、发展与天文学密不可分,它是一种对天文观察结果进行推算的方法.1450 年以前,三角学主要是球面三角,这是航海、立法推算以及天文观测等人类实践活动的需要,同时也是宇宙的奥秘对人类的巨大吸引力所至,这种“量天的学问”确实太诱人了.后来,由于间接测量、测绘工作的需要而出现了平面三角.三角学从天文学中独立出来的标志是德国数学家雷格蒙塔努斯(J. Regiomontanus ,1436 —1476)于1464 年出版《论各种三角形》,这部著作首次对三角学做出了完整、独立的阐述.其中采用印度人的正弦,即圆弧的半弦,明确使用了正弦函数,讨论了一般三角形的正弦定理,提出了求三角形边长的代数解法,给出了球面三角的正弦定理和关于边的余弦定理.这部著作为三角学在平面与球面几何中的应用奠定了牢固基础.后来,哥白尼的学生雷提库斯(G. J. Rhaeticus ,1514—1576)将传统的圆中的弧与弦的关系改进为角的三角函数关系,把三角函数定义为直角三角形的边长之比,从而使平面三角学从球面三角学中独立出来,并采用了六个函数(正弦、余弦、正切、余切、正割、余割).法国数学家韦达(F. Vieta ,1540—1603)总结了前人的三角学研究成果,将解平面直角三角形和斜三角形的公式汇集在一起,还补充了自己发现的新公式,如正切公式、和差化积公式等,并将解斜三角形的问题转化为解直角三角形的问题等,这是对三角学的进一步系统化.总之,16 世纪,三角学从天文学中分离出来,成为数学的一个独立分支.不过,值得注意的是,这时所讨论的“三角函数” 仅限于锐角三角函数,而且研究锐角三角函数的目的在于解三角形和三角计算.任意角的三角函数的研究,与圆周运动的研究有直接关系.17 世纪,“数学从运动的研究中引出了一个基本概念.在那以后的二百年里,这个概念在几乎所有的工作中占中心位置,这就是函数──或变量间的关系──的概念.” “正弦、余弦函数是一对起源于圆周运动,密切配合的周期函数,它们是解析几何学和周期函数的分析学中最为基本和重要的函数;而正弦、余弦函数的基本性质乃是圆的几何性质(主要是其对称性)的直接反映.”任意角的三角函数的系统化是在18 世纪的微积分研究中完成的.“微积分的一般工作的结果是:初等函数被充分地认识了,并实际已将它们发展成为我们今天所见到的样子.” “三角函数的数学也系统化了.Newton 和Leibniz 给出了这些函数的级数展开式.两个角的和与差的三角函数sin(x +y),sin (x -y)⋯⋯的公式的发展应归功于一批人⋯⋯最后,Euler 于1748 年在关于木星和土星运动中的不等式的一篇得奖文章中给出了三角函数的一个十分系统的处理.在Euler1748 年的《引论》中已经搞清了三角函数的周期性,并引入了角的弧度制.”3.任意角的三角函数与锐角三角函数的关系从上述简单回顾可以看到,任意角的三角函数虽然与三角学(锐角三角函数)有渊源关系,某种意义上可以把前者看成是后者的进一步发展,但它们研究的是两类不同的问题.“三角学所讨论的课题是三角形的各种各样的几何量之间的函数关系” ,锐角三角函数是解三角形的工具;而任意角的三角函数却不限于此,它是一个周期函数,是研究现实世界中周期变化现象的“最有表现力的函数”.另外,从数学发展的历史看,任意角的三角函数在18 世纪之所以得到系统研究(其中很重要的是函数的三角级数展开式问题),一个主要原因是三角函数具有周期性,这一特殊属性在天文学、物理学中有大量的应用.三角级数“在天文学中之所以有用,显然是由于它们是周期函数,而天文现象大都是周期的” ,而这种应用又与当时的数学研究的中心工作──微积分紧密结合,人们在研究行星运动的各种问题时,需要确定函数的Fourier 展开式,而这种展开式(三角级数)的系数是用定积分表示的.所以,锐角三角函数是研究三角形各种几何量之间的关系而发展起来的,任意角三角函数是研究现实中的周期现象而发展起来的.它们研究的对象不同,表现的性质也不同.我们既不能把任意角的三角函数看成是锐角三角函数的推广(或一般化),又不能把锐角三角函数看成是任意角的三角函数在锐角范围内的“限定”.4.用“单位圆定义法”的理由用单位圆上点的坐标定义任意角的三角函数有许多优点.(1)简单、清楚,突出三角函数最重要的性质──周期性.采用“单位圆定义法”,对于任意角,它的终边与单位圆交点P(x ,y)唯一确定,这样,正弦、余弦函数中自变量与函数值之间的对应关系,即角(弧度)对应于点P 的纵坐标y ──正弦,角(弧度)对应于点P 的横坐标x ──余弦,可以得到非常清楚、明确的表示,而且这种表示也是简单的.另外,“ x= cos ,y= sin 是单位圆的自然的动态(解析)描述,由此可以想到,正弦、余弦函数的基本性质就是圆的几何性质(主要是对称性)的解析表述”,其中,单位圆上点的坐标随着角每隔2π(圆周长)而重复出现(点绕圆周一圈而回到原来的位置),非常直观地显示了这两个函数的周期性.“终边定义法”需要经过“取点──求距离──求比值”等步骤,对应关系不够简洁;“比值”作为三角函数值,其意义(几何含义)不够清晰;“从角的集合到比值的集合” 的对应关系与学生熟悉的一般函数概念中的“数集到数集” 的对应关系不一致,而且“比值” 需要通过运算才能得到,任意一个角所对应的比值的唯一性(即与点的选取无关)也需要证明;“比值”的周期性变化规律也需要经过推理才能得到.以往的教学实践表明,许多学生在结束了三角函数的学习后还对三角函数的对应关系不甚了了,与“终边定义法” 的这些问题不无关系.(2)有利于构建任意角的三角函数的知识结构.“单位圆定义法”以单位圆为载体,自变量与函数值x,y 的意义非常直观而具体,单位圆中的三角函数线与定义有了直接联系,从而使我们能方便地采用数形结合的思想讨论三角函数的定义域、值域、函数值符号的变化规律、同角三角函数的基本关系式、诱导公式、周期性、单调性、最大值、最小值等.例如:• P(x ,y)在单位圆上|x| ≤1,|y| ≤1,即正弦、余弦函数的值域为[-1,1] ;• |OP| 2=1 sin 2 +cos 2 =1 ;• 对于圆心的中心对称性sin( π+ )= -sin ,cos( π+ )= -cos ;• 对于x 轴的轴对称性sin( -)= -sin ,cos( -)=cos ;• 对于y 轴的轴对称性sin(π-)=sin ,cos(π-)= -cos ;• 对于直线y=x 的轴对称性sin(-)=cos ,cos(-)=sin ;• sin 在[ -,] 内的单调性:-0 πx:-1 0 1 0 -1 sin 在[ -,] 上单调递增,在,] 上单调递减;另外,学生在学习弧度制时,对于引进弧度制的必要性较难理解.“单位圆定义法” 可以启发学生反思:采用弧度制度量角,就是用单位圆的半径来度量角,这时角度和半径长度的单位一致,这样,三角函数就是以实数(弧度数)为自变量,以单位圆上点的坐标(也是实数)为函数值的函数,这就与函数的一般定义一致了.另外,我们还可以这样来理解三角函数中自变量与函数值之间的对应关系:把实数轴想象为一条柔软的细线,原点固定在单位点A(1,0),数轴的正半轴逆时针缠绕在单位圆上,负半轴顺时针缠绕在单位圆上,那么数轴上的任意一个实数(点)被缠绕到单位圆上的点P(cos ,sin ).(3)符合三角函数的发展历史.前述三角函数发展史已经表明,任意角的三角函数是因研究圆周运动的需要而产生的,数学史上,三角函数曾经被称为“圆函数”.所以,采用“单位圆定义法”能更真实地反映三角函数的发展进程.(4)有利于后续学习.前已述及,“单位圆定义法”使三角函数反映的数形关系更直接,为后面讨论三角函数的性质和图像奠定了很好的直观基础.不仅如此,这一定义还能为“两角和与差的三角函数”的学习带来方便,因为和(差)角公式实际上是“圆的旋转对称性”的解析表述,和(差)化积公式也是圆的反射对称性的解析表述.另外,这一定义中角的度量直接采用了弧度制,能为微积分的学习带来方便.例如,重要极限=1 几乎就是定义的一个“推论”.5.教科书中的任意角的三角函数的引入方式“人教A 版”首先通过“思考”,提出用直角坐标系中角的终边上点的坐标表示锐角三角函数的问题,以引导学生回忆锐角三角函数概念,体会引进象限角概念后,用角的终边上点的坐标比表示锐角三角函数的意义.教科书在定义任意角的三角函数之前,作了如下铺垫:直角三角形为载体的锐角三角函数象限角为载体的锐角三角函数单位圆上点的坐标表示的锐角三角函数这样做的目的主要是为了以锐角三角函数为认知基础来学习任意角的三角函数,使学生初步体会用单位圆上点的坐标表示锐角三角函数所具有的简单、方便并反映本质的好处,从而为“单位圆定义法” 做好认知准备.需要注意的是,这样做并不表明任意角的三角函数与锐角三角函数之间有一般与特殊的关系.事实上,用“单位圆定义法”单刀直入给出定义,然后再在适当时机联系锐角三角函数,这也是一种不错的选择.6.几点说明(1)“单位圆定义法”与“终边定义法”本质上是一致的.正因为此,各种数学出版物中,两种定义方法都有采用.例如,由苏联科学院院士、世界著名数学家И. М. 维诺格拉多夫主编,苏联百科全书出版社出版,被陈省身先生誉为“对数学的贡献,将无法估计” 的、具有世界性权威的《数学百科全书》(中译本在2000 年由科学出版社出版)中,采用了“单位圆定义法”;中国大百科全书出版社的《中国大百科全书·数学》(1992 年版)中采用了“终边定义法”.应当说,采用哪一种定义方法是一个取舍问题,没有对错之分,并不存在商榷的问题.因此,“单位圆上的点毕竟是特殊点,用它定义三角函数有失一般性”的认识是不正确的.值得强调的是正弦、余弦和正切函数在R(正切除= (k ∈Z)外)上处处有定义,而不是角的终边上取点的任意性.事实上,在老师们熟悉的“终边定义法”中,给出定义后有如下说明:“根据相似三角形的知识,对于确定的角,这三个比值(如果有的话)都不会随点P 在的终边上的位置的改变而改变⋯⋯对于确定的角,上面三个比值都是唯一确定的.这就是说,正弦、余弦、正切都是以角为自变量,以比值为函数值的函数.”这恰恰说明了“以角的终边与单位圆的交点坐标为‘比值'”是不失一般性的.另外,用“单位圆定义法”直截了当、简洁易懂,不需要这样的说明,就更显出其好处了.2)《高中数学课程标准(实验)》只要求正弦、余弦和正切三个函数,其目的是削枝强干,是非常正确的.进一步地,三角函数中,正弦、余弦函数是“基本三角函数”,其余都是通过这两个函数的运算(相除、取倒数等)而得到的,或者说是从这两个函数“派生”出来的.这样理解各三角函数的关系,那么“用单位圆上点的坐标定义正切函数,由于它未能化简三角函数的比值,所以它就没有什么特别的意义”的担心也就不必要了.(3)“人教A 版”在给出三角函数定义后,有如下两个例题:例1 求的正弦、余弦和正切值.例2 已知角的终边经过点P0(-3,-4),求角的正弦、余弦和正切值.它们的作用主要是让学生熟悉定义.例1的解答要用锐角三角函数知识,例 2 的解答要用一定的平面几何知识,而许多学生的平面几何基础较差,所以有一定的困难,这是教学中需要注意的.另外,例2 还有让学生研究“终边定义法”的意图,教科书“边空”的“小贴士”表明了这一点:“由例2 可知,只要知道角终边上任意一点的坐标,就可以求出角的三角函数值.因此,利用角终边上任意一点的坐标也可以定义三角函数.你能自己给出这种定义吗?”至于类似“已知角终边上一点的坐标是(3a,4a ), 求角的三角函数值”的问题,显然是一个细枝末节问题,与三角函数的核心知识无关.参考文献:①[美]M. 克莱因. 古今数学思想(第二册)[M]. 上海:上海科学技术出版社,1979,43②项武义. 基础数学讲义丛书?基础几何学[M]. 北京:人民教育出版社,2004,82③同①,122~123④同②,82⑤同①,182⑥详见②,84~87。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意角的三角函数(第一课时)教学设计
一、学情分析
教学对象是高一的学生(按照1、4、5、2、3的顺序讲解),他们在初中学学习过锐角三角函数.因此本课的内容对于学生来说,有比较厚实的基础,新课的引入会比较容易和顺畅.学生要面对的新的学习问题是,角的概念推广了,原先学生所熟悉的锐角三角函数的定义是否也可以推广到任意角呢?
二、教学目标
1. 知识与技能目标
理解任意角的三角函数的单位圆定义法;了解终边定义法.
理解三角函数是以实数为自变量的函数.
2. 过程与方法目标
通过三角函数的几何表示,进一步加深对数形结合思想的理解.
3. 情感与态度价值观
激发学生探求新知欲望;
体会数学数学概念的严谨性和科学性.
三、教学重、难点
重点:任意角的三角函数的定义.
难点:①由初中锐角三角函数的定义过渡到任意角三角函数的定义;
②在直角坐标系中用角的终边上的点的坐标来刻画三角函数;
③三角函数定义的应用.
四、教学设计思路
(一)创设情境,提出问题(三角函数的产生背景)
由匀速直线运动引出一次函数;
由自由落体和抛物运动引出二次函数;
客观世界中还存在着大量循环往复、周而复始的现象,比如,地球自转引起的昼夜交替变化和公转引起的四季交替变化等,其中圆周运动就是一种具有这种现象的最简单的周期性运动。

它的变化规律该用什么函数模型来描述呢?——三角函数.
(二)新课讲解
1.复习初中学过的锐角三角函数的定义
(1)初中学过的锐角三角函数的定义
(2)把角放在直角坐标系中研究引出坐标表示
提出问题:三角函数能否用终边上的点的坐标来表示?
①在α的终边上任选一点P (a ,b ),||0OP r =
=>
②sin α、cos α、tan α的值与P 点的位置无关(相似)
为了研究的方便,取r =1(圆心在原点,r =1的圆称为单位圆).则sin b α=、cos a α=、tan b a α=. 2.任意角
(1)理论基础
任意角αα−−−−→唯一对应的终边的位置−−−−→唯一对应终边与单位圆的交点坐标
即任意角α
−−−−→唯一对应终边与单位圆的交点坐标 (2)沿用初中的三角函数的名称
设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:

正弦sin y α=; ②
余弦cos x α=; ③ 正弦tan (0)y x x
α=≠. 即:正弦、余弦、正切都是以角(实数)为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们称它们为三角函数.(单位圆定义法) ①正弦函数sin y x =,定义域为R ,值域[-1,1];
sin α=斜边对边,con α=斜边邻边
,tan α=对边
邻边
(图1)
sin α=斜边对边=MP OP =b r ,con α=斜边邻边=OM OP =a r , tan α=
邻边对边=MP OM =b a
②余弦函数cos y x =,定义域为R ,值域[-1,1];
③正切函数tan y x =,定义域为|,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭
,值域R . 3.应用
例1.求
53π的正弦、余弦和正切值.
解:53
π与单位圆的交点坐标为1(,2,
则5sin 32π=-,51cos 32π=,5tan 3
π= 例2.已知角α的终边经过点0(3,4)P --,求角α的正弦、余弦和正切值. 分析:
解法一:用单位圆定义法,先利用相似三角形求出角α的终边与单位圆的交点坐标.
解法二:补充终边定义法.
4.课堂小结
重要知识点:三角函数的终边定义法与单位圆定义法
方法及思想:数形结合思想
5.分层作业
必做题:课本P15 练习1、2
选做题:课本P20 2。

相关文档
最新文档