第五章《相交线与平行线》证明题专题复习课件培训资料
合集下载
相交线与平行线复习课专题PPT教学课件(数学人教版七年级下册)
![相交线与平行线复习课专题PPT教学课件(数学人教版七年级下册)](https://img.taocdn.com/s3/m/74aadb341fd9ad51f01dc281e53a580216fc50bf.png)
∴∠MCE=∠E ∠EAB=∠MNB
∵ AB∥CD
C
D
∴∠MCD=∠MNB
M
图(2)
请按下暂停键, 证明一下。
∴∠EAB=∠MCD ∵∠MCE=∠MCD+∠ECD ∴∠E=∠EAB+∠ECD
数学初中
添加辅助线
A
B
E
C
F
D
A
F
B
E
C
D
数学初中
(3)若将橡皮筋拉成图(3)的形状,则∠A、∠C、∠AEC之间
的三角板的一个顶点在纸条的另一边上,则∠1的度数是( C )
A.30° B.20° C.15° D.14°
请按下暂停键,动手算一下
数学初中
添加辅助线
类比
E
E
A
B
A
B
N
F
C
D
C
D
M
数学初中
(6)若将橡皮筋拉成图(6)的形状,则∠EAB、∠C之间有什么
关系?
E
A
B
C
图(6)
D
∠EAB=∠C
数学初中
(7)若将橡皮筋拉成图(7)的形状,则∠A、∠C、∠AEC之间
有什 么关系?
A
B
A
B
A
B
C
D
C
DC
D
E
E
图(7)
E
请按下暂停键,动手算一下
数学初中
添加辅助线
类比
A
E
B N
MC
D
图(4)
数学初中
(5)若将橡皮筋拉成图(5)的形状,则∠A、∠C、∠AEC之间
有什 么关系?
E
∵ AB∥CD
C
D
∴∠MCD=∠MNB
M
图(2)
请按下暂停键, 证明一下。
∴∠EAB=∠MCD ∵∠MCE=∠MCD+∠ECD ∴∠E=∠EAB+∠ECD
数学初中
添加辅助线
A
B
E
C
F
D
A
F
B
E
C
D
数学初中
(3)若将橡皮筋拉成图(3)的形状,则∠A、∠C、∠AEC之间
的三角板的一个顶点在纸条的另一边上,则∠1的度数是( C )
A.30° B.20° C.15° D.14°
请按下暂停键,动手算一下
数学初中
添加辅助线
类比
E
E
A
B
A
B
N
F
C
D
C
D
M
数学初中
(6)若将橡皮筋拉成图(6)的形状,则∠EAB、∠C之间有什么
关系?
E
A
B
C
图(6)
D
∠EAB=∠C
数学初中
(7)若将橡皮筋拉成图(7)的形状,则∠A、∠C、∠AEC之间
有什 么关系?
A
B
A
B
A
B
C
D
C
DC
D
E
E
图(7)
E
请按下暂停键,动手算一下
数学初中
添加辅助线
类比
A
E
B N
MC
D
图(4)
数学初中
(5)若将橡皮筋拉成图(5)的形状,则∠A、∠C、∠AEC之间
有什 么关系?
E
第五章相交线与平行线复习总结课件讲ppt
![第五章相交线与平行线复习总结课件讲ppt](https://img.taocdn.com/s3/m/42d0a194cf2f0066f5335a8102d276a20129604f.png)
b∥c
“过一点有且只有一条直线与已知直线平行”这句话对吗?为什么?
l
P
P
l
过直线外一点……
2.平行线的判定与性质
平行线的判定
平行线的性质
1、同位角相等,两直线平行 2、内错角相等,两直线平行 3、同旁内角互补,两直线平行 4、平行于同一条直线的两条直线平行
1、两直线平行,同位角相等 2、两直线平行,内错角相等 3、两直线平行,同旁内角互补
收获的季节
1. 如图,∵∠D=∠DCF(已知) ∴_____//___( ) 2. 如图,∵∠D+∠BAD=180°(已知) ∴____//_ _( ) 3.如图∵∠B=∠DCF(已知) ∴_____//___ (同位角相等,两直线平行)
D
练一练
3.分别过点A、B、C画对边BC、 AC、AB的垂线,垂足分别为D、E、F.
B
A
C
D
E
F
4.直线AB、CD相交于点O,OE是射线 ,∠1= 32° ,∠2=58° ,则OE与AB的位置关系是_________.
垂直
E
A
O
C
B
D
1
2
∵∠AOE= 180°-∠1-∠2= 90°(平角定义) ∴OE⊥AB(垂直定义)
AD
BC
AB
DC
内错角相等,两直线平行
同旁内角互补,两直线平 行
AB
DC
3.如图,不能判别AB∥CD的条件是( ) A. ∠B+ ∠BCD=180° B. ∠1= ∠2 C. ∠3= ∠4 D. ∠B= ∠5
B
AD∥BC
3.如图,已知直线a∥b,∠1=54°,那么∠2,∠3,∠4各是多少度?
“过一点有且只有一条直线与已知直线平行”这句话对吗?为什么?
l
P
P
l
过直线外一点……
2.平行线的判定与性质
平行线的判定
平行线的性质
1、同位角相等,两直线平行 2、内错角相等,两直线平行 3、同旁内角互补,两直线平行 4、平行于同一条直线的两条直线平行
1、两直线平行,同位角相等 2、两直线平行,内错角相等 3、两直线平行,同旁内角互补
收获的季节
1. 如图,∵∠D=∠DCF(已知) ∴_____//___( ) 2. 如图,∵∠D+∠BAD=180°(已知) ∴____//_ _( ) 3.如图∵∠B=∠DCF(已知) ∴_____//___ (同位角相等,两直线平行)
D
练一练
3.分别过点A、B、C画对边BC、 AC、AB的垂线,垂足分别为D、E、F.
B
A
C
D
E
F
4.直线AB、CD相交于点O,OE是射线 ,∠1= 32° ,∠2=58° ,则OE与AB的位置关系是_________.
垂直
E
A
O
C
B
D
1
2
∵∠AOE= 180°-∠1-∠2= 90°(平角定义) ∴OE⊥AB(垂直定义)
AD
BC
AB
DC
内错角相等,两直线平行
同旁内角互补,两直线平 行
AB
DC
3.如图,不能判别AB∥CD的条件是( ) A. ∠B+ ∠BCD=180° B. ∠1= ∠2 C. ∠3= ∠4 D. ∠B= ∠5
B
AD∥BC
3.如图,已知直线a∥b,∠1=54°,那么∠2,∠3,∠4各是多少度?
第五章 相交线与平行线复习 课件(共19张ppt)
![第五章 相交线与平行线复习 课件(共19张ppt)](https://img.taocdn.com/s3/m/f6f316338e9951e79b8927c0.png)
平行线的性质
1、两直线平行,同位角相等 2、两直线平行,内错角相等 3、两直线平行,同旁内角互补
基础演练2: 看图填空
(1)∵_____∥ _____(已知)
A
∴∠1= ∠4(
)
(2)∵_____∥ _____(已知)
1
∴∠C= ∠ADE(
)
(3)∵_____∥ _____(已知)
2 B
∴∠A+∠ABC=1800(
并用所学的知识推理它的正确性。
E
F
A
B
C
D
(1)如图,已知① AB∥CD,②BC ∥DE,则③∠B+∠D=1800
E
F
A
B
C
D
(2)如图,已知① AB∥CD,③∠B+∠D=1800 ,则②BC ∥DE
ELeabharlann FABC
D
(3)如图,已知,②BC ∥DE ,③∠B+∠D=1800 ,则①AB∥CD
课堂检测:
已知:如图,AC∥DE,AE平分∠CAB,
DF平分∠EDB,那么AE∥DF吗?请说明理由。
AE∥DF
C
理由:∵ AC∥DE(已知)
E
F ∴ ∠CAB= ∠EDB
1
3
( 两直线平行,同位角相等 )
2
4
B
A
D
∵ AE平分∠CAB, DF平∠EDB(已知)
∴ ∠2=1/2( ∠CAB),∠4=1/2( ∠EDB) ( 角平分线定义 )
致我亲爱的同学们
天空的幸福是穿一身蓝 森林的幸福是披一身绿 阳光的幸福是如钻石般耀眼 老师的幸福是因为认识了你们
愿你们努力进取,永不言败
七年级下数学第五章相交线与平行线复习课件1人教版ppt
![七年级下数学第五章相交线与平行线复习课件1人教版ppt](https://img.taocdn.com/s3/m/d3500546cd7931b765ce0508763231126edb77d1.png)
∠ A和哪个角是同旁内角? A
B
(∠B 、 ∠AOB、 ∠AOE)
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
一、判断题
概念辨析
1、有公共顶点且相等的两个角是对顶角。(
×
)
2、两条直线相交,有两组对顶角。
(√ )
3、两条直线相交所构成的四个角中有一个角是直角,
1、定义:
(二)、垂直:
两条直线相交所形成的四个角中有 A
一个是直角时叫两条直线互相垂直。
C
B O
2、画法: 过一点画一条直线的垂线。
D
p
3、性质:
c
b
Q
a
b
AB C
DE
P
(2)、 垂线段最短。
(1)、过一点有且只有一条直 线垂直于已知直线。
点到直线的距离:
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
直线AB,CD相交于点O,OM⊥AB于O, 且 ∠D1 OM= ∠COM,求∠AOD 的度数3.
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
线段、射线的垂线应怎么画呢?
P
Q
A
B
垂线性质一
O
A
过一点有且只有一条直线与已知直线垂直.
垂线段是垂线上的一部分,它是线段, 一端是一个点,另一端是垂足。
P
A
B
D
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
《相交线与平行线》证明题专题复习课件
![《相交线与平行线》证明题专题复习课件](https://img.taocdn.com/s3/m/ee41acad0875f46527d3240c844769eae109a347.png)
平行线的应用
平行线的标记法
在图形中使用箭头来标记平行 的直线。
线段延长
可使用平行线性质延长线段。
室内设计
平行线可用于创造美观的室内 设计效果。
总结和复习要点
线段相等定理 平行线的证明方法
角相等定理 平行线的应用
垂直直角定理 总结和复习要点
平行线性质
《相交线与平行线》证明题专 题复习课件
欢迎来到《相交线与平行线》证明题专题复习课件。本课程将为您讲解线段 相等定理、角相等定理、垂直直角定理、平行线性质、证明方法、应用以及 总结复习要点。
线段相等定理
1 定理1
如果线段AB与线段CD的长度相等,即AB ≌ CD,则线段AB与线段CD相等。
2 定理2
如果在两个等量线段上取等量的两个点,这两个点可以同时彼此对应。
3 应用示例
利用线段相等定理证明三角形的边相等。
角相等定理
1
定理1
两个角的角度相等,称为角相等。
2
定理2
如果两个角是对顶角, 那么它们的角度相等。
3
定理3
如果两条直线相交,那么相交角相等的对侧角也相等。
垂直直角定理
垂直直角定理
如果两条直线相交且相交角为 9Байду номын сангаас度,那么这两条直线互相垂 直。
直角定义
直角是一个90度的角度。
对顶角垂直性
对顶角是相互垂直的。
平行线性质
平行线定义
如果两条直线没有交点,那么这两条直线是 平行线。
同位角补角
同位角补角相等。
同位角性质
同位角相等的两条直线是平行线。
同位角和内错角性质
同位角和内错角的和等于180度。
平行线的证明方法
人教版数学七下第五章《相交线与平行线》ppt复习课件
![人教版数学七下第五章《相交线与平行线》ppt复习课件](https://img.taocdn.com/s3/m/5a32a1a2dd88d0d232d46a15.png)
垂线段的长度,叫做这点到这条直线的距离.
判断:
1、画出点A到直线BC的距离。( )
B
2、画出点A到直线BC的垂线段。( )
A DC
3、量出点A到直线BC的距离。 ( )
4、垂线最短。
()
(三)、三线八角:
A
同位角: ∠1与∠5; ∠4与∠8;
∠2与∠6; ∠3与∠7.
内错角: ∠4与∠6; ∠3与∠5. C
则∠3=
40º
A
B
1
32
C
D
2
11、如图:
∠CDF= 2
AB∥CD ,∠ABF= 3
∠CDE,则∠E︰∠F=
∠ABE, 3:2
3
(提示: ∠E=∠ABE+ ∠CDE C
D FE
∠F= ∠ABF+ ∠CDF)
A
B
ba
1
2
∴ ∠1=90 (垂直定义)
又∵ b∥c (已知)
∴ ∠2= ∠1=90 (两直线平行,同位角相等)
∴ a ⊥c. (垂直定义)
二、平行线
E
(一)、定义:
A
21
B
在同一平面内,不相交的两 条直线叫做平行线。
34 65
(二)、判定:
1、定义。
C7 8
D
F
2、同位角相等,两直线平行。
E
G
B
C1
D
6、下列命题正确的是(A )
A、垂直于同一条直线的两条直线平行(在同一平面内)
B、两条直线被第三条直线所截,同位角相等
C、相等的两个角是对顶角
D、点到直线间的距离,垂线段最短
7、三条直线相交一点,对顶角的对数是( B )
判断:
1、画出点A到直线BC的距离。( )
B
2、画出点A到直线BC的垂线段。( )
A DC
3、量出点A到直线BC的距离。 ( )
4、垂线最短。
()
(三)、三线八角:
A
同位角: ∠1与∠5; ∠4与∠8;
∠2与∠6; ∠3与∠7.
内错角: ∠4与∠6; ∠3与∠5. C
则∠3=
40º
A
B
1
32
C
D
2
11、如图:
∠CDF= 2
AB∥CD ,∠ABF= 3
∠CDE,则∠E︰∠F=
∠ABE, 3:2
3
(提示: ∠E=∠ABE+ ∠CDE C
D FE
∠F= ∠ABF+ ∠CDF)
A
B
ba
1
2
∴ ∠1=90 (垂直定义)
又∵ b∥c (已知)
∴ ∠2= ∠1=90 (两直线平行,同位角相等)
∴ a ⊥c. (垂直定义)
二、平行线
E
(一)、定义:
A
21
B
在同一平面内,不相交的两 条直线叫做平行线。
34 65
(二)、判定:
1、定义。
C7 8
D
F
2、同位角相等,两直线平行。
E
G
B
C1
D
6、下列命题正确的是(A )
A、垂直于同一条直线的两条直线平行(在同一平面内)
B、两条直线被第三条直线所截,同位角相等
C、相等的两个角是对顶角
D、点到直线间的距离,垂线段最短
7、三条直线相交一点,对顶角的对数是( B )
《相交线与平行线复习课》课件(16张ppt)
![《相交线与平行线复习课》课件(16张ppt)](https://img.taocdn.com/s3/m/604ff70152ea551810a68764.png)
A 2 D 3
1 C
O
4
B
l3
2 1 3 4 6 5 7 8
l1
l2
截线 同位角 内错角 同旁内角
同旁 两旁 同旁
被截线
同侧 之间(交错 之间
)
结构特征
F (或倒置 Z
) (或反置)
U
3、垂线: 当两条直线相交所构成的四个角中有一个 角是直角时,就说这两条直线互相垂直, 其中的一条叫做另一条的垂线。 C 1 B D 垂线的性质: ①过一点有且只有一条直线与已知直线 互相垂直 ②连接直线外一点与直线上各点的所有 线段中,垂线段最短 点到直线的距离:直线外一点到这条直线的 垂线段的长度。
邻补角 两条 直线 相交
一般情况
邻补角互补
对顶角相等 存在性和唯一性
对顶角
相 交 线
特殊
垂直
垂线段最短
两条直线被 第三条所截
点到直线 的距离
同位角、内错角、同旁内角 平行线的判定 平行线的性质
平行公理及其推论
两条平行线的距离 命题
平 行 线
平移
平移的性质
一、相交线 如果一个角的两边是另一个角的两边的反向 1、对顶角:
B
例题精讲:
例2 : 如图,BD⊥AC,EF⊥AC,D、F分别为 垂足,∠1=∠2,试说明∠ADG =∠C 。
A D F C
2 1
G B
E
探究创新:
已知:如图AB∥CD,试探究
∠BED与∠B,∠D的关系
A
A
B
1 E
B
1
F
C
2 D
E C
2
D
F
的两条直线 ②平行公理:过直线外 ②若a∥b,a ∥ c, 叫平行线 一点有且只有一条直线 则b ∥ c
1 C
O
4
B
l3
2 1 3 4 6 5 7 8
l1
l2
截线 同位角 内错角 同旁内角
同旁 两旁 同旁
被截线
同侧 之间(交错 之间
)
结构特征
F (或倒置 Z
) (或反置)
U
3、垂线: 当两条直线相交所构成的四个角中有一个 角是直角时,就说这两条直线互相垂直, 其中的一条叫做另一条的垂线。 C 1 B D 垂线的性质: ①过一点有且只有一条直线与已知直线 互相垂直 ②连接直线外一点与直线上各点的所有 线段中,垂线段最短 点到直线的距离:直线外一点到这条直线的 垂线段的长度。
邻补角 两条 直线 相交
一般情况
邻补角互补
对顶角相等 存在性和唯一性
对顶角
相 交 线
特殊
垂直
垂线段最短
两条直线被 第三条所截
点到直线 的距离
同位角、内错角、同旁内角 平行线的判定 平行线的性质
平行公理及其推论
两条平行线的距离 命题
平 行 线
平移
平移的性质
一、相交线 如果一个角的两边是另一个角的两边的反向 1、对顶角:
B
例题精讲:
例2 : 如图,BD⊥AC,EF⊥AC,D、F分别为 垂足,∠1=∠2,试说明∠ADG =∠C 。
A D F C
2 1
G B
E
探究创新:
已知:如图AB∥CD,试探究
∠BED与∠B,∠D的关系
A
A
B
1 E
B
1
F
C
2 D
E C
2
D
F
的两条直线 ②平行公理:过直线外 ②若a∥b,a ∥ c, 叫平行线 一点有且只有一条直线 则b ∥ c
人教版七年级下册第五章《相交线和平行线》复习课件(共17张PPT)
![人教版七年级下册第五章《相交线和平行线》复习课件(共17张PPT)](https://img.taocdn.com/s3/m/45a054088762caaedd33d4b2.png)
5的关系是______;
②∠3和∠5的关系是______;
内错角
③∠2和∠ __是直线______、______被直线______所截,形成的同位角。
同旁内角
7 EF
HE
CD
复习与回顾
(1)∵∠ 4 =∠ 2 , ∴ a∥b(同位角相等,两直线平行)
c
4
13
a
(2)∵∠ 1 =∠ 2 ,
M N
平行线 间与拐点,过拐点作平行线
课堂小结: 谈谈你本节课的收获。
课后作业
P35页—P36页 2、3、6、8题
不去耕耘,不去播种,再肥的沃土也长不出庄稼, 不去奋斗,不去创造,再美的青春也结不出硕果
重点:复习平面内两条直线的相交和平行的位置关系,以及相交平行的 综合应用 难点:垂直、平行的性质和判定的综合应用。
学法指导:
1.回想或查阅资料总结知识点; 2.独立完成,小组订正答案,解决过程中发现的问题。
复习与回顾
如图中的∠1和∠2是同位角吗? 为什么?
2 1 ∠1和∠2不是同位角
1
2
∠1和∠2是同位角,
学习目标
1、经历基础知识梳理的过程,进一步体会数学知识中数量关系的一个有效数学模型; 2、能够利用基础知识解答一些简单问题,帮助学生认识到运用基础知识解答一些简 单问题的关键是理解定义、定理蕴含的关系;并且能根据具体问题的实际意义检验结果 的合理性,进一步培养学生分析问题、解决问题的意识和能力; 3、了解一对顶角、邻补角及其相关概念,会用平行线的性质及判断解答简单的证明 题,并在证明的过程中体会转化等数学思想;
∴ ∠ 3 +∠ 2 =180°
(两直线平行,同旁内角互补)
学法指导: 1.根据总结知识,完成例题; 2.小组互学,交流经验,总结方法; 3.板演,与全班同学订正。
②∠3和∠5的关系是______;
内错角
③∠2和∠ __是直线______、______被直线______所截,形成的同位角。
同旁内角
7 EF
HE
CD
复习与回顾
(1)∵∠ 4 =∠ 2 , ∴ a∥b(同位角相等,两直线平行)
c
4
13
a
(2)∵∠ 1 =∠ 2 ,
M N
平行线 间与拐点,过拐点作平行线
课堂小结: 谈谈你本节课的收获。
课后作业
P35页—P36页 2、3、6、8题
不去耕耘,不去播种,再肥的沃土也长不出庄稼, 不去奋斗,不去创造,再美的青春也结不出硕果
重点:复习平面内两条直线的相交和平行的位置关系,以及相交平行的 综合应用 难点:垂直、平行的性质和判定的综合应用。
学法指导:
1.回想或查阅资料总结知识点; 2.独立完成,小组订正答案,解决过程中发现的问题。
复习与回顾
如图中的∠1和∠2是同位角吗? 为什么?
2 1 ∠1和∠2不是同位角
1
2
∠1和∠2是同位角,
学习目标
1、经历基础知识梳理的过程,进一步体会数学知识中数量关系的一个有效数学模型; 2、能够利用基础知识解答一些简单问题,帮助学生认识到运用基础知识解答一些简 单问题的关键是理解定义、定理蕴含的关系;并且能根据具体问题的实际意义检验结果 的合理性,进一步培养学生分析问题、解决问题的意识和能力; 3、了解一对顶角、邻补角及其相关概念,会用平行线的性质及判断解答简单的证明 题,并在证明的过程中体会转化等数学思想;
∴ ∠ 3 +∠ 2 =180°
(两直线平行,同旁内角互补)
学法指导: 1.根据总结知识,完成例题; 2.小组互学,交流经验,总结方法; 3.板演,与全班同学订正。
人教版七年级数学下册 第五章相交线与平行线复习(共30张ppt)
![人教版七年级数学下册 第五章相交线与平行线复习(共30张ppt)](https://img.taocdn.com/s3/m/ed1641b8700abb68a982fb5c.png)
C
∟
O
B
D
你能量出C到AB的距离,B到AC的距离,A到BC的距 离吗?
F
E
C
A
D
B
理由:垂线段最短
拓展应用
如图:要把水渠中的水引到水池C 中,在渠岸的什么地方开沟,水沟的 长度才能最短? 请画出图来,并说明理由。
理由:垂线段最短
C
∥平行∥
• 在平面内,两条直线有几种位置关系?
• 什么叫平行线?怎样表示?怎样读?
基础练习:
3.如图:∠ 1=100°∠2=80°,
dc
∠3=105° 则∠4=_1_0_5_°___
3
1
a
4 2b
4. 两条直线被第三条直线所截,则( D ) A 同位角相等 B 同旁内角互补 C 内错角相等 D 以上都不对
基础练习:
5.如图, 若∠3=∠4,则 AD∥ ;BAC 1
B
若AB∥CD, 则∠ 1 =∠ 2 。
• 平行公理及其推论的内容是什么?
• 有哪些方法画平行线?
• 两_直_线对被,第内三错直角线有所_截_,对构,成同的旁八内个角角有中_同_位对角. 有C
3
E 1
• 平行线的判定方法有哪些? • 平行线有哪些性质? • 什么是平行线间的距离?
4 2
75 42
2 A 8F6
D B
综合练习
1 .如图, 若∠3=∠4,则 AD∥ BC; 若AB∥CD, 则∠ 1 =∠ 2。 D
(两直线平行,内错角相等) 因为∠1=∠2(已知) 所以 ∠1=∠ACD(等量代换) 所以AB ∥ CD
(内错角相等,两直线平行)
A
D
1
2
B
人教版初一数学7年级下册 第5章(相交线与平行线)复习 课件(41张ppt)
![人教版初一数学7年级下册 第5章(相交线与平行线)复习 课件(41张ppt)](https://img.taocdn.com/s3/m/e9d139a94bfe04a1b0717fd5360cba1aa8118cb2.png)
问题4 已知:如图,AB和CD相交于点O, ∠C=∠COA,∠D=∠BOD. 求证:AC∥BD .
例题讲解
思考:证明两条直线互相平行 的方法有哪些?
例题讲解
证明两条直线互相平行
两直线平行
同位角相等
内错角相等
同旁内角互补
平行公理的推论
例题讲解
例题讲解
对顶角相等
∠C=∠D
A
∠C=∠COA
∠D=∠BOD
AC∥BD
分析:
例题讲解
证明:∵∠C=∠COA,∠D=∠BOD, ∠COA=∠BOD, ∴∠C=∠D. ∴ AC∥BD.
A
问题4 已知:如图,AB和CD相交于点O, ∠C=∠COA,∠D=∠BOD. 求证:AC∥BD .
∠1与∠BOE互为邻补角
∠1与∠3相等
∠1与∠BOE互补
∠1与∠2互余
C
F
B
A
D
E
O
1
2
3
问题1 如图,直线AB⊥CD,垂足为O, 直线EF经过点O,∠1=26°, 求∠2,∠3,∠BOE的度数.
例题讲解
解:∵ AB⊥CD , ∴ ∠COB=90° . ∵ ∠1=26°, ∴ ∠2=∠COB -∠1=64° , ∠3=∠1=26°, ∠BOE=180°-∠1=180°-26°=154° ..
例题讲解
AB⊥CD
直线AB与直线EF交于点O
∠1与∠3互为对顶角
∠1与∠2互余
∠1与∠3相等
C
F
B
A
D
E
O
1
2
3
问题1 如图,直线AB⊥CD,垂足为O, 直线EF经过点O,∠1=26°, 求∠2,∠3,∠BOE的度数.
例题讲解
思考:证明两条直线互相平行 的方法有哪些?
例题讲解
证明两条直线互相平行
两直线平行
同位角相等
内错角相等
同旁内角互补
平行公理的推论
例题讲解
例题讲解
对顶角相等
∠C=∠D
A
∠C=∠COA
∠D=∠BOD
AC∥BD
分析:
例题讲解
证明:∵∠C=∠COA,∠D=∠BOD, ∠COA=∠BOD, ∴∠C=∠D. ∴ AC∥BD.
A
问题4 已知:如图,AB和CD相交于点O, ∠C=∠COA,∠D=∠BOD. 求证:AC∥BD .
∠1与∠BOE互为邻补角
∠1与∠3相等
∠1与∠BOE互补
∠1与∠2互余
C
F
B
A
D
E
O
1
2
3
问题1 如图,直线AB⊥CD,垂足为O, 直线EF经过点O,∠1=26°, 求∠2,∠3,∠BOE的度数.
例题讲解
解:∵ AB⊥CD , ∴ ∠COB=90° . ∵ ∠1=26°, ∴ ∠2=∠COB -∠1=64° , ∠3=∠1=26°, ∠BOE=180°-∠1=180°-26°=154° ..
例题讲解
AB⊥CD
直线AB与直线EF交于点O
∠1与∠3互为对顶角
∠1与∠2互余
∠1与∠3相等
C
F
B
A
D
E
O
1
2
3
问题1 如图,直线AB⊥CD,垂足为O, 直线EF经过点O,∠1=26°, 求∠2,∠3,∠BOE的度数.
第5章 相交线与平行线 复习与小结 课件(共21张PPT)
![第5章 相交线与平行线 复习与小结 课件(共21张PPT)](https://img.taocdn.com/s3/m/537de50bbdd126fff705cc1755270722182e594a.png)
1 34
a
2 b
知识梳理
知识点六 平行线的性质
性质1:两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
1
性质2:两条平行线被第三条直线所截,内错角相等. 3 4
a
简单说成:两直线平行,内错角相等. 性质3:两条平行线被第三条直线所截,同旁内角互补.
2 b
简单说成:两直线平行,同旁内角互补.
2
∴∠3+∠4=180°.(两直线平行,同旁内角互补) 1
b
a
∵∠3=60°,
∴∠4=120°.
课堂检测
6.如图,一个由4条线段构成的“鱼”形图案,其中∠1=
50°,∠2=50°,∠3=130°,找出图中的平行线,并说
明理由. 解:OA∥BC,OB∥AC,
∵∠1=50°,∠2=50°, ∴∠1=∠2. ∴OB∥AC. ∵∠2=50°,∠3=130°, ∴∠2+∠3=180°, ∴ OA∥BC.
命题的分类: 真命题:如果题设成立,那么结论一定成立,这样的命 题叫做真命题. 假命题:如果题设成立时,不能保证结论一定成立,这 样的命题叫做假命题.
定理的概念:一些命题的正确性是经过推理证实的,这样得到的真命题 叫做定理.
证明的概念:一个命题的正确性需要经过推理,才能作出判断,这个 推理过程叫做证明.
A 符号语言表示:
∵∠AOD=90°
∴AB⊥CD(垂直的定义)
C
O
D
B
知识梳理
知识点二 垂线的定义和性质
垂 线 的 性 质 1 :经过一点(已知直线上或直线外),能画出已知直线的一 条垂线,并且只能画出一条垂线.
即:在同一平面内,过一点有且只有一条直线与已知直线垂直.
人教版七年级下册数学第五章《相交线与平行线》复习课课件
![人教版七年级下册数学第五章《相交线与平行线》复习课课件](https://img.taocdn.com/s3/m/4c067a3103020740be1e650e52ea551810a6c905.png)
(1)你能得到∠F与∠1+∠3的关系吗?
(2)你能得到∠ABE+∠CDE的值吗? (3)由BF和DF分别平分∠ABE和∠CDE,你能得到
∠1+∠3 与∠ABE+∠CDE的关系吗?
解∵AB∥CD ∴∠F=∠1+∠3
∠ABE+∠E+∠CDE=360° ∵∠E=140°
∴∠ABE+∠CDE=360°-140°=220°
C
D
F
E
分别在下列图形中,探究∠E 与∠B、∠D之间的数 量关系:
A
B
A
B
C
D
E E
A
B
C
D
E
E
A
B
C
D
C
D
模型三:‘外错’ 型
规律总结:
当“拐点”在平行线的外部时, “拐角”等于两个边角之差.
(即:拐角=大角-小角)
知识再现
4.已知AB∥CD,∠ABE和∠CDE的平分线相交于
F,∠E = 140º,则 ∠F =____ 。
①点在两平行线之间
A
B
A
B
E
E
C
D
C
图1
②点在两平行线之外
E
A
B
A
B
A
C 图3
C
D
C
图4 E
图2
D
E A
B
D 图5
C
图6
B
D E
平行线中的折线成角问题模型:
一、内凹型:
归纳
数学建模
二、外凸型:
三、外错型:
E
A
B
C
D
(二) 合作探究 模型一:“内凹” 型
(2)你能得到∠ABE+∠CDE的值吗? (3)由BF和DF分别平分∠ABE和∠CDE,你能得到
∠1+∠3 与∠ABE+∠CDE的关系吗?
解∵AB∥CD ∴∠F=∠1+∠3
∠ABE+∠E+∠CDE=360° ∵∠E=140°
∴∠ABE+∠CDE=360°-140°=220°
C
D
F
E
分别在下列图形中,探究∠E 与∠B、∠D之间的数 量关系:
A
B
A
B
C
D
E E
A
B
C
D
E
E
A
B
C
D
C
D
模型三:‘外错’ 型
规律总结:
当“拐点”在平行线的外部时, “拐角”等于两个边角之差.
(即:拐角=大角-小角)
知识再现
4.已知AB∥CD,∠ABE和∠CDE的平分线相交于
F,∠E = 140º,则 ∠F =____ 。
①点在两平行线之间
A
B
A
B
E
E
C
D
C
图1
②点在两平行线之外
E
A
B
A
B
A
C 图3
C
D
C
图4 E
图2
D
E A
B
D 图5
C
图6
B
D E
平行线中的折线成角问题模型:
一、内凹型:
归纳
数学建模
二、外凸型:
三、外错型:
E
A
B
C
D
(二) 合作探究 模型一:“内凹” 型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴∠D=∠B+∠BED 即: ∠BED=∠D-∠B
变式3 已知:如图,AB∥CD, 求证:∠BED=∠B-∠D
证明:如图,过E作EF∥AB,则 ∠FEB+∠B=180°, ∴∠FEB=180°-∠B. ∵AB∥CD, ∴EF∥CD, ∴∠FED+∠D=180°, ∴∠FED=180°-∠D, ∴∠BED=∠FED-∠FEB=180°-∠D180°+∠B=∠B-∠D,即∠BED=∠B∠D.
3.如图,M、N、T和A、B、C分别在同一直线上, 且∠1=∠3,∠P=∠T,求证:∠M=∠R。
4.已知:如图,AB∥DE,CM平分∠BCE, CN⊥CM.求证:∠B=2∠DCN.
第五章相交线与平行线辅助线专题
题型一、“U”型中辅助线
已知:如图,AB∥ED,求证:∠BCD=360°-(∠B+∠D)。
点C添加一条平行线.
题型二、“Z”型中辅助线
如图所示,AB∥ED,∠B=48°,∠D=42°, 证明:BC⊥CD。(选择一种辅助线)
过点C作CF∥AB, ∵AB∥ED, ∴AB∥CF∥ED, ∴∠BCF=∠B,∠DCF=∠D, ∴∠BCD=∠B+∠D, =48°+42°, =90°, ∴BC⊥CD; 过点C作CG∥AB, ∵AB∥ED, ∴AB∥CG∥ED, ∴∠BCG=180°-∠B=180°-48°=132°, ∠DCG=∠D=180°-∠D=180°-42°=138°, ∴∠BCD=360°-∠BCG-∠DCG, =360°-132°-138°, =90°, ∴BC⊥CD.
变式1 已知:如图9,AB∥CD,∠ABF=∠DCE。求证:∠BFE=∠FEC。
变式1 已知:如图9,AB∥CD,∠ABF=∠DCE。求证:∠BFE=∠FEC。
如图,作FG∥AB,EH∥CD, ∴∠B=∠1,∠C=∠4, 又∵ AB∥CD, ∴FG∥GE ∴∠2=∠3, ∴∠1+∠2=∠3+∠4, 即∠BFE=∠FEC
第五章 相交线与平行线证明 题专题复习
平 行
条件
线
的 两直线平行 性
质
平 条件
行 线
同位角相等
的 内错角相等
判
定 同旁内角互补
结论
同位角相等 内错角相等 同旁内角互补
结论
两直线平行
例1. 已知∠DAC= ∠ACB, ∠D+∠DFE=1800,求证:EF//BC
D
F
C
证明: ∵ ∠DAC= ∠ACB (已知)
∴ AD// BC
(内错角相等,两直线平行) ∵ ∠D+∠DFE=1800(已知) ∴ AD// EF
B
E A
(同旁内角互补,两直线平行)
∴ EF// BC
(平行于同一条直线的两条直线互相平行)
例2. 如图 已知:∠1+∠2=180°, 求证:AB∥CD。
证明: ∵ ∠1+∠2=180°(已知),
∠3+∠4+∠C=540°.
故答案为:540°.
变式2、如图所示,AB∥ED,∠CAB=135°, ∠ACD=80°,求∠CDE的度数.
如图,过点C作CF∥AB. ∵AB∥AB ∴∠A+∠ACF=180°(两直线平行,同旁内角互补) ∵∠A=135°, ∴∠ACF=45°. ∴∠FCD=∠ACD-∠ACF=80°-45°=35° 又∵CF∥ED ∴∠FCD=∠CDE(两直线平行,内错角相等) ∴∠CDE=35°. 提示: 两平行线AB、ED没有一条直线去截它们,需要过
D E
B
∴ ∠DCB=∠GDC (等量代换)
∴ DG∥BC (内错角相等,两直线平行)
∴ ∠AGD=∠ACB
(两直线平行,同位角相等)
A G
FC
课堂练习
1.已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2, 猜想∠BDE与∠C有怎样的大小关系?试说明理由.
2. 已知:如图,CD平分∠ACB,AC∥DE, ∠DCE=∠FEB,求证:EF平分∠DEB.
“平行线间的折线问题”题型小结
1.原题的难点在于平行线间没有截线或截线不明显 2.添加辅助线的目的是构造截线或构造新的平行线 3.处理平行线间折线的问题,过所有折点作平行线是一种通法 4. 加截线(连结两点、延长线段相交)构造三角形,应用 三角形内角和定理,也是一种“转化”的数学思想
作业:
1. 已知:如图23,AD平分∠BAC,点F在BD上, FE∥AD交AB于G,交CA的延长线于E,求证: ∠AGE=∠E。
变式2 已知:如图,AB∥CD,求证:∠BED=∠D-∠B。
证明: 过E点作EF//AB, ∵ AB//CD ∴ AB//CD//EF ∴∠D=∠DEF∠B=∠BEF ∵∠BED=∠DEF-∠BEF ∴∠BED=∠D-∠B 另证: 设AB与ED相交点为O ∵ AB//CD ∴∠D=∠DOB ∵∠DOB=∠B+∠BED
E
∠1=∠3
A1
∠2=∠4(对顶角相等) ∴ ∠3+∠4=180°(等量代换).
C
∴ AB//CD (同旁内角互补,两直线平行).
B 3
4 D
2 F
例3. 如图,已知:AC∥DE,∠1=∠2, 试证明AB∥CD。
证明: ∵AC∥DE (已知)
∴ ∠ACD= ∠2
A 1
(两直线平行,内错角相等)
D 2
证明:过点C作CF∥AB,则∠B+∠1=180°( ∵AB∥CD(已知),
又∵CF∥AB(已作),
∴EF∥CD(
)。
∴∠D+∠2=180°(
)。
∴∠B+∠1+∠D+∠2=180°+180°(
又∵∠BCD=∠1+∠2,
∴∠B+∠D+∠BCD=360°( )。
∴∠BCD==360°-(∠B+∠D)(
)。 )。
)。
变式1、已知:如图,AB∥CD,求∠BAE+∠AEF+∠EFC+∠FCD的度数.
A
B
E
F
解:过点E作EM∥AB,过点F作FN∥AB,
C 第3题
D
∴ EM∥FN
∵AB∥CD ,
∴EM∥FN∥AB∥CD,
∴∠A+∠1=180°,∠2+∠3=180°,
∠4+∠C=180°,
∴∠BAE+∠AEF+∠EFC+∠FCD=∠A+∠1+∠2+
∵ ∠1=∠2(已知) B
C
E
∴ ∠1=∠ACD(等量代换)
∴AB ∥ CD
(内错角相等,两直线平行)
例4.已知 EF⊥AB,CD⊥AB ,∠EFB=∠GDC,
求证:∠AGD=∠ACB。
证明: ∵ EF⊥AB,CD⊥AB (已知)
∴ AD∥BC
(垂直于同一条直线的两条直线互相平行) ∴ ∠EFB= ∠DCB (两直线平行,同位角相等) ∵ ∠EFB=∠GDC (已知)
变式3 已知:如图,AB∥CD, 求证:∠BED=∠B-∠D
证明:如图,过E作EF∥AB,则 ∠FEB+∠B=180°, ∴∠FEB=180°-∠B. ∵AB∥CD, ∴EF∥CD, ∴∠FED+∠D=180°, ∴∠FED=180°-∠D, ∴∠BED=∠FED-∠FEB=180°-∠D180°+∠B=∠B-∠D,即∠BED=∠B∠D.
3.如图,M、N、T和A、B、C分别在同一直线上, 且∠1=∠3,∠P=∠T,求证:∠M=∠R。
4.已知:如图,AB∥DE,CM平分∠BCE, CN⊥CM.求证:∠B=2∠DCN.
第五章相交线与平行线辅助线专题
题型一、“U”型中辅助线
已知:如图,AB∥ED,求证:∠BCD=360°-(∠B+∠D)。
点C添加一条平行线.
题型二、“Z”型中辅助线
如图所示,AB∥ED,∠B=48°,∠D=42°, 证明:BC⊥CD。(选择一种辅助线)
过点C作CF∥AB, ∵AB∥ED, ∴AB∥CF∥ED, ∴∠BCF=∠B,∠DCF=∠D, ∴∠BCD=∠B+∠D, =48°+42°, =90°, ∴BC⊥CD; 过点C作CG∥AB, ∵AB∥ED, ∴AB∥CG∥ED, ∴∠BCG=180°-∠B=180°-48°=132°, ∠DCG=∠D=180°-∠D=180°-42°=138°, ∴∠BCD=360°-∠BCG-∠DCG, =360°-132°-138°, =90°, ∴BC⊥CD.
变式1 已知:如图9,AB∥CD,∠ABF=∠DCE。求证:∠BFE=∠FEC。
变式1 已知:如图9,AB∥CD,∠ABF=∠DCE。求证:∠BFE=∠FEC。
如图,作FG∥AB,EH∥CD, ∴∠B=∠1,∠C=∠4, 又∵ AB∥CD, ∴FG∥GE ∴∠2=∠3, ∴∠1+∠2=∠3+∠4, 即∠BFE=∠FEC
第五章 相交线与平行线证明 题专题复习
平 行
条件
线
的 两直线平行 性
质
平 条件
行 线
同位角相等
的 内错角相等
判
定 同旁内角互补
结论
同位角相等 内错角相等 同旁内角互补
结论
两直线平行
例1. 已知∠DAC= ∠ACB, ∠D+∠DFE=1800,求证:EF//BC
D
F
C
证明: ∵ ∠DAC= ∠ACB (已知)
∴ AD// BC
(内错角相等,两直线平行) ∵ ∠D+∠DFE=1800(已知) ∴ AD// EF
B
E A
(同旁内角互补,两直线平行)
∴ EF// BC
(平行于同一条直线的两条直线互相平行)
例2. 如图 已知:∠1+∠2=180°, 求证:AB∥CD。
证明: ∵ ∠1+∠2=180°(已知),
∠3+∠4+∠C=540°.
故答案为:540°.
变式2、如图所示,AB∥ED,∠CAB=135°, ∠ACD=80°,求∠CDE的度数.
如图,过点C作CF∥AB. ∵AB∥AB ∴∠A+∠ACF=180°(两直线平行,同旁内角互补) ∵∠A=135°, ∴∠ACF=45°. ∴∠FCD=∠ACD-∠ACF=80°-45°=35° 又∵CF∥ED ∴∠FCD=∠CDE(两直线平行,内错角相等) ∴∠CDE=35°. 提示: 两平行线AB、ED没有一条直线去截它们,需要过
D E
B
∴ ∠DCB=∠GDC (等量代换)
∴ DG∥BC (内错角相等,两直线平行)
∴ ∠AGD=∠ACB
(两直线平行,同位角相等)
A G
FC
课堂练习
1.已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2, 猜想∠BDE与∠C有怎样的大小关系?试说明理由.
2. 已知:如图,CD平分∠ACB,AC∥DE, ∠DCE=∠FEB,求证:EF平分∠DEB.
“平行线间的折线问题”题型小结
1.原题的难点在于平行线间没有截线或截线不明显 2.添加辅助线的目的是构造截线或构造新的平行线 3.处理平行线间折线的问题,过所有折点作平行线是一种通法 4. 加截线(连结两点、延长线段相交)构造三角形,应用 三角形内角和定理,也是一种“转化”的数学思想
作业:
1. 已知:如图23,AD平分∠BAC,点F在BD上, FE∥AD交AB于G,交CA的延长线于E,求证: ∠AGE=∠E。
变式2 已知:如图,AB∥CD,求证:∠BED=∠D-∠B。
证明: 过E点作EF//AB, ∵ AB//CD ∴ AB//CD//EF ∴∠D=∠DEF∠B=∠BEF ∵∠BED=∠DEF-∠BEF ∴∠BED=∠D-∠B 另证: 设AB与ED相交点为O ∵ AB//CD ∴∠D=∠DOB ∵∠DOB=∠B+∠BED
E
∠1=∠3
A1
∠2=∠4(对顶角相等) ∴ ∠3+∠4=180°(等量代换).
C
∴ AB//CD (同旁内角互补,两直线平行).
B 3
4 D
2 F
例3. 如图,已知:AC∥DE,∠1=∠2, 试证明AB∥CD。
证明: ∵AC∥DE (已知)
∴ ∠ACD= ∠2
A 1
(两直线平行,内错角相等)
D 2
证明:过点C作CF∥AB,则∠B+∠1=180°( ∵AB∥CD(已知),
又∵CF∥AB(已作),
∴EF∥CD(
)。
∴∠D+∠2=180°(
)。
∴∠B+∠1+∠D+∠2=180°+180°(
又∵∠BCD=∠1+∠2,
∴∠B+∠D+∠BCD=360°( )。
∴∠BCD==360°-(∠B+∠D)(
)。 )。
)。
变式1、已知:如图,AB∥CD,求∠BAE+∠AEF+∠EFC+∠FCD的度数.
A
B
E
F
解:过点E作EM∥AB,过点F作FN∥AB,
C 第3题
D
∴ EM∥FN
∵AB∥CD ,
∴EM∥FN∥AB∥CD,
∴∠A+∠1=180°,∠2+∠3=180°,
∠4+∠C=180°,
∴∠BAE+∠AEF+∠EFC+∠FCD=∠A+∠1+∠2+
∵ ∠1=∠2(已知) B
C
E
∴ ∠1=∠ACD(等量代换)
∴AB ∥ CD
(内错角相等,两直线平行)
例4.已知 EF⊥AB,CD⊥AB ,∠EFB=∠GDC,
求证:∠AGD=∠ACB。
证明: ∵ EF⊥AB,CD⊥AB (已知)
∴ AD∥BC
(垂直于同一条直线的两条直线互相平行) ∴ ∠EFB= ∠DCB (两直线平行,同位角相等) ∵ ∠EFB=∠GDC (已知)