八年级数学上册整式的乘法教案人教版

合集下载

整式的乘法(二)八年级数学上(人教版)学习教案

整式的乘法(二)八年级数学上(人教版)学习教案

运算顺序 23 x3 5xy2
40x4 y2
数式通性
(5)提高运算正确率. 注意结果的运算符号; 注意幂的运算性质的正确应用; 注意运算顺序 ......
课后作业
1.计算
(1) 3x2 5x3
(3) 3x2 4x2
(2) 4y 2xy2
(4) 2a3 3a2
8x4 y2
(2) 5a2b 3a
53a2 ab
15a3b
练习 下面的计算对不对?如果不对,请改正 (1)3a3 2a2 6a6 × 3a3 2a2 6a32 6a5
(2)2x2 3x2 6x4 √
(3)3x2 4x2 12x2 × 3x2 4x2 12x22 12x4 (4)5y3 3y5 15y15 × 5y3 3y5 15y35 15y8
2
10a4b5c
先定符号
练习
解: (1) a2 2 3ab2 3 a4 27a3b6
27 a4a3 b6
27a7b6
幂的运算性质
23xy x2z6xy2z
18x x2 xy y2 z z
18x4 y3z2
先定符号
拓展提升:已知 1 (x2 y3)m与 2xyn1 2 的积是 8
先乘方 单项式的乘法运算
例 计算
解:(1)2mn3 mn2 3
8m3n3 m3 n2 3
8m3n3 m3n6
8 m3m3 n3n6
8m6n9
幂的运算性质
单项式乘单项式法 则同样适用
(2)5a2b3 4b2c 1 a2 2
5
4
1
a2a2
b3b2 c
积的乘方,等于把积的每一个因式分别乘方, 再把所得的幂相乘.
计算:

人教版八年级数学上册14.1.4整式的乘法(第3课时)优秀教学案例

人教版八年级数学上册14.1.4整式的乘法(第3课时)优秀教学案例
4.小组展示:各小组将合作解决问题的过程和结果进行展示,分享学习心得,提高学生的表达能力和自信心。
(四)反思与评价
1.学生自我反思:引导学生对自己在课堂学习过程中的表现进行反思,如:学习态度、参与程度、问题解决能力等,鼓励学生总结经验,提高自我认知。
2.同伴评价:学生之间相互评价,关注同伴在小组合作过程中的表现,如:沟通协作、问题解决能力等,培养学生的评价能力。
2.讨论交流:引导学生小组内讨论交流,探讨整式乘法的运算规律,分享解题心得。
3.问题解决:鼓励学生提出在计算过程中遇到的问题,由小组成员共同解决,培养学生的合作能力。
(四)总结归纳
1.整式乘法的概念:引导学生总结整式乘法的定义,即两个整式相乘得到一个新的整式。
2.整式乘法的法则:让学生归纳整式乘法的法则,包括系数相乘、字母相乘、指数相加等。
2.整式乘法的法则:讲解整式乘法的法则,包括系数相乘、字母相乘、指数相加等,并通过具体例子进行演示。
3.整式乘法的运算步骤:引导学生掌握整式乘法的运算步骤,包括:确定结果的系数、展开字母、合并同类项等。
(三)学生小组讨论
1.小组活动:将学生分成若干小组,每组提供几个整式乘法的例子,让学生运用所学知识进行计算。
3.整式乘法的运算步骤:总结整式乘法的运算步骤,包括:确定结果的系数、展开字母、合并同类项等。
(五)作业小结
1.布置作业:布置一些与本节课内容相关的练习题,让学生巩固所学知识,提高学生的实践能力。
2.课堂小结:引导学生对本节课的内容进行小结,帮助学生梳理知识点,巩固学习成果。
3.课后反思:鼓励学生在课后反思自己的学习过程,总结经验,提高自我认知。
二、教学目标
(一)知识与技能
1.理解整式乘法的概念,掌握整式乘法的基本运算法则;

人教版八年级数学上册---《整式的乘法》课堂设计

人教版八年级数学上册---《整式的乘法》课堂设计

人教版八年级数学上册---《整式的乘法》课堂设计整式的乘法(第一课时)整式的乘法(第二课时)3 分钟4 分钟(2)创设情境引入新知【引入】为了扩大绿地面积,要把街心花园的一块长为p米,宽b米的长方形绿地,向两边分别加宽a米和c米.教师提出问题:(4)你能用哪些方法表示扩大后的绿地面积;(5)不同的表示方法之间有什么关系?为什么?学生并回答问题:(1)()cbap++或pcpbpa++或()p a b pc++或)(cbppa++(2)相等,都表示扩大后的长方形的面积.追问1:你还能通过别的方法得到等式()pcpbpacbap++=++吗?学生回答:乘法分配律.追问2:()pcpbpacbap++=++,请问这属于什么运算?学生回答:单项式乘多项式.教师引出本节课的课题——单项式乘多项式,明确本节课探究的主要内容:单项式乘多项式的运算是怎样进行的?如何确定运算结果?【问题1】:你能尝试计算()yxx22-吗?教师引导学生利用乘法分配律进行运算.()yxxxyxx22222⋅-⋅=-xyx422-=追问1:你能尝试归纳单项式与多项式乘法运算法则吗?学生尝试进行归纳,用自己的语言加以概括,小组讨论,教师在学生表述的基础上,和学生共同得到单项式乘以多项式的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.追问2:你能尝试归纳单项式与多项式相乘的步骤吗?①用单项式去乘多项式的每一项;②转化为单项式与单项式的乘法运算;整式的乘法(第三课时)5 分钟2 探究新知得出pbpabap+=+)(活动2:问题引入:为了扩大街心花园的绿地面积,把一块原长am、宽pm的长方形绿地,加长了bm, 加宽了qm.你能用几种方法求出扩大后的绿地面积?教师设问:(1)扩大后的公园的面积有几种表示法?学生思考,得出结论:第一种:整体求面积,得))((qpba++第二种:先求A和B的总面积为)(bap+再求C和D的总面积为)(baq+最后求和,得)()(baqbap+++第三种:先求A和C的总面积为)(qpa+再求B和D的总面积为)(qpb+最后求和,得)()(qpbqpa+++第四种:分别求出A,B,C,D的面积,再求和,得bqbpaqap+++教师设问:(2)用四种方法表示出来的代数式是什么关系呢?为什么呢?学生回答:用四种方法表示出来的代数式是相等关系,因为图形的面积是相等的。

整式的乘法人教版数学八年级上册教案

整式的乘法人教版数学八年级上册教案

整式的乘法人教版数学八年级上册教案整式是单项式和多项式的统称。

整式是有理式的一部分,可包含加、减、乘、除、乘方五种运算,在整式中除数不能含有字母。

以下是整理的整式的乘法人教版数学八年级上册教案,欢迎大家借鉴与参考!14.1.4整式的乘法课件:教案【教学要求】1. 探索并了解正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),并会运用它们进行计算。

2. 探索并了解单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会进行简单的整式的乘法运算。

3. 会由整式的乘法推导乘法公式,并能运用公式进行简单计算。

4. 理解因式分解的意义及其与整式的乘法之间的关系,从中体会事物之间可以相互转化的辩证思想。

5. 会用提公因式法、公式法、分组法、十字相乘法进行因式分解(指数是正整数)。

6. 让学生主动参与到一些探索过程中去逐步形成独立思考,主动探索的习惯,提高自己数学学习兴趣。

《14.1整式乘法-多项式乘多项式》同步测试含答案解析17. 原式利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值;已知两等式利用完全平方公式化简,相减即可求出ab的值;由已知等式求出与的值,原式利用平方差公式化简后代入计算即可求出值.此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键.《14.1整式的乘法》同步测试(含答案解析)5.欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x-a)(3x+b),得到的结果为6x2-13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2-x-6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.整式的乘法人教版数学八年级上册教案。

人教版八年级数学上册 《整式的乘法》教案

人教版八年级数学上册 《整式的乘法》教案

教学过程
师生活动
设计意图
三、 复习导入 1.单项式与单项式相乘的法则是什么? 2.什么叫多项式?指出下列多项式的项: (1) 2x2-x-1; (2)-3x2+ 2x+3. 参考答案:
复习回顾式导入新课有助 于让学生回顾所学知识,为 本节课的学习做好铺垫.
1.单项式相乘,把它的系数、相同字母分别相乘,对于只 在一个单项式里含有的字母,则连同它的指数作为积的一 个因式. 2.几个单项式的和叫做多项式. (1) 2x2-x-1 中的项分别是: 2x2,-x,-1; (2) -3x2+ 2x+3 中的项分别是: -3x2, 2x,3
底数幂的乘法)
(2)4a2x5 ·(-3a3bx)
=[4×(-3)](a2·a3)·b·(x5·x) = -12a5bx6.
(字母b 只在一个单项式中出现 ,
这个字母及其指数不变)
总结出单项式的乘法法则:
单项式相乘,把它的系数、相同字母分别相乘,对于只在一
个单项式里含有的字母,则连同它的指数作为积的一个因式 . 教 师 对 单 项 式 乘 以
(二)教学程序
教学过程
师生活动
设计意图
一、 复习导入 1. 下列单项式各是几次单项式?它们的系数各是什么?
复习回顾式导入新课有 助于让学生回顾所学知
7x, -2a²bc, -t², 3ab , 4 ut³, -10xy³z². 10 7
2. 下列代数式中,哪些是单项式?哪些不是?
识,为本节课的学习做好 铺垫.
教师对单项式乘以
入为: ma+mb+mc
单 项式的法则的阐述,有
所以容易得到: m(a+b+c) =ma+mb+mc

八年级上数学人教版《 整式的乘法》教案

八年级上数学人教版《 整式的乘法》教案

《整式的乘法》教案教学目标:1.掌握单项式与单项式相乘、单项式与多项式相乘、多项式与多项式相乘的运算方法。

2.学会用整式的乘法公式进行简便运算。

3.培养初步的运算能力,发展逻辑思维能力。

教学重点:掌握整式的乘法运算方法及简便运算。

教学难点:正确地进行整式的乘法运算。

教学准备:小黑板,投影仪。

教学过程:一、创设情境1.复习单项式与单项式的乘法法则及单项式与多项式的乘法法则。

2.列出算式:(4x+6)×5+7;(6+8y)×3+9。

二、探索新知1.教师讲解例5的题目(小黑板出示)。

(1)列出算式:(4x+6y)×3=12x+18y(教师板书)。

(2)讲解算式中各字母的意义及运算顺序。

(3)讲解整式的乘法法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

1.讲解例6的题目(小黑板出示)。

(1)教师列算式:(4x+6y)×(2x+3y)=8x2+12xy+6xy+18y2=8x2+18xy+18y2。

(2)讲解算式中各字母的意义及运算顺序。

(3)讲解整式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

三、拓展应用1.完成P38练习七的第1题。

学生独立完成,教师巡回指导,注意检查学生运算顺序是否正确,对运算中出现的问题及时给予指导。

然后集体订正。

2.完成P38练习七的第2题。

学生先独立完成,然后集体订正,订正时请一名学生板演。

对有困难的学生可引导他们先模仿着做,然后逐步掌握解题方法。

最后集体订正。

人教初中数学八上《整式的乘法 》教案 (公开课获奖)

人教初中数学八上《整式的乘法   》教案 (公开课获奖)

整式的乘法〔3〕〔一〕教学目标 知识与技能目标:理解多项式乘法的法那么,并会进行多项式乘法的运算. 过程与方法目标:经历探索多项式乘法的法那么的过程. 情感态度与价值观:通过探索多项式乘法法那么,让学生感受数学与生活的联系,同时感受整体思想、转化思想,并培养学生的抽象思维能力.教学重点:多项式与多项式相乘法那么及应用. 教学难点:● 多项式乘法法那么的推导. ● 多项式乘法法那么的灵活运用. 〔二〕教学程序 教学过程师生活动设计意图 一、问题情境导入新课为了扩大街心花园的绿地面积,把一块原长为m 米,宽为a 米的长方形绿地,增长了n 米,加宽了b 米.你能用几种方法求出扩大后的绿地面积?问题情境导入新课有助于激发学生的学习兴趣.二、新知讲解扩大后绿地的面积可以表示为(m+n)(a+b)或(ma+mb+na+nb),它们表示同一块地的面积,故有:(m+n)(a+b)= ma+mb+na+nb通过图示方法向学生展示多项式amb n多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加. 乘以多项式的过程.也可以这样考虑: 当X=m+n时, (a+b)X=?由单项式乘以多项式知 (a+b)X=aX+bX 于是,当X=m+n时,(a+b)X=(a+b)(m+n)=a(m+n)+b(m+n) 即 (a+b)(m+n)=am+an+bm+bn=am+an+bm+bn为学生提供不同的思维方式,以使学生更好的掌握此内容.例题讲解:例题1:计算:(1)(x+2y)(5a+3b); (2)(2x-3)(x+4);(3)(x+y)2; (4)(x+y)(x2-xy+y2)解:(1)(x+2y)(5a+3b)=x·5a+x·3b+2y·5a+2y·3b=5ax+3bx+10ay+6by;(2)(2x-3)(x+4)=2x2+8x-3x-12=2x2+5x-12(3)(x+y)2=(x+y)(x+y)=x2+xy+xy+y2=x2+2xy+y2;(4)(x+y)(x2-xy+y2)=x3-x2y+xy2+x2y-xy2+y3=x3+y3例题2:计算以下各题:多项式乘以多项式的具体应用,通过教师演示向学生提供严格的书写过程培养学生严谨的思维训练.〔1〕(a+3)·(b+5); 〔2〕(3x-y) (2x+3y); 〔3〕(a-b)(a+b); 〔4〕(a-b)(a 2+ab+b 2) 解:(1) (a+3)·(b+5) =ab+5a+3b+15; (2) (3x-y) (2x+3y)=6x 2+9xy-2xy-3y 2(多项式与多项式相乘的法那么) =6x 2+7xy-3y 2(合并同类项) (3)(a-b)(a+b) =a 2+ab-ab-b 2= a 2-b 2(4)(a-b)(a 2+ab+b 2) =a 3+a 2b+ab 2-a 2b-ab 2-b 3= a 3-b 3例题3:先化简,再求值:〔2a-3〕〔3a+1〕-6a 〔a-4〕其中a =2/17 解:〔2a-3〕〔3a+1〕-6a 〔a-4〕 =6a 2+2a-9a-3-6a 2+24a =17a-3当a =2/17时,原式=17×2/17-3=-1 例题4:观察以下解法,判断是否正确,假设错请说出理由。

八年级数学上人教版《整式的乘法》教案

八年级数学上人教版《整式的乘法》教案

《整式的乘法》教案一、教学目标:1.掌握整式乘法的基本法则和运算步骤。

2.能够正确地进行整式的乘法运算。

3.培养学生的运算能力和代数思维,体验数学中的一般思想和方法。

二、教学内容:1.单项式与单项式相乘。

2.单项式与多项式相乘。

3.多项式与多项式相乘。

4.乘法公式。

三、教学重点:1.单项式与单项式、单项式与多项式、多项式与多项式相乘的运算法则。

2.乘法公式的推导和应用。

四、教学难点:1.乘法公式的推导和理解。

2.运用乘法公式进行复杂整式乘法的运算。

五、教学方法:1.通过实例引入,引导学生自主探究,发现整式乘法的规律和法则。

2.通过讲解、示范和练习相结合的方式,使学生掌握运算法则和运算步骤。

3.运用多媒体教学工具,帮助学生更好地理解抽象的概念和解决问题的方法。

六、教学过程:1.导入新课:通过复习旧知,引出新课题。

引导学生观察、思考整式乘法的规律和特点。

2.新课学习:通过实例讲解和示范,引导学生探究单项式与单项式、单项式与多项式、多项式与多项式相乘的运算法则。

然后通过练习题和例题讲解,使学生掌握运算法则和运算步骤。

最后推导乘法公式,并讲解其意义和应用。

3.课堂练习:通过练习题和例题讲解,使学生能够正确地进行整式的乘法运算,并运用乘法公式进行复杂整式乘法的运算。

同时引导学生发现整式乘法中的规律和特点,培养其代数思维和运算能力。

4.归纳小结:总结整式乘法的运算法则和运算步骤,强调重点和难点。

同时强调学生在运算中需要注意的事项,如符号问题、括号问题等。

人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教案

人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教案

人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教案一. 教材分析人教版数学八年级上册15.1.3《整式的乘法》是整式部分的重要内容,也是学习多项式乘法、平方差公式和完全平方公式的基石。

本节课主要让学生掌握整式乘法的基本方法,理解乘法分配律在整式乘法中的应用,为后续学习更复杂的整式运算打下基础。

二. 学情分析学生在七年级时已经学习了有理数的乘法、分配律等基础知识,对于整式的加减法有一定的了解。

但是,对于整式的乘法运算,学生可能还存在着一定的困难。

因此,在教学过程中,要注重引导学生理解乘法分配律,并通过大量的练习让学生熟练掌握整式乘法的方法。

三. 教学目标1.知识与技能:让学生掌握整式乘法的基本方法,理解乘法分配律在整式乘法中的应用。

2.过程与方法:通过实例演示、自主探究、合作交流等方式,让学生经历整式乘法的过程,培养学生的运算能力和思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.教学重点:整式乘法的基本方法。

2.教学难点:乘法分配律在整式乘法中的应用。

五. 教学方法采用启发式教学法、情境教学法、合作学习法等多种教学方法,引导学生主动探究、合作交流,培养学生的运算能力和思维能力。

六. 教学准备1.教师准备:熟练掌握整式乘法的方法,准备相关教学案例和练习题。

2.学生准备:掌握有理数的乘法、分配律等基础知识。

七. 教学过程1. 导入(5分钟)教师通过一个实际问题引导学生思考:已知长方形的长是10cm,宽是5cm,求长方形的面积。

学生可以很容易地得出答案,从而引出整式乘法的概念。

2. 呈现(10分钟)教师通过PPT展示整式乘法的定义和基本方法,引导学生理解整式乘法的运算规律。

例如,对于两个整式ax + b和cx + d的乘法,可以将其看作是(a c)x^2 + (a d + b c)x + b d。

3. 操练(10分钟)教师给出几个简单的整式乘法例子,让学生在纸上完成。

人教版初中数学八年级上册第14章整式的乘法与因式分解(教案)

人教版初中数学八年级上册第14章整式的乘法与因式分解(教案)
1.培养学生的逻辑思维能力:通过学习整式的乘法与因式分解,使学生能够运用所学知识分析问题、解决问题,提高逻辑思维水平。
2.提升运算能力:让学生掌握整式的乘法与因式分解的运算方法,培养他们准确、快速地进行数学运算的能力。
3.增强数学建模素养:引导学生将实际问题转化为数学模型,运用整式的乘法与因式分解解决生活中的问题,提高数学建模素养。
五、教学反思
在本次教学中,我采用了导入新课、新课讲授、实践活动、小组讨论和总结回顾等环节,引导学生学习整式的乘法与因式分解。通过这节课的教学,我发现以下几个方面值得反思:
1.学生对整式乘法法则的理解程度。在授课过程中,我发现部分学生对多项式乘以多项式、多项式乘以单项式的运算法则掌握不够熟练,导致在计算过程中出现错误。针对这一问题,我决定在接下来的教学中加强学生对乘法法则的练习,特别是同类项的合并和乘法分配律的运用。
4.实践活动与小组讨论的效果。在实践活动中,学生们积极参与,课堂氛围较好。但在小组讨论过程中,我发现部分学生参与度不高,讨论效果不理想。为了提高学生的参与度,我将在下次教学中尝试采取更多鼓励性和激励性的措施,如设置小组竞赛、优秀成果展示等。
5.教学方法的选择。在本节课中,我尝试采用了多种教学方法,如讲解、举例、讨论等。但课后我发现,部分学生对知识的掌握程度并不理想。针对这一问题,我将在今后的教学中进一步优化教学方法,注重启发式教学,提高学生的课堂参与度和思考能力。
4.因式分解:了解因式分解的意义,掌握提公因式法、平方差公式法、完全平方公式法,解决实际问题。
5.综合运用:将整式的乘法与因式分解应用于解决实际问题,提高解题能力。
本章内容旨在使学生掌握整式的乘法与因式分解的基本方法,培养他们的逻辑思维能力和运算能力,为后续学习打下坚实基础。

人教版数学八年级上册14.1.4整式的乘法(第1课时)优秀教学案例

人教版数学八年级上册14.1.4整式的乘法(第1课时)优秀教学案例
人教版数学八年级上册14.1.4整式的乘法(第1课时)优秀教学案例
一、案例背景
本节课为人教版数学八年级上册第14章第1节第4课时,内容为整式的乘法。在此之前,学生已经学习了有理数的乘法、乘方的概念和性质,以及整式的加减法。本节课的学习为后续多项式乘多项式、多项式乘单项式、单项式乘单项式等知识的学习奠定基础。
(二)问题导向
1.自主探究:鼓励学生自主探究整式乘法的运算法则,培养学生的问题解决能力。例如,让学生尝试计算两个多项式的乘积,总结规律。
2.引导发现:教师引导学生发现整式乘法的运算法则,帮助学生建立知识体系。例如,通过分析两个多项式的乘积,引导学生发现整式乘法的分配律。
(三)小组合作
1.分组讨论:将学生分成小组,让学生在小组内讨论整式乘法的运算法则,培养学生的合作交流能力。例如,让学生分组讨论如何计算两个多项式的乘积,并总结出运算法则。
(二)讲授新知
1.自主探究:鼓励学生自主探究整式乘法的运算法则,培养学生的问题解决能力。例如,让学生尝试计算两个多项式的乘积,总结规律。
2.引导发现:教师引导学生发现整式乘法的运算法则,帮助学生建立知识体系。例如,通过分析两个多项式的乘积,引导学生发现整式乘法的分配律。
(三)学生小组讨论
1.分组讨论:将学生分成小组,让学生在小组内讨论整式乘法的运算法则,培养学生的合作交流能力。例如,让学生分组讨论如何计算两个多项式的乘积,并总结出运算法则。
2.问题导向与自主探究的结合:教师引导学生发现整式乘法的运算法则,帮助学生建立知识体系。同时,鼓励学生自主探究、尝试计算,培养学生的自主学习能力。
3.小组合作与互动交流:将学生分成小组,鼓励小组间的互动交流,让学生在分享经验中共同成长。通过小组讨论,培养学生的合作交流能力和团队协作精神。

人教版八年级数学上册14.1整式的乘法(教案)

人教版八年级数学上册14.1整式的乘法(教案)
五、教学反思
在今天的课程中,我们探讨了整式的乘法,这是数学中的一个重要概念。我发现,同学们在理解单项式与单项式相乘时,普遍能够掌握得比较好,但是当涉及到多项式与多项式相乘时,尤其是分配律的运用上,大家就显得有些吃力了。
我意识到,分配律的概念虽然基础,但在整式乘法中的应用却非常关键。在讲授过程中,我尝试通过多个例子的逐步解析,来帮助学生理解这个难点。从学生的反馈来看,这种方法似乎有所帮助,但仍有一部分同学需要更多的练习和指导。
2.教学难点
-理解并掌握多项式乘以多项式的运算过程,特别是分配律的灵活应用。
-在实际问题中,将问题抽象为整式乘法问题,并进行正确建模。
-对乘法公式(平方差公式、完全平方公式)的理解和记忆,以及在实际计算中的运用。
举例解释:
-难点在于多项式乘法中分配律的多次应用,如(x+2)*(x+3)=x^2+3x+2x+6,学生容易在计算过程中遗漏或错误分配。
举例解释:
-重点讲解同类项合并法则在单项式乘法中的应用,如(3x^2)*(4x^2)=12x^4。
-强调分配律在整式乘法中的重要性,如(x+1)*(x+2)=x^2+2x+x+2。
-通过实例展示平方差公式(a^2-b^2=(a+b)(a-b))和完全平方公式((a+b)^2=a^2+2ab+b^2)在整式乘法中的应用。
-在实际问题中,如计算长方体的体积时,学生需要将长、宽、高表示为整式,并正确应用整式乘法进行计算。
-学生在运用乘法公式时,常出现记错公式或不会正确代入变量的问题,需要通过反复练习和讲解来突破这一难点。
四、教学流程
(一)导入新课(用时5分钟)

人教版八年级数学上册教学设计14.1 整式的乘法

人教版八年级数学上册教学设计14.1  整式的乘法

人教版八年级数学上册教学设计14.1 整式的乘法一. 教材分析人教版八年级数学上册第14.1节整式的乘法是初中数学中的重要内容,主要介绍单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的方法。

这部分内容是学习更高阶数学的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。

二. 学情分析八年级的学生已经掌握了实数、代数式等基础知识,具备一定的逻辑思维能力和运算能力。

但学生在学习过程中,可能对整式乘法的运算规律理解不深,容易混淆运算规则。

因此,在教学过程中,需要引导学生理解并掌握整式乘法的基本原理和运算方法。

三. 教学目标1.知识与技能:使学生掌握整式的乘法运算方法,能够熟练进行整式的乘法运算。

2.过程与方法:通过实例分析,让学生经历探索整式乘法的过程,培养学生的运算能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在实际生活中的应用价值。

四. 教学重难点1.重点:整式的乘法运算方法。

2.难点:整式乘法中不同情况下的运算规律和技巧。

五. 教学方法1.采用问题驱动法,引导学生主动探索整式乘法的运算规律。

2.利用多媒体辅助教学,直观展示整式乘法的运算过程。

3.采用合作学习法,让学生在小组内讨论和交流,共同解决问题。

4.运用实例分析法,让学生通过具体例子,理解整式乘法的实际应用。

六. 教学准备1.多媒体教学设备。

2.教学课件。

3.练习题。

七. 教学过程导入(5分钟)通过一个实际问题引入整式乘法的学习:已知长方形的面积为长乘以宽,现在一个长方形的长是12cm,宽是5cm,求这个长方形的面积。

呈现(10分钟)1.引导学生思考:如何用数学表达式表示这个问题?2.引导学生得出:长方形的面积可以用整式表示,即 12cm × 5cm。

3.提问:如果我们不知道长方形的长和宽,只知道它们的乘积是60cm²,我们如何表示这个长方形的长和宽?操练(10分钟)1.让学生尝试解决这个问题的方法,并鼓励他们用自己的方式表示这个长方形的长和宽。

2024-2025学年人教版中学数学八年级(上)教案第十四章14.1.4整式的乘法(第课5时)

2024-2025学年人教版中学数学八年级(上)教案第十四章14.1.4整式的乘法(第课5时)

14.1.4 整式的乘法(第5课时)教学反思教学目标1.经历探索单项式除以单项式、多项式除以单项式的运算法则的过程,会进行简单的单项式除以单项式、多项式除以单项式的除法运算.2.理解单项式除以单项式、多项式除以单项式的运算算理,发展有条理的思维及表达能力.3.渗透转化思想,培养学生的概括能力和运算能力.教学重点难点重点:单项式除以单项式、多项式除以单项式的运算法则及其应用.难点:探索单项式与单项式相除、多项式与单项式相除的运算法则的过程.教学过程导入新课问题1:月球是距离地球最近的天体,它与地球的平均距离约为3.8×108千米.如果宇宙飞船以11.2千米/秒的速度飞行,到达月球大约需要多长时间?你是怎样计算的?1.列出算式:(3.8×108)÷11.2≈.2.讨论:因为11.2×()≈3.8×108 ,所以(3.8×108)÷11.2≈.师生活动教师提出问题,学生列出算式,讨论怎样计算出结果,然后回答.探究新知问题2:根据问题1中的方法计算下列各式:1.填一填:(1)2a·4a2=;(2)·3xy=6x2y;(3)×(4×102)=6×105;(4)乘法和互为逆运算,和减法互为逆运算;对照(1)(2)(3)题填空:(5)÷2a=4a2;(6)6x2y÷3xy=;(7)(6×105)÷(4×102)=.2.试一试:你能由上述计算方法计算下列各式吗?(1)8a3÷2a;(2)5x3y÷3xy;(3)12a3b2÷3ab2;(4)3a8÷2a4;(5)6a3b4÷3a2b;(6)14a3b2x÷4ab2.3.再思考: -21a2b3c÷3ab=,对此题中的c该怎么办?师生活动教师多媒体展示题目,学生思考后回答,最后讨论总结单项式除以单项式的运算法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.追问:单项式除以单项式的程序是怎样的?师生活动学生思考讨论后回答,互相补充,最后总结出:单项式除以单项式可以分为系数相除,同底数幂相除,只在被除式里含有的字母三部分运算.问题3:如何计算(am+bm)÷m,谈谈你是怎样计算的.师生活动教师出示题目,学生可能利用类比数的除法把除以单项式看成是乘这个单项式的倒数,也可能利用逆运算进行考虑,计算(am+bm)÷m实际上就是求一个多项式,使它与m的积是am+bm.∵ m(a+b)=am+bm,∴(am+bm)÷m=a+b.又am÷m+bm÷m=a+b,∴(am+bm)÷m=am÷m+bm÷m.追问1:你能根据上面的方法完成下面的题目吗?(1)(4x2y-2xy)÷2xy=;(2)(ma+mb+mc)÷m=.追问2:根据上面的解题过程你能归纳出多项式除以单项式的运算法则吗?师生活动教师出示问题,学生以小组为单位展开讨论,最后共同归纳总结:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.新知应用例计算:(1)28x4y2÷7x3y;(2)-5a5b3c÷15a4b;(3)(12a3-6a2+3a)÷3a;(4)[x(x2y2-xy)-y(x2-x3y)]÷ x2y.解:(1)28x4y2÷7x3y=(28÷7)·x4-3·y2-1=4xy;(2)-5a5b3c÷15a4b=[(-5)÷15]a5-4b3-1c=-13ab2c;(3)(12a3-6a2+3a)÷3a=12a3÷3a-6a2÷3a+3a÷3a=4a2-2a+1;(4)[x(x2y2-xy)-y(x2-x3y)]÷x2y=[(x3y2-x2y)-(x2y-x3y2)]÷x2y=(x3y2-x2y-x2y+x3y2)÷x2y=(2x3y2-2x2y)÷x2y=2x3y2÷x2y-2x2y÷x2y=2xy-2.师生活动师生共同分析解答,教师板书(1),学生板书(2)(3).在解答(1)的过程中重点提醒学生注意单项式除法的运算法则,在解答(2)(3)的过程中,同样注意上述问题.对于第(4)小题,教师提示学生两点:①运算顺序,②注意符号.课堂练习(见导学案“当堂达标”)参考答案1.D2.B3.7x64.(1)-2b2(2)-12xy3(3)-6x+2y-1(4)-xy-12y2+4x2y5.解:原式=[x2y2-4-(2x2y2-4)]÷xy =(x2y2-4-2x2y2+4)÷xy=(-x2y2)÷xy=-xy,将x=10,y=-125代入,得原式=-10×125⎛⎫-⎪⎝⎭=25.6.解:根据题意,得M(x)=(8x5-12x3+10x2)÷(-2x2)=8x5÷(-2x2)-12x3÷(-2x2)+10x2÷(-2x2)=-4x3+ 6x-5.∴ M(-1)=-4×(-1)3+6×(-1)-5=4-6-5=-7.课堂小结教师和学生一起回顾本节课所学内容,并请学生回答以下问题:1.单项式除以单项式的运算法则是什么?2.在单项式除以单项式的运算中应注意什么?3.多项式除以单项式的运算法则是什么?4.在多项式除以单项式的运算中应注意什么?布置作业教材第104页练习第2题、第3题.板书设计。

2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式分解 整式的乘法第2课教案

2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式分解 整式的乘法第2课教案

第十四章整式的乘法与因式分解14.1.4整式的乘法第2课时一、教学目标【知识与技能】理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.【过程与方法】经历探索多项式与多项式相乘的运算法则的推理过程,体会数学的转化思想.【情感、态度与价值观】通过推理,培养学生计算能力,发展有条理的思考,逐步形成主动探索的习惯.二、课型新授课三、课时第2课时,共3课时。

四、教学重难点【教学重点】多项式与多项式相乘的法则的概括与运用.【教学难点】灵活运用法则进行计算和化简.五、课前准备教师:课件、直尺等。

学生:练习本、钢笔或圆珠笔。

六、教学过程(一)导入新课为了把校园建设成为花园式的学校,经研究决定将原有的长为a米,宽为b米的足球场向宿舍楼方向加长m米,向厕所方向加宽n米,扩建成为美化校园绿草地.你是学校的小主人,你能帮助学校计算出扩展后绿地的面积吗?(出示课件2)(二)探索新知1.师生互动,探究多项式乘以多项式的法则教师问1:请同学们完成下面的题目:计算:(1)-2x2·3xy2;(2)-2x(1-x);学生回答:(1)-2x2·3xy2=-6x3y2;(2)-2x(1-x)=-2x+2x2;教师问2:结合上题回忆单项式乘以单项式是什么?学生回答:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.教师问3:如何进行单项式与多项式乘法的运算?(出示课件4)学生回答:(1)将单项式分别乘以多项式的各项.(2)再把所得的积相加.教师问4:进行单项式与多项式乘法运算时,要注意什么?学生讨论后回答:(1)不能漏乘:即单项式要乘多项式的每一项.(2)去括号时注意符号的变化.教师问5:类比单项式与单项式或多项式的计算法则,思考计算:(a+b)(p+q).教师给出提示:把多项式看成单项式学生讨论后回答:将(a+b)看做一个字母或将(p+q)看做一个字母进行计算.解法一:将(a+b)看做一个字母计算得:(a+b)(p+q)=(a+b)p+(a+b)q=ap+bp+aq+bq解法二:将(p+q)看做一个字母计算得:(a+b)(p+q)=a(p+q)+b(p+q)=ap+aq+bp+bq教师问6:再次观察:以上运算过程,从形式上说,这是什么运算?学生回答:多项式乘以多项式的运算.教师问7:多项式乘以多项式是怎么进行计算的?学生回答:题中是用一个多项式去乘以另一个多项式来计算的。

2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式 分解整式的乘法第1课教案

2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式 分解整式的乘法第1课教案

第十四章整式的乘法与因式分解14.1.4整式的乘法第1课时一、教学目标【知识与技能】1.会进行单项式乘单项式的运算.2.探索并了解单项式与多项式相乘的法则,会运用法则进行简单计算.【过程与方法】1.经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.2.进一步理解数学中“转化”“换元”的思想方法,即把单项式与多项式相乘转化为单项式与单项式相乘.【情感、态度与价值观】1.培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.2.逐步形成独立思考、主动探索的习惯,培养思维的严密性和初步解决问题的愿望和能力.二、课型新授课三、课时第1课时,共3课时。

四、教学重难点【教学重点】1.单项式与单项式相乘的法则.2.单项式与多项式相乘的法则及其运用.【教学难点】1.对单项式的乘法运算的算理的理解.2.单项式与多项式相乘去括号法则的应用.五、课前准备教师:课件、直尺、计算器等。

学生:直尺、计算器。

六、教学过程(一)导入新课教师:前面我们学习了幂的运算,这节课我们先来回答下面的问题,再进入今天的课题。

教师问1:幂的运算性质有哪几条?学生思考后找同学回答:同底数幂的乘法法则:a m·a n=a m+n( m、n都是正整数).幂的乘方法则:(a m)n=a mn ( m、n都是正整数).积的乘方法则:(ab)n=a n b n ( m、n都是正整数).教师对学生回答结果做出表扬后继续提问。

教师问2:计算:(1)x2· x3· x4= ;(2)(x3)6= ;(3)(–2a4b2)3= ;(4) (a 2)3 · a 4= ;(5)(- 53)5·(- 35)5= 。

学生回答:(1)x 9;(2)x 18;(3)-8a 12b 6;(4)a 10(5)1教师:复习完前面的相关知识后,下面进入今天的课题。

(二)探索新知1.师生互动,探究单项式乘法的意义下列代数式中,哪些是单项式?哪些是多项式?-2x 3;1+y ;45ab 3c ;-y ;6x 2-x +5;3ab 10. 学生回答:单项式有:-2x 3;45ab 3c ;-y ;3ab 10. 多项式有:1+y ;6x 2-x +5.教师问3:光的速度约为每秒3×105千米,太阳光射到地球上需要的时间约是5×102秒,地球与太阳的距离约是多少千米?(出示课件4)学生回答:地球与太阳的距离约是(3×105)×(5×102)km.教师问4:怎样计算(3×105)×(5×102)?计算过程中用到了哪些运算律及运算性质?(出示课件5)学生讨论后回答:(3×105)×(5×102)=(3×5)×(105×102) (乘法交换律、结合律)=15×107. (同底数幂的乘法)教师问5:15×107,这样书写规范吗?应该如何写呢?学生回答:不规范,应为1.5×108.教师问6:如果将上式中的数字改为字母,比如ac5·bc2,怎样计算这个式子?(出示课件6)学生讨论后回答:ac5·bc2是两个单项式ac5与bc2相乘,我们可以利用乘法交换律,结合律及同底数幂相乘的运算性质来计算:ac5·bc2 =(a ·b) ·(c5·c2) (乘法交换律、结合律)=abc5+2 (同底数幂的乘法)=abc7.教师问7:这是什么运算?如何进行运算?学生回答:乘法运算,单项式乘以单项式.教师问8:你能类比上题计算2x2y·3xy2;4a2x5·(-3a3bx)吗?学生尝试计算,交流,展示计算过程.(1)2x2y·3xy2=(2×3)(x2·x)(y·y2)=6x3y3;(2)4a2x5·(-3a3bx)=[4×(-3)](a2·a3)·b·(x5·x)=-12a5bx6.教师问9:用到了哪些知识?怎么进行单项式乘以单项式的运算?学生回答:运用了乘法的交换律和结合律,进行单项式乘以单项式的运算:把系数相乘,相同字,相同字母相乘.教师问10:你能总结单项式乘以单项式的规律吗?学生回答:单项式乘以单项式:把单项式的系数相乘,相同的字母相乘,再把所得的积相乘.教师问11:计算:5x2y3·7x3y4z2.学生回答:5x2y3·7x3y4z2=(5×7)·(x2·x3)(y3·y4)z2=35x5y7z2教师问12:计算5x2y3·7x3y4z2时,对于字母z2如何办呢?学生回答:只在一个因式中出现的字母,写在后边作为一项.教师问13:写在什么后边作为一项?学生回答:写在积的后面作为一项.总结点拨:(出示课件7)单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例1:计算:(出示课件8)(1)(–5a2b)(–3a);(2)(2x)3(–5xy2).解:(1)(–5a2b)(–3a)= [(–5)×(–3)](a2•a)b= 15a3b;(2)(2x)3(–5xy2)=8x3(–5xy2)=[8×(–5)](x3•x)y2=–40x4y2.总结点拨:(出示课件9)1. 在计算时,应先确定积的符号,积的系数等于各因式系数的积;2. 注意按顺序运算;3. 不要漏掉只在一个单项式里含有的字母因式;4. 此性质对三个及以上单项式相乘仍然适用.例2:已知–2x 3m +1y 2n 与7x n –6y –3–m 的积与x 4y 是同类项,求m 2+n 的值.(出示课件12)解:∵–2x 3m +1y 2n 与7x n –6y –3–m 的积与x 4y 是同类项,231,3164,--=⎧∴⎨++-=⎩n m m n解得:3,2,n m =⎧⎨=⎩∴m 2+n =7.总结点拨:单项式乘以单项式就是把它们的系数和同底数幂分别相乘,结合同类项的定义,列出二元一次方程组求出参数的值,然后代入求值即可.教师问14:如图,分别求出下边每块草坪的面积是多少?学生回答:如果把它看成三个小长方形,那么它们的面积可分别表示为pa 、pb 、pc.教师问15:如图,试求出三块草坪的总面积是多少?(出示课件14) 学生回答:pa+pb+pc.教师问16:如果把它们拼成一个大长方形,如下图,它的总面积是多少呢?(出示课件15)学生回答:如果把它看成一个大长方形,那么它的长为(a+b+c),面积可表示为p(a+b+c).教师问17:(出示课件17)由此我们可以得到什么呢?学生回答:pa+pb+pc=p(a+b+c).教师问18:看到这个等式,你想到了什么呢?学生回答:想到了乘法分配律!教师问19:哪位同学能说一下乘法分配律是怎样计算的呢?学生根据自己的理解回答。

人教版八年级数学上册:141整式的乘法优秀教学案例

人教版八年级数学上册:141整式的乘法优秀教学案例
(三)情感态度与价值观
在本节课的教学过程中,我将关注学生的情感态度和价值观的培养,使学生在学习过程中形成积极的数学学习态度,树立正确的数学价值观。具体包括:
1.通过激励和表扬,增强学生学习数学的自信心,培养学生的自主学习能力。
2.引导学生认识到整式乘法在实际生活中的应用,使学生明白学习数学的意义和价值。
四、教学内容与过程
(一)导入新课
导入新课是激发学生学习兴趣和动机的关键环节。我会通过一个生活实例来导入新课。例如,我可以设计一个购物场景,让学生计算商品的打折后的价格。我可以展示一张购物清单,上面列出了商品的原价和折扣信息。我会让学生尝试计算每件商品的打折后的价格,并计算总价。通过这个实例,学生能够直观地感受到整式乘法的实际应用,从而激发他们对整式乘法的兴趣和动机。
(四)反思与评价
反思与评价是教学过程中的重要环节,能够帮助学生巩固知识,提高思维能力。在教学过程中,我会引导学生进行自我反思和评价。例如,我可以让学生回顾和总结自己在整式乘法学习中的优点和不足,思考如何改进和提高。同时,我还会对学生的学习情况进行评价,给予肯定和鼓励,并提出改进的建议。通过反思与评价,学生能够更好地认识自己的学习情况,明确自己的学习目标和方向,从而提高学习效果。
(三)学生小组讨论
在讲授完新知识后,我会组织学生进行小组讨论。我会给出一些练习题,让学生在小组内进行合作解答。这些练习题会涵盖整式乘法的不同情况和要求。通过小组讨论,学生能够互相交流和分享解题思路和方法,培养他们的合作意识和团队精神。同时,学生能够通过讨论和解决问题,加深对整式乘法的理解,并巩固所学的知识。
(二)问导向
问题导向的教学策略能够激发学生的思考和探索能力。在教学过程中,我会提出一系列的问题,引导学生思考和探究整式乘法的本质和规律。例如,我可以问学生:“整式乘法是什么?它是如何产生的?”这个问题可以引导学生思考整式乘法的定义和背景。另外,我还可以问学生:“整式乘法有哪些运算法则?它们是如何推导出来的?”这个问题可以引导学生探究整式乘法的规则和原理。通过问题的引导,学生能够主动思考和探索,从而加深对整式乘法的理解。

人教版八年级数学上册第14章整式的乘法与因式分解大单元教学设计

人教版八年级数学上册第14章整式的乘法与因式分解大单元教学设计
1.导入新课:通过实际生活中的例子,引出整式的乘法与因式分解的概念。
2.整式的乘法:讲解单项式与单项式、单项式与多项式、多项式与多项式的乘法法则,让学生通过练习熟练掌握。
3.因式分解:引导学生探索提公因式法、平方差公式、完全平方公式等因式分解方法,并通过实例讲解和练习,让学生掌握这些方法。
4.应用拓展:设计具有挑战性的实际问题,让学生运用所学的整式乘法与因式分解知识解决问题,提高他们的数学应用能力。
6.定期进行课堂小结和单元测试,及时了解学生的学习进度和掌握情况。通过测试结果,分析学生的薄弱环节,针对性地进行教学调整。
7.结合信息技术,利用多媒体教学资源和网络平台,为学生提供丰富的学习资源和拓展练习。这样既可以满足不同学生的学习需求,又可以拓宽学生的知识视野。
8.培养学生自主学习的能力,鼓励他们在课后进行自主探索和实践。通过布置探究性作业,引导学生主动发现问题、解决问题。
3.引入新课:通过以上讨论,教师引导学生认识到整式乘法在解决实际问题中的重要性,进而导入新课——整式的乘法与因式分解。
(二)讲授新知
在讲授新知环节,教师将详细讲解整式的乘法法则和因式分解方法。
1.整式的乘法法则:教师通过具体例子,讲解单项式与单项式、单项式与多项式、多项式与多项式的乘法法则,并引导学生观察规律,总结通用的乘法法则。
在此基础上,学生对数学学习的兴趣和积极性存在差异,部分学生对数学具有较强的兴趣,愿意主动探究和解决问题;而另一部分学生可能对数学学习抱有恐惧心理,缺乏信心。因此,在本章节的教学中,教师应关注学生的情感态度,激发他们的学习兴趣,帮助他们建立自信心。
此外,学生在数学思维和解决问题的策略上也需要进一步培养。针对这些情况,教师应结合学生的实际情况,采用多样化的教学手段和策略,促进学生的全面发展。

2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式分解 积的乘方教案

2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式分解 积的乘方教案

第十四章整式的乘法与因式分解14.1整式的乘法14.1.3积的乘方一、教学目标【知识与技能】探索积的乘方的运算性质,能用积的乘方的运算性质进行计算.【过程与方法】经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.【情感、态度与价值观】培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.二、课型新授课三、课时第1课时四、教学重难点【教学重点】积的乘方运算法则的理解及其应用.【教学难点】积的乘方推导过程的理解和灵活运用.五、课前准备教师:课件、直尺、计算器等。

学生:直尺、计算器。

六、教学过程(一)导入新课若已知一个正方体的棱长为2×103cm,你能计算出它的体积是多少吗?学生思考后列式:V=(2×103)3(cm3)教师提出问题:底数是2和103的乘积,虽然103是幂,但总体来看,它是积的乘方。

积的乘方如何运算呢?能不能找到一个运算法则?(出示课件2)(二)探索新知1.创设情境,探究积的乘方的法则教师问1:请同学们完成下面的题目计算:(1)x2·x5;(2)y2n·y n+1;(3)(x4)3;(4)(a2)3·a5.学生回答:(1)x7;(2)y3n+1;(3)x12;(4)a11.教师问2:同底数幂的乘法法则,幂的乘方法则是什么?学生回答:同底数幂的乘法法则:底数不变,指数相加;a m·a n=a m+n (m,n都是正整数).幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n都是正整数).教师问3:地球半径约为6.4×103km,球的体积计算公式为:V=4πr3,你知道3地球的体积大约是多少吗?(出示课件4)学生独立思考问题3并口答:体积应是V=4π(6.4×103)3km3.3教师问4:结果是幂的乘方形式吗?学生讨论后回答:底数是6.4和103的乘积,虽然103是幂,但总体来看不是幂的乘方.教师讲解:如何运算呢?本节课我和同学们一起来探究积的乘方的运算.教师问4:计算:(3×4)2和32×42,看一下他们的结果,你发现了什么?学生计算后回答:它们的结果相等,即(3×4)2=32×42教师问5:下列两题有什么特点?(出示课件7)(1)(ab)2;(2)(ab)3学生回答:底数为两个因式相乘,积的形式.教师问6:你猜想一下它们的结果是多少呢?学生回答:(ab)2=a2b2,则(ab)3=a3b3,教师问7:你能证明上边的猜想吗?(出示课件8)学生讨论并回答:(ab)2=(ab)·(ab)(乘方的意义)=(aa)·(bb)(乘法交换律、结合律)=a2b2(同底数幂相乘的法则)同理:(ab)3=(ab)·(ab)·(ab)(乘方的意义)=(aaa)·(bbb)(乘法交换律、结合律)=a3b3(同底数幂相乘的法则)教师问8:同学们试着猜想一下:(ab)n=?(出示课件9)学生猜想:(ab)n=a n b n.教师问9:你能用你学过的知识验证你的猜想吗?从运算结果看能发现什么规律?师生共同讨论后解答如下:因此可得:(ab)n=a n b n(n为正整数).教师总结:得到结论:(出示课件10)积的乘方:(ab)n=a n·b n(n是正整数),即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.教师问10:前面提出问题中正方体的体积V=(2×103)3它不是最简形式,根据发现的规律如何计算呢?学生解答:可作如下运算:V=(2×103)3=23×(103)3=23×103×3=8×109cm3.教师问11:三个或三个以上的积的乘方等于什么?学生讨论后回答:三个或三个以上的因式的积的乘方也具有这一性质.如(abc)n=a n·b n·c n(n为正整数);教师讲解:积的乘方等于积中“每一个”因式乘方的积,防止有的因式漏掉乘方出现错误;教师问12:积的乘方的法则:(ab)n=a n·b n(n是正整数),把等式的左右两边一换可以得到:a n·b n=(ab)n(n为正整数).这样成立吗?师生共同讨论后解答如下:积的乘方法则可以进行逆运算.即:a n·b n=(ab)n(n为正整数).总结点拨:分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:同指数幂相乘,底数相乘,指数不变.例1:计算:(出示课件11)(1)(2a)3;(2)(–5b)3;(3)(xy2)2;(4)(–2x3)4.师生共同解答如下:解:(1)原式=23a3=8a3;(2)原式=(–5)3b3=–125b3;(3)原式=x2(y2)2=x2y4;(4)原式=(–2)4(x3)4=16x12.总结点拨:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方.例2计算:(出示课件14)(1)–4xy2·(xy2)2·(–2x2)3;(2)(–a3b6)2+(–a2b4)3.师生共同解答如下:解:(1)原式=–4xy2·x2y4·(–8x6)=[–4×(–8)]x1+2+6y2+4=32x9y6;(2)原式=a6b12+(–a6b12)=[1+(–1)]a6b12=0总结点拨:涉及积的乘方的混合运算,一般先算积的乘方,再算乘法,最后算加减,然后合并同类项.例3:如何简便计算(0.04)2022×[(–5)2022]2?(出示课件15)师生共同解答如下:解法一:(0.04)2022×[(–5)2022]2=(0.22)2022×54044=(0.2)4044×54044=(0.2×5)4044=14044=1解法二:(0.04)2022×[(–5)2022]2=(0.04)2022×(25)2022=(0.04×25)2022=12022=1总结点拨:(出示课件16)①逆用积的乘方公式a n·b n=(ab)n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式.②一般转化为底数乘积是一个正整数,再进行幂的计算较简便.(三)课堂练习(出示课件20-24)1.计算(–x2y)2的结果是()A.x4y2B.–x4y2C.x2y2D.–x2y22.下列运算正确的是()A.x•x2=x2B.(xy)2=xy2C.(x2)3=x6D.x2+x2=x43.计算:(1)82024×0.1252023=________;(2)(-3)2023×(-13)2022________;(3)(0.04)2023×[(–5)2023]2=________.4.判断:(1)(ab2)3=ab6()(2)(3xy)3=9x3y3() (3)(–2a2)2=–4a4()(4)–(–ab2)2=a2b4() 5.计算:(1)(ab)8;(2)(2m)3;(3)(–xy)5;(4)(5ab2)3;(5)(2×102)2;(6)(–3×103)3.6.计算:(1)2(x3)2·x3–(3x3)3+(5x)2·x7;(2)(3xy2)2+(–4xy3)·(–xy);(3)(–2x3)3·(x2)2.7.如果(a n•b m•b)3=a9b15,求m,n的值.参考答案:1.A2.C3.(1)8;(2)-3;(3)14.(1)×(2)×(3)×(4)×5.解:(1)原式=a8b8;(2)原式=23·m3=8m3;(3)原式=(–x)5·y5=–x5y5;(4)原式=53·a3·(b2)3=125a3b6;(5)原式=22×(102)2=4×104;(6)原式=(–3)3×(103)3=–27×109=–2.7×1010.6.(1)解:原式=2x6·x3–27x9+25x2·x7=2x9–27x9+25x9=0;(2)解:原式=9x2y4+4x2y4=13x2y4;(3)解:原式=–8x9·x4=–8x13.7.解:∵(a n•b m•b)3=a9b15,∴(a n)3•(b m)3•b3=a9b15,∴a3n•b3m•b3=a9b15,∴a3n•b3m+3=a9b15,∴3n=9,3m+3=15.∴n=3,m=4.(四)课堂小结今天我们学了哪些内容:积的乘方法则:(ab)n=a n·b n(n是正整数).使用范围:底数是积的乘方.方法:把积的每一个因式分别乘方,再把所得的幂相乘.注意点:(1)注意防止符号上的错误;(2)三个或三个以上的因式的积的乘方也具有这一性质;(3)积的乘方法则也可以逆用.(五)课前预习预习下节课(14.1.4)98页到99页的相关内容。

八年级数学上人教版《整式的乘除与因式分解》教案

八年级数学上人教版《整式的乘除与因式分解》教案

《整式的乘除与因式分解》教案一、教学目标:1.掌握整式的乘除运算,会进行简单的因式分解。

2.理解因式分解的意义,掌握因式分解的方法。

3.能够正确地进行整式的乘除运算和因式分解,培养分析和解决问题的能力。

二、教学重点:1.整式的乘除运算。

2.因式分解的方法。

三、教学难点:1.正确地进行整式的乘除运算。

2.掌握因式分解的方法。

四、教学准备:教师准备多媒体课件、小黑板;学生准备计算器、纸张等。

五、教学过程:1.导入新课:回顾整式的加减运算,引出整式的乘除和因式分解的概念。

2.新课学习:a. 整式的乘除运算:通过具体实例,让学生理解整式的乘除运算方法,并能够正确地进行计算。

同时,让学生掌握公式的应用和简化计算的方法。

b. 因式分解:通过具体实例,让学生理解因式分解的意义和作用,并掌握因式分解的基本方法。

同时,让学生了解因式分解在实际问题中的应用。

3.课堂练习:通过练习题,让学生巩固所学知识,加深对整式的乘除运算和因式分解的理解。

4.归纳小结:总结整式的乘除运算和因式分解的方法和注意事项,帮助学生建立完整的知识体系。

5.布置作业:根据学生的实际情况,布置适当的课后练习题,并要求学生在规定的时间内完成。

同时可以安排一些拓展性的任务,如让学生自己设计一个与整式的乘除和因式分解相关的小课题等。

6.教学反思:根据学生的学习情况,对教学方法和过程进行反思和总结,发现问题并及时改进。

同时可以引导学生思考整式的乘除和因式分解在现实生活中的应用和价值,培养学生的数学应用意识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.1.1同底数幂的乘法教学目标1.知识与技能在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用.2.过程与方法经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力.3.情感、态度与价值观在小组合作交流中,培养协作精神、探究精神,增强学习信心.重点难点1.重点:同底数幂乘法运算性质的推导和应用.2.难点:同底数幂的乘法的法则的应用.教学方法采用“情境导入──探究提升”的方法,让学生从生活实际出发,认识同底数幂的运算法则.教学过程一、创设情境,故事引入【情境导入】“盘古开天壁地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.【教师提问】盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,•你能计算出地球距离太阳大约有多远呢?【学生活动】开始动笔计算,大部分学生可以列出算式:3×105×5×102=15•×105×102=15×?(引入课题)【教师提问】到底105×102=?同学们根据幂的意义自己推导一下,现在分四人小组讨论.【学生活动】分四人小组讨论、交流,举手发言,上台演示. 计算过程:105×102=(10×10×10×10×10)×(10×10) =10×10×10×10×10×10×10 =107【教师活动】下面引例. 1.请同学们计算并探索规律.(1)23×24=(2×2×2)×(2×2×2×2)=2( );(2)53×54=_____________=5( );(3)(-3)7×(-3)6=___________________=(-3)( );(4)(110)3×(110)=___________=(110)( ); (5)a 3·a 4=________________a( ).提出问题:①这几道题目有什么共同特点?②请同学们看一看自己的计算结果,想一想,这些结果有什么规律? 【学生活动】独立完成,并在黑板上演算. 【教师拓展】计算a ·a=?请同学们想一想.【学生总结】a ·a=()()()()m aam n aa a a a a a a a a a +=gg g g g g g g g g g g g g 142431424314243个n个个=a m+n这样就探究出了同底数幂的乘法法则. 二、范例学习,应用所学【例】计算:(1)103×104; (2)a ·a 3; (3)a ·a 3·a 5; (4)x ·x 2+x 2·x【思路点拨】(1)计算结果可以用幂的形式表示.如(1)103×104=103+4=107,但是如果计算较简单时也可以计算出得数.(2)注意a 是a 的一次方,•提醒学生不要漏掉这个指数1,x 3+x 3得2x 3,提醒学生应该用合并同类项.(3)上述例题的探究,•目的是使学生理解法则,运用法则,解题时不要简化计算过程,要让学生反复叙述法则. 【教师活动】投影显示例题,指导学生学习.【学生活动】参与教师讲例,应用所学知识解决问题.三、随堂练习,巩固深化 课本P96练习题. 【探研时空】据不完全统计,每个人每年最少要用去106立方米的水,1立方米的水中约含有3.34×1019个水分子,那么,每个人每年要用去多少个水分子?四、课堂总结,发展潜能1.同底数幂的乘法,使用范围是两个幂的底数相同,且是相乘关系,•使用方法:乘积中,幂的底数不变,指数相加.2.应用时可以拓展,例如含有三个或三个以上的同底数幂相乘,仍成立,•底数和指数,它既可以取一个或几个具体数,由可取单项式或多项式.3.运用幂的乘法运算性质注意不能与整式的加减混淆.五、布置作业,专题突破1.课本P104习题14.1第1(1),(2),2(1)题.2.选用课时作业设计.板书设计14.1.1同底数幂的乘法1、同底数幂的乘法法则例:练习:14.1.2 幂的乘方教学目标1.知识与技能理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.2.过程与方法经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.3.情感、态度与价值观培养学生合作交流意义和探索精神,让学生体会数学的应用价值.重点难点1.重点:幂的乘方法则.2.难点:幂的乘方法则的推导过程及灵活应用.在引导这个推导过程时,步步深入,层层引导,•要求对性质深入地理解. 教学方法采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则. 教学过程一、创设情境,导入新知【情境导入】大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,•木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r ,那么,•请同学们计算一下太阳和木星的体积是多少?(球的体积公式为V=43πr 3) 【学生活动】进行计算,并在黑板上演算.解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为 V 木星=43π·(102)3=?(引入课题). 【教师引导】(102)3=?利用幂的意义来推导. 【学生活动】有些同学这时无从下手.【教师启发】请同学们思考一下a 3代表什么?(102)3呢?【学生回答】a 3=a ×a ×a ,指3个a 相乘.(102)3=102×102×102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102×102×102=102+2+2=106,•因此(102)3=106.【教师活动】下面有问题:利用刚才的推导方法推导下面几个题目:(1)(a 2)3;(2)(24)3;(3)(b n )3;(4)-(x 2)2. 【学生活动】推导上面的问题,个别同学上讲台演示.【教师推进】请同学们根据所推导的几个题目,推导一下(a )的结果是多少? 【学生活动】归纳总结并进行小组讨论,最后得出结论: (a m)n=()n mmm m m m m ma a a a a+++=6447448g g g g g g g 1442443个n 个= a mn.评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.二、范例学习,应用所学【例】计算:(1)(103)5;(2)(b3)4;(3)(x n)3;(4)-(x7)7.【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.【教师活动】启发学生共同完成例题.【学生活动】在教师启发下,完成例题的问题:并进一步理解幂的乘方法则:解:(1)(103)5=103×5=1015;(3)(x n)3=x n×3=x3n;(2)(b3)4=b3×4=b12;(4)-(x7)7=-x7×7=-x49.三、随堂练习,巩固练习课本P97练习.【探研时空】计算:-x2·x2·(x2)3+x10.【教师活动】巡视、关注中等、中下的学生,媒体显示练习题.【学生活动】书面练习、板演.四、课堂总结,发展潜能1.幂的乘方(a m)n=a mn(m,n都是正整数)使用范围:幂的乘方.方法:底数不变,指数相乘. 2.知识拓展:这里的底数、指数可以是数,可以是字母,•也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,•一个是“指数相加”.五、布置作业,专题突破课本P104习题15.1第1、2题.板书设计14.1.2 幂的乘方1、幂的乘方的乘法法则例:练习:14.1.3 积的乘方教学目标1.知识与技能通过探索积的乘方的运算性质,进一步体会和巩固幂的意义,在推理得出积的乘方的运算性质的过程中,领会这个性质.2.过程与方法经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力. 3.情感、态度与价值观通过小组合作与交流,培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.重点难点1.重点:积的乘方的运算.2.难点:积的乘方的推导过程的理解和灵活运用.要突破这个难点,教师应该在引导这个推导过程时,步步深入,•层层引导,而不该强硬地死记公式,只有在理解的情况下,才可以对积的乘方的运算性质灵活地应用.教学方法采用“探究──交流──合作”的方法,让学生在互动中掌握知识.教学过程一、回顾交流,导入新知【教师活动】提问学生在前面学过的同底数幂的运算法则;幂的乘方运算法则的内容以及区别.【学生活动】踊跃举手发言,解说老师的提问.【课堂演练】计算:(1)(x4)3(2)a·a5(3)x7·x9(x2)3【学生活动】完成上面的演练题,并从中领会这两个幂的运算法则.【教师活动】巡视,关注学生的练习,并请3位学生上台演示,•然后再提出下面的问题.同学们思考怎样计算(2a3)4,每一步的根据是什么?【学生活动】先独立完成上面的问题,再小组讨论.(2a3)4=(2a3)·(2a3)·(2a3)·(2a3)(乘方的含义)=(2·2·2·2)·(a3·a3·a3·a3)(乘法交换律、结合律)=24·a12(乘方的意义与同底数幂的乘法运算)=16a 12【教师活动】提出应用以上分析问题的过程,再计算(ab )4,说出每一步的根据是什么? 【学生活动】独立思考之后,再与同学交流. (ab )4=(ab )·(ab )·(ab )·(ab )(乘方的含义) =(aaaa )·(bbbb )(交换律、结合律) =a 4·b 4(乘方的含义)【教师提问】(1)请同学们通过计算,观察乘方结果之后,•你能得出什么规律?(2)如果设n 为正整数,将上式的指数改成n ,即:(ab )n,其结果是什么? 【学生活动】回答出(ab )n=a n b n.【师生共识】我们得到了积的乘方法则:(ab )n=a n b n(n 为正整数),这就是说,积的乘方等于积的每个因式分别乘方,再把所得的幂相乘.(ab )n=()()()()()n n n ab ab ab aaa a b b b b g g g g g g g g g g g g 14424431424314243个个个=a n b n【教师活动】拓展训练:三个或三个以上的积的乘方,如(abc )n, 【学生活动】回答出结果是(abc )n=a nb nc n. 二、范例学习,应用所学 【例】计算:(1)(2b )3;(2)(2×a 3)2;(3)(-a )3;(4)(-3x )4. 【教师活动】组织、讲例、提问. 【学生活动】踊跃抢答. 三、随堂练习,巩固深化 课本P98练习. 【探研时空】 计算下列各式: (1)(-35)2·(-35)3; (2)(a -b )3·(a -b )4; (3)(-a 5)5; (4)(-2xy )4;(5)(3a 2)n; (6)(xy 3n)2-[(2x )2] 3; (7)(x 4)6-(x 3)8; (8)-p ·(-p )4; (9)(t m)2·t ; (10)(a 2)3·(a 3)2. 四、课堂总结,发展潜能本节课注重课堂引入,激发学生兴趣,“良好开端等于成功一半”.1.积的乘方(ab)n=a n b n(n是正整数),使用范围:底数是积的乘方.方法:把积的每一个因式分别乘方,再把所得的幂相乘.2.在运用幂的运算法则时,注意知识拓展,底数和指数可以是数,•也可以是整式,对三个以上因式的积也适用.3.要注意运算过程,注意每一步依据,还应防止符号上的错误.4.在建构新的法则时应注意前面学过的法则与新法则的区别和联系.五、布置作业,专题突破1.课本P148习题14.1第1、2题.板书设计14.1.4整式的乘法(1)教学目标1.知识与技能理解整式运算的算理,会进行简单的整式乘法运算.2.过程与方法经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.3.情感、态度与价值观培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.重点难点1.重点:单项式乘法运算法则的推导与应用.2.难点:单项式乘法运算法则的推导与应用.通过创设一定的问题情境,•推导出单项式与单项式相乘的运算法则,可以采用循序渐进的方法突破难点.教学方法采用“情境──探究”的教学方法,让学生在创设的情境之中自然地领悟知识.教学过程一、创设情境,操作导入【手工比赛】让学生在课前准备一张自己最满意的照片,自己制作一个美丽的像框.上课之后,首先来做游戏,“才艺大献”,把自己的照片加一个美丽的像框,看谁在10分钟之内,可以装饰出美丽的照片,谁的最好,老师就送他个好礼物.【教师活动】组织学生参加“才艺比赛”.【学生活动】完成上述手工制作,与同伴交流.【教师引导】在学生完成之后,教师拿出一张美丽的风景照片,提出问题:你们看这幅美丽的风景图片,如何装饰它会更漂亮?【学生回答】加一个美丽的像框.【引入课题】假如要加一个美丽的像框,需要知道这幅图片的大小,现在告诉你,图片的长为mx,宽为x,你能计算出图片的面积吗?【学生活动】动手列式,图片的面积为mx·x=?【教师提问】对于mx·x=?的问题,前面我们已学习了乘法的运算律以及幂的运算法则,现在请你运用已学知识推导出它的结果.【学生活动】先独立思考,再与同伴交流.实际上mx·x=m(x·x)=m·x2=mx2.【拓展延伸】请同学们继续计算mx·54x=?【学生活动】先独立完成,再与同伴交流,踊跃上台演示.mx·54x=m·54x·x=m·54x2=54mx2.【教师活动】请部分学生上台演示,然后大家共同讨论.【继续探究】计算:(1)x·mx;(2)2a2b·3ab3;(3)(abc)·b2c.【学生活动】独立完成,再与同学交流.【教师活动】总结新知:我们根据自己做的题目的原则,得到单项式与单项式相乘的运算法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,放在积的因式中.二、范例学习,应用所学【例1】计算.(1)3x2y·(-2xy3)(2)(-5a2b3)·(-4b2c)【思路点拨】例1的两个小题,可先利用乘法交换律、•结合律变形成数与数相乘,同底数幂与同底数幂相乘的形式,单独一个字母照抄.【例2】卫星绕地球运动的速度(即第一宇宙速度)约为7.9×103米/秒,•则卫星运行3×102秒所走的路程约是多少?【教师活动】:引导学生参与到例1,例2的解决之中.【学生活动】参与到教师的讲例之中,巩固新知.三、问题讨论,加深理解【问题牵引】1.a·a可以看作是边长为a的正方形的面积,a·ab又怎样理解呢?2.想一想,你会说明a·b,3a·2a以及3a·5ab的几何意义吗?【教师活动】问题牵引,引导学生思考,提问个别学生.【学生活动】分四人小组,合作学习.四、随堂练习,巩固深化课本P99练习第1、2题.五、课堂总结,发展潜能本节内容是单项式乘以单项式,重点是放在对运算法则的理解和应用上.提问:(1)请同学们归纳出单项式乘以单项式的运算法则.(2)在应用单项式乘以单项式运算法则时应注意些什么?六、布置作业,专题突破1.课本P104习题15.1第3题.2.选用课时作业设计.板书设计14.1.4整式的乘法(1)1、单项式乘以单项式的乘法法则例:练习:14.1.4整式的乘法(2)教学目标1.知识与技能让学生通过适当尝试,获得一些直接的经验,体验单项式与多项式的乘法运算法则,会进行简单的整式乘法运算.2.过程与方法经历探索单项式与多项式相乘的运算过程,体会乘法分配律的作用和转化思想,发展有条理地思考及语言表达能力.3.情感、态度与价值观培养良好的探究意识与合作交流的能力,体会整式运算的应用价值.重点难点1.重点:单项式与多项式相乘的法则.2.难点:整式乘法法则的推导与应用.应用乘法分配律把单项式与多项式相乘转化到单项式与单项式相乘上来,注意知识迁移.教学方法采用“情境──探究”教学方法,让学生直观地理解单项式与多项式相乘的法则.教学过程一、回顾交流,课堂演练1.口述单项式乘以单项式法则.2.口述乘法分配律.3.课堂演练,计算:(1)(-5x)·(3x)2(2)(-3x)·(-x)(3)13xy·23xy2(4)-5m2·(-13mn)(5)-15x4y6-2x2y·(-12x2y5)【教师活动】组织练习,关注中下水平的学生.【学生活动】先独立完成上述“演练题”,再相互交流,部分学生上台演示.二、创设情境,引入新课小明作了一幅水彩画,所用纸的大小如图1,她在纸的左右两边各留了16a米的空白,请同学们列出这幅画的画面面积是多少?【学生活动】小组合作,讨论.【教师活动】在学生讨论的基础上,提问个别学生.【情境问题2】夏天将要来临,有3家超市以相同价格n•(单位:元/台)销售A牌空调,他们在一年内的销售量(单位:台)分别是x,y,z,•请你采用不同的方法计算他们在这一年内销售这种空调的总收入.【学生活动】分四人小组,与同伴交流,寻求不同的表示方法.方法一:首先计算出这三家超市销售A牌空调的总量(单位:台),•再计算出总的收入(单位:元).即:n(x+y+z).方法二:采用分别计算出三家超市销售A牌空调的收入,•然后再计算出他们的总收入(单位:元).即:nx+ny+nz.由此可得:n(x+y+z)=nx+ny+nz.【教师活动】引导学生在不同的代数式呈现中,找到规律:单项式与多项式相乘,就是用单项式去乘多项式中的每一项,再把所得的积相加.三、范例学习,应用所学【例1】计算:(-2a2)·(3ab2-5ab3).解:原式=(-2a2)(3ab2)-(-2a2)·(5ab3)=-6a3b2+10a3b3【例2】化简:-3x2·(13xy-y2)-10x·(x2y-xy2)解:原式=-x3y+3x2y2-10x3y+10x2y2=-11x3y+13x2y2【例3】解方程:8x(5-x)=19-2x(4x-3) 40x-8x2=19-8x2+6x40x-6x=1934x=19x=19 34四、随堂练习,巩固深化课本P100练习.【探研时空】计算:(1)5x2(2x2-3x3+8)(2)-16x(x2-3y)(3)-2a2(12ab2+b4)(4)(23x2y3-16xy)·12xy2【教师活动】巡视,关注中差生.五、课堂总结,发展潜能1.单项式与多项式相乘法则:单项式与多项式相乘,•就是用单项式去乘多项式的每一项,再把所得的积相加.2.单项式与多项式相乘,应注意(1)“不漏乘”;(2)注意“符号”.六、布置作业,专题突破课本P105习题14.1第4、6题.板书设计14.1.4整式的乘法(2)1、单项式乘以多项式的乘法法则例:练习:14.1.4整式的乘法(3)教学目标1.知识与技能让学生理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.2.过程与方法经历探索多项式与多项式相乘的运算法则的推理过程,体会其运算的算理.3.情感、态度与价值观通过推理,培养学生计算能力,发展有条理的思考,逐步形成主动探索的习惯.重点难点1.重点:多项式与多项式的乘法法则的理解及应用.2.难点:多项式与多项式的乘法法则的应用.多项式的乘法应先转化为单项式与多项式相乘而后再应用已学过的运算法则解决.教学方法采用“情境──探索”教学方法,让学生在设置的情境中,通过操作感知多项式与多项式乘法的内涵.教学过程一、创设情境,操作感知【动手操作】首先,在你的硬纸板上用直尺画出一个矩形,并且分成如下图1•所示的四部分,标上字母.【学生活动】拿出准备好的硬纸板,画出上图1,并标上字母.【教师活动】要求学生根据图中的数据,求一下这个矩形的面积.【学生活动】与同伴交流,计算出它的面积为:(m+b)×(n+a).【教师引导】请同学们将纸板上的矩形沿你所画竖着的线段将它剪开,分成如下图两部分,如图2.剪开之后,分别求一下这两部分的面积,再求一下它们的和.【学生活动】分四人小组,合作探究,求出第一块的面积为m(n+a),第二块的面积为b(n+a),它们的和为m(n+a)+b(n+a).【教师活动】组织学生继续沿着横的线段剪开,将图形分成四部分,如图3,•然后再求这四块长方形的面积.【学生活动】分四人小组合作学习,求出S1=mn;S2=nb;S3=am;S4=ab,•它们的和为S=mn+nb+am+ab.【教师提问】依据上面的操作,求得的图形面积,探索(m+b)(n+a)应该等于什么?【学生活动】分四人小组讨论,并交流自己的看法.(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab,因为我们三次计算是按照不同的方法对同一个矩形的面积进行了计算,那么,两次的计算结果应该是相同的,所以(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab.【师生共识】多项式与多项式相乘,用第一个多项式的每一项乘以另一个多项式的每一项,再把所得的结果相加.字母呈现:=ma+mb+na+nb.二、范例学习,应用所学【例1】计算:(1)(x+2)(x-3)(2)(3x-1)(2x+1)【例2】计算:(1)(x-3y)(x+7y)(2)(2x+5y)(3x-2y)【例3】先化简,再求值:(a-3b)2+(3a+b)2-(a+5b)2+(a-5b)2,其中a=-8,b=-6.【教师活动】例1~例3,启发学生参与到例题所设置的计算问题中去.【学生活动】参与其中,领会多项式乘法的运用方法以及注意的问题.三、随堂练习,巩固新知课本P102练习第1、2题.【探究时空】一块长m米,宽n米的玻璃,长宽各裁掉a•米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?四、课堂总结,发展潜能1.多项式与多项式相乘,•应充分结合导图中的问题来理解多项式与多项式相乘的结果,利用乘法分配律来理解(m+n)与(a+b)相乘的结果,导出多项式乘法的法则.2.多项式与多项式相乘,第一步要先进行整理,•在用一个多项式的每一项去乘另一个多项式的每一项时,要“依次”进行,不重复,不遗漏,且各个多项式中的项不能自乘,多项式是几个单项式的和,每一项都包括前面的符号,在计算时要正确确定积中各项的符号.五、布置作业,专题突破课本P105习题14.1第5、6、7(2)、9、10题.板书设计14.1.4整式的乘法(4)教学目标1.知识与技能会进行单项式除以单项式运算,理解整式除法运算的算理,发展有条理的思考及语言表达能力. 2.过程与方法经历整式乘法的逆运算或约分的思想推理出单项式除以单项式的运算法则的过程,掌握整式除法运算.3.情感、态度与价值观培养学生探索的勇气和信念,增强挑战困难的勇气和信心.重点难点1.重点:单项式除以单项式的运算法则.2.难点:理解单项式除以单项式的法则并应用其法则计算.运用类比数的运算方法切入到整式乘法的单项式乘以单项式运算法则的理解之中.教学方法采用“引导──发现”法进行教学.教学过程一、创设情境,导入新知【激趣引入】问题提出:林宁今年刚刚3岁,是幼儿园里最聪明的孩子,•李老师教他做算术,告诉他5×6=30后,他马就知道30÷5=6,你说他是怎样计算的呢?【学生活动】回答上述问题:林宁利用了除法是乘法的逆运算得出的结果.【教师活动】提出话题:我们前几天学习了整式的乘法,现在,不用老师讲解,你们能开始解决整式的除法运算吗?谁可以告诉我单项式与单项式相除的法则?【学生活动】思考回答:把它们的系数先相除,然后再把相同字母的幂相除,其他的字母连同它的指数不变,作为商的因式.【教师活动】引入课题,引导学生运用单项式除以单项式的法则计算下列几道题目.【课堂演练】计算:(1)(x5y)÷x3;(2)(16m2n2)÷(2m2n);(3)(x4y2z)÷(3x2y)【学生活动】开始计算,然后总结归纳,上台演示,引入课题.【归纳法则】单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.二、范例学习,应用所学【例】计算:(1)63x7y3÷7x3y2;(2)-25a6b4c÷10a4b.三、随堂练习,巩固深化课本P104练习第1、2题.【探研时空】已知10m=5,10n=4,求102m-3n的值.四、课堂总结,发展潜能单项式除以单项式运算时,要注意:1.系数相除与同底数的幂相除的区别:后者运算时是将指数相减,•然而前者是有理数的除法. 2.对于单项式除以单项式,仅仅考虑整除的情况.五、布置作业,专题突破课本P105习题15.3第6题(1)、(2)、(3)、(4).板书设计14.1.4 整式的乘法(4)1、单项式除以单项式的除法法则例:练习:14.1.4 整式的乘法(5)教学目标1.知识与技能要求学生能够进行多项式除以单项式的运算,并且理解除法运算的算理,发展思维能力和表达能力.2.过程与方法利用整式除法的逆运算或者约分的方法推理出多项式除以单项式的运算法则,掌握整式除法的运算.3.情感、态度与价值观通过分组讨论学习,体会在解决具体问题的过程中与他人合作的重要性,培养学生的团结协作精神,使学生获得合作交流的学习方式.重点难点1.重点:多项式除以单项式的运算法则的推导,以及法则的正确使用.2.难点:多项式除以单项式的运算法则的熟练应用.从逆运算入手,•利用单项式与单项式相除的除法法则和分配律总结、归纳出多项式除以单项式的法则.教学方法采用“激趣──导学”的教学法.教学过程一、小组合作,激趣导学【课堂演练】1.(-4a2b)2÷(2ab2)2.-16(x3y4)3÷(-12x4y5)2;3.(2xy)2·(-15x5y3z2)÷(-2x3y2z)4;4.18xy2÷(-3xy)-4x2y÷(-2xy).【教师提问】“(6xy+8y)÷(2y)”如何计算?【学生活动】相互讨论,大多数学生没有找到计算思路.【教师活动】铺垫一道题目:计算(ad+bd)÷d,计算:(1)(x3y2+4xy)÷x (2)(xy3-2xy)÷(xy)【学生活动】分四人小组完成并讨论多项式除以单项式的法则:多项式与单项式相除可以用分配律将它转化为单项式与单项式相除,再利用单项式与单项式相除的法则进行计算.【师生共识】多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.二、范例学习,应用所学【例】计算:(1)(18x4-4x2-2x)÷2x(2)(36x4y3-14x3y2-7x2y2)÷(-7x2y)(3)[(m-n)2-n(2m+n)-8m]÷2m三、随堂练习,巩固深化课本P104练习第3题.【探研时空】下列计算是否正确?如不正确,应怎样改正?(1)-4ab2÷2ab=2b (2)(14a3-2a2+a)÷a=14a2-2a.四、课堂总结,发展潜能多项式除以单项式时应注意运算中的问题:一是所除的商要写成省略括号的代数和,二是除式与被除式不能交换,还要注意运算顺序,应灵活地运用有关运算公式.。

相关文档
最新文档