椭圆、双曲线。抛物线典型例题整理
第08讲 直线与椭圆、双曲线、抛物线 (精讲)-2(含答案解析)
![第08讲 直线与椭圆、双曲线、抛物线 (精讲)-2(含答案解析)](https://img.taocdn.com/s3/m/2121bdc8c9d376eeaeaad1f34693daef5ef71318.png)
第08讲直线与椭圆、双曲线、抛物线(精讲)-2第08讲直线与椭圆、双曲线、抛物线(精讲)角度2:由中点弦确定曲线方程典型例题例题1.(2022·四川南充·高二期末(文))1.过椭圆C :()222210x y a b a b+=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=例题2.(2022·全国·高二课时练习)2.已知双曲线的中心在原点且一个焦点为F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是A .22134x y -=B .22143x y -=C .22152x y -=D .22125x y -=例题3.(2022·江苏南京·模拟预测)3.已知椭圆C :22221x y a b +=(0a b >>)过点1,2⎛ ⎝⎭,直线l :y x m =+与椭圆C 交于,A B 两点,且线段AB 的中点为M ,O 为坐标原点,直线OM 的斜率为0.5-,求椭圆C 的标准方程;例题4.(2022·安徽省亳州市第一中学高二开学考试)4.斜率为1的直线交抛物线()2:20C y px p =>于A ,B 两点,且弦AB 中点的纵坐标为2.求抛物线C 的标准方程;同类题型归类练(2022·四川南充·二模(文))5.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -与椭圆C相交于不同的两点,A B ,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为()A .2213x y +=B .22142x y +=C .22153x y +=D .22163x y +=(2022·全国·高三专题练习(理))6.已知椭圆C :22221(>0)>x y a b a b +=的左、右焦点分别为1F ,2F ,离心率为2,过点1F 的直线l 交椭圆C 于,A B 两点,AB 的中点坐标为21(,)33-.求椭圆C 的标准方程;(2022·重庆巴蜀中学高三阶段练习)7.已知椭圆C ∶22221(0)x y a b a b+=>>经过点3)2P ,O 为坐标原点,若直线l 与椭圆C 交于A ,B 两点,线段AB 的中点为M ,直线l 与直线OM 的斜率乘积为14-.求椭圆C的标准方程;(2022·全国·高三专题练习)8.已知抛物线2:2(0)C y px p =>的焦点为F ,过F 且斜率为1的直线与抛物线C 交于A ,B 两点,且AB 的中点的纵坐标为2.求C 的方程.题型三:弦长问题典型例题例题1.(2022·海南·琼海市嘉积第二中学高二期中)9.已知椭圆22:143x y C +=的左、右焦点分别为1F 、2F ,过2F 且斜率为1的直线l 交椭圆C 于A 、B 两点,则AB 等于()A .247B .127C .7D .7例题2.(2022·全国·高三专题练习)10.经过双曲线2213y x -=的左焦点F 1作倾斜角为6π的直线AB ,分别交双曲线的左、右支为点A 、B .求弦长|AB |=_____例题3.(2022·贵州遵义·高二期末(理))11.椭圆C :()222210x y a b a b +=>>左右焦点为1F ,2F 2M ⎛ ⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)经过点()2,3A ,倾斜角为π4直线l 与椭圆交于B ,C 两点,求BC .例题4.(2022·云南·丽江市教育科学研究所高二期末)12.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,且过点(2,1)P -.(1)求C 的方程;(2)若,A B 是C 上两点,直线AB 与圆222x y +=相切,求AB 的取值范围.例题5.(2022·内蒙古赤峰·高二期末)13.已知动圆C 过定点()0,1F ,且与直线1:1l y =-相切,圆心C 的轨迹为E .(1)求动点C 的轨迹方程;(2)已知直线2l 交轨迹E 于两点P ,Q ,且PQ 中点的纵坐标为2,则PQ 的最大值为多少?同类题型归类练(2022·重庆市青木关中学校高二阶段练习)14.已知双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线方程是y =,过其左焦点(F 作斜率为2的直线l 交双曲线C 于A ,B 两点,则截得的弦长||AB =()A .7B .8C .9D .10(2022·四川·遂宁中学高二期中(文))15.已知椭圆的中心在原点,焦点在x12P ⎛⎫ ⎪⎝⎭,(1)求椭圆的标准方程;(2)倾斜角为45°的直线l 过椭圆的右焦点F 交椭圆于A 、B 两点,求AB (2022·河北·衡水市第二中学高二期中)16.(1)已知A ,B 两点的坐标分别是()6,0-,()6,0,直线AM ,BM 相交于点M ,且它们的斜率之积是29.求点M 的轨迹方程,并判断轨迹的形状:(2)已知过双曲线22136x y -=上的右焦点2F ,倾斜角为30 的直线交双曲线于A ,B 两点,求AB .(2022·安徽·六安一中高二开学考试)17.已知点()2,0A -,()2,0B ,动点(),M x y 满足直线AM 与BM 的斜率之积为12,记M的轨迹为曲线C .(1)求C 的方程;(2)若直线l :3y x =-和曲线C 相交于E ,F 两点,求EF .(2022·黑龙江·鸡西市第四中学三模(理))18.已知抛物线C :()220x py p =>,圆O :221x y +=.(1)若抛物线C 的焦点F 在圆O 上,且A 为C 和圆O 的一个交点,求AF ;(2)若直线l 与抛物线C 和圆O 分别相切于点M ,N ,求MN 的最小值及相应p 的值.(2022·安徽省舒城中学三模(文))19.已知抛物线C :22y px =(p >0),抛物线C 的焦点为F ,点P 在抛物线上,且PF 的最小值为1.(1)求p ;(2)设O 为坐标原点,A ,B 为抛物线C 上不同的两点,直线OA ,OB 的斜率分别为1k ,2k ,且满足123k k OA OB <⋅=-,求|AB |的取值范围.参考答案:1.A【分析】由l 与x 轴交点横坐标可得半焦距c ,设出点A ,B 坐标,利用点差法求出22,a b 的关系即可计算作答.【详解】依题意,焦点(2,0)F ,即椭圆C 的半焦距2c =,设1122(,),(,)A x y B x y ,00(,)P x y ,则有2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,两式相减得:2212121212()()a ()()0b x x x x y y y y +-++-=,而1201202,2x x x y y y +=+=,且0012y x =-,即有2212122()()0b x x a y y --+-=,又直线l 的斜率12121y y x x -=-,因此有222a b =,而2224a b c -==,解得228,4a b ==,经验证符合题意,所以椭圆C 的方程为22184x y +=.故选:A 2.D【分析】根据点差法得2225a b=,再根据焦点坐标得227a b +=,解方程组得22a =,25b =,即得结果.【详解】设双曲线的方程为22221(0,0)x y a b a b-=>>,由题意可得227a b +=,设()11,M x y ,()22,N x y ,则MN 的中点为25,33⎛⎫-- ⎪⎝⎭,由2211221x y a b -=且2222221x y a b-=,得()()12122x x x x a +-=()()12122y y y y b +-,2223a ⨯-=()2523b ⨯-(),即2225a b=,联立227a b +=,解得22a =,25b =,故所求双曲线的方程为22125x y -=.故选D .【点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.3.22142x y +=【分析】由离心率得,a b 的一个关系式,设()()1122,,,A x y B x y ,代入椭圆方程,相减后利用斜率关系得关于,a b 的另一等式,联立可求得22,a b 得椭圆标准方程.【详解】设()11,A x y ,()22,B x y ,则1212,22x x y y M ++⎛⎫ ⎪⎝⎭,即121212OM y y k x x +==-+.因为A ,B 在椭圆C 上,所以2211221x y a b +=,2222221x y a b+=,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=,即()()()()121222121210y y y y a b x x x x +-+=+-,又12121AB y y k x x -==-,所以221102a b-=,即222a b =.又因为椭圆C过点⎛ ⎝⎭,所以221123a b +=,解得24a =,22b =,所以椭圆C 的标准方程为22142x y +=;4.24y x=【分析】设()()1122,,,A x y B x y ,代入抛物线方程相减,利用弦中点坐标,直线斜率求得p ,得抛物线方程.【详解】设()()1122,,,A x y B x y ,12122,42y y y y +=+=,21122222y px y px ⎧=⎨=⎩,两式相减并化简得1212122y y p x x y y -=-+,21,24pp ==,所以抛物线方程为24y x =.5.B【分析】先求得焦点,也即求得c ,然后利用点差法求得22ba,从而求得,a b ,也即求得椭圆C 的方程.【详解】直线0x y -=过点()F,所以c =设()()1122,,,A x y B x y ,由2222112222221,1x y x y a b a b +=+=两式相减并化简得2121221212y y y y b a x x x x +--=⋅+-,即22222222111,,222b b a b bc a a ⎛⎫-=-⋅===+ ⎪⎝⎭,所以2b c a ===,所以椭圆C 的方程为22142x y +=.故选:B 6.2212x y +=【分析】设()()1122,,,A x y B x y ,代入椭圆方程,相减后利用中点坐标、离心率求得直线AB 的斜率得直线方程,从而求得焦点坐标,求出,,c a b 得椭圆标准方程.【详解】设1(A x ,1)y ,2(B x ,2)y ,可得2211221x y a b +=,2222221x y a b+=,两式相减得22221212221x x y y a b--+=,2221222212y y b x x a -=--,2121221212()()()()y y y y b x x x x a -+=--+,将1243x x +=-,1223y y +=代入上式,得2221(12AB b k e a ⋅-=-=-,又2=e ,∴=1AB k ,∴直线l 的方程为1233y x -=+,即1y x =+,即()11,0F -,∴1c =,1a b ==,∴椭圆C 的标准方程2212x y +=;7.221123x y +=【分析】已知点的坐标代入得,a b 的一个关系式,设()()1122,,,A x y B x y ,代入椭圆方程,相减后利用斜率关系得,a b 的另一等式,联立可求得22,a b 得椭圆标准方程.【详解】解:因为椭圆经过点3)2P ,所以223914a b +=(1),设()()1122,,,A x y B x y ,因为直线l 与椭圆C 交于A ,B 两点,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得2121221212y y x x b x x a y y -+=-⋅-+,因为线段AB 的中点为M ,且直线l 与直线OM 的斜率乘积为-14,所以2214b a -=-(2),由(1)(2)解得223,12b a ==,所以椭圆方程为:221123x y +=;8.24y x =.【分析】中点弦问题利用点差法进行处理.【详解】解:设点()()1122,,A x y B x y ,,则12+22y y =,所以12+4y y =,又因为直线AB 的斜率为1,所以21211y y x x -=-,将A 、B 两点代入抛物线方程中得:21122222y px y px ⎧=⎨=⎩,将上述两式相减得,()2212122y y p x x -=-,即()()()121212+2y y y y p x x -=-,所以12121221+y y p y y x x -==-,即214p=,所以2p =,因此,抛物线的方程为24y x =.9.A【分析】利用弦长公式求解即可.【详解】设直线AB 方程为1y x =-,联立椭圆方程22143x y+=整理可得:27880x x --=,设()()1122,,,A x y B x y ,则1287x x +=,1287x x ⋅=-,根据弦长公式有:AB =247.故B ,C ,D 错误.故选:A.10.3【分析】直线AB的方程可设为2)y x =+,联立方程,利用弦长公式可得结果.【详解】∵双曲线的左焦点为F 1(﹣2,0),设A (x 1,y 1),B (x 2,y 2),直线AB的方程可设为2)y x =+,代入方程2213y x -=得,8x 2﹣4x ﹣13=0,∴1212113,28x x x x +==-,∴12||||3AB x x =-==.故答案为:3.11.(1)2214x y +=(2)5BC =【分析】(1)利用椭圆的离心率,过点1,2M ⎛ ⎝⎭,及222a b c =+,列方程解出,a b 即可得椭圆方程;(2)由已知可得直线l 的方程,与椭圆方程联立,利用根与系数的关系及弦长公式求解.【详解】(1)解:由题意得222c e a a b c ⎧==⎪⎨⎪=+⎩,解得224a b =,又因为点1,2M ⎛⎫⎪ ⎪⎝⎭在椭圆C 上,带入222214x y b b+=得21b =,所以椭圆的标准方程为2214x y +=.(2)解:易得直线l 的解析式为1y x =+,设()11,B x y ,()22,C x y 联立椭圆的方程22441x y y x ⎧+=⎨=+⎩得2580x x +=1285x x +=,120x x =12BC x=-=所以5BC =.12.(1)22163x y+=(2)【分析】(1)根据已知条件求得,,a b c ,由此可求得椭圆的方程.(2)对直线AB 斜率分成不存在、直线AB 的斜率为0、直线AB 的斜率不为0三种情况进行分类讨论,结合弦长公式、基本不等式求得AB 的取值范围.【详解】(1)由题意得,222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得a b c ===,所以C 的方程为22163x y +=.(2)圆222x y +=的圆心为(0,0),半径圆r =①当直线AB的斜率不存在时,方程为x =x =于是有22163x x y ⎧⎪⎨+=⎪⎩或22163x x y ⎧=⎪⎨+=⎪⎩解得y =所以AB =②当直线AB 的斜率为0时,方程为y =或y =,于是有22163y x y ⎧⎪⎨+=⎪⎩或22163y x y ⎧=⎪⎨+=⎪⎩解得x =所以AB =③当直线AB 的斜率不为0时,设斜率为k ,方程为y kx t =+,0kx y t -+=因为直线AB 与圆222x y +==222(1)t k =+建立方程组22163y kx t x y =+⎧⎪⎨+=⎪⎩,消y 并化简得222(21)4260k x ktx t +++-=,2222222Δ164(21)(26)488243280k t k t k t k =-+-=-+=+>.设11(,)A x y ,22(,)B x y ,则122421kt x x k +=-+,21222621t x x k -⋅=+,所以AB ===>而2214448kk++≥+=,当且仅当2214kk=,即22k=时,等号成立.所以3AB=,所以3AB<≤.综上所述,AB的取值范围是.13.(1)24x y=(2)6【分析】(1)利用抛物线的定义直接可得轨迹方程;(2)设直线方程,联立方程组,结合根与系数关系可得PQ,再根据二次函数的性质可得最值.(1)由题设点C到点F的距离等于它到1l的距离,∴点C的轨迹是以F为焦点,1l为准线的抛物线,∴所求轨迹的方程为24x y=;(2)由题意易知直线2l的斜率存在,设PQ中点为(),2t,直线2l的方程为()2y k x t-=-,联立直线与抛物线()242x yy k x t⎧=⎪⎨-=-⎪⎩,得24480x kx kt-+-=,()()()2244481620k kt k kt ∆=---=-+>,且124x x k +=,1248x x kt =-,又PQ 中点为(),2t ,即1242x x k t +==,2t k =,故()24280t t ∆=-+>恒成立,122x x t +=,21228x x t =-,所以PQ ,当22t =时,PQ 取最大值为6.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.14.D【分析】根据渐近线方程和焦点坐标可解得22,a b ,再将直线方程代入双曲线方程消元,由韦达定理和弦长公式可得.【详解】 双曲线C :22221(0,0)x y a b a b -=>>的一条渐近线方程是y =,b a∴,即.b =左焦点()F,c ∴=222233c a b a ∴=+==,21a ∴=,22b =,∴双曲线C 的方程为22 1.2y x -=易知直线l 的方程为(2=y x ,设11(,)A x y ,22(,)Bx y ,由(22212y x y x ⎧=+⎪⎨⎪-=⎩,消去y 可得270++=x,12x x ∴+=-127.10.x x AB =∴==故选:D15.(1)2214x y +=;(2)85.【分析】(1)根据椭圆的离心率公式,结合代入法、椭圆中的,,a b c 关系进行求解即可;(2)根据椭圆弦长公式进行求解即可.【详解】(1)因为椭圆的中心在原点,焦点在x 轴上,所以设椭圆的标准方程为:22221(0)x y a b a b+=>>,因为椭圆的离心率为2且过点12P ⎛⎫ ⎪⎝⎭,所以2222222231144123a b a c b a c a b c ⎧+=⎪⎧⎪=⎪⎪=⇒=⎨⎨⎪⎪=⎩=+⎪⎪⎩,所以椭圆的标准方程为:2214x y +=;(2)由(1)可知:F ,所以直线l的方程为:0tan 45(y x y x ︒-=⇒=2224(40580x x x +--=⇒-+=,设1122(,),(,)A x y B x y ,所以121285x x x x +==,因此85AB =.16.(1)轨迹方程为()2216368x y x -=≠±,轨迹为焦点在x 轴上的双曲线,不含左右顶点;(2)5AB =.【分析】(1)设(),M x y ,根据题意列出等式,化简即可得轨迹方程,判断轨迹形状,即得答案;(2)求出直线方程,并和双曲线方程联立,得到根与系数的关系式,根据弦长公式求出弦长即得答案.【详解】(1)设(),M x y ,因为()6,0A -,()6,0B ,所以()2,6669AM BM y y k k x x x ⋅=⋅=≠±+-,整理得()2216368x y x -=≠±,故点M 的轨迹方程为()2216368x y x -=≠±,轨迹为焦点在x 轴上的双曲线,不含左右顶点.(2)由22136x y -=得,23a =,26b =,所以2229c a b =+=,即3c =,所以右焦点()23,0F ,因为直线AB 的倾斜角是30 ,且直线经过右焦点()23,0F ,所以直线AB的方程为)3y x =-,由)223136y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩可得:256270x x +-=,所以1265x x +=-,12275x x =-,所以245AB ====17.(1)22142x y -=(2x ≠±)(2)【分析】(1)设(),M x y ,用坐标表示AM ,BM 的斜率,由已知可得曲线方程,注意斜率有意义;(2)直线方程与曲线方程联立,消元后应用韦达定理,由弦长公式计算弦长.(1)设(),M x y ,则AM ,BM 的斜率分别为12y k x =+,22y k x =-,由已知得1222y y x x ⋅=+-,化简得22142x y -=(2x ≠±),即曲线C 的方程为22142x y -=(2x ≠±);(2)联立221423x y y x ⎧-=⎪⎨⎪=-⎩消去y 整理得212220x x -+=,设()11,E x y ,()22,F x y ,则1212x x +=,1222x x =,12EF x -===18.1(2)最小值为p =【分析】(1)由()0,1F 得出抛物线方程,并与圆方程联立,求出A y ,最后由抛物线定义得出AF ;(2)由导数的几何意义得出切线l 的方程,由点O 到切线l 的距离等于1结合勾股定理得出2MN =20204411y y ++--,再由基本不等式得出MN 的最小值及相应p 的值.(1)由题意,得()0,1F ,从而C :24x y =.解方程组22241x y x y ⎧=⎨+=⎩,整理得,2410y y +-=,解得2A y所以11A AF y +==.(2)设()00,M x y ,由212y x p =得 x y p '=,故切线l 的方程为()000x y x x y p=-+,注意到2002x py =,故整理得000x x py py --=由1ON =且ON l ⊥,即点O 到切线l 的距离等于11=所以0py ==,整理,得02021y p y =-且201y ->0,所以2222200001121MN OM x y py y =-=+-=+-22200022004414142811y y y y y =+-=++-≥+--,当且仅当0y =.所以MN 的最小值为p ==19.(1)2(2)4AB ≥【分析】(1)由于2p PF ≥,即可求得12p =,从而得2p =;(2)设221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由123k k OA OB <⋅=- 得124y y =-,设AB 直线方程为y kx b =+,代入抛物线方程结合韦达定理得出b k =-,从而y kx b =+过焦点()1,0,即可求解AB 的取值范围.【详解】(1)因为2p PF ≥,则12p =,所以2p =;(2)由(1)得24y x =,设221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则221212,,,44y y OA y OB y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 则121244,k k y y ==,由123k k OA OB <⋅=- 得()212121216316y y y y y y <+=-,所以124y y =-,设AB 直线方程为y kx b=+联立方程组24y kx b y x =+⎧⎨=⎩得204k y y b -+=,所以1244b y y k ==-则b k =-故()1y kx b kx k k x =+=-=-过焦点()1,0所以24AB p ≥=.。
高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)
![高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)](https://img.taocdn.com/s3/m/9d678a2c0c22590103029d53.png)
高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)第五节椭圆一、必记3个知识点1.椭圆的定义(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时,P在短轴端点处;当x=±a时,|OP|有最大值a,这时,P在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c.二、必明3个易误点1.椭圆的定义中易忽视2a>|F1F2|这一条件,当2a=|F1F2|其轨迹为线段F1F2,当2a<|F1F2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x2a2+y2b2=1(a>b>0).3.注意椭圆的范围,在设椭圆x2a2+y2b2=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.三、技法1.求椭圆标准方程的2种常用方法(1)直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.(2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解.(3)通过取特殊值或特殊位置,求出离心率.提醒:在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.3.求解最值、取值范围问题的技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如,-a≤x≤a,-b≤y≤b,0<e<1,在求椭圆的相关量的范围时,要注意应用这些不等关系.(3)最值问题,将所求列出表达式,构造基本不等式或利用函数单调性求解.4.判断直线与椭圆位置关系的四个步骤第一步:确定直线与椭圆的方程.第二步:联立直线方程与椭圆方程.第三步:消元得出关于x(或y)的一元二次方程.第四步:当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.5.直线被椭圆截得的弦长公式设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2])=(y1+y2)2-4y1y2])(k为直线斜率).参考答案①F1,F2②|F1F2|③x轴,y轴④坐标原点⑤(-a,0)⑥(a,0)⑦(0,-b)⑧(0,b)⑨(0,-a)⑩(0,a)⑪(-b,0)⑫(b,0)⑬2a⑭2b⑮2c⑯(0,1)⑰c2=a2-b2第六节双曲线一、必记3个知识点1.双曲线的定义(1)平面内与两个定点F1、F2(|F1F2|=2c>0)的距离①________________为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的②________,两焦点间的距离叫做③________.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(ⅰ)当④________________时,M点的轨迹是双曲线;(ⅱ)当⑤________________时,M点的轨迹是两条射线;(ⅲ)当⑥________________时,M点不存在.2.双曲线的标准方程和几何性质⑧________x ∈对称轴:⑪________对称中心:⑫________顶点坐标:A 1⑮______,A 2⑯________⑱____________c =⑳________|=21________;线段________;a 叫做双曲线的虚半轴长>b >0)(1)双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直.(2)渐近线的斜率与双曲线的焦点位置的关系:当焦点在x 轴上时,渐近线斜率为±ba,当焦点在y 轴上时,渐近线斜率为±ab.(3)渐近线与离心率.x2a2-y2b2=1(a >0,b >0)的一条渐近线的斜率为ba=e2-1.(4)若P 为双曲线上一点,F 为其对应焦点,则|PF |≥c -a .二、必明4个易误点1.双曲线的定义中易忽视2a <|F 1F 2|这一条件.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a >|F 1F 2|则轨迹不存在.2.双曲线的标准方程中对a ,b 的要求只是a >0,b >0,易误认为与椭圆标准方程中a ,b 的要求相同.若a >b >0,则双曲线的离心率e ∈(1,2);若a =b >0,则双曲线的离心率e =2;若0<a <b ,则双曲线的离心率e >2.3.注意区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c2=a2+b2.4.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x轴上,渐近线斜率为±ba,当焦点在y轴上,渐近线斜率为±ab.三、技法1.双曲线定义的应用(1)判定满足某条件的平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程;(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF1|-|PF2||=2a,运用平方的方法,建立|PF1|与|PF2|的关系.[注意]在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.2.求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a,b,c的方程并求出a,b,c的值.与双曲线x2a2-y2b2=1有相同渐近线时,可设所求双曲线方程为:x2a2-y2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a的值,由定点位置确定c的值.3.求双曲线离心率或其范围的方法(1)求a,b,c的值,由c2a2=a2+b2a2=1+b2a2直接求e.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.4.求双曲线的渐近线方程的方法求双曲线x2a2-y2b2=1(a>0,b>0)的渐近线的方法是令x2a2-y2b2=0,即得两渐近线方程为:xa±yb=0.参考答案①之差的绝对值②焦点③焦距④2a<|F1F2|⑤2a=|F1F2|⑥2a>|F1F2|⑦x≥a或x≤-a⑧y≥a或y≤-a⑨x轴,y轴⑩坐标原点⑪x轴,y轴⑫坐标原点⑬(-a,0)⑭(a,0)⑮(0,-a)⑯(0,a)⑰y=±ba x⑱y=±ab x⑲ca⑳a2+b2212a222b23a2+b2第七节抛物线一、必记2个知识点1.抛物线定义、标准方程及几何性质x轴⑤________y轴⑥________O(0,0)O(0,0)O(0,0)O(0,0)F⑦________⑧________⑨________设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2.(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角).(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点且垂直于对称轴的弦,长等于2p.二、必明2个易误点1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p易忽视,只有p>0,才能证明其几何意义是焦点F到准线l 的距离,否则无几何意义.三、技法1.应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+p2或|PF|=|y|+p2.2.求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.3.确定及应用抛物线性质的技巧(1)利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化为标准方程.(2)要结合图形分析,灵活运用平面几何的性质以图助解.4.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.参考答案①相等②y2=-2px(p>0)③x2=-2py(p>0)④x2=2py(p>0)⑤x轴⑥y轴⑦F(-p2,0)⑧F(0,-p2)⑨F(0,p2)⑩e=1⑪x=-p2⑫y=-p2⑬-y0+p2⑭y0+p2⑮y≤0⑯y≥0。
椭圆双曲线抛物线练习题
![椭圆双曲线抛物线练习题](https://img.taocdn.com/s3/m/7d32532f58fb770bf78a558d.png)
椭圆、双曲线、抛物线练习题一、基础题:1、椭圆6410022x y +=1的长轴长是 ,短轴长是 ,顶点坐标是 ,焦点坐标是 ,离心率是 。
2、双曲线1366422=-x y 的实轴长是 ,虚轴长是 ,顶点坐标是 , 焦点坐标是 ,离心率是 ,渐近线方程是 。
3、双曲线14491622=-y x 的离心率是 ,渐近线方程是 ,若P 是该双曲线上的任意一点,F 1、F 2是双曲线的左右焦点,则21PF PF -= 。
4、若双曲线的渐近线方程是x y 43±=,则该双曲线的离心率是 。
5、等轴双曲线经过点P (2,1),则它的标准方程是 ,焦点坐标是 ,离心率是 ,渐近线方程是 。
6、与双曲线13222=-y x 有相同的渐近线,且经过点(2,3)的双曲线的标准方程是 ,它的离心率是 。
7、渐近线方程为x y 21±=,且经过点)3,2(的双曲线的标准方程是 。
8、已知F 是双曲线112422=-y x 的左焦点,A (1,4),P 是双曲线右支上的动点,则PA PF +的最小值为 。
9、已知F 1、F 2是双曲线C :122=-y x 的左、右焦点,点P 在C 上, 6021=∠PF F ,则21PF PF ⋅等于 。
10、(1)抛物线y 2=—6x 的焦点坐标是 ,准线方程是 ;(2)抛物线x 2=—8y 的焦点坐标是 ,准线方程是 ;(3)抛物线y =x 2的焦点坐标是 ,准线方程是 ;(4)抛物线y 2=x 的焦点坐标是 ,准线方程是 ;11、(1)抛物线y 2=4x 上的点P (1,2)到焦点的距离是 ;(2)抛物线241x y-=上的点P (2,—1)到准线的距离是 。
12、(1)斜率为1的直线经过抛物线y 2=4x 的焦点,与抛物线交于A 、B 两点,则AB = ;(2)斜率为2的直线经过抛物线x 2=—4y 的焦点,与抛物线交于A 、B 两点,则AB = 。
椭圆,双曲线,抛物线练习题及答案
![椭圆,双曲线,抛物线练习题及答案](https://img.taocdn.com/s3/m/01435d396d85ec3a87c24028915f804d2b1687f6.png)
椭圆,双曲线,抛物线练习题及答案1、已知椭圆方程为 $x^2/23+y^2/32=1$,则这个椭圆的焦距为() A.6 B.3 C.35 D.652、椭圆 $4x^2+2y^2=1$ 的焦点坐标是() A.(-2,0),(2,0) B.(0,-2),(0,2) C.(0,-1/2),(0,1/2) D.(-2/2,0),(2/2,0)3、$F_1$,$F_2$ 是定点,且 $FF_{12}=6$,动点$M$ 满足 $MF_1+MF_2=6$,则 $M$ 点的轨迹方程是()A.椭圆 B.直线 C.圆 D.线段4、已知方程$x^2+my^2=1$ 表示焦点在$y$ 轴上的椭圆,则 $m$ 的取值范围是() A.$m1$ D.$1<m<5$5、过点 $(3,-2)$ 且与椭圆 $4x^2+9y^2=36$ 有相同焦点的椭圆方程是()A.$x^2y^2/15+10=1$ B.$x^2y^2/152+102=1$ C.$x^2/10+y^2/15=1$ D.$x^2y^2/102+152=1$6、若直线 $y=mx+1$ 与椭圆 $x^2+4y^2=1$ 只有一个公共点,那么 $m^2$ 的值是()A.$1/2$ B.$3/4$ C.$2/3$ D.$4/5$7、已知椭圆 $C:x^2/9+y^2/2=1$,直线 $l:x/10+y=1$,点$P(2,-1)$,则() A.点 $P$ 在 $C$ 内部,$l$ 与 $C$ 相交B.点 $P$ 在 $C$ 外部,$l$ 与 $C$ 相交 C.点 $P$ 在 $C$ 内部,$l$ 与 $C$ 相离 D.点 $P$ 在 $C$ 外部,$l$ 与 $C$ 相离8、过椭圆 $C:x^2/a^2+y^2/b^2=1$ 的焦点引垂直于 $x$ 轴的弦,则弦长为() A。
$2b^2/a$ B。
$b^2/a$ C。
$b/a$ D。
$2b/a$9、抛物线 $x+2y^2=0$ 的准线方程是() A。
椭圆双曲线抛物线大题及答案
![椭圆双曲线抛物线大题及答案](https://img.taocdn.com/s3/m/0c453b60a4e9856a561252d380eb6294dd882290.png)
椭圆双曲线抛物线大题及答案近年来,越来越多的数学考试和竞赛中出现了椭圆、双曲线和抛物线的大题。
这些大题考查的是对于这些曲线的了解和掌握,以及运用其性质解决数学问题的能力。
下面,我们来一起探讨一下椭圆、双曲线和抛物线的大题及其答案。
一、椭圆的大题及答案椭圆的一般方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a>b>0$。
1.已知椭圆的焦点为$(\pm c,0)$,准线为$x=\pm a$,则椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1$。
证明:由于椭圆的准线为$x=\pm a$,则$a$为椭圆的半长轴,$b=\sqrt{a^2-c^2}$为椭圆的半短轴。
又由于椭圆的焦点为$(\pmc,0)$,则$c=\sqrt{a^2-b^2}$为椭圆的焦距。
代入椭圆的一般方程,得到$\frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1$。
2.已知椭圆的离心率为$\frac{1}{3}$,其中一个焦点为$(4,0)$,则椭圆的方程为$\frac{(x-4)^2}{36}+\frac{y^2}{27}=1$。
证明:由于椭圆的离心率为$\frac{1}{3}$,则椭圆的半长轴为$a=9$,焦距为$c=\frac{a}{3}=3$,半短轴为$b=\sqrt{a^2-c^2}=6$。
又由于一个焦点为$(4,0)$,则另一个焦点为$(-4,0)$。
代入椭圆的一般方程,得到$\frac{(x-4)^2}{36}+\frac{y^2}{27}=1$。
二、双曲线的大题及答案双曲线的一般方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a>0$,$b>0$。
1.已知双曲线的离心率为2,其中一个焦点为$(5,0)$,则双曲线的方程为$\frac{(x-5)^2}{16}-\frac{y^2}{12}=1$。
圆锥曲线--椭圆_双曲线、抛物线的经典题型和相关练习
![圆锥曲线--椭圆_双曲线、抛物线的经典题型和相关练习](https://img.taocdn.com/s3/m/b49d4e11a76e58fafab00371.png)
FA P HBQ专题:解圆锥曲线问题常用方法(一)【学习要点】解圆锥曲线问题常用以下方法: 1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为 。
椭圆双曲线抛物线大题训练题(含答案)
![椭圆双曲线抛物线大题训练题(含答案)](https://img.taocdn.com/s3/m/bc18f1a05727a5e9856a61f1.png)
椭圆双曲线抛物线训练题一、解答题(共21题;共195分)1.已知椭圆Γ:的左,右焦点分别为F1( ,0),F2( ,0),椭圆的左,右顶点分别为A,B,已知椭圆Γ上一异于A,B的点P,PA,PB的斜率分别为k1,k2,满足.(1)求椭圆Γ的标准方程;(2)若过椭圆Γ左顶点A作两条互相垂直的直线AM和AN,分别交椭圆Γ于M,N两点,问x轴上是否存在一定点Q,使得∠MQA=∠NQA成立,若存在,则求出该定点Q,否则说明理由.2.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,点A(,)在椭圆C上,且△F1AF2的面积为。
(1)求椭圆C的方程。
(2)设直线y=kx+1和椭圆C交于B,D两点,O为坐标原点,判断在y轴上是否存在点E,使∠OEB=∠OED。
若存在,求出点E的坐标;若不存在,请说明理由。
3.已知椭圆的离心率为,点椭圆的右顶点.(1)求椭圆的方程;(2)过点的直线与椭圆交于两点,直线与直线的斜率和为,求直线l的方程.4.设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.5.设A,B为曲线C:y= 上两点,A与B的横坐标之和为4.(12分)(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.6.设椭圆的右焦点为,过得直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.7.已知椭圆C:+ =1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(12分)(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.8.设椭圆的左焦点为,左顶点为,顶点为B.已知(为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且,求椭圆的方程.9.已知斜率为的直线与椭圆交于两点,线段的中点为(1)证明:(2)设为的右焦点,为上一点,且,证明:10.已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.(Ⅰ)证明:坐标原点O在圆M上;(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.11.设抛物线的焦点为F,过F点且斜率的直线与交于两点,. (1)求的方程。
椭圆双曲线抛物线练习题及答案
![椭圆双曲线抛物线练习题及答案](https://img.taocdn.com/s3/m/f0c550b005a1b0717fd5360cba1aa81144318f26.png)
X-V1、椭圆方程为一+—=1,那么这个椭圆的焦距为()2332A.6B.3C.3正D.6正2、椭圆4d+2y2=1的焦点坐标是()A .(-5^,0),(√2,0)B .(0,-4),(0,4)3、η,F2是定点,且忻引=6,动点M 满足IM 用+1M 用=6,那么M 点的轨迹方程是()A.椭圆B.直线C.圆D∙线段4、方程/+浜/=i 表示焦点在,轴上的椭圆,那么根的取值范围是()A.m <1B.-∖‹m <1C.m>∖D.OVmVl5、过点(3,・2)且与椭圆4/+9y2=36有相同焦点的椭圆方程是()v 2…2Ay B.—rHr=1152IO 22 2Λy. C.—+—=11015 D .4÷4=ι IO 21526、假设直线y=mx+l 与椭圆32+4_/=1只有一个公共点,那么相?的值是()13 24A.-B.—C.-D.一2 435χ22X7、椭圆C :—H —=1»直线/: ------------ Fy=I ,点P (2,-1),那么(9 2 10A.点P 在C 内部,/与C 相交B.点P 在C 外部,/与C 相交C.点P 在C 内部,/与C 相离D.点P 在C 外部,/与C 相离χ2V 28、过椭圆c :r+—=l 的焦点引垂直于X 轴的弦,那么弦长为()a~b~2b 2 b 2b 2bA. ------B.—C.-D. aaτ9、抛物线X +2y 2=0的准线方程是( )1A.X ——11B.X=——C.X=——D.X=—8 84 4C(Ov),(0,;) °-A.15 1010、抛物线y2=2px (p>0)上一点M 与焦点F 的距离IMH=2〃,那么点M 的坐标是( 3 3 3B. (]P,-6p)c.(√3p,-p)D.(-p,±√3p)11、假设抛物线y2=;X 上一点P 到焦点F 的距离为5,那么P 点的坐标是(12、抛物线%2=4y,过焦点E 倾斜角为一的直线交抛物线于A,B 两点,那么线段AB 的长为()4A.8B.4Λ万C.6D.3应313、抛物线6x-0y2=o 的准线方程是工=一^,那么。
高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题
![高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题](https://img.taocdn.com/s3/m/cae052e577eeaeaad1f34693daef5ef7ba0d1202.png)
高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题1.已知圆$x^2+y^2-6x-7=0$与抛物线$y^2=2px(p>0)$的准线相切,则抛物线方程为$y^2=8x$。
2.与双曲线$2x^2-2y^2=1$有公共焦点,离心率互为倒数的椭圆方程为$\dfrac{x^2}{9}+\dfrac{y^2}{16}=1$。
3.方程$k-\dfrac{35}{k}+\dfrac{x^2}{y^2}=1$表示双曲线,则$m$的取值范围是$(-\infty,-7)\cup(0,7)$。
4.经过点$M(3,-2),N(-2,3)$的椭圆的标准方程是$\dfrac{x^2}{16}+\dfrac{y^2}{9}=1$。
5.与双曲线$x^2-y^2=53$有公共渐近线且焦距为8的双曲线方程为$\dfrac{x^2}{16}-\dfrac{y^2}{9}=1$。
6.过点$P(-2,4)$的抛物线的标准方程为$y=\dfrac{1}{8}(x+2)^2$。
7.以$\dfrac{x^2}{4}-\dfrac{y^2}{12}=-1$的上焦点为顶点,下顶点为焦点的椭圆方程为$\dfrac{x^2}{16}+\dfrac{y^2}{48}=1$。
重点二:1.椭圆$16x+25y=400$的焦点为$F_1,F_2$,直线$AB$过$F_1$,则$\triangle ABF_2$的周长为$10$。
2.动圆的圆心在抛物线$y^2=8x$上,且动圆恒与直线$x+2=0$相切,则动圆必过定点$(-1,2)$。
3.椭圆$\dfrac{x^2}{25}+\dfrac{y^2}{9}=1$上的一点$M$到左焦点$F_1$的距离为$2$,$N$是$MF_1$的中点,则$ON=\dfrac{4}{3}$。
4.设椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$和双曲线$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$有公共焦点$F_1,F_2$,点$P$是两曲线的一个公共点,则$\cos\angleF_1PF_2=\dfrac{3}{5}$。
椭圆、双曲线抛物线典型例题整理
![椭圆、双曲线抛物线典型例题整理](https://img.taocdn.com/s3/m/e6d3ee85998fcc22bdd10d65.png)
椭圆典型例题一、已知椭圆焦点的位置,求椭圆的标准方程。
例1:已知椭圆的焦点是F 1(0,-1)、F 2(0,1),P 是椭圆上一点,并且PF 1+PF 2=2F 1F 2,求椭圆的标准方程。
解:由PF 1+PF 2=2F 1F 2=2×2=4,得2a =4.又c =1,所以b 2=3.所以椭圆的标准方程是y 24+x 23=1.2.已知椭圆的两个焦点为F 1(-1,0),F 2(1,0),且2a =10,求椭圆的标准方程. 解:由椭圆定义知c =1,∴b =52-1=24.∴椭圆的标准方程为x 225+y 224=1.二、未知椭圆焦点的位置,求椭圆的标准方程。
例:1. 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ;三、椭圆的焦点位置由其它方程间接给出,求椭圆的标准方程。
例.求过点(-3,2)且与椭圆x 29+y 24=1有相同焦点的椭圆的标准方程.解:因为c 2=9-4=5,所以设所求椭圆的标准方程为x 2a 2+y 2a 2-5=1.由点(-3,2)在椭圆上知9a 2+4a 2-5=1,所以a 2=15.所以所求椭圆的标准方程为x 215+y 210=1.四、与直线相结合的问题,求椭圆的标准方程。
例: 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=, 4112===ax y k M M OM ,∴42=a ,∴1422=+y x 为所求. 五、求椭圆的离心率问题。
椭圆、双曲线、抛物线典型例题整理
![椭圆、双曲线、抛物线典型例题整理](https://img.taocdn.com/s3/m/f97bd3a6112de2bd960590c69ec3d5bbfd0adac8.png)
椭圆的焦距为:c = sqrt(a^2 b^2)
添加标题
添加标题
添加标题
添加标题
其中a表示椭圆的长半轴,b表示椭 圆的短半轴
椭圆的离心率范围为:0 < e < 1, 其中e = c/a
椭圆的性质
定义:平面内与两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。
性质:椭圆是中心对称图形,对称中心为原点;也是轴对称图形,对称轴为所有过焦点的直线。
抛物线的性质
性质:抛物线是轴对称图形, 对称轴是直线
定义:抛物线是平面内与一 个定点和一条直线等距离的 点的轨迹
焦点:抛物线有一个焦点, 位于直线的一侧
准线:抛物线有一个准线, 位于直线的另一侧
抛物线的焦点和准线
定义:抛物线是指平面内到一个定点和一条定直线距离相等的点的轨迹。
焦点:抛物线的顶点在坐标原点,对称轴为y轴,焦点位于x轴上,距离原点的距离为焦 距。
双曲线的性质
定义:双曲线是由两个固定的点(焦点)和一条线段(准线)所定义的平面曲线。
性质:双曲线具有两个分支,且在定义域内是连续的。
几何特性:双曲线的离心率是大于1的常数,表示双曲线与焦点之间的距离与线段长度之 比。
渐近线:双曲线具有渐近线,表示双曲线与直线之间的接近程度。
双曲线的焦点和准线
切线的应用:在解析几何中,切线可以用于研究曲线的性质和几何意义
Part Three
双曲线
双曲线的标准方程
定义:双曲线是由两个固定的点(焦点)和一条线段(准线)所围成的几何图形。 标准方程:x^2/a^2 - y^2/b^2 = 1 (a > 0, b > 0) 参数意义:a表示双曲线顶点到焦点的距离,b表示双曲线顶点到准线的距离。 性质:双曲线具有对称性,其焦点到曲线上任一点的距离之差为常数(即2a)。
高中数学椭圆双曲线抛物线历年真题及详解
![高中数学椭圆双曲线抛物线历年真题及详解](https://img.taocdn.com/s3/m/6511463e19e8b8f67d1cb968.png)
【考点8】椭圆、双曲线、抛物线2009年考题1、(2009湖北高考)已知双曲线1412222222=+=-b y x y x 的准线经过椭圆(b>0)的焦点,则b=( )A .3 B.5 C.3 D.2选C.可得双曲线的准线为21a x c =±=±,又因为椭圆焦点为2(4,0)b ±-所以有241b -=.即b2=3故b =3.2、(2009陕西高考)“0m n >>”是“方程221mxny +=”表示焦点在y 轴上的椭圆”的()(A)充分而不必要条件 (B)必要而不充分条件(C)充要条件 (D) 既不充分也不必要条件【解析】选C.将方程221mxny +=转化为22111x y m n+=, 根据椭圆的定义,要使焦点在y 轴上必须 满足110,0,m n>>且11n m >,故选C .3、(2009湖南高考)抛物线28y x =-的焦点坐标是( )A .(2,0)B .(- 2,0) C.(4,0) D.(- 4,0) 【解析】选B.由28y x =-,易知焦点坐标是(,0)(2,0)2p-=-,故选B. 4、(2009全国Ⅰ)已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B , 若3FA FB =,则||AF =( )(A )2(B) 2 (3 (D)3【解析】选A.过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =,故2||3BM =.又由椭圆的第二定义,得222||233BF==||2AF ∴=5、(2009江西高考)设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为( )A.32B .2 C.52D .3【解析】选B.由3tan623c b π==有2222344()c b c a ==-,则2c e a==,故选B. 6、(2009江西高考)过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为( )A .22B .33C.12D.13【解析】选B.因为2(,)b P c a -±,再由1260F PF ∠=有232,b a a=从而可得33c e a ==,故选B.7、(2009浙江高考)过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( ) A.2B .3C.5D.10【解析】选C.对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,则有22222222(,),,a b a b abab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭, 因222,4,5ABBC a b e =∴=∴=.8、(2009山东高考)设双曲线12222=-by a x 的一条渐近线与抛物线y=x2+1 只有一个公共点,则双曲线的离心率为( ).A.45B. 5C.25 D .5【解析】选D.双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y xa y x ⎧=⎪⎨⎪=+⎩,消去y,得210b xx a -+=有唯一解,所以△=2()40ba-=, 所以2b a =,2221()5c a b b e a a a+===+=,故选D .9、(2009山东高考)设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△O AF(O 为坐标原点)的面积为4,则抛物线方程为( ). A .24y x =±B .28y x =± C. 24y x = D . 28y x =【解析】选B.抛物线2(0)y ax a =≠的焦点F 坐标为(,0)4a ,则直线l 的方程为2()4ay x =-,它与y 轴的交点为A (0,)2a -,所以△OAF 的面积为1||||4242a a⋅=,解得8a =±.所以抛物线方程为28y x =±,故选B.10、(2009安徽高考)6 )(A )22124x y -= (B)22142x y -= (C)22146x y -= (D )221410x y -=【解析】选B.由6e =得222222331,1,222c b b a a a =+==,选B. 11、(2009天津高考)设双曲线)0,0(12222>>=-b a by a x 的虚轴长为2,焦距为32,则双曲线的渐近线方程为()Ax y 2±=Bx y 2±= C x y 22±= Dx y 21±=【解析】选C.由已知得到2,3,122=-===b c a c b,因为双曲线的焦点在x 轴上,故渐近线方程为x x a b y 22±=±=. 12、(2009宁夏、海南高考)双曲线24x -212y =1的焦点到渐近线的距离为( )(A )3 (B)2 (C 3(D)1【解析】选A.双曲线24x -212y =1的焦点(4,0)到渐近线3y x =的距离为34023d ⨯-==选A.13、(2009宁夏、海南高考)设已知抛物线C 的顶点在坐标原点,焦点为F(1,0),直线l 与抛物线C 相交于A,B 两点。
椭圆、双曲线抛物线综合练习题及答案-
![椭圆、双曲线抛物线综合练习题及答案-](https://img.taocdn.com/s3/m/cced86ef4a7302768e9939f9.png)
11 高中数学、选择题(每小题只有一个正确答案,每题 6分共36分)1. 2 2 椭圆' _L 1的焦距为。
25 9 A.2. B. 3 已知双曲线的离心率为 C. 4 D 2,焦点是(-4,0), 8 (4,0), 则双曲线的方程为2 2 x y 4 12 2 2 x y . B. 1 12 4C. 2x102y10,x 23.双曲线—— 3 1的两条准线间的距离等于 B.3.7 7 18 C. — 5 1652x 4.椭圆一 4 1上一点 P 到左焦点的距离为 3,则P 到y 轴的距离为 A. 1 B .C. 5.双曲线的渐进线方程为 2x 3y F (0, 5)为双曲线的一个焦点,则双曲线的方程为。
2A.工 4 2 x —1 9B.一 9C.叱 100 13x 2 —— 1 225 D 曳 225 13x 2 100 2 ..... x 6.设F I ,F 2是双曲线-y a 2-y2- 1的左、 b 2 右焦点,若双曲线上存在点 A,使 F 1AF 2 90 AF 1| 3 AF 2 ,则双曲线的离心率为 --- C. 2 7.设斜率为2的直线 l 过抛物线 y 2=ax ( aw0)的焦点 F,且和y 轴交于点 A,若^ OAFO 为坐标原点)的面积为4, 则抛物线方「程为( ) A. y 2=±4 B .y 2=±8x C . y 2= 4x 2D. y = 8x8.已知直线 1I :4x- 3y+6=0 和直线 l2: x=- 1, 抛物线y 2=4x 上一动点P 到直线11和直线l 2的距离之和的最小值是(A. 2B. 3C.537D.— 1629 .已知直线l i : 4x — 3y+6=0和直线l 2: x=—1,抛物线y=4x 上一动点 P 到直线l l 和直线l 2的距离之和的最小值是 ()10 .抛物线y 2=4x 的焦点为F,准线为l ,经过F 且斜率为J 3的直线与抛物线在 x 轴上方的部分相交于点 A, AK!l ,垂足为K,则4AKF 的面积是()A. 4B. 3审 C . 4斓 D. 8二.填空题。
椭圆、双曲线、抛物线习题(有答案)
![椭圆、双曲线、抛物线习题(有答案)](https://img.taocdn.com/s3/m/908ef4348e9951e79a892745.png)
1.双曲线222x y -=的焦距为( )A. 1B. 4C. 2D. 2.抛物线22y x =的焦点坐标是( )A. 102⎛⎫ ⎪⎝⎭,B. 102⎛⎫ ⎪⎝⎭,C. 108⎛⎫ ⎪⎝⎭,D 108⎛⎫ ⎪⎝⎭,. 3.椭圆22143x y +=的焦距为( ) A. 1 B. 2 C. 3 D. 44.双曲线2214x y -=的渐近线方程为( )A. 2xy =±B. 2y x =±C. 2y x =±D. y = 5.方程22121x y m m +=-为椭圆方程的一个充分不必要条件是( ) A. 12m >B. 12m >且1m ≠ C. 1m > D. 0m >6且过点()2,0的椭圆的标准方程是( ) A. 2214x y += B. 2214x y +=或2214y x += C. 2241x y += D.2214x y +=或221416x y +=7.若点(P m 为椭圆22:12516x y C +=上一点,则m =( ) A. 1± B. 12±C. 32±D. 52± 8.若坐标原点到抛物线2y mx = 的准线的距离为2 ,则m = ( ) A. 1+8 B. 1+4C. 4±D. 8±9.【2018届福建省福州市高三3月质量检测】已知双曲线 的两顶点间的距离为4,则的渐近线方程为( ) A.B.C.D.10.已知m 是2,8的等比中项,则圆锥曲线221y x m+=的离心率是( ) A.32或52 B. 32 C. 5 D. 32或5 11.若圆22:2210M x y x y +-++=与x 轴的交点是抛物线2:2(0)C y px p =>的焦点,则p =( ) A. 1 B. 2 C. 4 D. 812.已知是椭圆:的左焦点,为上一点,,则的最大值为( )A.B. 9C.D. 1013.【2018届山东省泰安市高三上学期期末】若抛物线24x y =上的点A 到焦点的距离为10,则A 到x 轴的距离是_________.14.已知椭圆的两焦点坐标分别是()20-, 、()20, ,并且过点(233, ,则该椭圆的标准方程是__________.15.【2018届河北省武邑中学高三上学期期末】已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为__________.16.【2018届北京市朝阳区高三第一学期期末】已知双曲线C 的中心在原点,对称轴为坐标轴,它的一个焦点与抛物线28y x =的焦点重合,一条渐近线方程为0x y +=,则双曲线C 的方程是________. 1.【答案】B【解析】双曲线的标准方程即: 22122x y -=,则:222222,4,2a b c a b c ==∴=+==, 双曲线的焦距为: 24c =. 本题选择B 选项. 2. 【答案】D【解析】转化为标准方程, 212x y =,所以焦点为10,8⎛⎫ ⎪⎝⎭.故选D.3.【答案】B【解析】在椭圆22143x y +=中, 224,3a b ==,所以21,1c c == ,故焦距22c =,选B.4.【答案】A【解析】Q 双曲线2214x y -=∴渐近线方程为2204x y -=,即2x y =±故选A . 5.【答案】C【解析】方程22121x y m m +=-表示椭圆的充要条件是0{210 21m m m m >->≠-,即12m >且1m ≠,所以方程22121x y m m +=-为椭圆方程的一个充分不必要条件是1m >,故选C.6.【答案】D【解析】当椭圆的焦点在x 轴上,设椭圆的方程为22221(0)x y a b a b +=>>,由离心率为3,∴222214b a c a =-=∵椭圆过点(2,0),∴2222201a b +=,∴a2=4,∴b2=1,∴椭圆标准方程为2214x y += 当椭圆的焦点在y 轴上,同理易得: 221416x y += 故选D.7.【答案】D【解析】由题意可得: (22312516m+=,则: 22125,2544m m ==,据此可得: 52m =±. 本题选择D 选项. 8. 【答案】A9.【答案】B【解析】由双曲线的方程可知:,即,∴,解得: 令,得到 故选:B.10.【答案】D【解析】由m 是2,8的等比中项得2264m m =⨯∴=±因此当4m =时,342,413,,c a c e a ===-===当4m =-时, 1,415,5,ca c e a ==+===所以离心率是3或5,选D.11.【答案】B【解析】圆M 的方程中,令0y =有: 2210,1x x x -+=∴=,据此可得抛物线的焦点坐标为()1,0, 则: 1,22pp =∴=. 本题选择B 选项.12.【答案】A【解析】连接P 点和另一个焦点即为E ,=. 故答案为:A.13.【答案】9【解析】根据抛物线方程可求得焦点坐标为()0,1,准线方程为1y =-∵抛物线24x y =上的点A 到焦点的距离为10 ∴点A 到x 轴的距离是1019-= 故答案为9.14.【答案】2211612x y +=15.【答案】2【解析】抛物线的准线为2p x =-,与圆相切,则342p+=, 2p =.16.【答案】22122x y -=【解析】抛物线28y x =的焦点坐标为20(,),所以双曲线C 的右焦点坐标为20(,),因为双曲线的一条渐近线方程为0x y +=,所以a b = ,所以224a a += ,所以22a = ,所以双曲线方程为22122x y -=.。
经典椭圆双曲线抛物线,重点题型
![经典椭圆双曲线抛物线,重点题型](https://img.taocdn.com/s3/m/db7e0878852458fb770b56e4.png)
椭圆经典题型一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆63222=+y x 的焦距是( )A .2B .)23(2-C .52D .)23(2+2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x y B .161022=+x y C .18422=+x y D .161022=+y x4.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是( )A .),0(+∞B .(0,2)C .(1,+∞)D .(0,1)5. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( ) A . 22 B . 2 C . 2 D . 1 6.已知椭圆的对称轴是坐标轴,离心率为31,长轴长为12,则椭圆方程为( ) A .112814422=+y x 或114412822=+y x B . 14622=+y x C .1323622=+y x 或1363222=+y x D . 16422=+y x 或14622=+y x 7. 已知k <4,则曲线14922=+y x 和14922=-+-ky k x 有( ) A . 相同的短轴 B . 相同的焦点 C . 相同的离心率 D . 相同的长轴8.椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( )A .9B .12C .10D .89.椭圆131222=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是2PF 的( )A .4倍B .5倍C .7倍D .3倍 10.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( )A .01223=-+y xB .01232=-+y xC .014494=-+y xD . 014449=-+y x11.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .1012.过点M (-2,0)的直线M 与椭圆1222=+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线M 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为( )A .2B .-2C .21 D .-21二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.)13.椭圆2214x y m +=的离心率为12,则m = . 14.设P 是椭圆2214x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 ;最小值为 .15.直线y =x -21被椭圆x 2+4y 2=4截得的弦长为 .16.已知圆Q A y x C ),0,1(25)1(:22及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程为 . 三、解答题:(本大题共6小题,共74分,解答应写出文字说明.证明过程或演算步骤.) 17.已知三角形ABC 的两顶点为(2,0),(2,0)B C -,它的周长为10,求顶点A 轨迹方程.18.椭圆的一个顶点为A (2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.20.中心在原点,一焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点横坐标是21,求此椭圆的方程.21.已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程22.椭圆12222=+by a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点. (1)求2211b a +的值; (2)若椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值范围.双曲线经典题型一、选择题(每题5分)1.已知a=3,c=5,并且焦点在x 轴上,则双曲线的标准程是( )A .116922=+y x B. 116922=-y x C. 116922=+-y x 1916.22=-y x D 2.已知,5,4==c b 并且焦点在y 轴上,则双曲线的标准方程是( )A .191622=-y x B. 191622=+-y x C.116922=+y x D.116922=-y x 3..双曲线191622=-y x 上P 点到左焦点的距离是6,则P 到右焦点的距离是( ) A. 12 B. 14 C. 16 D. 184..双曲线191622=-y x 的焦点坐标是 ( ) A. (5,0)、(-5,0)B. (0,5)、(0,-5) C. (0,5)、(5,0) D.(0,-5)、(-5,0) 5、方程6)5()5(2222=++-+-y x y x 化简得:A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 6.已知实轴长是6,焦距是10的双曲线的标准方程是( )A ..116922=-y x 和116922=+-y x B. 116922=-y x 和191622=+-y x C. 191622=-y x 和191622=+-y x D. 1162522=-y x 和1251622=+-y x 7.过点A (1,0)和B ()1,2的双曲线标准方程( )A .1222=-y x B .122=+-y x C .122=-y x D. 1222=+-y x8.P 为双曲线191622=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,则三角形PAB 的面积为( ) A . 9 B . 18 C . 24 D . 369.双曲线191622=-y x 的顶点坐标是 ( )A .(4,0)、(-4,0)B .(0,-4)、(0,4)C .(0,3)、(0,-3)D .(3,0)、(-3,0)10.已知双曲线21==e a ,且焦点在x 轴上,则双曲线的标准方程是( )A .1222=-y x B .122=-y x C .122=+-y x D. 1222=+-y x11.双曲线191622=-y x 的的渐近线方程是( ) A . 034=±y x B .043=±y x C .0169=±y x D .0916=±y x12.已知双曲线的渐近线为043=±y x ,且焦距为10,则双曲线标准方程是( )A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 二、填空题(每题5分共20分)13.已知双曲线虚轴长10,焦距是16,则双曲线的标准方程是________________.14.已知双曲线焦距是12,离心率等于2,则双曲线的标准方程是___________________.15.已知16522=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是___________.16.椭圆C 以双曲线122=-y x 焦点为顶点,且以双曲线的顶点作为焦点,则椭圆的标准方程是___________________三、解答题17.(本小题(10分)已知双曲线C :191622=+-y x ,写出双曲线的实轴顶点坐标,虚轴顶点坐标,焦点坐标,准线方程,渐近线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v1.0 可编辑可修改椭圆典型例题一、已知椭圆焦点的位置,求椭圆的标准方程。
例 1:已知椭圆的焦点是 F 1(0 ,- 1) 、F 2(0,1) ,P 是椭圆上一点,并且 PF 1+PF 2=2F 1F 2,求椭圆的标准方程。
解:由 PF 1+PF 2=2F 1F 2=2×2= 4,得 2a =4. 又 c =1,所以 b =3. 22 所以椭圆的标准方程是 y 4 +x 3=1.2.已知椭圆的两个焦点为 F 1( -1,0) ,F 2(1,0) ,且 2a =10,求椭圆的标准方程.解: 2x y由椭圆定义知 c = 1,∴ b= 5-1= 24. ∴椭圆的标准方程为 25+24=1.、未知椭圆焦点的位置,求椭圆的标准方程。
例:1. 椭圆的一个顶点为 A 2,0 ,其长轴长是短轴长的 2倍,求椭圆的标准方程. 解:(1)当 A 2,0 为长轴端点时, a 2, b 1,22椭圆的标准方程为: x y1 ;41(2)当 A 2,0 为短轴端点时, b 2, a 4,22椭圆的标准方程为: x y1 ;4 16三、椭圆的焦点位置由其它方程间接给出,求椭圆的标准方程。
22xy 例.求过点 ( - 3,2) 且与椭圆 + =1 有相同焦点的椭圆的标准方程.942y292 =1.由点 ( - 3,2) 在椭圆上知 2+ a- 5 a四、与直线相结合的问题,求椭圆的标准方程。
例: 已知中心在原点,焦点在 x 轴上的椭圆与直线 x y 1 0交于 A 、B 两点, M 为AB 中解:因为 c 2=9-4= 5,所以设所求椭圆的标准方程为 2x 2+aa 2-45=1,所以 a 2=15.所以所求椭圆的标准方程为 2 x15+2y10=1.点, OM 的斜率为,椭圆的短轴长为 2,求椭圆的方程.21 为所求.五、求椭圆的离心率问题。
一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.由 e 1,得2∴满足条件的六、由椭圆内的三角形周长、面积有关的问题A ( -4,0) ,B (4,0) ,△ ABC 的周长为 18,求顶点 C 的轨迹方程。
解:顶点 C 到两个定点 A ,B 的距离之和为定值 10,且大于两定点解: 由题意,设椭圆方程为 2x 2ay 21 ,x 由 x 2 2a2 y 2,得2x 22a 2x0,∴xMx 1 2x 22a 2a, y M1 x M1,1 a2 ,kOMyM xM2∴a4,例1 解:2a 2c c∴ 3c 22a , 13 ∴e33例22已知椭圆 x k81的离心率1,求 k 的值. 2解: 当椭圆的焦点在 x 轴上时, 8, b 29,得c 2 k 1.由e 1,得 k 4.2当椭圆的焦点在 y 轴上时, a 29, b 2 k 8 ,得 c 2 1k .例: 1. 若△ ABC 的两个顶点坐标间的距离,因此顶点 C 的轨迹为椭圆,并且 2a =10,所以 a =5,2c =8,所以 c =4,所以222 2 2x yb 2=a 2-c 2=9,故顶点 C 的轨迹方程为 25+ 9 =1.又A 、B 、C 三点构成三角形, 所以 y ≠0.2 2 2 2x y x y所以顶点 C 的轨迹方程为 25+ 9=1(y ≠0)答案: 25+9=1(y ≠0)222.已知椭圆的标准方程是 x a 2+2y 5=1(a >5),它的两焦点分别是 F 1, F 2,且 F 1F 2=8,弦 AB 过点 F 1,求△ ABF 2的周长.4a =4 41.223.设 F 1、F 2是椭圆x+y=1的两个焦点, P 是椭圆上的点, 且 PF 1∶PF 2=2∶1,求△PF 1F 2的面积.9411△PF 1F 2的面积为 2PF 1·PF 2=2×2×4= 4.七、直线与椭圆的位置问题111,求过点 P 1,1 且被 P 平分的弦所在的直线方程.221 解法一: 设所求直线的斜率为 k ,则直线方程为 y 12 2 2 212 31 2k2 x 2 2k 2 2k x k 2 k 0 .222例 已知椭圆 x 2 y 2k x 1 .代入椭圆方程,并整理得 22k 2 2k 由韦达定理得x1 x21 2k2即M 为所求点,因此 y M 3,且 M 在椭圆上.故 x M 2 3.所以 M 2 3,3 .双曲线典型例题∵ P 是弦中点,∴ x 1 x 2 1 .故得 k 2解法二11 : 设过 P 1 ,1 22的直线与椭圆交于 A x 1, y 12x12y 11,①22x22 y 21,②2x 1 x 2 1,③ y1y21.④22①-②得 x 1x 22y12 y2 0.2将③、④代入⑤得y 1 y 2 1 1,即直线的斜率为x1x22所求直线方程为 2x 4y 3 0 . 八、椭圆中的最值问题22例 椭圆 x y 1 的右焦点为 F ,过点 A1,3 16 12 时,求点 M 的坐标.点 M 在椭圆上,当 AM 2MF 为最小值解: 由已知: a 4, c 2.所以 e1,右准线 l :x 8 .2过 A 作 AQ l ,垂足为 Q ,交椭圆于 M ,故 MQ2MF .显然 AM 2MF 的最小值为 AQ , 所以所求直线方程为 2x 4y 3 0 .、根据方程的特点判断圆锥曲线的类型。
解:(1)当 k 9时,25 k 0,9 k 0,所给方程表示椭圆, 此时 a 225 k ,b 29 k , c 2a 2b 216 ,这些椭圆有共同的焦点(- 4,0),(4,0).(2)当 9 k 25时, 25 k 0,9 k 0 ,所给方程表示双曲线,此时, a 225 k ,2 2 2 2b 2 9 k ,c 2 a 2 b 2 16 ,这些双曲线也有共同的焦点(- 4,0),)(4,0).3) k 25, k 9, k 25时,所给方程没有轨迹.、根据已知条件,求双曲线的标准方程。
例 2 根据下列条件,求双曲线的标准方程.(2)c 6 ,经过点(- 5,2),焦点在 x 轴上.22(3)与双曲线 x y1 有相同焦点,且经过点 3 2,2 16 422解:( 1)设双曲线方程为 x y1mn∵ P 、 Q 两点在双曲线上,9 225∴m 16n256 25 9m n22∴所求双曲线方程为 x y116 9说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求”的目的. (2)∵焦点在 x 轴上, c6,例1 讨论25 k2y9k1表示何种圆锥曲线,它们有何共同特征.1) 过点 P 3, , Q416,5 且焦点在坐标轴上.16解得2∴所求双曲线方程是 xy 215说明:以上简单易行的方法给我们以明快、简捷的感觉.PF 1 PF 2 32 ,求 F 1PF 2的大小.解:∵点 P 在双曲线的左支上 ∴ PF 1 PF 2 622∴ PF 1 2 PF 2 22PF 1 PF 2 3622∴ PF 1 2 PF 2 2100 ∵ F 1F 2 24c 24 a 2b 12100 ∴ F 1PF 2 90(2)题目的“点 P 在双曲线的左支上”这个条件非常关键,应引起我们的重视,若将这一条件改 为“点 P 在双曲线上”结论如何改变呢请读者试探索.∴设所求双曲线方程为:x 21 (其中 0 6)双曲线经过点(-5, 2),∴ 254615或30 (舍去)2 23)设所求双曲线方程x y1016 4双曲线过点 3 2,2 ,∴ 18411644或14 (舍)22所求双曲线方程为y112 816x 2例 3 已 知双曲 线92y16 1的右焦点分别为F 1 、 F 2 , 点 P 在 双 曲 线 上 的 左 支 上 且2y6、求与双曲线有关的角度问题。
四、求与双曲线有关的三角形的面积问题。
2例 4 已知 F 1、 F 2是双曲线y 2 1的两个焦点,点 P 在双曲线上且满足 F 1PF 2 90 ,求4F 1PF 2 的面积.分析: 利用双曲线的定义及 F 1PF 2 中的勾股定理可求 F 1PF 2的面积.2解:∵ P 为双曲线 y 2 1上的一个点且 F 1、 F 2为焦点. 4∴PF 1 PF 2 2a 4, F 1F 2 2c 2 5∵F 1PF 2 902 2 2∴在 Rt PF 1F 2中, PF 12PF 2 2F 1F 2 220222∵PF 1 PF 2 PF 1 PF 2 2PF 1 PF 2 16∴ 20 2PF 1 PF 2 16 ∴ PF 1 PF 2 21∴S F 1PF 2PF 1 PF 2 11 22五、根据双曲线的定义求其标准方程。
例 5 已知两点 F 1 5,0 、 F 2 5,0 ,求与它们的距离差的绝对值是 6 的点的轨迹. 解:根据双曲线定义,可知所求点的轨迹是双曲线.22解:在双曲线 x y1中, a 8,b 6,故 c 10.64 36∵ c 5,a 3222∴ b c a5232 42 1622∴所求方程 xy1为动点的轨迹方程,且轨迹是双曲线. 9 1622例 P 是双曲线 xy1上一点, F 1、 F 2 是双曲线的两个焦点,64 36 1 2且 PF 1 17 ,求 PF 2 的值.由P 是双曲线上一点,得PF1 PF2 16 .∴ PF2 1 或PF2 33.又PF2c a 2,得PF233 .六、求与圆有关的双曲线方程。
例 6 求下列动圆圆心M 的轨迹方程:22(1)与⊙ C:x 2 2 y2 2 内切,且过点A 2,02 2 2 2(2)与⊙ C1:x2 y 12 1和⊙C2:x2 y 12 22(3)与⊙ C1:x 3 2 y2 9 外切,且与⊙ C2:x 3 解:设动圆M 的半径为r(1)∵⊙ C1与⊙ M 内切,点A 在⊙ C 外∴ MC r 2 ,MA r ,MA MC 2∴点M 的轨迹是以C 、A 为焦点的双曲线的左支,且有:4 都外切.2 y2 1内切.∴双曲线方程为2x22y27 1x2)∵⊙ M 与⊙ C1、⊙ C2都外切∴MC1 r 1 ,MC2 r 2 ,MC2 MC1 1∴点M 的轨迹是以C2、C1为焦点的双曲线的上支,且有:1 2 2 2 3 a ,c 1,b c a24∴所求的双曲线的方程为:4y2 43x21ya 22 cav1.0 可编辑可修改3)∵⊙ M 与⊙ C 1 外切,且与⊙ C 2内切∴MC 1 r 3, MC 2 r 1, MC 1 MC 2 4∴点 M 的轨迹是以 C 1、 C 2为焦点的双曲线的右支,且有:a 2, c 3,b 2c 2 a 25∴所求双曲线方程为:22x 2y 21 x2 45抛物线典型例题一、求抛物线的标准方程。