数学核心素养及全国高考试题
最新高考数学核心素养提升练 三十二 6
核心素养提升练三十二数列的综合应用(30分钟60分)一、选择题(每小题5分,共25分)1.若等差数列{a n}和等比数列{b n}满足a1=b1=-1,a4=b4=8,则= ( )A.-1B.1C.D.-2【解析】选B.设等差数列{a n}的公差为d,等比数列{b n}的公比为q,则a4=-1+3d=8,解得d=3;b4=-1·q3=8,解得q=-2.所以a2=-1+3=2,b2=-1×(-2)=2,所以=1. 2.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,,,,…,.①第二步:将数列①的各项乘以,得到一个新数列a1,a2,a3,…,a n.则a1a2+a2a3+a3a4+…+a n-1a n= ( )A. B.C. D.【解析】选C.由题意知所得新数列为1×,×,×,…,×,所以a1a2+a2a3+a3a4+…+a n-1a n=+++…+===.3.(2018·红河模拟)等比数列{a n}的首项a1=4,前n项和为S n,若S6=9S3,则数列{log2a n}的前10项和为 ( )A.65B.75C.90D.110【解析】选A.因为{a n}的首项a1=4,前n项和为S n,S6=9S3,所以=9×. 解得q=2,所以a n=4·2n-1=2n+1,log2a n=n+1,故数列{log2a n}的前10项和为2+3+4+…+11==65.4.已知a,b,c成等比数列,a,m,b和b,n,c分别成两个等差数列,则+等于( ) A.4 B.3 C.2 D.1【解析】选C.由题意得b2=ac,2m=a+b,2n=b+c,则+====2.【一题多解】解答本题,还有以下解法:特殊值法:选C.因为a,b,c成等比数列,所以令a=2,b=4,c=8,又a,m,b和b,n,c分别成两个等差数列,则m==3,n==6,因此+=+=2.5.数列{a n}满足a1=,a n+1=,若不等式++…+<n+λ对任何正整数n 恒成立,则实数λ的最小值为 ( )A. B. C. D.【解析】选A.因为数列{a n}满足a1=,a n+1=,所以反复代入计算可得a2=,a3=,a4=,a5=,…,由此可归纳出通项公式a n=,经验证,成立.所以=1+=1+,所以++…+=n+1+=n+-.因为要求++…+<n+λ对任何正整数n恒成立,所以λ≥.二、填空题(每小题5分,共15分)6.设S n为等比数列{a n}的前n项和.若a1=1,且3S1,2S2,S3成等差数列,则a n=________.【解析】由3S1,2S2,S3成等差数列,得4S2=3S1+S3,即3S2-3S1=S3-S2,则3a2=a3,得公比q=3,所以a n=a1q n-1=3n-1.答案:3n-17.已知等差数列{a n}的公差和首项都不等于0,且a2,a4,a8成等比数列,则=________.【解析】设公差为d,因为在等差数列{a n}中,a2, a4,a8成等比数列,所以=a2a8,所以(a1+3d)2=(a1+d)(a1+7d),所以d2=a1d,因为d≠0,所以d=a1,所以==3.答案:38.(2019·银川模拟)已知{a n}是等差数列,a1=1,公差d≠0,S n为其前n项和,若a1,a2,a5成等比数列,则S8=________.【解析】因为a1,a2,a5成等比数列,则=a1·a5,即(1+d)2=1×(1+4d),解得d=2.所以a n=1+(n-1)×2=2n-1,a8=2×8-1=15,S8==4×(1+15)=64.答案:64三、解答题(每小题10分,共20分)9.已知等差数列{a n}前三项的和为-3,前三项的积为8. 世纪金榜导学号(1)求数列{a n}的通项公式.(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和S n.【解析】(1)设等差数列{a n}的公差为d,则a2=a1+d,a3=a1+2d.由题意得解得或所以由等差数列通项公式可得a n=2-3(n-1)=-3n+5或a n=-4+3(n-1)=3n-7.故a n=-3n+5或a n=3n-7.(2)当a n=-3n+5时,a2,a3,a1分别为-1,-4,2,不成等比数列;当a n=3n-7时,a2,a3,a1分别为-1,2,-4,成等比数列,满足条件.故|a n|=|3n-7|=记数列{|a n|}的前n项和为S n.当n=1时,S1=|a1|=4;当n=2时,S2=|a1|+|a2|=5;当n≥3时,S n=S2+|a3|+|a4|+…+|a n|=5+(3×3-7)+(3×4-7)+…+(3n-7)=5+=n2-n+10.当n=2时,满足此式,当n=1时,不满足此式.综上,S n=10.为了加强新旧动能转化,某市计划用若干时间更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,替换车为电力型和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车400辆;计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a辆.世纪金榜导学号(1)求经过n年,该市被更换的公交车总数S(n).(2)若该市计划7年内完成全部更换,求a的最小值.【解析】(1)设a n,b n分别为第n年投入的电力型公交车、混合动力型公交车的数量.依题意,得{a n}是首项为128,公比为1+50%=的等比数列,{b n}是首项为400,公差为a的等差数列.所以{a n}的前n项和 S n==256,{b n}的前n项和T n=400n+ a.所以经过n年,该市被更换的公交车总数为S(n)=S n+T n=256+400n+ a.(2)若计划7年内完成全部更换,则S(7)≥10 000,所以256+400×7+a≥10 000,即21a≥3 082,所以a≥146.又a∈N*,所以a的最小值为147.【变式备选】已知S n为各项均为正数的数列{a n}的前n项和,a1∈(0,2),+3a n+2=6S n. (1)求{a n}的通项公式.(2)设b n=,数列{b n}的前n项和为T n,若对∀n∈N*,t≤4T n恒成立,求实数t 的最大值.【解析】(1)当n=1时,由+3a n+2=6S n,得+3a1+2=6a1,即-3a1+2=0.又a1∈(0,2),解得a1=1.由+3a n+2=6S n,可知+3a n+1+2=6S n+1.两式相减,得-+3(a n+1-a n)=6a n+1,即(a n+1+a n)(a n+1-a n-3)=0.由于a n>0,可得a n+1-a n-3=0,即a n+1-a n=3,所以{a n}是首项为1,公差为3的等差数列.所以a n=1+3(n-1)=3n-2.(2)由a n=3n-2,可得b n===,故T n=b1+b2+…+b n=++…+==.因为T n+1-T n=-=>0,所以T n+1>T n,所以数列{T n}是递增数列.所以t≤4T n等价于≤T n,所以≤T1=,解得t≤1,所以实数t的最大值是1.(20分钟40分)1.(5分)设{a n}是各项为正数的无穷数列,A i是边长为a i, a i+1的矩形的面积(i=1,2,…),则{A n}为等比数列的充要条件是( )A.{a n}是等比数列B.a1,a3,…,a2n-1,…或a2,a4,…,a2n,…是等比数列C.a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列D.a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列,且公比相同【解析】选D.因为A i=a i a i+1,若{A n}为等比数列,则==为常数,即=,=,…所以a1,a3,a5,…,a2n-1,…和a2,a4,…,a2n,…成等比数列,且公比相等.反之,若奇数项和偶数项分别成等比数列,且公比相等,设为q,则= =q,从而{A n}为等比数列.2.(5分)已知数列{a n}的通项公式为a n=5-n,其前n项和为S n,将数列{a n}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n}的前3项,记{b n}的前n项和为T n.若存在m∈N*,使对任意n∈N*,S n<T m+λ恒成立,则实数λ的取值范围是( )A.[2,+∞)B.(3,+∞)C.[3,+∞)D.(2,+∞)【解析】选D.依题意得S n==,根据二次函数的性质,n=4,5时,S n取得最大值为10.另外,根据通项公式得数列{a n}的前4项为a1=4,a2=3,a3=2,a4=1,因为抽掉第二项后,余下的三项可组成等比数列,所以数列{b n}中,b1=4,公比q=,所以T n==8,所以4≤T n<8.因为存在m∈N*,对任意n∈N*,S n<T m+λ恒成立,所以10<8+λ,所以λ>2.3.(5分)各项均为正数的数列{a n}首项为2,且满足-a n a n-1-n(n+1)=0,公差不为零的等差数列{b n}的前n项和为S n,S5=15,且b1,b3,b9成等比数列,设c n=,则数列{c n}的前n项和T n=________.【解析】-a n a n-1-n(n+1)=(a n+na n-1)[a n-(n+1)a n-1]=0,因为{a n}各项均为正数,则a n+na n-1>0,所以a n-(n+1)a n-1=0,即=n+1.=n,=n-1,…,=3.上面(n-1)个式子相乘得=3×4×…·n·(n+1),所以a n=2×3×4…·n·(n+1),即a n=(n+1)!,设{b n}的公差为d,5b1+10d=15,(b1+2d)2=b1(b1+8d),解得b1=1,d=1,b n=n,c n====-.所以T n=c1+c2+c3+…+c n=+++…+=1-.答案:1-4.(12分)已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n+1=qS n+1,其中q>0,n∈N*.(1)若a2,a3,a2+a3成等差数列,求数列{a n}的通项公式.(2)设双曲线x2-=1的离心率为e n,且e2=2,求++…+.【解析】(1)由已知,S n+1=qS n+1,S n+2=qS n+1+1,两式相减得到a n+2=qa n+1,n≥1.又由S2=qS1+1得到a2=qa1,故a n+1=qa n对所有n≥1都成立.所以数列{a n}是首项为1,公比为q的等比数列.从而a n=q n-1.由a2,a3,a2+a3成等差数列,可得2a3=a2+a2+a3,所以a3=2a2,故q=2,所以a n=2n-1(n∈N*).(2)由(1)可知,a n=q n-1.所以双曲线x2-=1的离心率e n==.由e2==2解得q=.所以++…+=(1+1)+(1+q2)+…+[1+q2(n-1)]=n+[1+q2+…+q2(n-1)]=n+=n+(3n-1).5.(13分)(2018·成都模拟) 已知数列{a n}的前n项和为S n,且n,a n,S n成等差数列,b n=2log2(1+a n)-1. 世纪金榜导学号(1)求数列{a n}的通项公式.(2)若数列{b n}中去掉数列{a n}的项后余下的项按原顺序组成数列{c n},求c1+c2+…+c100的值.【解析】(1)因为n,a n,S n成等差数列,所以S n+n=2a n,①所以S n-1+(n-1)=2a n-1(n≥2).②①-②,得a n+1=2a n-2a n-1,所以a n+1=2(a n-1+1)(n≥2).又当n=1时,S1+1=2a1,所以a1=1,所以a1+1=2,故数列{a n+1}是首项为2,公比为2的等比数列,所以a n+1=2·2n-1=2n,即a n=2n-1.(2)由(1)知,b n=2log2(1+2n-1)-1=2n-1,b1=1,所以b n+1-b n=2,所以数列{b n}是以1为首项,2为公差的等差数列.又因为a1=1,a2=3,a3=7,a4=15,a5=31,a6=63,a7=127,a8=255,b64=127,b106=211,b107=213,所以c1+c2+…+c100=(b1+b2+…+b107)-(a1+a2+…+a7)=-[(21+22+…+27)-7]=-+7=1072-28+9=11 202.【变式备选】已知等比数列{a n}的公比q>1,且a1+a3=20,a2=8.(1)求数列{a n}的通项公式.(2)设b n=,S n是数列{b n}的前n项和,对任意正整数n,不等式S n+>(-1)n·a 恒成立,求实数a的取值范围.【解析】(1)由已知得所以2q2-5q+2=0,解得q=或q=2.因为q>1,所以所以数列{a n}的通项公式为a n=2n+1.(2)由题意,得b n=,所以S n=+++…+,S n=++…++,两式相减,得S n=+++…+-,所以S n=+++…+-=-=1-,所以(-1)n·a<1-对任意正整数n恒成立,设f(n)=1-,易知f(n)单调递增,①当n为奇函数时,f(n)的最小值为,所以-a<,即a>-;②当n为偶函数时,f(n)的最小值为,所以a<.由①②可知-<a<,即实数a的取值范围是.。
核心素养角度解读2023_年数学高考Ⅰ卷
核心素养角度解读2023年数学高考Ⅰ卷何正文(广东省肇庆市百花中学ꎬ广东肇庆526000)摘㊀要:文章从2023年高考卷试题入手剖析ꎬ从核心素养角度挖掘2023年高考数学试题目的ꎬ从基础性㊁综合性㊁应用性和创新性揭示其立德树人的本质要求.关键词:数学抽象ꎻ逻辑推理ꎻ数学建模ꎻ数学运算ꎻ直观想象ꎻ数据分析中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)28-0006-06收稿日期:2023-07-05作者简介:何正文(1988.4-)ꎬ男ꎬ广东省茂名人ꎬ中学一级教师ꎬ从事课堂教学研究.㊀㊀2023年新高考卷ꎬ考生普遍反映比去年简单ꎬ和往年高考Ⅰ卷相比ꎬ更加充分发挥基础学科的作用ꎬ突出素养和能力考查ꎬ重视思维品质ꎬ体现思维过程ꎬ关注思维能力.今年试题重视基础性ꎬ注重综合性ꎬ强调应用性和突出创新性ꎬ加大了对学科素养和关键能力的考查力度.本文对2023年高考卷的试题进行剖析ꎬ从数学抽象㊁逻辑推理㊁数学建模㊁数学运算㊁直观想象和数据分析六个方面进行解读.1数学抽象2023年高考题ꎬ在数学抽象问题方面ꎬ设置合理的思维强度和抽象程度ꎬ注重打破函数和几何联系ꎬ把一些背景性的问题抽象成我们熟悉的数学问题ꎬ进而进行求解.例1㊀(2023年新课标Ⅰ卷多选题第11题)已知函数f(x)的定义域为Rꎬf(xy)=y2f(x)+x2f(y)ꎬ则(㊀㊀).A.f(0)=0㊀㊀㊀㊀B.f(1)=0C.f(x)是偶函数D.x=0为f(x)的极小值点解析㊀因为f(xy)=y2f(x)+x2f(y)ꎬ对于Aꎬ令x=y=0ꎬ得f(0)=0ˑf(0)+0ˑf(0)=0ꎬ故A正确.对于Bꎬ令x=y=1ꎬ得f(1)=1ˑf(1)+1ˑf(1)ꎬ则f(1)=0ꎬ故B正确.对于Cꎬ令x=y=-1ꎬ得f(1)=f(-1)+f(-1)=2f(-1)ꎬ则f(-1)=0ꎬ令y=-1ꎬ得f(-x)=f(x)+x2f(-1)=f(x).又函数f(x)的定义域为Rꎬ所以f(x)为偶函数ꎬ故C正确ꎬ对于Dꎬ不妨令f(x)=0ꎬ显然符合题设条件ꎬ此时f(x)无极值ꎬ故D错误.故选ABC.例2㊀(2023年全国甲卷理科第16题)在әABC中ꎬAB=2ꎬøBAC=60ʎꎬBC=6ꎬD为BC上一点ꎬAD为øBAC的平分线ꎬ则AD=.解析㊀记AB=cꎬAC=bꎬBC=aꎬ由余弦定理ꎬ得22+b2-2ˑ2ˑbˑcos60ʎ=6.6因为b>0ꎬ解得b=1+3.由SәABC=SәABD+SәACDꎬ得12ˑ2ˑbˑsin60ʎ=12ˑ2ˑADˑsin30ʎ+12ˑADˑbˑsin30ʎ.解得AD=3b1+b/2=23(1+3)3+3=2.故答案为2.2逻辑推理2023年高考题在逻辑推理考查上突出对问题的总结与分析ꎬ注重打破函数和几何联系ꎬ要求考生根据题意推理讨论ꎬ考查考生思维的条理性㊁严谨性.例3㊀(2023年新课标Ⅱ卷多选题第15题)若函数f(x)=alnx+bx+cx2(aʂ0)既有极大值也有极小值ꎬ则(㊀㊀).A.bc>0㊀B.ab>0㊀C.b2+8ac>0㊀D.ac<0解析㊀函数f(x)=alnx+bx+cx2的定义域为(0ꎬ+ɕ)ꎬ求导得fᶄ(x)=ax-bx2-2cx3=ax2-bx-2cx3.因为函数f(x)既有极大值也有极小值ꎬ则函数fᶄ(x)在(0ꎬ+ɕ)上有两个变号零点ꎬ而aʂ0ꎬ因此方程ax2-bx-2c=0有两个不等的正根x1ꎬx2.于是Δ=b2+8ac>0ꎬx1+x2=ba>0ꎬx1x2=-2ca>0.ìîíïïïïïï即有b2+8ac>0ꎬab>0ꎬac<0ꎬ显然a2bc<0ꎬ即bc<0ꎬA错误ꎬBCD正确.评注㊀本题考查本质是根据一元二次方程根的性质判定方程系数之间的关系ꎬ由于函数既有极大值又有极小值ꎬ所以转化为一元二次方程的两个正根问题ꎬ所以求出函数f(x)的导数fᶄ(x)ꎬ由已知可得fᶄ(x)在(0ꎬ+ɕ)上有两个变号零点ꎬ转化为一元二次方程有两个不等的正根.㊀例4㊀(2023年新课标Ⅰ卷第7题)记Sn为数列an{}的前n项和ꎬ设甲:an{}为等差数列ꎻ乙:Snn{}为等差数列ꎬ则(㊀㊀).A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件解析㊀甲:an{}为等差数列ꎬ设其首项为a1ꎬ公差为dꎬ则Sn=na1+n(n-1)2d.所以Snn=a1+n-12d=d2n+a1-d2.所以Sn+1n+1-Snn=d2.因此Snn{}为等差数列ꎬ则甲是乙的充分条件.反之ꎬ乙:Snn{}为等差数列ꎬ即Sn+1n+1-Snn=nSn+1-(n+1)Snn(n+1)=nan+1-Snn(n+1)为常数ꎬ设为tꎬ即nan+1-Snn(n+1)=t.则Sn=nan+1-t n(n+1).有Sn-1=(n-1)an-t n(n-1)ꎬnȡ2.两式相减ꎬ得an=nan+1-(n-1)an-2tn.即an+1-an=2tꎬ对n=1也成立.因此an{}为等差数列ꎬ则甲是乙的必要条件ꎬ所以甲是乙的充要条件ꎬC正确.评注㊀本题以等差数列为材料考查充要条件的推证ꎬ要求考生判别充分性和必要性ꎬ然后分别进行证明ꎬ解决问题的关键是利用等差数列的概念和特7点进行推理论证.利用充分条件㊁必要条件的定义及等差数列的定义ꎬ再结合数列前n项和与第n项的关系推理判断作答.3数学建模数学建模作为核心素养的关键部分ꎬ在处理实际问题时往往可以做到事半功倍.如果能把问题进行模型化ꎬ数据就可以可视化ꎬ图形就可以立体化[1].例5㊀(2023年全国甲卷理科选择题第4题)向量|a|=|b|=-1ꎬ|c|=2ꎬ且a+b+c=0ꎬ则cos‹a-cꎬb-c›=(㊀㊀).A.-15㊀B.-25㊀C.25㊀D.45解析㊀因为a+b+c=0ꎬ所以a+b=-c.即a2+b2+2a b=c2.即1+1+2a b=2.所以a b=0.如图1ꎬ设OAң=aꎬOBң=bꎬOCң=cꎬ图1㊀例5解析图由题知ꎬOA=OB=1ꎬOC=2ꎬәOAB是等腰直角三角形ꎬAB边上的高OD=22ꎬAD=22.所以CD=CO+OD=2+22=322ꎬtanøACD=ADCD=13ꎬcosøACD=310ꎬcos‹a-cꎬb-c›=cosøACB=cos2øACD=2cos2øACD-1=2ˑ(310)2-1=45.故选D.例6㊀(2023年全国乙卷理科第5题)设O为平面直角坐标系的坐标原点ꎬ在区域(xꎬy)1ɤx2+y2ɤ4{}内随机取一点ꎬ记该点为Aꎬ则直线OA的倾斜角不大于π4的概率为(㊀㊀).A.18㊀㊀B.16㊀㊀C.14㊀㊀D.12解析㊀因为区域(xꎬy)|1ɤx2+y2ɤ4{}表示以O(0ꎬ0)圆心ꎬ外圆半径R=2ꎬ内圆半径r=1的圆环ꎬ则直线OA的倾斜角不大于π4的部分如图2阴影所示ꎬ在第一象限部分对应的圆心角øMON=π4ꎬ结合对称性可得所求概率P=2π/42π=14.故选C.图2㊀例6解析图4数学运算2023年的试题要求考生理解运算对象ꎬ掌握运算法则ꎬ探究运算思路ꎬ求得运算结果.数学运算需要学生充分理解题目ꎬ把握题目考查的内容.需要学生养成独立思考和深入思考的习惯ꎬ发展思维的全面性与深刻性[2].例7㊀(2023年新课标Ⅰ卷第17题)已知在әABC中ꎬA+B=3Cꎬ2sin(A-C)=sinB. (1)求sinAꎻ(2)设AB=5ꎬ求AB边上的高.解析㊀(1)因为A+B=3Cꎬ 8所以π-C=3Cꎬ即C=π4.又2sin(A-C)=sinB=sin(A+C)ꎬ则2sinAcosC-2cosAsinC=sinAcosC+cosAsinC.所以sinAcosC=3cosAsinC.所以sinA=3cosA.即tanA=3ꎬ所以0<A<π2.所以sinA=310=31010.(2)由(1)知ꎬcosA=110=1010ꎬ由sinB=sin(A+C)=sinAcosC+cosAsinC=22(31010+1010)=255ꎬ由正弦定理ꎬ得b=5ˑ2/52/2=210.所以12AB h=12AB AC sinA.所以h=b sinA=210ˑ31010=6.评注㊀本题涉及正弦定理㊁同角三角函数基本关系式㊁解三角形等数学内容ꎬ考查数学运算素养. (1)根据角的关系及两角和差正弦公式ꎬ化简即可得解ꎻ(2)利用同角之间的三角函数基本关系及两角和的正弦公式求sinBꎬ再由正弦定理求出bꎬ根据等面积法求解即可.例8㊀(2023年新课标Ⅱ卷多选题第10题)设O为坐标原点ꎬ直线y=-3(x-1)过抛物线C:y2=2px(p>0)的焦点ꎬ且与C交于MꎬN两点ꎬl为C的准线ꎬ则(㊀㊀).A.p=2B.MN=83C.以MN为直径的圆与l相切D.әOMN为等腰三角形解析㊀A选项:直线y=-3(x-1)过点(1ꎬ0)ꎬ所以抛物线C:y2=2px(p>0)的焦点为F(1ꎬ0)ꎬ所以p2=1ꎬ则p=2ꎬ2p=4ꎬ则A选项正确ꎬ且抛物线C的方程为y2=4x.B选项:设M(x1ꎬy1)ꎬN(x2ꎬy2)ꎬ由y=-3(x-1)ꎬy2=4x{消去y并化简ꎬ得3x2-10x+3=(x-3)(3x-1)=0.解得x1=3ꎬx2=13.所以MN=x1+x2+p=163ꎬ故B选项错误.C选项:如图3ꎬ设MN的中点为AꎬMꎬNꎬ点A到直线l的距离分别为d1ꎬd2ꎬdꎬ因为d=12(d1+d2)=12(MF+NF)=12MNꎬ即A到直线l的距离等于MN的一半ꎬ所以以MN为直径的圆与直线l相切ꎬ故C选项正确.D选项:由上述分析可知y1=-3(3-1)=-23ꎬy2=-3(13-1)=233.所以OM=32+(-23)2=21ꎬON=(13)2+(233)2=133.所以әOMN不是等腰三角形ꎬ故D选项错误.故选AC.图3㊀例8解析图9评注㊀本题设置直线与抛物线相交的情境ꎬ通过直线方程与抛物线方程的联立考查计算能力.先求得焦点坐标ꎬ从而求得pꎬ根据弦长公式求得MNꎬ根据圆与等腰三角形的知识确定正确答案.5直观想象直观想象是指通过直观几何和想象空间形式ꎬ利用几何图形分析解决问题ꎬ也就是通过把题目想象成一个实物ꎬ以几何体为依托ꎬ发现空间线面关系.例9㊀(2023年新课标Ⅱ卷多选题第9题)已知圆锥的顶点为Pꎬ底面圆心为OꎬAB为底面直径ꎬøAPB=120ʎꎬPA=2ꎬ点C在底面圆周上ꎬ且二面角P-AC-O为45ʎꎬ则(㊀㊀).A.该圆锥的体积为π㊀B.该圆锥的侧面积为43πC.AC=22D.әPAC的面积为3解析㊀依题意ꎬøAPB=120ʎꎬPA=2ꎬ所以OP=1ꎬOA=OB=3.A选项ꎬ圆锥的体积为13ˑπˑ(3)2ˑ1=πꎬ故A选项正确ꎻB选项ꎬ圆锥的侧面积为πˑ3ˑ2=23πꎬ故B选项错误ꎻC选项ꎬ如图4ꎬ设D是AC的中点ꎬ连接ODꎬPDꎬ则ACʅODꎬACʅPDꎬ所以øPDO是二面角P-AC-O的平面角.则øPDO=45ʎꎬ所以OP=OD=1.故AD=CD=3-1=2ꎬ则AC=22ꎬ故C选项正确.D选项ꎬPD=12+12=2ꎬ所以SәPAC=12ˑ22ˑ2=2ꎬ故D选项错误.故选AC.图4㊀例9解析图评注㊀本题以多选题的形式考查圆锥的内容ꎬ根据圆锥的体积㊁侧面积判断AꎬB选项的正确性ꎬ利用二面角的知识判断CꎬD选项的正确性.4个选项设问逐次递进ꎬ前面选项为后面选项提供条件ꎬ各选项分别考查圆锥的不同性质ꎬ互相联系ꎬ重点突出.例10㊀(2023年全国甲卷理科第15题)在正方体ABCD-A1B1C1D1中ꎬEꎬF分别为CDꎬA1B1的中点ꎬ则以EF为直径的球面与正方体每条棱的交点总数为.解析㊀不妨设正方体棱长为2ꎬEF中点为Oꎬ取ABꎬBB1中点GꎬMꎬ侧面BB1C1C的中心为Nꎬ连接FGꎬEGꎬOMꎬONꎬMNꎬ如图5.图5㊀例10解析图由题意可知ꎬO为球心ꎬ在正方体中ꎬEF=FG2+EG2=22+22=22ꎬ即R=2.则球心O到BB1的距离为OM=ON2+MN2=12+12=2ꎬ所以球O与棱BB1相切ꎬ球面与棱BB1只有1个交点.同理ꎬ根据正方体的对称性知ꎬ其余各棱和球面也只有1个交点ꎬ所以以EF为直径的球面与正方体每条棱的交点总数为12. 016数据分析2023年的数据分析题在命制情境化试题过程中ꎬ在剪裁素材方面ꎬ注意控制文字数量和阅读理解难度ꎬ使情境化试题能够引导考生树立理想信念ꎬ热爱科学ꎬ达到试题要求层次与考生认知水平的契合与贴切[3].例11㊀(2023年新课标Ⅱ卷第19题)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异ꎬ经过大量调查ꎬ得到如图图6㊀患病者与未患病者医学指标频率分布直方图6的患病者和未患病者该指标的频率分布直方图ꎬ利用该指标制定一个检测标准ꎬ需要确定临界值cꎬ将该指标大于c的人判定为阳性ꎬ小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率ꎬ记为p(c)ꎻ误诊率是将未患病者判定为阳性的概率ꎬ记为q(c).假设数据在组内均匀分布ꎬ以事件发生的频率作为相应事件发生的概率.(1)当漏诊率p(c)=0.5%时ꎬ求临界值c和误诊率q(c)ꎻ(2)设函数f(c)=p(c)+q(c)ꎬ当cɪ[95ꎬ105]时ꎬ求f(c)的解析式ꎬ并求f(c)在区间[95ꎬ105]的最小值.解析㊀(1)依题可知ꎬ左边图形第一个小矩形的面积为5ˑ0.002>0.5%ꎬ所以95<c<100.所以(c-95)ˑ0.002=0.5%ꎬ解得c=97.5.所以q(c)=0.01ˑ(97.5-95)+5ˑ0.002=0.035=3.5%.(2)当cɪ[95ꎬ100]时ꎬf(c)=p(c)+q(c)=(c-95)ˑ0.002+(100-c)ˑ0.01+5ˑ0.002=-0.008c+0.82ȡ0.02ꎻ当cɪ(100ꎬ105]时ꎬf(c)=p(c)+q(c)=5ˑ0.002+(c-100)ˑ0.012+(105-c)ˑ0.002=0.01c-0.98>0.02.故f(c)=-0.008c+0.82ꎬ95ɤcɤ100ꎬ0.01c-0.98ꎬ100<cɤ105.{所以f(c)在区间[95ꎬ105]的最小值为0.02.评注㊀本题要求合理平衡漏诊率和误诊率ꎬ制定检测标准ꎬ试题情境既有现实意义ꎬ又体现数学学科的应用价值(1)根据题意由第一个图可先求出cꎬ再根据第二个图求出cȡ97.5的矩形面积即可解出ꎻ(2)根据题意确定分段点100ꎬ即可得出f(c)的解析式ꎬ再根据分段函数的最值求法即可解出.总体来说ꎬ2023年的题目严格依据高中课程标准ꎬ深化基础性和综合性ꎬ聚焦学科核心素养ꎬ精选试题情境ꎬ加强关键能力考查ꎬ促进学生提升科学素养ꎬ引导全面发展ꎬ助推高中育人方式改革ꎬ继续突出反套路㊁反机械刷题特点ꎬ突出强调对基础知识和基本概念的深入理解和灵活掌握ꎬ注重考查学科知识的综合应用能力ꎬ重视思维培养ꎬ同时ꎬ合理控制试题难度ꎬ进一步培养学生的数学核心素养.参考文献:[1]何正文.对一道关于三角函数高考题的教学思考与延伸[J].数理化解题研究ꎬ2020(07):29-30.[2]何正文.基于核心素养的多阶数学思维的培养[J].中学数学杂志ꎬ2019(01):14-16.[3]何正文.核心素养视角下对2021高考卷剖析[J].数理化解题研究ꎬ2021(34):70-73.[责任编辑:李㊀璟]11。
高中数学核心素养在高考试题中的体现
高中数学核心素养在高考试题中的体现摘要:高中数学的核心素养,主要包含数学抽象、建模、逻辑推理等多种素养。
而这些素养可以帮助高中生理解和解析试题,因此本文将分析这些核心素养,在具体试题中的考试评价。
关键字:高中数学核心素养;考试评价引言:在高中数学的解题方式中,数学教师和高中生主要运用抽象、推理、建模、运算四大核心素养。
因此,以下内容将主要分析这四种素养在试题中的应用。
1.数学抽象一般而言,数学抽像可以从符号意识、数感、几何直观等四种角度解释。
其一,为了保障数学公式及运算过程的准确性,这就使得要用运算符号连接不同的数学文字,从而组建的数学公式才具有数学抽象作用,因此符号意识是数学抽象的基础。
其二,每个数学公式都会通过具体的推理过程,然后得出一个具体的数字,而该数字就是题目中表示的明确含义,而这就是数学抽象的数感。
其三,数学中所述的数形结合,就是用图形的方式来表示题目中数字的含义,有些是二维平面表示,有些是三维立体表示,而这些图形综合起来就是数学抽象中的几何直观。
其四,当高中生看到题目中的图形,或者线段相交的关系图时,就会自行在脑中形成具象的空间图,而这就是数学抽象的空间观念。
例:2019年高考全国Ⅰ卷(理科):设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则对应的表达式是什么?解:z=x+yi,z-i=x+(y-1)i,|z-i|=√(x2+(y-1)2=1),则表达式为x2+(y-1)2=1。
由这道例题可看出,高中生可以通过空间想象的方式模拟求出该复数的表达式,从而可以运用数学抽象的思想解决这道题。
2.逻辑推理逻辑推理主要包括归纳和演绎两种推理方式,首先,高中数学中的归纳推理是指,高中生在思索数学题目时,从一个独立的角度出发,然后根据题目中提供的知识线索,接着由点扩面式的逐渐推出最终结论,但不能保证最终结论的准确性。
其次,高中数学中的逻辑推理恰恰与归纳推理相反,主要指高中生在思索数学题目时,在事先就对该题目全面了解的前提下,然后由面扫点式的逐渐推出最终结论,而这个最终结论相比归纳推理的结论,具有更高的准确性。
2024年高考评析-新结构,新思想,新导向
新结构,新思想,新教学——2024年高考数学试题评析主要内容1.“三新”背景下的高考改革2.减量增质的新高考试题分析3.考生主观题答题的情况分析4.试题对未来数学教学的启示1.“三新”背景下的高考改革•新课标2017年修订版:内容领域,核心素养,学业质量要求,命题建议,教学评等。
(附录有多个考查核心素养的案例)•新教材“主线-主题一单元一核心内容”:预备知识、函数主线、几何与代数、概率与统计、数学建模与探究、数学文化•新高考依据《课标》、无考纲、《高考评价体系》三新新高考新教材新课标•新高考命题的演变•情境化•新题型2020年•考本质•重探究2021年•强运算•用结论2022年•回教材•导衔接2023年•2020年•情境丰富;•阅读量大;•题型较多;•难度较大。
•2021年•强调数学本质;•重视数学探究。
•2022年•运算要求较高;•多次运用结论。
•2023年•回归教材•教考衔接•演变的特点(1)打破常规,敢于尝试(2020)文理不分科,情境化试题,增多选题,结构不良问题,等。
(2)稳中求变,重视本质(2021)稳定题型,情境简化,强调探究,重视数学本质。
(3)运算繁杂,回调过猛(2022)运算技巧性强,过多二级结论,分析思想,代数思维。
(4)简单回归,思维加大(2023)基础题目增多,考查概念和原理,注重数学思维过程。
2020创新2021调整2022挑战2023思维2024再创新九省联考2024省一模•新高考命题就是要优化情境设计,增强试题开放性、灵活性,充分发挥高考命题的育人功能和积极导向作用,引导减少死记硬背和“机械刷题”现象。
•高考数学就是要发挥数学学科特点,以测试数学综合能力、发展数学核心素养为目标,通过创新试卷结构与试题形式,创新试题形式,加强情境设计,注重联系社会生活实际,增加综合性、开放性、应用性、探究性试题。
•考题的方向既清晰又模糊清晰的要按照“九省联考”的模式,题量减少,难度加大;模糊的是,难度究竟有多大?特别是最后的压轴,将是怎样的“大咖”?•复习的策略随之如何改变基础题,达到怎样的基础性?中档题又有多少?如何应对摸不着边际的“压轴题”?2. 减量增质的新高考试题分析•教育部考试院三考:“考主干、考能力、考素养”三重:“重思维、重创新、重应用”三突出:考查思维过程、思维方法和创新能力•关于试题的相关数据(1)考查内容的分布表 1 2024年与2023年新高考数学I 卷试卷考查内容与分值分布年份函数与导数解析几何三角立体几何概率统计数列集合复数向量计数原理2024462223201283556 202327272022171755555101520253035404550函数与导数解析几何三角立体几何概率统计数列集合复数向量计数原理知识点内容2024年2023年•函数与导数、几何、三角、概率统计是此次考查的主干内容, 分值在111分左右.•尤其在几何方面, 解析几何和立体几何分别占22分和20分, 如果将解三角形也归入几何领域, 那么分值达到了65分, 占比接近全卷的十分之三.•与2023年高考试题相比较, 函数与导数的占比从18%提升到30.7%, 函数与导数在单项选择题、多项选择题、填空题以及简答题四种类型的题目都有所考查, 题量分别为3、2、1、1, 考查的内容包括幂函数、分段函数单调性、指对函数的概念与性质、二次函数的单调性、抽象函数的单调性、三次函数的极值与最值和单调性、切线方程、函数的奇偶性及对称性等。
核心素养视域下新高考数学试题分析及教学建议
核心素养视域下新高考数学试题分析及教学建议摘要:2022年新高考I卷的数学试卷,试题蕴含着丰富的数学核心素养,题题精彩.函数导数试题蕴含直观想象素养,立体几何试题蕴含逻辑推理素养,不等式试题蕴含数学抽象素养,圆锥曲线试题蕴含数学运算素养,概率统计试题蕴含数据分析素养,应用性试题蕴含数学建模素养赏析.整卷试题是数学核心素养浸润的成果,重在检测学生数学核心素养的养成情况.关键词:核心素养视域下;新高考数学试题;分析及教学建议引言《普通高中数学课程标准2017年版2020年修订》提出了数学学科的六大核心素养:数学抽象,逻辑推理,数学建模,直观想象,数学运算和数据分析.新高考试题的命制也从知识立意、能力立意,转变为素养立意.2022年,教育部教育考试院命制的新高考I卷数学试题,其题面亲切、形式简约、思想深刻、内涵丰富.每道试题的背后都有其精彩的故事,细品题中所蕴含的数学知识、思想、方法,可以感受到试题的命制基于数学核心素养,试题是核心素养自然浸润的成果.指向素养立意的新高考数学试题更加注重检测学生的基础知识、思维水平、探究能力、学科素养、创新能力、应用能力等,其解题过程更多的是基于核心素养的探究活动。
1、逻辑推理视域下的立体几何试题试题的命制过程往往是命题者“执果寻因”的逆向逻辑推理过程.如在编制“立体几何与空间向量”的试题时,命题者可先设定一个确定的空间几何体,并根据空间几何体的特征,编制若干可确定该几何体的几何量或者位置关系的条件,让学生根据条件求解空间几何体,然后在确定的空间几何体中探究其他的几何量和位置关系.题2.(2022年新高考数学I卷,T19)如图7,直三棱柱ABC-A1B1C1的体积为4,△A1BC的面积为22.(1)求A到平面A1BC的距离;(2)设D为A1C的中点,AA1=AB平面A1BC⊥平面ABB1A1,求二面角A-BD-C的正弦值.命题者拟以直三棱柱为背景,考查“利用等积转化求空间中的点面距离”的方法.等积法的关键是转换顶点,进行等积转化,由VA-A1BC=VA1-ABC,可得13hAS△A1BC=13hA1S△ABC,又因为hA1S△ABC=VA1B1C1-ABC,所以hAS△A1BC=VA1B1C1-ABC.因此,只需要给定直三棱柱ABC-A1B1C1和△A1BC的面积,即可求解点A到平面A1BC的距离.由此,编制出题干与问题(1):“直三棱柱ABC-A1B1C1的体积为4,△A1BC的面积为22,求A到平面A1BC的距离.”一道立体几何试题的命制过程中,命题者是有全局观的.命题者对本道试题所涉及的几何图形、空间位置关系、几何量等是要有整体把握的.题干与问题(1)所给的两个条件是无法确定这个直三棱柱的.要确定一个三角形至少需要三个单一独立的条件,如已知三边、已知两边一夹角等.那么,需要几个条件才能确定这个直三棱柱呢?要确定一个直三棱柱,需要确定直三棱柱的侧棱和底面三角形的形状和大小,因此至少需要四个单一独立的条件.题中给出直三棱柱ABC-A1B1C1的体积和△A1BC的面积,因此需要再给出两个条件,于是命题者给出“AA1=AB,平面A1BC⊥平面ABB1A1”两个条件.这四个条件即可确定直三棱柱,下面进行验证:由条件“AA1=AB”可以快速判断出四边形ABB1A1是正方形,其对角线互相垂直平分;结合条件“平面A1BC⊥平面ABB1A1”,可得点A到平面A1BC的距离等于点A到A1B中点的距离,从而得到正方形ABB1A1对角线的长度,进而确定AA1,AB的长度;由“直三棱柱ABC-A1B1C1的性质,平面A1BC⊥平面ABB1A1”可以证得BC⊥平面ABB1A1,进而得BC⊥AB,BC⊥A1B;再结合“△A1BC的面积为22”求得BC的长度.至此,侧棱及其底面三角形的形状和大小确定,从而确定了直三棱柱.有了确定的空间几何体,即可在几何体中设问其中的各种几何量,如求二面角的大小.由此,编制出问题(2):“直三棱柱ABC-A1B1C1的体积为4,△A1BC的面积为22,设D为A1C的中点,AA1=AB,平面A1BC⊥平面ABB1A1求二面角A-BD-C的正弦值.”数学是讲道理的,解题靠推理.命题是“执果寻因”的推理过程,解题是“由因导果”的推理过程.无论解题还是命题,其基本工作形式都是逻辑推理,逻辑推理素养的具体表现是如何科学地、符合逻辑地在“因果”之间进行转化,从而实现命题或解题目标.2、数学抽象视域下的不等式试题数学抽象是指在具体问题背景中发现规律,归纳出共同的、本质的问题,建立数学模型加以研究.数学抽象常常从数量关系、数式的结构特征、图形关系等角度进行抽象研究.在命制“比较数值大小”的试题时,命题者常常从已知的不等关系出发,对不等式进行赋值、变形,得到具体数值的大小关系,从而设置试题.学生解题时需具备较强的数感和符号意识,根据数式的特征,对问题进行抽象,再构造函数求解.题3.(2022年新高考数学I卷,T7)设a=0.1e0.1,b=19,c=-ln0.9,则A.a<b<c B.c<b<a C.c<a<b D.a<c<b根据题干所给三个式子的结构特征,通过观察、归纳、抽象,发现a,b,c均是某函数在0.1处的函数值.构造函数f(x)=xex,g(x)=1-xx,h(x)=-ln(1-x),则a,b,c分别是f(x),g(x),h(x)在x=0.1处对应的函数值,即a=f(0.1),b=g(0.1),c=h(0.1).借助画图软件作图,如图8,可以发现g(0.1)>f(0.1)>h(0.1),即c<a<b.由图象可看出,函数f(x),g(x),h(x)在x=0附近的图象是非常接近的,肉眼几乎不可识别.若想借助函数图象解题,可用导数严格地加以证明.除了用图象观察得结论,编制试题.笔者猜测本题是对重要不等式ln x⩽x-1进行恒等变形、赋值而得.曲线y=ln x的图象在其切线y=x-1的下方(切点(1,0)除外),并由此可得不等式ln x⩽x-1,当且仅当x=1时,等号成立.y=ln x与y=x-1在x=1附近的函数值是非常接近的,通过估算是难以比较其大小的.因此,命题者考虑,设置比较两个函数在x=1的附近的函数值的大小,如比较ln0.9与0.9-1=-0.1的大小.由于背景的函数、不等式相对简单,若仅是对这两个数进行比较,则问题相对容易.因此,命题者对上述恒等式进行变形.由“ln x⩽x-1,当且仅当x=1时,等号成立”,得“ln11-x⩽11-x-1=x1-x,当且仅当x=0时,等号成立”,即“-ln(1-x)⩽x1-x,当且仅当x=0时,等号成立”.由“ln x⩽x-1,当且仅当x=1时,等号成立”,得“ln(1-x)⩽-x,当且仅当x=0时,等号成立”,得“e-x⩾1-x当且仅当x=0时,等号成立”,得“当x<1,ex⩽11-x,当且仅当x=0时,等号成立”,得“当0<x<1,xex⩽1-xx,当且仅当x=0时,等号成立”.综上,当0<x<1,xex⩽x1-x,-ln(1-x)⩽x1-x,当且仅当x=0时,等号成立.因此可得,0.1e0.1<19,-ln0.9<19.那么0.1e0.1与-ln0.9的大小关系又如何呢?构造函数φ(x)=xex+ln(1-x)(0<x⩽110),φ′(x)=(x+1)ex+1x-1,φ″(x)=(x+2)ex-1(x-)2.当0<x⩽110时,(x+2)ex>2,1(x-1)2⩽10081,此时φ″(x)>0,φ′(x)单调递增,故φ′(x)>φ′(0)=0,φ(x)单调递增,φ(x)>φ(0)=0,因此有0.1e0.1>-ln0.9.综上,可得-ln0.9<0.1e0.1<抽象是数学的重要特性之一19..抽象的目的在于确定数学的研究对象,抽象的常见方法是观察变化中的不变、不同中的共性、无序中的有序,并把问题符号化、模式化,抽象成数学问题再加以解决.3教学过程中强调把握住基础题得分尤为重要,对于应试考试还需要有一定的考试策略.基本策略是先易后难,会做的一分不扣,保证基础题得分,不会做的题尽量多写,可以对难题的条件和结论进行化简,选择题可以利用排除法、特值法等特殊方法.每次测试都要鼓励引导学生进行应试策略培训,这样可以拿到基本分数.所以在教学中应不断给予学生提出要求和目标引导,让他们把应试考试策略养成习惯。
核心素养数学试题分析及答案
核心素养数学试题分析及答案一、选择题1. 若函数f(x) = 2sin(x) + 3cos(x),则f(π/2)的值为:A. 3B. 1C. -1D. 5答案:A解析:根据三角函数的性质,sin(π/2) = 1,cos(π/2) = 0,代入函数f(x)得f(π/2) = 2sin(π/2) + 3cos(π/2) = 2*1 + 3*0 = 3。
2. 已知等差数列{an}的首项a1 = 2,公差d = 3,求第10项a10的值:A. 29B. 32C. 35D. 41答案:B解析:等差数列的通项公式为an = a1 + (n-1)d,代入n = 10,a1 = 2,d = 3,得a10 = 2 + (10-1)*3 = 2 + 27 = 29。
3. 若复数z = 3 + 4i,则|z|的值为:A. 5B. √29C. 7D. √41答案:A解析:复数的模长公式为|z| = √(a^2 + b^2),其中z = a + bi,代入z = 3 + 4i,得|z| = √(3^2 + 4^2) = √(9 + 16) = √25 = 5。
4. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)的值:A. 3x^2 - 6xB. 3x^2 - 6x + 2C. x^2 - 6x + 2D. x^3 - 3x^2答案:A解析:根据导数的定义,f'(x) = 3x^2 - 6x。
5. 已知双曲线x^2/a^2 - y^2/b^2 = 1的焦点在x轴上,且a = 2,b = 1,则该双曲线的渐近线方程为:A. y = ±x/2B. y = ±x/√2C. y = ±2xD. y = ±√2x答案:A解析:双曲线的渐近线方程为y = ±(b/a)x,代入a = 2,b = 1,得y = ±x/2。
二、填空题6. 已知向量a = (3, -2),b = (1, 2),则向量a·b的值为______。
2023年高考数学(全国甲卷文科)真题详细解读及评析
2023年高考数学真题完全解读(全国甲卷文科)适用省份四川、广西、贵州、西藏整I试卷总评2023年高考数学全国卷全面考查了数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等学科核心素养,体现基础性、综合性、应用性和创新性的考查要求,突出理性思维,发挥出数学学科在人才选拔中的重要作用。
一、 题型与分值分布题型:(1)单选题12道,每题5分共60分;(2)填空题4道,每题5分共20分;(3)解答题三道,每题12分共60分;(4)选做题2道,每题10分。
二、 题目难度和复杂度三、知识点覆盖详细情况说明难度级别具体试题总分值整体评价★ ☆☆☆☆第1题、第2题、第4题、第13题、第15题25分整体试卷难度偏 易,整体复杂度不高,综合知识点大多都是2个左右★ ★☆☆☆第3题、第5题、第6题、第14题、第17题、第22题、第23题42分★ ★★☆☆第7题、第8题、第9题、第10题、第18题、第19题44分★ ★★★☆第11题、第20题、第21题29分★ ★★★★第12题、第16题10分知识点题型题目数量总分值整体评价集合单选题1个15分复数单选题1个15分平面向量单选题1个15分程序框图单选题1个15分主干知识考查全而,题目数量设置均衡;与课程标准保持了一致性。
数列单选题1个填空题1个210分三角函数单选题1个解答题1个217分概率与统计单选题1个解答题1个217分立体几何单选题1个填空题1个解答题1个322分圆锥曲线单选题2个解答题1个322分函数与导数单选题2个填空题1个解答题1个427分极坐标与参数方程选做题1个110分不等式填空题1个(线性规划问题)选做题1个215分四、高考试卷命题探究2023年高考数学全国卷在命制情境化试题过程中,通过对阅读题的分析,可以发现今年的高考命题在素材使用方而,对文字数量加以控制,阅读理解雄度也有所降低:在抽象数学问题方而,力图设置合理的思维强度和抽象程度;在解决问题方面,通过设置合适的运算过程和运算量,力求使情境化试题达到试题 要求层次与考生认知水平的契合与贴切。
核心素养视角下的高考数学试题分析
技法点拨摘要:高考数学在高中的学习中是有一定难度的,同时,高考数学在高考总分中也占有很大的比重。
学生们在学习的过程中也会遇到很多困难和阻碍,而教师在教学的过程中也会碰到各种各样的问题,不知道用哪种方式更能帮助学生更好地学习数学。
在数学的学习中,往往会形成两极分化,能够学会数学的,往往在数学的考试中都会取得很高的分数,而那些不会数学的,通常就是不及格甚至远远不及格。
那么同样的教师,同样的课本,同样的教学方式,为什么会造成这样的两极分化现象呢?这是我们需要思考的问题。
关键词:核心素养;高考数学;分析我们都知道,高中学生要在不到两年的时间内学习六本数学必修和两本选修的内容,对于学生来说,这无疑是一个艰巨的学习任务,那么怎样才能更好地完成这个学习任务呢?首先在于教师的讲解,其次是学生自己的掌握能力。
在高中的学习中,有一个好的老师对于高中数学的学习是有很大的帮助的。
教师在讲解数学是应该时刻注意学生的掌握程度,根据学生的学习能力安排学习课程,重点的专题要进行重点讲解,结合学生的学习能力进行讲解,才能够最大限度地帮助学生学习数学。
一、打牢基础,从课本知识出发想要学好高中数学,那么就要从小对数学学习打牢基础,在高中的数学学习中才能够做到不吃力,无论是什么知识,都是围绕着课本进行讲解,老师在讲解的过程中也会根据课本上的例题,来引出本节课所需要学习的内容。
课本上的知识是最基础的,也是最经典的教学案例,在把课本上的教学案例琢磨透后,那么对于有关本节内容的例题就会有一个系统的认识。
其次就是对于本节课拓展内容的学习,这需要学生耐下心来仔细琢磨,教师可以在其中起到点睛之笔的作用。
总的来说,无论是什么知识,都还是要从课本出发,只有把课本上的知识记在心里,才能够把基础掌握牢固。
二、精讲精练,做到讲与评结合在高中数学的学习中所涉及的学习范围特别广泛,但其实也不乏分为几大块,在数学的学习中,更重要的是学习方法和做题思路。
在学习某一部分内容时,教师可以专门针对这一部分内容进行讲解和总结,让学生只做这一部分内容的习题,加深对这一部分学习内容的印象和做题思路。
2020高考数学解答题核心素养题型《专题11 概率与统计综合问题》+答题指导)(解析版)
专题11 概率与统计综合问题【题型解读】几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件、互斥事件常作为解答题的一问考查,也是进一步求分布列、期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】 (2018·天津卷)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16,现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ①用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望;②设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率. 【答案】见解析【解析】(1)由题意得,甲、乙、丙三个部门的员工人数之比为3∶2∶2.由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人、2人、2人. (2)①随机变量X 的所有可能取值为0,1,2,3. P (X =k )=C k 4C 3-k3C 37(k =0,1,2,3).所以随机变量X 的分布列为随机变量X 的数学期望E (X )=0×35+1×35+2×35+3×35=7.②设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A =B ∪C ,且B 与C 互斥. 由①知,P (B )=P (X =2),P (C )=P (X =1), 故P (A )=P (B ∪C )=P (X =2)+P (X =1)=67.所以事件A 发生的概率为67.【素养解读】本题考查分层抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式,考查分析问题和解决问题的能力,体现了数学运算和数据分析等核心素养.试题难度:中.【突破训练1】 (2017·天津卷)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【答案】见解析【解析】(1)随机变量X 的所有可能取值为0,1,2,3.P (X =0)=⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14=14,P (X =1)=12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×13×⎝⎛⎭⎪⎫1-14+⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×14=1124,P (X =2)=⎝⎛⎭⎪⎫1-12×13×14+12×⎝ ⎛⎭⎪⎫1-13×14+12×13×⎝ ⎛⎭⎪⎫1-14=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为所以E (X )=0×4+1×24+2×4+3×24=12.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0) =14×1124+1124×14=1148. 所以这2辆车共遇到了1个红灯的概率为1148.▶▶题型二 离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,常有解答题的考查,属于中档题.复习中应强化应用类习题的理解与掌握,弄清随机变量的所有取值,它是正确求随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中应强化解答题的规范性训练.【例2】 (2018·北京卷)电影公司随机收集了电影的有关数据,经分类整理得到下表:假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk =1”表示第k 类电影得到人们喜欢,“ξk =0”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差Dξ1,Dξ2,Dξ3,Dξ4,Dξ5,Dξ6的大小关系.【答案】见解析【解析】 (1)设“从电影公司收集的电影中随机选取1部,这部电影是获得好评的第四类电影”为事件A . 因为第四类电影中获得好评的电影有200×0.25=50(部), 所以P (A )=50140+50+300+200+800+510=502 000=0.025.(2)设“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”为事件B ,则P (B )=0.25×(1-0.2)+(1-0.25)×0.2=0.35.(3)由题意可知,定义随机变量如下:ξk =⎩⎪⎨⎪⎧0,第k 类电影没有得到人们喜欢,1,第k 类电影得到人们喜欢,则ξk 显然服从两点分布,故Dξ1=0.4×(1-0.4)=0.24,Dξ2=0.2×(1-0.2)=0.16, Dξ3=0.15×(1-0.15)=0.127 5,Dξ4=0.25×(1-0.25)=0.187 5, Dξ5=0.2×(1-0.2)=0.16, Dξ6=0.1×(1-0.1)=0.09.综上所述,Dξ1>Dξ4>Dξ2=Dξ5>Dξ3>Dξ6.【素养解读】本题考查统计中的概率计算、随机变量的方差计算,考查运算求解能力,体现了数据分析、数学运算等核心素养.试题难度:中.【突破训练2】 (2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列.(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值? 【答案】见解析【解析】(1)由题意知,X 所有可能取值为200,300,500, 由表格数据知P (X =200)=2+1690=0.2,P (X =300)=3690=0.4, P (X =500)=25+7+490=0.4, 因此X 的分布列为当300≤n ≤500时,若最高气温不低于25,Y =6n -4n =2n ; 若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1 200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n,因此E(Y)=2n×0.4+(1 200-2n)×0.4+(800-2n)×0.2=640-0.4n.当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.所以当n=300时,Y的数学期望达到最大值,最大值为520元.▶▶题型三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】(2017·全国卷Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下.(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;(2)填写下面的列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;附:K 2=(a +b)(c +d)(a +c)(b +d).【答案】见解析【解析】(1)记B 表示事件“旧养殖法的箱产量低于50 kg”,C 表示事件“新养殖法的箱产量不低于50 kg”. 由题意知P (A )=P (BC )=P (B )P (C ). 旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62, 故P (B )的估计值为0.62.新养殖法的箱产量不低于50 kg 的频率为 (0.068+0.046+0.010+0.008)×5=0.66, 故P (C )的估计值为0.66.因此,事件A 的概率估计值为0.62×0.66=0.409 2. (2)根据箱产量的频率分布直方图得如下列联表.K 2=100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg 的直方图面积为(0.004+0.020+0.044)×5=0.34<0.5,箱产量低于55 kg 的直方图面积为(0.004+0.020+0.044+0.068)×5=0.68>0.5, 故新养殖法箱产量的中位数的估计值为 50+0.5-0.340.068≈52.35(kg).【素养解读】本题考查频率分布直方图、独立性检验、中位数、相互独立事件的概率,考查学生的阅读理解能力、数据处理能力.主要体现了数据分析,数学运算等核心素养.【突破训练3】 (2017·北京卷)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望E (ξ);(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小(只需写出结论). 【答案】见解析【解析】(1)由题图知,在服药的50名患者中,指标y 的值小于60的有15人. 所以从服药的50名患者中随机选出一人,此人指标y 的值小于60的概率为1550=0.3.(2)由题图知,A ,B ,C ,D 四人中,指标x 的值大于1.7的有2人:A 和C . 所以ξ的所有可能取值为0,1,2.P (ξ=0)=C 22C 24=16,P (ξ=1)=C 12C 12C 24=23,P (ξ=2)=C 22C 24=16.所以ξ的分布列为故ξ的期望E (ξ)=0×6+1×3+2×6=1.(3)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据方差. 题型四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差等)的考查,解答题中也有所考查.【例4】 (2018·全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t . (1)分析利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?请说明理由. 【答案】见解析【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y ^=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施资源额的预测值为y ^=99+17.5×9=256.5(亿元). (2)利用模型②得到的预测值更可靠.理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =-30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势,2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y ^=99+17.5t 可以较好地描述2010年的数据建立基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. (以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.)【素养解读】本题以统计图为背景,考查线性回归方程,考查运算求解能力和数形结合思想,体现了数学运算的核心素养.【突破训练4】 下图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2019年我国生活垃圾无害化处理量. 附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17(y i -y)2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n(t i -t)(y i -y )∑i =1n(t i -t )2∑i =1n(y i -y)2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为b ^=∑i =1n(t i -t)(y i -y )∑i =1n(t i -t )2,a ^=y -b ^t .【答案】见解析【解析】(1)由折线图中数据和附注中参考数据得t =4,∑i =17(t i -t )2=28,∑i =17(y i -y -)2=0.55,∑i =17(t i -t -)(y i -y -)=∑i =17t i y i -t -∑i =17y i =40.17-4×9.32=2.89,r ≈2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y -=9.327≈1.331及(1)得b ^=∑i =17(t i -t -)(y i -y -)∑i =17(t i -t -)2=2.8928≈0.103,a ^=y --b ^t -=1.331-0.103×4≈0.92.所以y 关于t 的回归方程为y ^=0.92+0.10t .将2019年对应的t =9代入回归方程,得y ^=0.92+0.10×9=1.82.所以预测2019年我国生活垃圾无害化处理量约为1.82亿吨.。
高考数学试卷核心素养
摘要:高考作为我国选拔优秀人才的重要途径,其试卷设计一直备受关注。
本文从核心素养的角度,对2024年上海高考数学试卷进行分析,探讨其如何体现核心素养,以及对学生能力培养的意义。
一、核心素养的内涵核心素养是指学生在面对现实世界时,能够运用所学知识和技能,解决实际问题,形成正确价值观的能力。
数学核心素养主要包括:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等。
二、2024年上海高考数学试卷核心素养体现1. 数学抽象试卷中,填空题、选择题等题型,通过具体情境,引导学生从实际问题中提炼出数学模型,培养学生的数学抽象能力。
如填空题中的海上货船和灯塔位置关系问题,要求学生运用解三角形的有关知识解决实际问题。
2. 逻辑推理试卷中的解答题,如沿海地区气温与海水表层温度的统计关系、考生学业成绩与体育锻炼时长的有关问题等,都要求学生运用逻辑推理能力,分析问题、解决问题。
这有助于培养学生的逻辑思维能力。
3. 数学建模试卷中,通过实际问题,引导学生运用数学知识建立模型,培养学生的数学建模能力。
如填空题中的概率问题,引导学生用数学眼光观察世界,用数学思维思考世界,用数学语言表达世界。
4. 直观想象试卷中的选择题和解答题,如几何探秘、函数的性质等,都要求学生具备一定的直观想象力。
这有助于培养学生的空间想象能力和图形思维能力。
5. 数学运算试卷中的填空题、选择题等题型,都要求学生具备扎实的数学运算能力。
这有助于提高学生的数学素养,为未来的学习和工作奠定基础。
6. 数据分析试卷中的解答题,如考生学业成绩与体育锻炼时长的有关问题,要求学生运用数据分析方法,分析问题、解决问题。
这有助于培养学生的数据分析能力。
三、高考数学试卷核心素养对学生能力培养的意义1. 培养学生解决实际问题的能力高考数学试卷中的实际问题,有助于引导学生运用所学知识解决现实生活中的问题,提高学生的实践能力。
2. 培养学生创新精神和批判性思维试卷中的问题设计,鼓励学生从不同角度思考问题,培养学生的创新精神和批判性思维。
数学学科核心素养高考测评与课程标准一致性研究——以2023_年全国高考数学甲卷试题为例
专题研究·高考数学试题研究【摘要】本文采用SEC一致性分析模式,从数学知识、问题解决、数学思维三个维度,对2023年高考全国甲卷数学试题的数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析六大数学学科核心素养及其三个水平进行分析,发现2023年高考全国甲卷数学试题的学科核心素养测评与课程标准达到一定程度的一致,认为2024年高考试题将会突出考查学生的数学抽象、逻辑推理和数据分析素养,提高对学生问题解决和数学思维的测评力度,数学学科核心素养高考测评集中体现在素养的第二个水平。
【关键词】数学学科核心素养2023年高考测评课程标准一致性【中图分类号】G63【文献标识码】A【文章编号】0450-9889(2023)35-0063-07《普通高中数学课程标准(2017年版2020年修订)》(以下简称《课程标准》),明确数学学科六大核心素养的内涵并将每一个数学学科核心素养划分为三个水平,从课程引领角度将数学学科核心素养的培养从理念层面转向教学实践。
2019年6月,国务院办公厅印发《关于新时代推进普通高中育人方式改革的指导意见》指出,学业水平选择性考试与高等学校招生全国统一考试命题要以普通高中课程标准和高校人才选拔要求为依据。
2019年12月,教育部考试中心发布《中国高考评价体系》,明确了高考命题要突出考查学生必备知识、关键能力及学科思维,使得以核心素养为导向的基础教育考试评价日益成为社会关注的焦点。
然而,高考试题是否真实、有效、适切地考查了学生的数学学科六大核心素养及其三个不同水平?回答这个问题,需要开展数学学科核心素养高考试题测评与数学学科核心素养课程标准的要求一致性研究。
2024年,广西即将迎来高考综合改革的第一次新高考,目前面临着重新构建数学学科考试的知识体系、能力框架、试卷结构和试题类型等新问题,迫切需要开展数学学科核心素养高考测评与课程标准一致性研究。
本文通过解构2023年高考全国甲卷数学试题中核心素养的考查,形成一致性结论,以期为将来学生数学学科核心素养的研究提供参考依据,为学生数学学科核心素养成分、维度、水平三大层面的测评提供操作范式,为学生数学学科核心素养的测评提供经验借鉴,并有效指导教学改革、试题命制改革以及备考。
新高考数学试题与数学核心素养契合度研究
新高考数学试题与数学核心素养契合度研究摘要:随着新高考的出现,数学教师对数学科目的教学重点发生了变化,变得更加重视对学生数学核心素养的培养。
教师为了提高学生的数学核心素养,使学生更加深刻地认识和学习数学科目,适应新高考的考试方法,教师要对教学手段进行创新,做好教学计划,使教学策略有所改变,并积极研究数学核心素养理念,使学生能深刻掌握和学习数学科目,使数学核心素养与新高考数学试题进行融合,提高学生对数学学习的效率,从而提升高考成绩。
关键词:新高考;数学试题;数学核心素养前言:核心素养指的是学生在接受教育的过程中,形成的能适应社会发展的品质和能力,它是学生在学习过程中对情感、态度、技能等方面的素质的综合表现,是促进学生全面发展的重要因素。
核心素养有着重要的育人价值和作用,在一定程度上对教师的教学实践具有导向作用,对学生核心要素的培养能使学生在学习中掌握学习的关键能力。
学校加强对学生的核心素养的培养对学生有着非常重要的作用,能促进学生的发展和成长。
对目前的新高考下的高中数学学习来说,加强学生的数学核心素养对数学科目的学习是非常重要的。
1.新高考下数学核心素养的概述对高中学生数学核心素养的培养不仅能使学生具备更加坚定的意志力,增强学生的心理素质,还能使学生的数学逻辑思维和计算能力得到提升。
教师创新设计教学手段,注重对学生核心素养的培养,转变教学策略,重视学生在课堂中的主体地位,将课堂的主导权交还给学生,在教师的带领下,给学生创造能自由发挥和学习的空间,使学生在不断地探索中提高观察、学习、思考等能力,探索出高效且适应自身的学习方法。
1.新高考数学试题与数学核心素养契合存在的问题在高考形势紧张的当下,很多高中数学教师在教学的过程中都重视将理论知识和习题讲解作为数学教学的重要内容,想要以此提升学生的数学成绩,这种教学方法忽视了对学生数学逻辑思维等数学核心素养的培育,使学生在数学学习过程中,实际的知识应用水平不高,对数学的理论知识掌握较好,但是数学实践能力和逻辑能力相对较差,难以将一些生活中常见的问题转换为学习过的数学问题去解决,甚至无法做到有效审题。
核心素养视角下2024_年全国新高考适应性测试数学试题难度评析与备考启示
核心素养视角下2024年全国新高考适应性测试数学试题难度评析与备考启示文尚平1,2农雅婷2卢玉琦2杨璧华2(1.西北师范大学教师教育学院;2.南宁市第二中学)摘要:2024年全国新高考适应性测试试题的命题风格、试卷结构、难度系数、综合素养水平代表着高考改革的趋势和方向,将在2024年新高考中全面体现。
课题组借助喻平的数学关键能力评价框架和鲍建生的综合难度系数模型,分别对此次适应性测试试题所蕴含的数学核心素养水平和试题的综合难度进行分析,探寻两者之间的内在关系,通过对新高考命题的趋势、特点等开展实证研究,提出备考启示:深化基础,强化对数学学科本质的理解;注重素养,强化对数学教育内核的追求;改善教学,强化对数学思维能力的培养。
关键词:数学核心素养;综合素养水平;综合难度系数;适应性测试中图分类号:G63文献标识码:A 文章编号:0450-9889(2024)08-0053-06作者简介:文尚平,1983年生,广西桂林人,在读博士研究生,高级教师,研究方向为中学数学课程与教学论;农雅婷,1986年生,广西崇左人,本科,学士,一级教师,研究方向为中学数学教育教学;卢玉琦,1987年生,广西宾阳人,本科,学士,一级教师,研究方向为中学数学教育教学;杨璧华,1984年生,广西南宁人,本科,学士,高级教师,研究方向为中学数学教育教学。
《普通高中数学课程标准(2017年版2020年修订)》(以下简称《课程标准》)系统提出了六大数学学科核心素养及水平的划分,明确了数学学科核心素养是数学课程目标的集中体现,拉开了数学学科核心素养从理念层面走向教学实践的序幕,并将数学科核心素养的培养贯穿新教材、新课程和新高考“三新”综合改革的全过程[1]。
2019年,《中国高考评价体系》明确提出高考命题要突出考查学生的必备知识、关键能力及学科思维,以核心素养为导向的基础教育考试评价日益成为社会关注的焦点。
核心素养的测评是以区分度为主要依据开展的,而试题的区分度与试题的难度又有着紧密的联系。
2024年全国统一高考数学Ⅰ卷(带答案解析)
2024年全国统一高考数学试卷(新高考Ⅰ)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项填涂在答题卡相应的位置上。
1.(5分)已知集合A={x|﹣5<x3<5},B={﹣3,﹣1,0,2,3},则A∩B=()A.{﹣1,0}B.{2,3}C.{﹣3,﹣1,0}D.{﹣1,0,2} 2.(5分)若=1+i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i3.(5分)已知向量=(0,1),=(2,x),若⊥(),则x=()A.﹣2B.﹣1C.1D.24.(5分)已知cos(α+β)=m,tanαtanβ=2,则cos(α﹣β)=()A.﹣3m B.﹣C.D.3m5.(5分)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为()A.2πB.3πC.6πD.9π6.(5分)已知函数为f(x)=在R上单调递增,则a的取值范围是()A.(﹣∞,0]B.[﹣1,0]C.[﹣1,1]D.[0,+∞)7.(5分)当x∈[0,2π]时,曲线y=sin x与y=2sin(3x﹣)的交点个数为()A.3B.4C.6D.88.(5分)已知函数为f(x)的定义域为R,f(x)>f(x﹣1)+f(x﹣2),且当x<3时,f(x)=x,则下列结论中一定正确的是()A.f(10)>100B.f(20)>1000C.f(10)<1000D.f(20)<10000二、选择题:本大题共3小题,每小题6分,共计18分。
每小题给出的四个选项中,有多项符合题目要求。
全部选对的得6分,选对但不全得部分分,有选错的得0分。
(多选)9.(6分)为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值=2.1,样本方差s2=0.01,已知该种植区以往的亩收入X服从正态分布N(1.8,0.12),假设推动出口后的亩收入Y服从正态分布N(,s2),则()(若随机变量Z服从正态分布N(μ,σ2),则P(Z<μ+σ)≈0.8413)A.P(X>2)>0.2B.P(X>2)<0.5C.P(Y>2)>0.5D.P(Y>2)<0.8(多选)10.(6分)设函数f(x)=(x﹣1)2(x﹣4),则()A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f(x2)C.当1<x<2时,﹣4<f(2x﹣1)<0D.当﹣1<x<0时,f(2﹣x)>f(x)(多选)11.(6分)造型可以做成美丽的丝带,将其看作图中的曲线C的一部分,已知C过坐标原点O,且C上的点满足横坐标大于﹣2,到点F(2,0)的距离与到定直线x=a(a<0)的距离之积为4,则()A.a=﹣2B.点(2,0)在C上C.C在第一象限的纵坐标的最大值为1D.当点(x0,y0)在C上时,y0≤三、填空题:本大题共3小题,每小题5分,共计15分。
2023年高考数学试题评析(新课标Ⅱ卷)和教学策略
2023年高考数学试题评析(新课标Ⅱ卷)和教学策略2023年高考数学(新课标Ⅱ卷)试题, 聚焦学科主干内容, 突出数学学科特色, 重视数学本质, 突出理性思维, 体现基础性、综合性、应用性和创新性的考查要求。
与2022年高考全国乙卷试题相比难度有所下降, 整张试卷全面地考查了数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等学科核心素养。
试题分析一、着重考查学科基础知识和基本方法新课标Ⅱ卷试题涉及的知识面广, 覆盖了集合、复数、平面向量、函数与导数、三角函数、解三角形、数列、不等式、立体几何、解析几何、概率与统计等知识模块的主要知识点。
对于基础知识的考查主要体现在选择题、填空题的前几道题上。
在试题设计上, 单个试题涉及的知识点相对较少, 思维相对简单, 如单选题(第1至第7题)、多选题(第9题)和填空题(第13.14题), 这些都是基础题, 主要考查数学基本概念、基本公式和基本方法的运用, 易于作答。
二、突出考查数学学科核心素养新课标Ⅱ卷全面考查数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等学科核心素养。
如第11题, 将函数导数与方程相结合, 其本质是根据一元二次方程根的性质判定方程系数之间的关系, 题中函数经过求导后既有极大值又有极小值的性质, 可以转化为一元二次方程的两个正根, 重点考查学生的逻辑推理素养。
第10题, 设置直线与抛物线相交的情境, 通过直线方程与抛物线方程的联立, 考查学生的数学运算素养。
第9题, 以多选题的形式考查圆锥的内容, 各选项互相联系, 分别考查圆锥的不同性质, 深入考查学生的直观想象素养。
三、注重考查关键能力, 体现综合性和创新性新课标Ⅱ卷的试题具有较强的综合性, 如第22题, 将导数与三角函数巧妙地结合起来, 通过对导函数的分析, 考查函数的单调性、极值等相关问题, 通过导数、函数不等式等知识, 深入考查分类讨论的思想、化归与转化的思想。
核心素养数学试题及答案
核心素养数学试题及答案一、选择题1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B二、填空题1. 一个数的平方根是4,那么这个数是________。
答案:162. 一个直角三角形的两个直角边分别是3和4,那么斜边的长度是________。
答案:5三、简答题1. 什么是勾股定理?请用数学公式表示。
答案:勾股定理是指在一个直角三角形中,斜边的平方等于两直角边的平方和,数学公式表示为:c² = a² + b²,其中c是斜边,a 和b是两个直角边。
2. 解释什么是等差数列,并给出一个例子。
答案:等差数列是一个序列,其中每一项与其前一项的差是一个常数。
例如,数列2, 4, 6, 8, 10是一个等差数列,因为每一项与前一项的差都是2。
四、计算题1. 计算下列表达式的值:(3x + 2)² - 4(x - 1)²答案:首先展开平方项:(3x + 2)² = 9x² + 12x + 44(x - 1)² = 4(x² - 2x + 1)然后计算差:9x² + 12x + 4 - 4(x² - 2x + 1) = 9x² + 12x + 4 - 4x² + 8x - 4最后合并同类项:5x² + 20x2. 解一元二次方程:x² - 5x + 6 = 0答案:首先分解因式:(x - 2)(x - 3) = 0所以,x = 2 或 x = 3五、解答题1. 一个长方形的长是10厘米,宽是5厘米。
求这个长方形的周长和面积。
答案:长方形的周长是长和宽的两倍之和,即:周长= 2 × (长 + 宽) = 2 × (10 + 5) = 30厘米长方形的面积是长乘以宽,即:面积 = 长× 宽= 10 × 5 = 50平方厘米2. 一个数列的前三项是2, 5, 8,且每一项都比前一项多3。
强化数学运算,聚焦统计策略,提升核心素养——以2023年高考数学全国乙卷第17题的解法溯源及拓展探究
当c ɪ(100,105]时,f (c )=p (c )+q (c )=5ˑ0.002+(c -100)ˑ0.012+(105-c )ˑ0.002=0.01c -0.98>0.02㊂综上可得,函数f(c )=-0.008c +0.82,95ɤc ɤ100,0.01c -0.98,100<c ɤ105㊂所以f (c )在区间[95,105]内的最小值为0.02㊂点评:本题新定义了两个统计量:医学检测的漏诊率p (c )和误诊率q (c )㊂第一问由第一个频率分布直方图可先求出c ,再根据第二个频率分布直方图求出c ȡ97.5的矩形面积即可解出;第二问根据题意确定分段点100,即可得出f (c )的解析式,再根据分段函数的最值求法即可解出㊂本题不仅考查在新情境中运用统计知识解决问题,还与函数知识产生交汇,是一道值得好好研究的能力题㊂(责任编辑 王福华)强化数学运算,聚焦统计策略,提升核心素养以2023年高考数学全国乙卷第17题的解法溯源及拓展探究为例ʏ广东省广州市广州大同中学 袁 安2023年高考数学全国乙卷第17题貌似平淡无奇,实则韵味十足,蕴藏了众多的计算方法和数学思想㊂符合基础性㊁综合性㊁应用性㊁创新性的高考试题原则,是检测数学运算㊁数据分析等核心素养,选拔人才的基础好题㊂本文通过对新高考乙卷统计试题的分析㊁解答㊁溯源和再研究,为同学们解答高考试题提供思路和方法㊂一㊁真题呈现题目 (2023年全国乙卷17)某厂为比较甲㊁乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选择其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率㊂甲㊁乙两种工艺处理后的橡胶产品的伸缩率分别记为x i ,y i (i =1,2, ,10)㊂试验结果如表1:表1试验序号i 12345678910伸缩率x i 545533551522575544541568596548伸缩率y i 536527543530560533522550576536 记z i =x i -y i (i =1,2, ,10),记z 1,z 2,,z 10的样本平均数为 z ,样本方差为s 2㊂(1)求 z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果 z ȡ2s 210,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)㊂赏析:试题是通过公平的工业背景收集大量的数据,需要认真读题和审题,理解符号x i ,y i (i =1,2, ,10)及定义新符号z i =x i -y i (i =1,2, ,10)的意义,再根据统计分析,发现规律,解答问题㊂第(1)问比较简单,通过分析可知需要求10个数的均值与方差,但在高考的压力下,选择什么方法和策略是非常关键的㊂第(2)问是新定义题型,要求考生在理解给出数学符号及意义的基础上,对知识进行及时应用,并做出正确㊁合理的判断㊂这两个问题层层递进,步步提升,每一步都要求考生有较强的数据分析与处理能力㊂二㊁多角度解法荟萃(1)分析:求收集到的两组数据x i ,y i (i =1,2, ,10)对应的差值z i =x i -y i (i =1,2, ,10)的平均数与方差㊂可以根据试题要求,在原表格基础上快速求出对应的值,再通过相应的计算公式求解㊂解法一:妙用配凑,化零为整㊂由题意可得表2:表2试验序号i 12345678910伸缩率x i 545533551522575544541568596548伸缩率y i 536527543530560533522550576536z i968-8151119182012所以 z=110[9+6+8+(-8)+15+11+19+18+20+12]=110{(9+6+15)+[8+ (-8)]+(11+19)+(18+12)+20)}=11㊂s2=110[(9-11)2+(6-11)2+(8-11)2 +(-8-11)2+(15-11)2+(11-11)2+(19 -11)2+(18-11)2+(20-11)2+(12-11)2]=110(4+25+9+192+16+0+64+49 +81+1)=110[(4+25+1)+(49+81)+(64 +16)+(192+9)]=110{30+130+80+[(20 -1)2+9]}=110[240+(400-40+1+9)]= 110(240+370)=61㊂评注:求z i时,用表格形式对照依次作差计算,对照工整,易算易查,不易出错㊂计算均值与方差时,利用数据较小,可以巧妙地把两项或多项进行配凑,优化计算过程,从而保证计算的速度与准度,是同学们应该掌握的一种巧妙计算方法㊂解法二:巧估中值,减小数值㊂根据解法一知,z i=x i-y i的值分别为9,6,8,-8,15,11,19,18,20,12,估计平均值在10左右,所以把每个数分解成10和一个较小的数进行试算㊂z=110[9+6+8+(-8)+15+11+19+ 18+20+12]=10+110(-1+-4+-2-18 +5+1+9+8+10+2)=11㊂评注:此方法计算均值与求和时,先快速估计平均值所在的范围,选定一个估计值,再通过这个值进行配凑,从而快速求解㊂本方法在应用过程中,如果数据极差太大,一般可以通过正负组合和配凑组合多种方法综合应用,起到减小计算量的作用,这也是同学们应该掌握的一种巧妙方法㊂(2)分析:此问是一个新定义下的应用问题㊂要求考生先通过审题,用公式计算数据,再通过等价转化,比较两数据的大小,然后依据新定义给出判断,最终解决实际问题㊂解:由(1)知 z=11,2s210=26.1= 24.4㊂又( z)2=121,2s2102=24.4,故 zȡ2s210,所以甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高㊂评注:此问重在考查考生对所给新定义的理解㊂通过分析,把(1)中求得的数据代入题目所给的公式进行比较,按所给新定义进行判断,再正确地回答所做出的判断,这需要考生养成一丝不苟㊁严谨求实的科学精神㊂三、试题溯源题源(人教版必修第三册第81页习题2.2A组第1题)有一种鱼的身体吸收汞,汞的含量超过体重的1.00p p m(即百万分之一)时就会对人体产生危害,在30条鱼的样本中发现的汞含量是:0.07,0.24,0.95,0.98,1.02,0.98,1.37,1.40,0.39,1.02,1.44,1.58,0.54,1.08,0.61,0.72,1.20, 1.14,1.62,1.68,1.85,1.20,0.81,0.82,0.84,1.29,1.26,2.10,0.91,1.31㊂(1)(2)(3)略㊂(4)求出上述样本数据的平均数和标准差㊂(5)有多少条鱼的汞含量在平均数与2倍标准差的和(差)的范围内?解析:(4)由期望与方差公式可得 x= 32.4230ʈ1.08,s2ʈ0.2113,sʈ0.46,所以平均数为1.08,标准差为0.46㊂(5)由平均数与2倍标准差的和(差)的范围可得 x-2sɤxɤ x+2s⇒1.08-2ˑ0.46ɤxɤ1.08+2ˑ0.46⇒0.16ɤxɤ2.00,所以不符合条件的只有0.07和2.10两条,其余符合条件的共有28条㊂评注:对比2023年高考数学全国乙卷第17题知,高考试题来源于课本,却高于课本㊂课本是课程标准的具体体现,更是高中数学学习和高考备考的指导用书㊂统计以真实事件为背景知识,通过数据的收集,再通过对数据的分析来解决问题㊂四、复习备考建议1.立足于概念精准理解,发挥教材引领功能为了更深刻地理解数学概念,加快求解的速度,同学们平时要充分发挥教材的引领功能,对所学知识进行再探究㊂例如,在利用频率直方图求期望时,可以得到如下推论㊂图1推论:在图1所示的频率分布直方图中有n 组数据,最小值a ,组距为d ,第i 组数据对应的频率/组距为b i ,x i 为该组数据的中点值,对应区组的面积,即对应概率为p i ,则样本数据的平均数 x=ðni =1xi㊃p i =ðni =1a +(i -1)d +a +i d2㊃(d ㊃b i )=a +d 2+d 2b 2+2d 2b 3+ +(n -1)d 2b n =a +d2+d ㊃p 2+2d ㊃p 3+ +(n -1)d ㊃p n=a +d2+d ㊃ðni =2(i -1)p i㊂例1 从某加工厂生产的产品中抽取200件作为样本,将它们进行某项质量指标图2值测量,并把测量结果x 用频率分布直方图进行统计,如图2㊂若同一组中的数据用该组区间的中点值作代表,则该样本的平均数为㊂解析:由上述推论知,抽取的产品的质量指标值的样本平均数为 x =170+10ˑ0.09+20ˑ0.22+30ˑ0.33+40ˑ0.24+50ˑ0.08+60ˑ0.02=170+0.9+4.4+9.9+9.6+4+1.2=170+(0.9+9.9+1.2)+(4.4+9.6+4)=200㊂评注:当试题数据较小时,直接使用公式计算可以快速解决问题,但数据较大时,可以用上述推论的公式,这样可以适当减少计算量,加快解题速度和准确度㊂2.立足于知识交汇综合,发展综合应用能力例2 某市工会组织举行 红心向党职工歌咏比赛,分初赛㊁复赛和决赛三个环图3节,初赛全市职工踊跃参与,通过各单位的初选,最终有2000名选手进入复赛,经统计,其年龄的频率分布直方图如图3所示㊂(1)求直方图中x 的值,并估计复赛选手年龄的平均值(同一组中的数据用该组区间的中点值作代表,结果保留一位小数)㊂(2)决赛由8名专业评审㊁10名媒体评审和12名大众评审分别打分,打分均采用10分制㊂已知某选手专业得分的平均数和方差分别为 x 1=8.4,s 21=0.015,媒体得分的平均数和方差分别为 x 2=8.8,s 22=0.054,大众得分的平均数和方差分别为 x 3=9.4,s 23=0.064,将这30名评审的平均分作为最终得分,请估计该选手的最终得分和方差(结果保留三位有效数)㊂附:方差s 2=1n ðni =1(x i - x )2㊂解析:(1)由题意,(0.010+0.015+0.020+2x +0.030+0.035+0.040)ˑ5=1,解得x =0.025㊂ x =22.5+5ˑ0.125+10ˑ0.175+15ˑ0.2+20ˑ0.15+25ˑ0.125+30ˑ0.1+35ˑ0.075=39.625ʈ39.6㊂(2)设该名选手最终的平均分为 y ,最终方差为s2㊂则 y =18+10+12(8.4ˑ8+8.8ˑ10+9.4ˑ12)ʈ8.933(分)㊂s 2=130{8[s 21+( x 1- y )2]+10[s 22+( x 2- y)2]+12[s23+( x3- y)2]}=130{8[0.015 +(8.4-8.933)2]+10[0.054+(8.8-8.933)2]+12[0.064+(9.4-8.933)2]}ʈ0.216㊂评注:此题把频率分布直方图㊁分层数据的期望与方差进行了融合,多个知识交汇,要求同学们具有较强的问题分析能力㊁数学运算能力和问题解决能力㊂3.立足于数学思想方法,提升数据分析素养有时解题方法和策略比计算更为重要,我们要强化数学思想方法,构建数学模型,提升数据分析素养,从而全面提升解题能力㊂例3 石头㊁剪刀㊁布 是一种广泛流传于我国民间的古老游戏,其规则:用三种不同的手势分别表示石头㊁剪刀㊁布,两个玩家同时出示各自手势1次记为1次游戏, 石头 胜 剪刀 , 剪刀 胜 布 , 布 胜 石头 ,双方出示的手势相同时,不分胜负㊂假设玩家甲㊁乙双方在游戏时出示三种手势是等可能的㊂(1)求在1次游戏中玩家甲胜玩家乙的概率㊂(2)规定每次胜出获得100分的积分,若没有获胜得50个积分,且每次游戏的结果互不影响㊂若玩家甲㊁乙共进行了3次游戏,并把3次的积分相加作为最后的总积分,求玩家甲玩3次游戏后的总积分的期望和方差㊂解析:(1)设玩家甲㊁乙在1次游戏中出示手势为事件Q,共有样本点3ˑ3=9(个),其中玩家甲胜玩家乙为A事件,有(石头,剪刀),(剪刀,布),(布,石头),共3个样本点,所以在1次游戏中玩家甲胜玩家乙的概率P(A)=39=13㊂(2)由(1)可知,每一次甲获胜的概率都是P(A)=13,且每一局相互没有影响,是独立重复实验㊂设玩家甲3次游戏中获胜的次数为X,获得的总积分为η,且η=50X+ 150㊂因为X的所有可能取值为0,1,2,3,所以η的所有可能取值为150,200,250,300,所以X~B3,13㊂P(x=0)=C03ˑ233=827,P(x=1)= C13ˑ13ˑ232=1227,P(x=2)=C23ˑ132ˑ23=627,P(x=3)=C33ˑ133=127㊂所以X的分布列为表3㊂表3X0123P8274929127所以X的期望E(X)=n p=3ˑ13=1,方差D(X)=n p(1-p)=3ˑ13ˑ23=23㊂又因为η=50X+150,所以E(η)= E(50X+150)=50E(X)+150=200,D(η) =D(50X+150)=(50)2ˑD(X)=50003㊂所以玩家甲玩3次游戏后的总积分的期望为200,方差为50003㊂评注:本题如果不将总积分η的期望㊁方差与甲胜的次数x之间建立线性关系,则解题的思路及计算过程会十分繁杂的,很多同学是难以快速计算出正确答案的㊂建立线性关系后,减少了计算过程,简化了计算方法,从而快速准确地求解问题㊂通过对高考试题的分析㊁解答和拓展研究,再次说明了我们要注重课本的理解与应用㊂要在课本例题的基础上进行再研究,把知识连成线,把方法织成网,把思维构成体系,培养同学们的数学应用意识和创新意识,从而提升分析问题㊁解决问题的能力㊂注:本文系2022年广东省教育科学规划课题 智慧课堂下的高中数学 精准教学 模式的实践研究 (项目编号:2022Y Q J K036)的研究成果㊂(责任编辑王福华)。
高考数学核心素养提升练习 基本不等式
核心素养提升练三十五基本不等式(25分钟50分)一、选择题(每小题5分,共35分)1.若a,b∈R,且ab>0,则下列不等式中,恒成立的是( )A.a+b≥2B.+>C.+≥2D.a2+b2>2ab【解析】选C.因为ab>0,所以>0,>0,所以+≥2=2,当且仅当a=b时取等号.2.若2x+2y=1,则x+y的取值范围是( )A.[0,2]B.[-2,0]C.[-2,+∞)D.(-∞,-2]【解析】选D.因为1=2x+2y≥2=2,所以≤,所以2x+y≤,得x+y≤-2.3.(2019·深圳模拟)已知f(x)=(x∈N*),则f(x)在定义域上的最小值为( ) A. B. C. D.2【解析】选B.f(x)==x+,因为x∈N*,所以x+≥2 =2,当且仅当x=,即x=时取等号.但x∈N*,故x=5或x=6时,f(x)取最小值,当x=5时,f(x)=,当x=6时,f(x)=,故f(x)在定义域上的最小值为.4.已知f(x)=x+-2(x<0),则f(x)有( )A.最大值为0B.最小值为0C.最大值为-4D.最小值为-4【解析】选C.因为x<0,所以f(x)=--2≤-2-2=-4,当且仅当-x=,即x=-1时,取等号.5.若a≥0,b≥0,且a(a+2b)=4,则a+b的最小值为( )A. B.4 C.2 D.2【解析】选C.因为a≥0,b≥0,所以a+2b≥0,又因为a(a+2b)=4,所以4=a(a+2b)≤,当且仅当a=a+2b=2时等号成立.所以(a+b)2≥4,所以a+b≥2.6.已知x>0,y>0,且4xy-x-2y=4,则xy的最小值为( )A. B.2 C. D.2【解析】选D.因为x>0,y>0,x+2y≥2,所以4xy-(x+2y)≤4xy-2,所以4≤4xy-2,即(-2)(+1)≥0,所以≥2,所以xy≥2.7.(2018·衡水模拟)若a>0,b>0,lg a+lg b=lg(a+b),则a+b的最小值为( ) A.8 B.6 C.4 D.2【解析】选C.由a>0,b>0,lg a+lg b=lg(a+b),得lg(ab)=lg(a+b),即ab=a+b,则有+=1,所以a+b=(a+b)=2++≥2+2=4,当且仅当a=b=2时等号成立,所以a+b的最小值为4. 二、填空题(每小题5分,共15分)8.设P(x,y)是函数y=(x>0)图象上的点,则x+y的最小值为________.【解析】因为x>0,所以y>0,且xy=2.由基本不等式得x+y≥2=2,当且仅当x=y时等号成立. 答案:29.已知x,y为正实数,则+的最小值为________.【解析】因为x,y为正实数,则+=++1=++1,令t=,则t>0,所以+=+t+1=+t++≥2+=,当且仅当t=时取等号.所以+的最小值为.答案:10.某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑到防洪堤的坚固性及水泥用料等因素,要求设计其横断面的面积为9平方米,且高度不低于米,记防洪堤横断面的腰长为x米,外周长(梯形的上底与两腰长的和)为y米,若要使堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x=________.【解析】设横断面的高为h,由题意得AD=BC+2·=BC+x,h=x,所以9=(AD+BC)h=(2BC+x)·x,故BC=-,由得2≤x<6,所以y=BC+2x=+(2≤x<6),从而y=+≥2 =6,当且仅当=(2≤x<6),即x=2时等号成立.答案:2(20分钟40分)1.(5分)当0<m<时,若+≥k2-2k恒成立,则实数k的取值范围为( )A.[-2,0)∪(0,4]B.[-4,0)∪(0,2]C.[-4,2]D.[-2,4]【解析】选D.因为0<m<,所以×2m×(1-2m)≤×=,当且仅当2m=1-2m,即m=时取等号,所以+=≥8,又+≥k2-2k恒成立,所以k2-2k-8≤0,所以-2≤k≤4.所以实数k的取值范围是[-2,4].2.(5分)(2018·石家庄模拟)若a,b是正数,直线2ax+by-2=0被圆x2+y2=4截得的弦长为2,则t=a取得最大值时a的值为( )A. B. C. D.【解析】选D.因为圆心到直线的距离d=,则直线被圆截得的弦长L=2=2=2,所以4a2+b2=4,则t=a=·(2a)·≤××[(2a)2+()2]=·[8a2+1+2(4-4a2)]=,当且仅当时等号成立,此时a=.3.(5分)(2019·邯郸模拟)设x>0,y>0,且=,则当x+取最小值时,x2+=________. 【解析】因为x>0,y>0,所以当x+取最小值时,取得最小值,因为=x2++,又=,所以x2+=+,所以=+≥2 =16,所以x+≥4,当且仅当=,即x=2y时取等号,所以当x+取最小值时,x=2y,x2++=16,所以x2++=16,所以x2+=16-4=12.答案:124.(12分)已知x,y∈(0,+∞),x2+y2=x+y.(1)求+的最小值.(2)是否存在x,y满足(x+1)(y+1)=5?并说明理由.【解析】(1)因为+==≥=2,当且仅当x=y=1时,等号成立,所以+的最小值为2.(2)不存在.理由如下:因为x2+y2≥2xy,所以(x+y)2≤2(x2+y2)=2(x+y).又x,y∈(0,+∞),所以x+y≤2.从而有(x+1)(y+1)≤≤4,因此不存在x,y满足(x+1)(y+1)=5.5.(13分)某厂家拟在2018年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用m(m≥0)万元满足x=3-(k为常数).如果不搞促销活动,那么该产品的年销量只能是1万件.已知2018年生产该产品的固定投入为8万元,每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2018年该产品的利润y万元表示为年促销费用m万元的函数.(2)该厂家2018年的促销费用投入多少万元时,厂家利润最大?【解析】(1)由题意知,当m=0时,x=1(万件),所以1=3-k⇒k=2,所以x=3-,每件产品的销售价格为1.5×(元),所以2018年的利润y=1.5x×-8-16x-m=-+29(m≥0).(2)因为m≥0时,+(m+1)≥2=8,所以y≤-8+29=21,当且仅当=m+1,即m=3(万元)时,y max=21(万元).故该厂家2018年的促销费用投入3万元时,厂家的利润最大,为21万元.关闭Word文档返回原板块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从各板块分析可得,各模块占比变化不大,试卷结构与往年一致。在题目设置上考查对于基础知识、基本技能的考查,符合考试说明的各项要 求,又在一定程度上考查学生对知识点的综合运用,注重考查学生对实际生活的具体应用。 二、试卷各部分分析——选填偏基础,大题显常规 ①选填题: 今年,选择填空部分的考点设置基本与新课标2014、2015及2016年一致,顺序略有调整,注重基础,渗透中华文化,比如说第4题,但部分题目 考查学生的综合能力,比如第8题考查函数图像,需要结合奇偶性并代入特殊值进行判断,第9题考查函数图象的对称性,考生比较少练习,第 12题需要进行分类讨论,且计算难度较大,第16题是三棱柱锥的外接球,对文科生来说,空间想象能力是一个挑战。
由模块占比可知,整套试卷在六大板块的考查比重上趋于稳定,但是概率模块想拿满分难度较大,跟去年一样,依然非常重视对学生阅读理 解能力的考查。
二、试卷各部分分析——选填更灵活,大题较常规 ①选填题: 选择填空部分的考点设置基本与新课标2016的一致,顺序略有调整,难度有所降低,第3题复数和命题结合,考点新颖。第 12题考点为数列的前n项和,有一定的技巧性,第16题考查立体几何体积的最值问题,这两题综合文字过多,对考生的理解 能力要求较大。
数学核心素养与全国卷试题
普通高中数学学科素养 学科素养下的真题评价 素养下的真题典例剖析
一、数学核心素养
1 十八大和十八届三中全会提出关于立德树人的要求落到实处,2014年3月教育部研制印发《关于全面深化课程改革落实立德树人根本任务 的意见》,意见提出“教育部将组织研究提出各学段学生发展核心素养体系,明确学生应具备的适应终身发展和社会发展需要的必备品格 和关键能力”。
4
新课程方案和课程标准在落实党的十八大和十九大精神,加强中华优秀传统文化和革命传统教育,研制学业质量标准的同时首次提
出凝练各学科核心素养。明确了学生学习该学科课程后应形成的正确价值观、必备品格和关键能力,围绕学科核心素养的落实,精
选、重组教学活动,提出考试评价的建议。
二、素养下真题的评析 第一篇 理科 纵观2017高考新课标1卷,试卷整体结构与去年基本一致,但是在相应的题目设置上略有调整。与去年对比,整体难度有所降低,在常规考点部 分的题型中规中矩,但是部分题目对学生的理解能力要求较高。 一、试卷各板块占比——覆盖更加全面
③选做题: 选做题部分,极坐标与参数方程的第2问,用到了参数方程的方法,利用点到直线的距离公式求解即可;而不等式部分难度也较低,考 查了绝对值不等式,且不含参数,考生容易拿分。 整体来说,考点依然比较常规,依然需要考生注重基础,回归教材,理解知识本身的内涵。虽然试题的整体难度有所降低,难点也还是 对学生阅读理解能力的考查,但想拿高分并不容易。 高考是选拔性考试,整体常规化容易导致区分度降低,新一届高三学生更要加强全国卷模板式训练,要达至全面覆盖且滚瓜烂熟的状态。
三、真题典例剖析
例
1.(2017
理
20)已知椭圆 C
:
x2 a2
y2 b2
1 a b 0 ,四点 P1 1,1 ,
P2 0,1 ,
P3
1,
3 2
, P4
1,
3 2
中恰有三点在椭圆 C
上.
(1)求 C 的方程;
(2)设直线 l 不经过 P2 点且与 C 相交于 A 、 B 两点,若直线 P2 A 与直线
②解答题: 解答题第一题,文数已经连续4年考查数列,考查等比数列最基本的通项及求和,需要注意不要犯计算错误。 今年立体几何为常规的平行与垂直的证明,第二问考查了侧面积,与平面几何呼应,对于考生来说计算量不大。第19题则考查了稍微 冷门的相关系数。
பைடு நூலகம்
压轴的解析几何及函导数考法都是常规套路,圆锥曲线以开口向上的抛物线为载体,第一问设出AB的直线方程与抛物线联立,利用韦达定理中的两 根之和即可求出AB斜率;第二问对抛物线求导、利用切线与直线AB平行求出M点的坐标,然后把垂直条件翻译成韦达形式,借助韦达定理即可求出 直线AB方程。此题属于典型的“韦达定理型圆锥曲线”,在平时会得到大量的练习,这启发大家高考中的圆锥曲线考法一定属于常规类型。 导数压轴题以含参函数为背景,第一问考察函数的单调性,求导后对导函数进行因式分解,分三种情况分类讨论即可;第二问在第一问的基础之上 分三种情况研究函数的最小值,然后分别求出a的范围即可,有的考生会考虑参变分离,但此题的参数a单调分离不出,此方法失效!所以在以后的 学习中,要加强各种方法的训练!
②解答题: 解答题部分,基本符合新课标卷的一贯风格。比如解三角形考查了正余弦定理、面积公式以及两角和差公式;函导数考查了求 导后含参问题的分类讨论。但第18题立体几何的难度难度“有失”以往标准,第1问证明过程无需做辅助线;第2问求余弦值由 于垂直关系和数量关系明显,所以利用几何法和向量法都十分简单。第19题概率大题以应用题型考查了相对来说冷门的正态分 布,篇幅较长,题目中附加公式和参数过多,对学生的理解能力也有一定的要求。
总体来说, 高考试题在降低起点的同时,强调能力立意;在立足基础的同时,着力内容创新;在突出导向的同时,确保甄别功能;在继承传统的 同时,彰显课程理念。在备考方面:高考是选拔性考试,整体常规化容易导致区分度下降,新一届高三学生不应放松心态,应更要加强全国卷模 板式训练,为可能的难度调整,做好充足准备,而且要达至全面覆盖且滚瓜烂熟的状态。
2 2016年9月13日,中国学生发展核心素养研究成果发布。中国学生发展核心素养以培养“全面发展的人”为核心,分为文化基础、自主发展、 社会参与3个方面,综合表现为人文底蕴、科学精神、学会学习、健康生活、责任担当、实践创新等六大素养,具体细化为国家认同等18个 基本要点。
3
数学学科核心素养:数学抽象、逻辑推理、数学建模、数学运算、 直观想象和数据分析