2018最新小学奥数工程问题汇总

合集下载

小学奥数试题---工程问题

小学奥数试题---工程问题

工程问题例1:一项工程,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作60天完成。

甲、乙、丙单独做,各需要多少天完成?⎪⎭⎫ ⎝⎛++÷6014513612=30(天),甲:⎪⎭⎫ ⎝⎛-÷4513011=90(天),乙:⎪⎭⎫ ⎝⎛-÷6013011=60(天),丙:⎪⎭⎫ ⎝⎛-÷3613011=180(天) 例2:一项工作,甲组3人8天能完成,乙组4人7天也能完成。

现在由甲组2人和乙组7人合作,多少天可以完成这项工作?1÷⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯77412831=3(天) 例3:甲组6人15天能完成的工作,乙组5人12天也能完成。

乙组7人8天能完成的工作,丙组3人14天也能完成。

一项工作,需要甲组9人4天完成。

如果由丙组派人10天完成,丙组应该派多少人? 甲组的工效:9011561=⨯,乙组的工效:6011251=⨯, 丙组的工效:601×7×8÷3÷14=451, 901×9×4÷(451×10)=1.8≈2(人) 例4:单独完成一项工作,甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成。

如果甲、乙两人合做2天后,剩下的由乙单独做,那刚好在规定时间内完成。

甲、乙两人合做需要多少天完成?分析:解法(一):说明甲做2天的相当于乙做3天的,甲、乙合做2天后,剩下的乙单独做,在规定时间内完成。

乙比甲多用5天,设甲的工效为x1,乙的工效为51+x 根据甲做2天等于乙做3天列方程得: x 1×2=51+x ×3,解之得:x=10,乙为15天,1÷(151101+)=6(天) 分析:解法(二):甲做2天的工作量,乙要做3天,甲提前2天,乙超过3天,相差5天,把乙做的天数看作“1”,甲用的天数相当于乙的32,乙用的天数:(2+3)÷(1-32)=15(天),甲用的天数:15×32=10(天), 1÷(151101+)=6(天) 例5:单独完成某项工作,甲需要9小时,乙需要12小时。

小学奥数--工程问题(含答案解析)

小学奥数--工程问题(含答案解析)

小学奥数--工程问题一.选择题(共8小题)1.三部同样的抽水机同时抽水,抽干一池水需用15小时,五部这样的抽水机抽干这一池水需用()小时.A.3 B.6 C.9 D.122.张师傅加工一批零件,原计划每天加工80个,5天加工完.实际张师傅只用4天就加工完了,实际每天比原计划多加工零件()个.A.20 B.16 C.8 D.43.完成一件工作,甲要小时,乙要小时,甲与乙的工作效率比是()A.2:6 B.5:3 C.3:5 D.6:24.水池有甲、乙两根出水管,单独打开甲进水管8小时可将满水池排空,单独打开乙出水管6小时可将满水池排空.如果按甲、乙、甲、…的顺序轮流打开1小时,将满水池排空需()小时.A.7 B.6C.4 D.35.一件工作,甲独做10小时完成,乙独做12小时完成,丙独做15小时完成.三人合做几小时可以完成这件工作的?()A.2 B.3 C.4 D.56.在A地植树1000棵,B地植树1250棵,甲、乙、丙每天分别能植树28、32、30棵,甲在A地,乙在B地,丙在A与B两,同时开始,同时结束,丙在A地植树()棵.A.150 B.300 C.450 D.6007.甲乙两人合作打一份材料.开始甲每分钟打100 个字,乙每分钟打200 个字.合作到完成总量的一半时,甲速度变为原来的3 倍,而乙休息了5 分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共()个字.A.3000 B.6000 C.12000 D.180008.甲、乙两工程队共同修建一项工程,已知两队合作正好6天完成,如果甲队单独完成这项工程需要18天,那么乙队单独完成这项工程需要()天.A.9 B.10 C.12 D.15二.解答题(共5小题)9.一件工程,甲单独做16天完成,乙单独做12天完成,若甲先做若干天后,由乙接着单独做余下的工程,完成全部的工程共用了14天,问甲先做了多少天?10.有一桶水,一只小鸭可以饮用25天.如果和一只小鸡同饮,那么可以饮用20天.如果一只小鸡单独饮用,可以饮用几天?11.学校插花组同学要赶制花篮70个,已经做了5天,共做花篮40个.余下的要赶在2天做完,这样每天比原来平均多做个花篮.12.一个化肥厂原计划12天生产一批化肥,由于每天多生产2.5吨,结果9天就完成了这批化肥的生产任务.实际每天生产化肥多少吨?13.水池装有一个水管和若干每小时注水量相同的注水管,注水管注水时,排水管同时排水.若用12个注水管注水,8小时可注满水池;若用9个注水管注水,24小时可注满水池.现在用8个注水管注水,那么需要多少小时注满水池?小学奥数--工程问题参考答案与试题解析一.选择题(共8小题)1.三部同样的抽水机同时抽水,抽干一池水需用15小时,五部这样的抽水机抽干这一池水需用()小时.A.3 B.6 C.9 D.12【分析】把抽干这一池水的工作量看作单位“1”,先求出每部抽水机的工作效率÷3=,再求出五部这样的抽水机抽干每小时的工作效率=;然后再除工作总量1即可.【解答】解:÷3==1=9(小时)答:五部这样的抽水机抽干这一池水需用9小时.故选:C.【点评】解答本题的关键是求出每部抽水机的工作效率,解答依据是工作时间,工作效率以及工作总量之间数量关系.2.张师傅加工一批零件,原计划每天加工80个,5天加工完.实际张师傅只用4天就加工完了,实际每天比原计划多加工零件()个.A.20 B.16 C.8 D.4【分析】原计划每天加工80个,需要5天完成,则需要加工零件的总数为80×5=400个,实际工作4天就加工完了,则平均每天加工80×5÷4个,再减去80就是实际每天多加工的零件数.【解答】解:80×5÷4﹣80=100﹣80=20(个)答:实际每天比原计划多加工零件20个.故选:A.【点评】首先根据计划工作时间及每天加工的个数,求出零件总数是完成本题的关键.3.完成一件工作,甲要小时,乙要小时,甲与乙的工作效率比是()A.2:6 B.5:3 C.3:5 D.6:2【分析】把工作总量看作“1”,根据工作总量÷工作时间=工作效率,分别求出甲、乙的工作效率,再写出对应的比,根据比的基本性质化成最简整数比.【解答】解:(1÷):(1÷)=5:3答:甲与乙的工作效率比是5:3.故选:B.【点评】掌握工作总量÷工作时间=工作效率是解决此题的关键.4.水池有甲、乙两根出水管,单独打开甲进水管8小时可将满水池排空,单独打开乙出水管6小时可将满水池排空.如果按甲、乙、甲、…的顺序轮流打开1小时,将满水池排空需()小时.A.7 B.6C.4 D.3【分析】把这项工作的量看作单位“1”,先依据工作时间=工作总量÷工作效率,求出两根排水管合做需要的时间(求得的时间是带分数),由于两根排水管是轮流工作1小时,那么两根排水管轮流工作的时间就是所得的带分数整数部分,然后依据工作总量=工作时间×工作效率,求出两根排水管轮流工作完成的工作量,再求出剩余的工作量,依据工作时间=工作总量÷工作效率,求出甲最后完成需要的时间,最后加两根排水管轮流工作的时间即可解答.【解答】解:甲的工作效率为,乙的工作效率为,所以甲乙各排水3小时后一共完成,还剩下1﹣=,甲排水管只需再需排水1小时可全部完成,所以一共需要2×3+1=7小时.故选:A.【点评】解答本题的关键是求出两根排水管轮流工作的时间,解答的依据是等量关系式:工作时间=工作总量÷工作效率.5.一件工作,甲独做10小时完成,乙独做12小时完成,丙独做15小时完成.三人合做几小时可以完成这件工作的?()A.2 B.3 C.4 D.5【分析】根据题意,甲每小时能完成这件工作的,乙每小时能完成这件工作的,丙每小时能完成这件工作的,要完成这件工作的,用除以他们每小时的效率之和即可.【解答】解:÷()=÷=4=3答:三人合做3小时可以完成这件工作的.故选:B.【点评】此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,解答时把工作总量看做单位“1”,要完成工作的,再利用它们的数量关系解答即可.6.在A地植树1000棵,B地植树1250棵,甲、乙、丙每天分别能植树28、32、30棵,甲在A地,乙在B地,丙在A与B两,同时开始,同时结束,丙在A地植树()棵.A.150 B.300 C.450 D.600【分析】总棵数1000+1250=2250棵不变,由甲、乙、丙去植树,每天能植树28+32+30=90棵,用2250除以90求出共同工作的时间,再乘甲每天的工作效率,求出甲共植树的棵数,再用1000减去它就是丙在A地植树的棵数.【解答】解:(1000+1250)÷(28+32+30)=2250÷90=25(天)1000﹣28×25=1000﹣700=300(棵)答:丙在A地植树300棵.故选:B.【点评】此题解答思路:先求出A、B两地植树需要的时间,再求出甲在A地植树的棵数,进而求出丙在A地植树的棵数,进一步解决问题.7.甲乙两人合作打一份材料.开始甲每分钟打100 个字,乙每分钟打200 个字.合作到完成总量的一半时,甲速度变为原来的3 倍,而乙休息了5 分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共()个字.A.3000 B.6000 C.12000 D.18000【分析】前一半时乙的工作量是甲的2 倍,所以后一半甲应是乙的2倍.后来甲乙的工作效率比3:2,甲后来应为4 份,乙应为2 份,说明乙休息5分钟时甲打了1 份,把后一半工作量分为6 份,这一份的量是100×3×5=1500字,故总工作量是12份即可求解.【解答】解:前一半甲乙的工作效率比是100:200=1:2,完成一半的工作总量,甲乙两人的工作量比是工作效率比即1:2,甲完成工作总量的,乙完成工作总量的,在后一半的工作中需要甲的总量是乙的2倍,后来甲乙的效率比为3:2,说明乙休息是甲完成了一份量所以甲的总量是4份,乙的总量是2份,也就是甲在5分钟完成300×5=1500(个),后来甲4份乙2份,占一半,总共份数为12份,1500×12=18000.故选:D.【点评】找到两人的工作倍数关系是本题的关键,同时设份数法是常用方法,结合比例问题.8.甲、乙两工程队共同修建一项工程,已知两队合作正好6天完成,如果甲队单独完成这项工程需要18天,那么乙队单独完成这项工程需要()天.A.9 B.10 C.12 D.15【分析】把一项工程的工作量看作单位“1”,由两队合作正好6天完成,可以求出两队的工作效率和为,甲的工作效率为,由此求得乙的工作效率,再进一步利用工作总量÷工作效率=工作时间解决问题.【解答】解:1÷(﹣)=1÷=9(天);答:乙队单独完成这项工程需要9天.故选:A.【点评】此题主要利用工作总量、工作时间、工作效率三者之间的关系解决问题.二.解答题(共5小题)9.一件工程,甲单独做16天完成,乙单独做12天完成,若甲先做若干天后,由乙接着单独做余下的工程,完成全部的工程共用了14天,问甲先做了多少天?【分析】把全部工作量看作“1”,则甲的工作效率为,乙的工作效率为;设甲做了x天,则乙就做了14﹣x天,由工作效率×工作时间=工作量,可得方程:x+(14﹣x)=1.【解答】解:设甲做了x天,则乙就做了14﹣x天,可得方程:x+(14﹣x)=1+﹣=1,=,x=8;答:甲先做了8天.【点评】本题是据工作效率×工作时间=工作量这一基本关系式设未知数来解决的.10.有一桶水,一只小鸭可以饮用25天.如果和一只小鸡同饮,那么可以饮用20天.如果一只小鸡单独饮用,可以饮用几天?【分析】把一桶水饮用量看作单位“1”,一只小鸭每天可以饮用它的,小鸡和小鸭的一天的饮用量是这通水的,所以小鸡一天的饮用量是﹣,用单位“1”除以(﹣),就是小鸡饮用的天数.【解答】解:1÷(﹣)=1÷=100(天);答:可以饮用100天.【点评】本题运用运用工效问题的解答方法进行解答,把一桶水的饮用量看作单位“1”,再运用工作总量除以工作效率等于工作时间进行解答即可.11.学校插花组同学要赶制花篮70个,已经做了5天,共做花篮40个.余下的要赶在2天做完,这样每天比原来平均多做7个花篮.【分析】先求出原来每天做多少个;再求出剩下了总数量,然后用剩下的总数量除以后来工作的天数,就是后来每天做的个数;然后用后来每天做的个数减去原来每天做的个数就是平均每天需要多做的个数.【解答】解:40÷5=8(个);(70﹣40)÷2,=30÷2,=15(个);15﹣8=7(个);答:每天比原来平均多做7个花篮.故答案为;7.【点评】本题利用工作效率=工作量÷工作时间求出两部分的工作效率,再用后来的工作效率减去原来的工作效率即可.12.一个化肥厂原计划12天生产一批化肥,由于每天多生产2.5吨,结果9天就完成了这批化肥的生产任务.实际每天生产化肥多少吨?【分析】设计划每天生产化肥x吨,实际每天生产x+2.5吨,根据原计划每天生产化肥的吨数×原计划的天数=实际每天生产化肥的度数×实际生产的天数,列出方程解答即可列式为:12x=9×(x+2.5),解答即可.【解答】解:设计划每天生产化肥x吨,实际每天生产x+2.5吨,12x=9×(x+2.5)12x=9x+22.512x﹣9x=22.53x=22.5x=7.5答:实际每天生产化肥7.5吨.【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.13.水池装有一个水管和若干每小时注水量相同的注水管,注水管注水时,排水管同时排水.若用12个注水管注水,8小时可注满水池;若用9个注水管注水,24小时可注满水池.现在用8个注水管注水,那么需要多少小时注满水池?【分析】把水池的容积看作单位“1”,12个注水管注水,8小时注满,每小时注水,9个注水管注水,24小时注满,每小时注水,12个注水管比9个注水管,每小时多注水,由此求出8个注水管每小时的工作效率,然后根据工作量÷工作效率=工作时间,据此列式解答.【解答】解:12个注水管注水,8小时注满,每小时注水,9个注水管注水,24小时注满,每小时注水,12个注水管比9个注水管,每小时多注水,那么8个注水管每小时注水:=,所以1(小时);答:用8个注水管注水,需要72小时注满水池.【点评】把水池的容积看作单位“1”,关键是求出8个注水管每小时的工作效率,再根据工作量÷工作效率=工作时间进行解答.。

小学奥数工程问题题型大全含答案

小学奥数工程问题题型大全含答案

奥数之工程问题在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是——工作量=工作效率×时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”。

工程问题方法总结:一:基本数量关系:工效×时间=工作总量二:基本特点:设工作总量为“1”,工效=1/时间三:基本方法:算术方法、整体思想、组合法、比例方法、方程方法、假设法四:基本思想:分做合想、合做分想。

五:类型与方法:一:分做合想:1.合想,2.假设法,3.巧抓变化(比例),4.假设法。

二:按劳分配思路:每人每天工效→每人工作量→按比例分配三:休息请假:方法:1.分想:划分工作量。

2.假设法:假设不休息。

3.方程法四:周期工程休息与周期:1.已知条件的顺序:①先工效,再周期,②先周期,再天数。

2..天数:①近似天数,②准确天数。

3.列表确定工作天数。

交替与周期:估算周期,注意顺序!注水与周期:1.顺序,2.池中原来是否有水,3.注满或溢出。

五:工效变化。

六:比例:1.分比与连比,2.归一思想,3.正反比例的运用,4.假设法思想(周期)。

七:牛吃草问题:1.新生草量,2.原有草量,3.解决问题。

一、用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。

例题1。

一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是115,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730-115×3=130,从而求出甲队的工作效率。

2018最新五年级奥数.应用题.工程问题(一)(A级).学生版

2018最新五年级奥数.应用题.工程问题(一)(A级).学生版

工程问题(一)知识框架工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

在教学中,让学生建立正确概念是解决工程应用题的关键。

一.工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。

工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:①具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;②在理解、掌握分数的意义和性质的前提下灵活运用;③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.重难点(1)熟练掌握工程问题的基本数量关系与一般解法;(2)工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;(3)根据题目中的实际情况能够正确进行单位“1”的统一和转换;(4)工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.例题精讲一、工程问题基本题型【例1】一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?【巩固】一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【例2】甲、乙两人共同加工一批零件,8小时可以完成任务.如果甲单独加工,便需要12小时完成.现在甲、乙两人共同生产了225小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务.问乙一共加工零件多少个?【巩固】一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?【例3】一项工程,甲单独完成需要12天,乙单独完成需要9天.若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?欢迎关注:“奥数轻松学”【巩固】一项工程,甲队单独做20天可以完成,甲队做了8天后,由于另有任务,剩下的工作由乙队单独做15天完成.问:乙队单独完成这项工作需多少天?【例4】一项工程,甲、乙合作需要20天完成,乙、丙合作需要15天完成,由乙单独做需要30天完成,那么如果甲、乙、丙合作,完成这项工程需要多少天?【巩固】一项工程,甲、乙合作需要9天完成,乙、丙合作需要12天,由丙单独做需要36天完成,那么如果甲、丙合作,完成这项工程需要多少天?【例5】一项工程,甲单独做40天完成,乙单独做60天完成.现在两人合作,中间甲因病休息了若干天,所以经过了27天才完成.问甲休息了几天?【巩固】一项工程,甲单独做20天完成,乙单独做30天完成.甲、乙合作了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16天.乙请假多少天?【例6】一件工程,甲、乙两人合作8天可以完成,乙、丙两人合作6天可以完成,丙、丁两人合作12天可以完成.那么甲、丁两人合作多少天可以完成?【巩固】修筑一条高速公里。

湖北省荆州市数学小学奥数系列6-3-1工程问题专练2

湖北省荆州市数学小学奥数系列6-3-1工程问题专练2

湖北省荆州市数学小学奥数系列6-3-1工程问题专练2姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、工程问题专练 (共20题;共80分)1. (5分)(2018·武隆) 客车与货车同时从甲、乙两地相对开出,当货车行了全程的时,客车行了全程的少12千米,这时两车已行的路程与剩下路程的比是2:3,甲、乙两地相距多少千米?2. (5分)一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,……,两人如此交替工作,请问:完成任务时,共用了多少小时?3. (5分) (2019六下·武侯开学考) 幼儿园将一批水果分给大中小和小托四个班,先将全部水果的再减去千克给大班;再把余下的加上千克给中班;又把余下的一半给小班;最后把剩下的一半加上千克给小托班,这时幼儿园还剩5千克水果,这批水果有多少千克?4. (1分)(2019·二七) 完成一项工程原计划要10天,实际每天的工作效率提高25%,实际用________天可以完成这项工作。

5. (5分)(2020·开封) 加工一批机器零件,师傅单独加工需要10小时,徒弟单独加工需要15小时。

师徒二人合作,完成任务时,师傅比徒弟多加工了30个。

这批零件共有多少个?6. (1分)(2020·台州) 一项工程,甲队做要用8天完成,乙队做要10天完成,甲队比乙队快________%。

7. (5分)甲乙合做一项工作,由于配合得好,甲的工作效率比单独做时提高,乙的工作效率比单独做时提高。

甲乙合做6小时,完成全部工作的,第二天乙又单独做了6小时,还剩下这项工作的未完成。

如果这项工作始终由甲一人单独来做,需要多少小时完成?8. (5分)小强看一本故事书,每天看20页,5天后还剩下全书的没看,这本故事书有多少页?9. (5分)放满一个水池,如果同时打开1,2,3号阀门,则20分钟可以完成;如果同时打开2,3,4阀门,则21分钟可以完成;如果同时打开1,3,4号阀门,则28分钟可以完成;如果同时打开1,2,4号阀门,则30分钟可以完成.问:如果同时打开1,2,3,4号阀门,那么多少分钟可以完成?10. (5分)一项工程,如果甲先做5天,那么乙接着做20天可以完成;如果甲先做20天,那么乙接着做8天可以完成.如果甲、乙合作,那么多少天可以完成?11. (5分) (2019六上·江北期末) 生产队要种400棵树苗,如果让甲队单独做需要8天,如果让乙队单独做需要10天。

六年级奥数之工程问题

六年级奥数之工程问题

工程问题1.甲、乙两人共同加工一批零件,8小时司以完成任务.如果甲单独加工,便需要12小时完成.现在甲、乙两人共同生产了22小时后,甲被调出做其他工作,由乙继续生产了5420个零件才完成任务.问乙一共加工零件多少个?2.某工程先由甲单独做63天,再由乙单独做28天即可完成.如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么还需做多少天?3.有一条公路,甲队独修需10天,乙队独修需12天,丙队独修需15天.现在让3个队合修,但中间甲队撤出去到另外工地,结果用了6天才把这条公路修完.当甲队撤出后,乙、丙两队又共同合修了多少天才完成?4.一件工程,甲队独做12天可以完成,甲队做3天后乙队做2天恰好完成一半.现在甲、乙两队合做若干天后,由乙队单独完成,做完后发现两段所用时间相等,则共用了多少天?5.抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相当甲、乙每天工作效率和的1.如果3人合抄只需8天就完成了,那么乙一人单独抄需5要多少天才能完成?6.游泳池有甲、乙、丙三个注水管.如果单开甲管需要20小时注满水池;甲、乙两管合开需要8小时注满水池;乙、丙两管合开需要6小时注满水池.那么,单开丙管需要多少小时注满水池?7.一件工程,甲、乙两人合作8天可以完成,乙、丙两人合作6天可以完成,丙、丁两人合作12天可以完成.那么甲、丁两人合作多少天可以完成?8.一项工作,甲、乙两人合做8天完成,乙、丙两人合做9天完成,丙、甲两人合做18天完成.那么丙一个人来做,完成这项工作需要多少天?9.某工程如果由第1、2、3小队合干需要12天才能完成;如果由第1、3、5小队合干需要7天才能完成;如果由第2、4、5小队合干需要8天才能完成;如果由第1、3、4小队合干需要42天才能完成.那么这5个小队一起合干需要多少天才能完成这项工程?10.一个水箱,用甲、乙、丙三个水管往里注水.若只开甲、丙两管,甲管注入18吨水时,水箱已满;若只开乙、丙两管,乙管注入27吨水时,水箱才满.又知,乙管每分钟注水量是甲管每分钟注水量的2倍.则该水箱最多可容纳多少吨水?11.某水池的容积是100立方米,它有甲、乙两个进水管和一个排水管.甲、乙两管单独灌满水池分别需要10小时和15小时.水池中原有一些水,如果甲、乙两管同时进水而排水管放水,需要6小时将水池中的水放完;如果甲管进水而排水管放水,需要2小时将水池中的水放完.问水池中原有水多少立方米?12.一个水池,底部安有一个常开的排水管,上部安有若干个同样粗细的进水管.当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池.现在需要在2小时内将水池注满,那么最少要打开多少个进水管?13.蓄水池有甲、丙两条进水管和乙、丁两条排水管.要灌满一池水,单开甲管需要3小时,单开丙管需要5小时.要排光一池水,单开乙管需要4小时,单开丁管需要6小时.现在池内有1池水.如果按甲、乙、丙、丁的顺序循环开各水6管,每次每管开1小时,问经过多少时间后水开始溢出水池?14.一个水池,地下水从四壁渗入,每小时渗入该水池的水是固定的.当这个水池水满时,打开A管,8小时可将水池B 4 排空;打开 B 管,10 小时可将水池排空;打开C 管,12 小时可将水池排空.如果打开 A , 两管, 小时可将水池排空,那么打开 B ,C 两管,将水池排空需要多少时间 ?。

小学奥数工程问题综合

小学奥数工程问题综合

小学奥数工程问题综合在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是——工作量=工作效率×时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.举一个简单例子.:一件工作,甲做15天可完成,乙做10天可完成.问两人合作几天可以完成?一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,再根据基本数量关系式,得到工作效率×工作时间=工作总量=6(天)答:两人合作需要6天.这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的。

为了计算整数化(尽可能用整数进行计算),如第三讲例3和例8所用方法,把工作量多设份额.还是上题,10与15的最小公倍数是30。

设全部工作量为30份,那么甲每天完成2份,乙每天完成3份,两人合作所需天数是:30÷(2+ 3)= 6(天)如果用数计算,更方便.3:2.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是10∶15=2∶3工程问题方法总结一:基本数量关系:工效×时间=工作总量二:基本特点:设工作总量为“1”,工效=1/时间三:基本方法:算术方法、比例方法、方程方法。

四:基本思想:分做合想、合做分想。

五:类型与方法:一:分做合想:1.合想,2.假设法,3.巧抓变化(比例),4.假设法。

二:等量代换:方程组的解法→代入法,加减法。

三:按劳分配思路:每人每天工效→每人工作量→按比例分配四:休息请假:方法:1.分想:划分工作量。

2.假设法:假设不休息。

五:休息与周期:1.已知条件的顺序:①先工效,再周期,②先周期,再天数。

2..天数:①近似天数,②准确天数。

3.列表确定工作天数。

六:交替与周期:估算周期,注意顺序!七:注水与周期:1.顺序,2.池中原来是否有水,3.注满或溢出。

45道工程问题及详解(2018年3月)

45道工程问题及详解(2018年3月)

2018年专题训练:工程问题1. 甲、乙两个工程队共同完成一项工程需18天,如果甲队干3天、乙队干4天则完成工程的51。

问:甲、乙两队独立完成该工程各需多少天? 2. 完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天。

问:甲、乙单独干这件工作各需多少天?3. 一件工作,甲5时完成了41,乙6时完成了剩下的一半,余下的部分由甲、乙合作,还需要多少时间才能完成?4. 一件工程,甲干3天、乙干5天可完成21;甲干5天、乙干3天可完成31。

问:甲、乙合干需几天完成?5. 加工一批零件,甲干2天、乙干3天可完成总数的21;甲干1天、乙干2天可完成总数的247。

问:甲、乙合干需几天完成? 6. 一件工作,甲、乙合干需6天完成,已知甲单独完成该工作的21所需的时间与乙单独完成该工作的31所需的时间相等。

问:甲单独完成该工作需多长时间? 7. 小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3。

这本书共有多少页?8. 单独完成一件工程,甲需要24天,乙需要32天。

若甲先做若干天后乙接着做,则共用26天时间,问:甲做了几天?9. 打印一份稿件,甲单独打需50分完成,乙单独打需30分完成。

现在甲单独打若干分后,乙接着打完,共42分。

问:甲打了稿件的几分之几?10. 一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成。

如果甲做3时后由乙接着做,那么还需多少时间才能完成?11. 一件工作,先由甲、乙合做4时,完成了它的25%。

再由乙单独做8时,这时剩下的工作甲单独做还需20时才能全部完成。

甲单独做这件工作需多长时间?12. 几个同学去割两块草地的草,甲地面积是乙地的4倍,开始他们一起在甲地割了半天,后来他们分开,一半同学在甲地割,另一半同学在乙地割,又割了半天,乙地割完了。

问:甲地剩下的草他们一起干还需几天?13. 一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。

奥数专题(三):工程问题详解及练习(含具体分析)

奥数专题(三):工程问题详解及练习(含具体分析)

奥数专题(三):工程问题详解及练习(含具体分析)奥数专题(三):工程问题详解及练习(含具体分析)一百分计划2018-07-09 18:01:44工程问题是小学奥数中最经常出现的一类题目,在平常的数学考试中也属于常见题型。

在针对工程问题时,是有一套专门的解决方法的。

今天我们提供的就是有关工程问题的通用解题思路以及相关的练习和答案分析。

家长们可以打印后让孩子做一下。

工程问题【含义】工程问题主要研究工作量、工作效率和工作时间三者之间的关系。

这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。

【数量关系】解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。

工作量=工作效率×工作时间工作时间=工作量÷工作效率工作时间=总工作量÷(甲工作效率+乙工作效率)例题 1.A、B两个水管单独开,注满一池水,分别需要40小时,32小时。

C水管单独开,排一池水要20小时,若水池没水,同时打开A、B 两水管,5小时后,再打开排水管C,问水池注满还需要多少小时?分析:排(注)水问题是一类常见的工程问题。

往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。

同时,审题是要甄别注意哪些水管是在注水,哪些水管是在排水。

1/40+1/32=9/160表示甲乙的工作效率9/160×5=45/160表示5小时后进水量1-45/160=115/160表示还要的进水量115/160÷(9/160-1/20)=115表示还要115小时注满答:还要115小时后才能将水池注满。

例题 2.修一条道路,单独修,工程队1需要40天完成,工程队2需要60天完成。

小学奥数工程问题十大类

小学奥数工程问题十大类

小学奥数工程问题十大类小学奥数工程问题十大类工程问题是解决工作方面问题的一种方法,它通过分析工作量、工作时间和工作效率之间的关系来解决问题。

在工程问题中,我们将“一项工程”、“一段路”、“一批零件”、“一份稿件”、“一个水池”等工作量看作“1”,然后根据工作时间和工作效率来计算完成时间。

解决工程问题的关键是建立数量间的对应关系,掌握解题方法,理清解题思路。

我们可以使用常用的数学思想和解题方法,如假设法、转化法、代换法、列举法和方程等来解决工程问题。

一、单位“1”例题1:甲独自完成一项工作需要20天,乙独自完成需要12天。

如果甲先做了若干天,然后乙接手完成,共用了14天,那么甲一开始做了几天?例题2:甲队修一条公路需要24天,乙队修需要30天。

甲、乙两队先合作修了4天,然后丙队参加一起修了7天,最终完成了修路任务。

如果三队同时开工修路,需要多少天才能完成?练一:1、甲独自完成一项工作需要40天,乙独自完成需要30天。

现在甲先做了若干天,然后乙接手完成,共用了35天,那么乙单独完成需要多少天?2、甲队挖一条水渠需要120天,乙队需要40天。

两队合作挖了8天,然后丙队加入一起挖,共用了12天完成了任务。

那么丙队单独挖需要多少天?3、甲、乙合作完成一项工作需要6天,乙、丙合作完成需要10天。

如果甲、丙合作完成了3天,然后乙单独完成还需要9天才能完成任务。

那么如果三人一起工作,需要多少天才能完成?二、“组合法”解工程问题例题3:甲、乙、丙三人合作6小时可以完成一项工作。

如果甲工作了6小时,然后乙、丙合作2小时,那么他们能完成多少工作?例题4:甲、乙、丙三人一起抄一份稿件,如果他们合作只需要8天就能完成任务。

如果甲的工作效率等于乙、丙两人的工作效率之和,丙的工作效率等于甲、乙两人的工作效率之和,那么乙单独抄需要多少天才能完成?练二:一项工程,甲、乙合作30天可以完成,甲队单独做24天后,乙队加入,两队又合作做了12天。

小学奥数趣味学习《工程问题》典型例题及解答

小学奥数趣味学习《工程问题》典型例题及解答

小学奥数趣味学习《工程问题》典型例题及解答工程问题主要研究工作量、工作效率和工作时间三者之间的关系。

这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。

数量关系:工作量=工作效率×工作时间工作时间=工作量÷工作效率工作时间=工作总量÷(甲工作效率+乙工作效率)解题思路和方法:解答工程问题的关键是把工作总量看作单位“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。

例题1:一项工程,甲队独做要12天完成,乙队独做要15天完成,两队合做4天可以完成这项工程的()。

解:1、本题考察的是两个人的工程问题,解决本题的关键是求出甲、乙两队的工作效率之和。

进而用工作效率×工作时间=工作量。

2、甲队的工作效率为:1÷12=1/12,乙队的工作效率为:1÷15=1/15,两队合做4天,可以完成这项工程的(1/12+1/15)×4=3/5。

例题2:一项工程,甲、乙两队合作30天完成。

如果甲队单独做24天后,乙队再加入合做,两队合做12天后,甲队因事离去,由乙队继续做了15天才完成。

这项工程如果由甲队单独做,需要多少天完成?解:我们可以将“甲队单独做24天后,乙队再加入合做,两队合做12天后,甲队因事离去,由乙队继续做了15天才完成”转化为“甲、乙两队合做27天,甲再单独做9天”,由此可以求出甲9天的工作量为:,甲每天的工作效率为:,这项工程如果由甲队单独做,需要。

例题3:有一项工程,甲单独做需要6小时,乙单独做需要8小时,丙单独做需要10小时,上午8时三人同时开始,中间甲有事离开,如果到中午12点工程才完工,则甲上午离开的时间是几时几分?解:1、根据题意,知道了甲乙丙的工作时间可求出相应的工作效率。

(完整版)小学奥数工程问题题型大全含答案

(完整版)小学奥数工程问题题型大全含答案

奥数之工程问题在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是——工作量=工作效率×时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”。

工程问题方法总结:一:基本数量关系:工效×时间=工作总量二:基本特点:设工作总量为“1”,工效=1/时间三:基本方法:算术方法、整体思想、组合法、比例方法、方程方法、假设法四:基本思想:分做合想、合做分想。

五:类型与方法:一:分做合想:1.合想,2.假设法,3.巧抓变化(比例),4.假设法。

二:按劳分配思路:每人每天工效→每人工作量→按比例分配三:休息请假:方法:1.分想:划分工作量。

2.假设法:假设不休息。

3.方程法四:周期工程休息与周期:1.已知条件的顺序:①先工效,再周期,②先周期,再天数。

2..天数:①近似天数,②准确天数。

3.列表确定工作天数。

交替与周期:估算周期,注意顺序!注水与周期:1.顺序,2.池中原来是否有水,3.注满或溢出。

五:工效变化。

六:比例:1.分比与连比,2.归一思想,3.正反比例的运用,4.假设法思想(周期)。

七:牛吃草问题:1.新生草量,2.原有草量,3.解决问题。

一、用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。

例题1。

一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是115,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730-115×3=130,从而求出甲队的工作效率。

(2021年整理)2018年小学六年级奥数题集及答案

(2021年整理)2018年小学六年级奥数题集及答案

(完整)2018年小学六年级奥数题集及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2018年小学六年级奥数题集及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2018年小学六年级奥数题集及答案的全部内容。

小学六年级奥数题(答案附后)1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?2。

电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?3。

甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款4。

由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时。

有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运。

最后两个仓库货物同时搬完。

问丙帮助甲、乙各多少时间?7.一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

小学数学小学奥数系列6-3-1工程问题专练4

小学数学小学奥数系列6-3-1工程问题专练4

小学数学小学奥数系列6-3-1工程问题专练4姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、工程问题专练 (共20题;共95分)1. (5分)搬运一个仓库的货物,甲需小时,乙需小时,丙需小时.有同样的仓库和,甲在仓库,乙在仓库同时开始搬运货物,丙开始帮甲搬运,中途又转向帮乙搬运,最后同时搬完两个仓库的货物.丙帮助甲、乙各搬运了几小时?2. (5分) (2019六上·大田期末) 一项工程,甲单独做要12天完成,乙单独做要15天完成.两人合做4天可以完成这项工程的一半吗?3. (5分)(2020·成都模拟) 如图1,某容器由A、B、C三个长方体组成,其中A、B、C的底面积分别为25平方厘米,10平方厘米和5平方厘米,C的容积是容器容器的(容器各面的厚度忽略不计),现在以速度V(单位:立方厘米每秒)均匀地向容器注水,直到注满为止。

图2表示注水全过程中容器的水面高度(依次注满A、B、C)(单位:厘米)与注水时间t(单位:秒)的关系。

(1)在注水过程中,注满A所用的时间是1秒,再注满B又用了2秒;(2)注水的速度是每秒多少立方厘米?(3)容器的高度是多少厘米?4. (5分) (2019六上·槐荫期中) 水果店有一批水果,第一天卖出了总数的,第二天卖出180kg,这时已经卖出的和剩下的质量的比是3:2。

这批水果一共有多少千克?5. (5分)(2020·竹山) 工程队修一条高速公路,去年修了全长的,今年又修了8km,现在已修的与未修的比是3:5,去年修了多少km?6. (5分)(2019·阳新) 一项工作,第一天甲、乙两人合做4小时,完成全部工作的;第二天乙又独做了5小时,还剩全部工作的没完成.这件工作由甲一人独做完成需要多少小时?7. (5分) (2018六上·丹江口期中) 打一份文稿,单独打小明要15小时,小刚要12小时,如果两人合打,几小时后可以完成这份文稿的一半?8. (1分)做一批零件,甲独做要6小时完成,乙独做要8小时完成,两人合做需1小时完成.9. (1分)(2018·南昌) 有一个蓄水池装有9根水管.其中一根为进水管.其余8根为相同的出水管,进水管以均匀的速度不停向这个蓄水池注水,后来有人想打开出水管,使池内的水全部排光,这时池内已注有一池水,如果8根出水管全部打开.需3小时把池内的水全部排光,如果打开5根出水管,需6小时把池内的水全都排光,要想在4.5小时内把水全部排光,需同时打开1根出水管.10. (5分)甲、乙、丙3队要完成A,B两项工程.B工程的工作量比A工程的工作量多.甲、乙、丙3队单独完成A工程所需时间分别是20天、24天、30天.为了同时完成这两项工程,先派甲队做A工程,乙、丙两队共同做B工程;经过几天后,又调丙队与甲队共同完成A工程.那么,丙队与乙队合作了多少天?11. (2分)有一项工程,甲单独做需要36天完成,乙单独做需要30天完成,丙单独做需要48天完成.现在由甲、乙、丙三人同时做,在工作期间,丙休息了整数天,而甲和乙一直工作至完成,最后完成这项工程也用了整数天.那么丙休息了1天.12. (1分)一项工作甲、乙合做需要12天完成,若甲先做3天后,再由乙工作8天共完成这项工程的,如果这项工程由甲单独做,需要1天完成.13. (5分)甲、乙、丙三人完成一件工作,原计划按甲、乙、丙顺序每人轮流工作一天,正好整数天完成,若按乙、丙、甲的顺序每人轮流工作一天,则比原计划多用天;若按丙、甲、乙的顺序每人轮流工作一天,则比原计划多用天.已知甲单独完成这件工作需天.问:甲、乙、丙一起做这件工作,完成工作要用多少天?14. (5分)一项工程,乙单独做要天完成.如果第一天甲做,第二天乙做,这样交替轮流做,那么恰好用整天数完成;如果第一天乙做,第二天甲做,这样交替轮流做,那么比上次轮流的做法多用半天完工.问:甲单独做需要几天?15. (5分)一项工程,甲单独做40天完成,乙单独做60天完成.现在两人合作,中间甲因病休息了若干天,所以经过了27天才完成.问甲休息了几天?16. (5分)(2020·微山) 只列式或方程,不计算。

小学奥数工程问题常见题型汇总

小学奥数工程问题常见题型汇总

例1 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?解一:如果16天两队都不休息,可以完成的工作量是由于两队休息期间未做的工作量是乙队休息期间未做的工作量是乙队休息的天数是答:乙队休息了5天半.例2 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙.设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份. 8天,李就能完成甲工作.此时张还余下乙工作(60-4×8)份.由张、李合作需要(60-4×8)÷(4+3)=4(天).8+4=12(天).答:这两项工作都完成最少需要12天. 竞赛篇: 第九讲:工程问题(二)练一练:1、一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?2、一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?3、某项工作,甲组3人8天能完成工作,乙组4人7天也能完成工作.问甲组2人和乙组7人合作多少时间能完成这项工作?4、制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件?5、一项工程,甲独做需12小时,乙独做需18小时,若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时……,两人如此交替工作,问完成任务时共用多少小时?6、一件工作,甲、乙、丙三人合作需要1小时,甲、乙合作需要1小时20分,甲、丙合作需要1小时30分.问甲独做需要多少时间?甲乙丙三人每分钟完成全部工作的1/60,甲乙二人每分钟完成1/80,甲丙二人每分钟完成1/90,那么甲一人每分钟完成1/80+1/90-1/60=1/10*(1/8+1/9-1/6)=1/10*(9+8-12)/72=1/10*5/72=1/144,则甲独作需144分钟即2小时24分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解一:甲队单独做 8 天,乙队单独做 2ห้องสมุดไป่ตู้天,共完成工作量
余下的工作量是两队共同合作的,需要的天数是
2+8+ 1= 11(天). 答:从开始到完工共用了 11 天. 解二:设全部工作量为 30 份.甲每天完成 3 份,乙每天完成 1 份.在甲队单独做 8 天,乙队单独做 2 天之后,还需两 队合作(30- 3 × 8- 1× 2)÷(3+1)= 1(天). 解三:甲队做 1 天相当于乙队做 3 天.在甲队单独做 8 天后,还余下(甲队) 10-8= 2(天)工作量.相当于乙队要 做 2×3=6(天).乙队单独做 2 天后,还余下(乙队)6-2=4(天)工作量.4=3+1,其中 3 天可由甲队 1 天完成,因 此两队只需再合作 1 天.欢迎关注:奥数轻松学 余老师薇芯:69039270
他们共同做 13 天的工作量,由甲单独完成,甲需要
答:甲独做需要 26 天. 事实上,当我们算出甲、乙、丙三人工作效率之比是 3∶2∶1,就知甲做 1 天,相当于乙、丙合作 1 天.三人合作需 13 天,其中乙、丙两人完成的工作量,可转化为甲再做 13 天来完成.(OK) 例 12 某项工作,甲组 3 人 8 天能完成工作,乙组 4 人 7 天也能完成工作.问甲组 2 人和乙组 7 人合作多少时间能完 成这项工作? 解一:设这项工作的工作量是 1.
做的工作,可由乙做 16 天来代替.因此甲的工作效率
如果乙独做,所需时间是
如果甲独做,所需时间是 答:甲或乙独做所需时间分别是 75 天和 50 天. 例 3 某工程先由甲独做 63 天,再由乙单独做 28 天即可完成;如果由甲、乙两人合作,需 48 天完成.现在甲先单独 做 42 天,然后再由乙来单独完成,那么乙还需要做多少天? 解: 先对比如下: 甲做 63 天, 乙做 28 天; 甲做 48 天, 乙做 48 天.就知道甲少做 63-48=15 (天) , 乙要多做 48-28=20
(天),由此得出甲的
甲先单独做 42 天,比 63 天少做了 63-42=21(天),相当于乙要做 因此,乙还要做 28+28= 56 (天).
答:乙还需要做 56 天. 例 4 一件工程,甲队单独做 10 天完成,乙队单独做 30 天完成.现在两队合作,其间甲队休息了 2 天,乙队休息了 8 天(不存在两队同一天休息).问开始到完工共用了多少天时间?
要 8 天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天? 解: 设这项工程的工作量为 30 份, 甲每天完成 3 份, 乙每天完成 2 份.欢迎关注: 奥数轻松学 余老师薇芯: 69039270
两人合作,共完成 3× 0.8 + 2 × 0.9= 4.2(份). 因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在 8 天内完成,所以两人合作的天数是 (30-3×8)÷(4.2-3)=5(天).很明显,最后转化成“鸡兔同笼”型问题. 例 8 甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时
例 5 一项工程,甲队单独做 20 天完成,乙队单独做 30 天完成.现在他们两队一起做,其间甲队休息了 3 天,乙队 休息了若干天.从开始到完成共用了 16 天.问乙队休息了多少天?
解一:如果 16 天两队都不休息,可以完成的工作量是
由于两队休息期间未做的工作量是
乙队休息期间未做的工作量是
乙队休息的天数是 答:乙队休息了 5 天半. 解二:设全部工作量为 60 份.甲每天完成 3 份,乙每天完成 2 份.两队休息期间未做的工作量是 (3+2)×16- 60= 20(份).
说明甲做了 2 天,乙做了 2×3=6(天),丙做 2×6=12(天),三人一共做了 2+6+12=20(天). 答:完成这项工作用了 20 天. 本题整数化会带来计算上的方便.12,18,24 这三数有一个易求出的最小公倍数 72.可设全部工作量为 72.甲每天完 成 6,乙每天完成 4,丙每天完成 3.总共用了
甲每分钟注入水量是
乙每分钟注入水量是
因此水池容积是 答:水池容积是 27 立方米. 例 16 有一些水管,它们每分钟注水量都相等.现在
按预定时间注满水池,如果开 始时就打开 10 根水管,中途不增开水管,也能按预定时间注满水池.问开始时打开了几根水管?
答:开始时打开 6 根水管. 例 17 蓄水池有甲、丙两条进水管,和乙、丁两条排水管.要灌满一池水,单开甲管需 3 小时,单开丙管需要 5 小时.
工程问题
讲解一:例:一件工作,甲做 10 天可完成,乙做 15 天可完成.问两人合作几天可以完成? 法一:一件工作看成 1 个整体,因此可以把工作量算作 1.所谓工作效率,就是单位时间内完成的工作量,我们用的 时间单位是“天”,1 天就是一个单位,
所需时间=工作量÷工作效率
=6(天)? 两人合作需要 6 天.这是工程问题中最基本的问题。 法二:为了计算整数化(尽可能用整数进行计算),把工作量多设份额.此题,10 与 15 的最小公倍数是 30.设全部 工作量为 30 份.那么甲每天完成 3 份,乙每天完成 2 份.两人合作所需天数是 30÷(3+ 2)= 6(天)
因此乙休息天数是(20- 3 × 3)÷ 2= 5.5(天). 解三:甲队做 2 天,相当于乙队做 3 天.甲队休息 3 天,相当于乙队休息 4.5 天. 如果甲队 16 天都不休息,只余下甲队 4 天工作量,相当于乙队 6 天工作量,乙休息天数是 16-6-4.5=5.5(天). 例 6 有甲、乙两项工作,张单独完成甲工作要 10 天,单独完成乙工作要 15 天;李单独完成甲工作要 8 天,单独完 成乙工作要 20 天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天? 解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙. 设乙的工作量为 60 份(15 与 20 的最小公倍数),张每天完成 4 份,李每天完成 3 份. 8 天,李就能完成甲工作.此时张还余下乙工作(60-4×8)份.由张、李合作需要 (60-4×8)÷(4+3)=4(天).8+4=12(天). 答:这两项工作都完成最少需要 12 天.(最优化) 例 7 一项工程,甲独做需 10 天,乙独做需 15 天,如果两人合作,他
甲做了 3 天,相当于乙做了 2 天.乙完成余下工作所需时间是 6-2=4(天). 例 2 一件工作,甲、乙两人合作 30 天可以完成,共同做了 6 天后,甲离开了,由乙继续做了 40 天才完成.如果这 件工作由甲或乙单独完成各需要多少天?欢迎关注:奥数轻松学 余老师薇芯:69039270
解:共做了 6 天后,原来,甲做 24 天,乙做 24 天,现在,甲做 0 天,乙做 40=(24+16)天.这说明原来甲 24 天
例 1 一件工作,甲做 9 天可以完成,乙做 6 天可以完成.现在甲先做了 3 天,余下的工作由乙继续完成.乙需要做几 天可以完成全部工作?
答:乙需要做 4 天可完成全部工作. 解二:9 与 6 的最小公倍数是 18.设全部工作量是 18 份.甲每天完成 2 份,乙每天完成 3 份.乙完成余下工作所需时 间是 (18- 2 × 3)÷ 3= 4(天). 解三:甲与乙的工作效率之比是 6∶ 9= 2∶ 3.
甲组每人每天能完成
乙组每人每天能完成
甲组 2 人和乙组 7 人每天能完成
答:合作 3 天能完成这项工作. 解二:甲组 3 人 8 天能完成,因此 2 人 12 天能完成;乙组 4 人 7 天能完成,因此 7 人 4 天能完成. 现在已不需顾及人数,问题转化为:甲组独做 12 天,乙组独做 4 天,问合作几天完成?
小学算术要充分利用给出数据的特殊性.解二是比例灵活运用的典型,如果你心算较好,很快就能得出答数. 例 13 制作一批零件,甲车间要 10 天完成,如果甲车间与乙车间一起做只要 6 天就能完成.乙车间与丙车间一起做, 需要 8 天才能完成.现在三个车间一起做, 完成后发现甲车间比乙车间多制作零件 2400 个.问丙车间制作了多少个零 件? 解一:仍设总工作量为 1.
甲、乙、丙三人合作每天完成
减去乙、丙两人每天完成的工作量,甲每天完成
答:甲一人独做需要 90 天完成. 例 9 也可以整数化,设全部工作量为 180 份,甲、乙合作每天完成 5 份,乙、丙合作每天完成 4 份,甲、丙合作每 天完成 3 份.请试一试,计算是否会方便些? 例 10 一件工作,甲独做要 12 天,乙独做要 18 天,丙独做要 24 天.这件工作由甲先做了若干天,然后由乙接着做, 乙做的天数是甲做的天数的 3 倍,再由丙接着做,丙做的天数是乙做的天数的 2 倍,终于做完了这件工作.问总共用 了多少天? 解:甲做 1 天,乙就做 3 天,丙就做 3×2=6(天).
例 11 一项工程,甲、乙、丙三人合作需要 13 天完成.如果丙休息 2 天,乙就要多做 4 天,或者由甲、乙两人合作 1 天.问这项工程由甲独做需要多少天? 解:丙 2 天的工作量,相当乙 4 天的工作量.丙的工作效率是乙的工作效率的 4÷2=2(倍),甲、乙合作 1 天,与 乙做 4 天一样.也就是甲做 1 天,相当于乙做 3 天,甲的工作效率是乙的工作效率的 3 倍.
如果这件工作始终由甲一人单独来做,需要多少小时?
解:乙 6 小时单独工作完成的工作量是
乙每小时完成的工作量是
两人合作 6 小时,甲完成的工作量是
甲单独做时每小时完成的工作量
甲单独做这件工作需要的时间是 答:甲单独完成这件工作需要 33 小时. 二、多人的工程问题 例 9 一件工作,甲、乙两人合作 36 天完成,乙、丙两人合作 45 天完成,甲、丙两人合作要 60 天完成.问甲一人独 做需要多少天完成? 解:设这件工作的工作量是 1.
数计算,就方便些.
法三:
∶2.或者说“工作量固定,工
作效率与时间成反比例”.甲、乙工作效率的比是 15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题, 也
相关文档
最新文档