055.12.2 第4课时 “斜边、直角边”

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4课时“斜边、直角边”

学习目标

1、经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;

2、掌握直角三角形全等的条件,并能运用其解决一些实际问题。

3、在探索直角三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单推理。

学习重点

运用直角三角形全等的条件解决一些实际问题。

学习难点

熟练运用直角三角形全等的条件解决一些实际问题。

学习方法:自主学习与小组合作探究

学习过程:Ⅰ.想一想,填一填:

1、判定两个三角形全等常用的方法:、、、

2、如图,Rt△ABC中,直角边是、,

斜边是

3、如图,AB⊥BE于C,DE⊥BE于E,

(1)若∠A=∠D,AB=DE,

则△ABC与△DEF (填“全等”或“不全等”)

根据(用简写法)

(2)若∠A=∠D,BC=EF,

则△ABC与△DEF (填“全等”或“不全等”)

根据(用简写法)

(3)若AB=DE,BC=EF,

则△ABC与△DEF (填“全等”或“不全等”)

根据(用简写法)

(4)若AB=DE,BC=EF,AC=DF

则△ABC与△DEF (填“全等”或“不全等”)

根据(用简写法)

Ⅱ.探究学习

(一)探索新知:

1.阅读教材并作出三角形(动手操作):

2、与教材中的三角形比较,是否重合?

3、从中你发现了什么?

斜边与一直角边对应相等的两个直角三角形全等.(HL)

(二)自学检测:

1.如图,△ABC中,AB=AC,AD是高,

则△ADB与△ADC (填“全等”或“不全等”)

根据(用简写法)

2.如图,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,

(1)若AC//DB ,且AC=DB ,则△ACE ≌△BDF ,

根据

(2)若AC//DB ,且AE=BF ,则△ACE ≌△BDF ,根据

(3)若AE=BF ,且CE=DF ,则△ACE ≌△BDF ,根据

(4)若AC=BD ,AE=BF ,CE=DF 。则△ACE ≌△BDF ,根据

(5) 若AC=BD ,CE=DF (或AE=BF ),则△ACE ≌△BDF ,根据

3、判断两个直角三角形全等的方法不正确的有( )

(A ) 两条直角边对应相等 (B )斜边和一锐角对应相等

(C )斜边和一条直角边对应相等 (D )两个锐角对应相等

4、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,

AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由

答:

理由:∵ AF ⊥BC ,DE ⊥BC (已知)

∴ ∠AFB=∠DEC= °(垂直的定义)

在Rt △ 和Rt △ 中

⎩⎨⎧==_________

______________________ ∴ ≌ ( )

∴∠ = ∠ ( )

∴ (内错角相等,两直线平行)

(三)、例题: 阅读教材例题:

(四)小组合作学习:

判断题:

(1)一个锐角和这个锐角的对边对应相等的两个直角三角形全等。( )

(2)一个锐角和锐角相邻的一直角边对应相等的两个直角三角形全等( )

(3)一个锐角与一斜边对应相等的两个直角三角形全等( )

(4)两直角边对应相等的两个直角三角形全等( )

(5)两边对应相等的两个直角三角形全等( )

(6)两锐角对应相等的两个直角三角形全等( )

(7)一个锐角与一边对应相等的两个直角三角形全等( )

(8)一直角边和斜边上的高对应相等的两个直角三角形全等( )

Ⅲ.评价反思 概括总结

六种判定三角形全等的方法:

1.全等三角形的定义 2.边边边(SSS)边角边(SAS)角边角(ASA)角角边(AAS)3.HL(仅用在直角三角形中)

初中数学公式大全

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12 两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边

17 三角形内角和定理三角形三个内角的和等于180 °

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形

21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四

边形

22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形

23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形

24 矩形性质定理 1 矩形的四个角都是直角

25 矩形性质定理 2 矩形的对角线相等

26 矩形判定定理 1 有三个角是直角的四边形是矩形

27 矩形判定定理 2 对角线相等的平行四边形是矩形

28 菱形性质定理 1 菱形的四条边都相等

29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

30 菱形面积= 对角线乘积的一半,即S= (a×b )÷2

31 菱形判定定理1 四边都相等的四边形是菱形

32 菱形判定定理2 对角线互相垂直的平行四边形是菱形

33 正方形性质定理1 正方形的四个角都是直角,四条边都相等

34 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

35 定理1 关于中心对称的两个图形是全等的

36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

38 等腰梯形性质定理等腰梯形在同一底上的两个角相等

相关文档
最新文档