实对称矩阵的特征值和特征向量(简)
实对称矩阵特征值与特征向量的性质
![实对称矩阵特征值与特征向量的性质](https://img.taocdn.com/s3/m/6f7dc576856a561252d36ffc.png)
性质1:实对称矩阵的特征值都是实数。
设是n阶实对称矩阵A的特征值, (a1, a2 ,, an )T
是对应的特征向量,即A 两边取共轭,得
A (1)
A (aij )nn
A,
(a , 1
a 2
,
,
an
)T
,由于A为实对称阵,故
AT
AT
A,
(1)两端取转置,得:
2 4 2
1 2
2
A E 2 2 4 ( 2)2 ( 7)
2
4 2
1 2 2,3 7.
1 (2,1,0)T ,2 (2,0,1)T为属于特征值2的线性无关的特
征向量.
3 7的特征向量为3 (1,2, 2)T .
2 2 1
2
P 1
2
3
1
0
0 1
2 , 2
1 1 0
B 4 3 0 1 2 1,3 2.
1 0 2
对1 2 1,
2 1 0 1 0 1
B
E
4
1
2 0
0 1
0 0
1 0
2 , 1 (1,2, 1)T .
0
线性无关 的特征向 量只有一个
1 2 2 例:设A 2 2 4 ,求可逆阵P,使P1AP为对角阵。
1T A 11T .
1T A2 11T2.
21T2 11T2. (2 1)1T2 0.
1T2 0.
例:设1,1,1是三阶实对称方阵A的3个特征值,
1 (1,1,1)T,2 (2,2,1)T是A的属于特征值1的特
征向量,求A的属于特征值1的特征向量。
设A的属于特征值 1的特征向量为3 (x1,x2,x3)T ,
《实验8:Jacobi法求实对称矩阵的特征值及特征向量》
![《实验8:Jacobi法求实对称矩阵的特征值及特征向量》](https://img.taocdn.com/s3/m/2926fef30975f46527d3e1d6.png)
实验名称实验8实验地点6A-XXX 实验类型设计实验学时 2 实验日期20 /X/X ★撰写注意:版面格式已设置好(不得更改),填入内容即可。
一、实验目的
1.Jacobi法求实对称矩阵的特征值及特征向量
二、实验内容
1.实验任务
1.Jacobi法求实对称矩阵的特征值及特征向量
2.程序设计
1)数据输入(输入哪些数据、个数、类型、来源、输入方式)
double a[N][N], int n
2)数据存储(输入数据在内存中的存储)
函数
void Jacobi(double a[N][N], int n)
3)数据处理(说明处理步骤。
若不是非常简单,需要绘制流程图)
1.输入要处理的数据进入变量中
2.进行函数处理
3.输出函数处理结果
4)数据输出(贴图:程序运行结果截图。
图幅大小适当,不能太大)
三、实验环境
1.操作系统:WINDOWS 7及以上
2.开发工具:VS 2015
3.实验设备:PC。
特征值与特征向量的求解方式
![特征值与特征向量的求解方式](https://img.taocdn.com/s3/m/dd43e2bbcd22bcd126fff705cc17552707225e8c.png)
特征值与特征向量的求解方式在线性代数中,特征值与特征向量是重要的概念。
它们的求解在机器学习、图像处理、物理学等诸多领域中具有重要的应用。
本文将介绍特征值与特征向量的概念和求解方式。
一、特征值与特征向量的定义给定一个n阶方阵A,如果存在非零向量x,使得Ax=kx,其中k是一个常数,那么 k 称为矩阵A的特征值,x称为特征值k对应的特征向量。
特别的,当 k=0 时,x称为矩阵A的零向量。
特征值与特征向量有以下重要性质:1. 一个n阶方阵最多有n个不同的特征值。
2. 若A为实对称矩阵,则其特征向量对应的特征值均为实数。
3. 若A为正定矩阵,则其特征值均为正数。
4. 若A可逆,则其特征值均非零。
特征向量的长度一般不为1,我们可以将其归一化得到单位向量,使得 Ax=kx 中的特征向量x满足 ||x||=1。
二、1.利用特征多项式对 n 阶矩阵 A,设λ 为其特征值,用 |A-λI| =0 表示,其中 I 为n 阶单位矩阵。
化简方程,即得到 A 的特征值λ 的解析式。
求得λ 后,代入 (A-λI)x=0,可以得到对应的特征向量 x。
举个例子,对于矩阵 A=[1 2;2 1],我们有| A-λI |= | 1-λ 2; 2 1-λ| = (1-λ)^2 -4 = 0解得λ1=3, λ2=-1。
将λ1,λ2 代入 (A-λI)x=0 中分别求解,即可得到 A 的两个特征向量。
该方法简单易懂,但对于高阶矩阵,求解特征多项式需要高代数计算,计算复杂度较高。
2.利用幂法幂法是求最大特征值与对应特征向量的较为有效的方法。
该方法基于一下简单事实:给定一个向量 x,令 A 去作用若干次,Ax,A^2x,A^3x,...,A^nx,它们的向量长度将快速增长或快速衰减,且它们的比值趋于最大特征对应的幂指数。
假设 A 有一个不为零的特征向量 x,它对应的特征值为λ1,即Ax=λ1x。
那么,A^mx = A^mx/λ1^m λ1x当 m 充分大时, A^mx 与λ1^mx 相比变化就很小了。
第三节实对称矩阵的特征值与特征向量
![第三节实对称矩阵的特征值与特征向量](https://img.taocdn.com/s3/m/eb0709609a6648d7c1c708a1284ac850ad02048a.png)
证明定理3: 设实对称阵 A 的互不相等的特征值为 1,2, ,s
它们的重数依次为 r1,r2, ,rs 则 r 1 r 2 rs n
由定理,特征值 特征向量为 r i 个。
A 11
1 2
11
r2 r1
1 0
1 3
10
1 0
0 1
1 0
x1 x3, x2 0.
令 x3 1 ,得基础解系
1
取
a3
0
1
当前您浏览到是第五页,共三十八页。
即可.
1
0 .
1
2. Schmidt正交化、单位化法。
定义5:
正交向量组:非零实向量 1,2, ,s两两正交。
A
2 1
1 1 22 10
1
2
是正交矩阵.
0
2 2
0
0
1 1 2 2
解: ∵A 的每个列向量都是单位向量,且两两正交,
∴A是正交矩阵.
定义: 若 P 为正交矩阵,则线性变换 yP称x为正交变换. 设y Px为正交变换,则有: y yT y xTPTPx xT x x .
正交变换不改变线段的长度.
称为向量的长度(或模,或范数)
若 1 , 称 为单位向量。
当前您浏览到是第二页,共三十八页。
把向量单位化: 若 0, 则 0
考虑 ( , )12(,)1221
即 的模为1,为单位向量,称为把 单位化。
向量长度的性质:
(1)非负性: 当 0 时, 0 当 0时, 0
(2)齐次性: k k
正交化 : 1 ( 1 ,令 1 ,0 a) 2 T ,2 1 , ( a1 3,0 ,1 ) 2 T [1,122]1,
矩阵的特征值与特征向量 正文
![矩阵的特征值与特征向量 正文](https://img.taocdn.com/s3/m/3fa6b6cb26fff705cc170a9b.png)
引言众所周知,矩阵理论在历史上至少可以追溯到Sylvester与Cayley,特别是Cayley1858年的工作。
自从Cayley建立矩阵的运算以来,矩阵理论便迅速发展起来,矩阵理论已是高等代数的重要组成部分。
近代数学的一些学科,如代数结构理论与泛函分析可以在矩阵理论中寻找它们的根源。
另一方面,作为一种基本工具,矩阵理论在应用数学与工程技术学科,如微分方程、概率统计、最优化、运筹学、计算数学、控制论与系统理论等方面有着广泛的应用。
同时,这些学科的发展反过来又极大地促进了矩阵理论的发展。
特征值与特征向量是矩阵理论中既具有基本理论意义,又具有重要应用价值的知识,与矩阵理论的其它知识也有着密切的联系。
可以说,特征值与特征向量问题是矩阵理论的基本核心问题。
因此,掌握这方面的知识对于培养新的高素质科技人才来说是必备的非常重要的。
矩阵是高等代数课程的一个基本概念是研究高等代数的基本工具。
线性空间、线性变换等,都是以矩阵作为手段,由此演绎出丰富多彩的理论画卷。
求解矩阵的特征值和特征向量,是高等数学中经常碰到的问题。
一般的线性代数教材中,都是先计算特征多项式,然后求得特征值,再通过解线性方程组得到对应的特征向量。
特征多项式和特征根在整个矩阵理论体系中具有举足轻重的作用,并且在于生活现实中的应用也很广泛。
“特征”一词来自德语的eigen,由希尔伯特在1904年首先在这个意义下使用(亥尔姆霍尔兹在更早的时候也在类似意义下使用过这一概念)。
eigen一词可翻译为“自身的”,“特定于...的”,“有特征的”或者“个体的”,这强调了特征值对于定义特定的变换上是很重要的。
矩阵特征值是高等代数研究的中心问题之一,也是硕士研究生招生考试的热点.而且在自然科学(如物理学、控制论、弹性力学、图论等)和工程应用(如结构设计、振动系统、矩阵对策)的研究中也同样离不开矩阵特征值问题,因而对其研究具有重要的理论和应用价值。
随着计算机的迅速发展,现代社会的进步和科技的突飞猛进,高等代数作为一门基础的工具学科已经向一切领域渗透,它的作用越来越为世人所重视。
线代第四章之实对称矩阵
![线代第四章之实对称矩阵](https://img.taocdn.com/s3/m/1e513ca70875f46527d3240c844769eae109a341.png)
目录
• 实对称矩阵基本概念与性质 • 实对称矩阵的相似对角化 • 特征值与特征向量在实对称矩阵中的应用 • 正交变换在实对称矩阵中的应用 • 线性方程组在实对称矩阵中的解法探讨 • 总结回顾与拓展延伸
01
实对称矩阵基本概念与性质
定义及性质
性质:实对称矩阵 具有以下性质
不同特征值对应的 特征向量正交;
拓展延伸:其他类型矩阵简介
反对称矩阵
反对称矩阵是一个方阵,其转置等于它本身的相反数,即$A^T = -A$。反对称矩阵在量 子力学和刚体动力学等领域有着重要应用。
正交矩阵
正交矩阵是一个方阵,其逆等于它本身的转置,即$A^{-1} = A^T$。正交矩阵在保持向 量长度和角度不变的线性变换中扮演着重要角色。
举例说明
例子1
例子2
例子3
矩阵$A=begin{pmatrix} 1 & 2 2 & 1 end{pmatrix}$是一个实对称矩阵 ,因为$A^T=A$。
矩阵$B=begin{pmatrix} 1 & 2 -2 & -1 end{pmatrix}$不是一个实对称 矩阵,因为$B^T neq B$。
应用正交变换求解
03
04
05
首先,通过正交变换将 然后,根据对角矩阵
矩阵$A$化为对角矩阵, $D$的元素即为原实对
即求解$P^{-1}AP = D$, 称矩阵的特征值,求得
其中$D$为对角矩阵, 特征值为$lambda_1 =
$P$为正交矩阵;
1, lambda_2 = 4$;
最后,根据特征值求得 对应的特征向量,并构 造正交矩阵$P = begin{pmatrix} frac{sqrt{2}}{2} & frac{sqrt{2}}{2} frac{sqrt{2}}{2} & frac{sqrt{2}}{2} end{pmatrix}$。
3.3 实对称矩阵的特征值和特征向量
![3.3 实对称矩阵的特征值和特征向量](https://img.taocdn.com/s3/m/835a7ce8e009581b6bd9eb1a.png)
第三章
5.Def.: 设α , β ∈ Rn , 如果 αTβ = 0, 则称向量 α , β 正交. 则称向量 正交. 注: (1) Rn 中的零向量与任意向量都正交; 中的零向量与任意向量都正交 都正交; (2) 与自身正交的向量只能是零向量; 与自身正交的向量只能是零向量; (3) 正交的几何意义: αT β = || α || · || β || cos θ 正交的几何意义: 6.Def.: 若一个非零向量组(即该向量组中的向量都不是零 若一个非零向量组( 非零向量组 向量) 中的向量两两正交, 则称非 向量两两正交 向量) α1 , α2 , … , αs (s ≥ 2) 中的向量两两正交, 则称非 零向量组 α1 , α2 , … , αs 为一个正交向量组. 为一个正交向量组 正交向量组. 若一个正交向量组中的每一个向量都是单位向量, 若一个正交向量组中的每一个向量都是单位向量,则称 向量 该向量组为正交单位向量组 正交单位向量组. 该向量组为正交单位向量组. 是一个正交向量组, 7.Th.: 设 α1 , α2 , … , αs 是一个正交向量组, 则α1,α2 , …,αs 线性无关. 线性无关.
P13P13-3
n
i=1
第三章
3.Def.: 设 α = (a1 , a2 , … , an)T ∈ Rn ,称 (α,α ) = α Tα (a 为向量 α 的长度(或模),记作 || α || . 即 的长度(
α = αα=
T
∑a
i=1
n
2 i
单位向量. 如果 || α || = 1,则称 α 为单位向量 , 1 ∀ α ≠ 0 ,则 为单位向量或标准化向量. α 为单位向量或标准化向量. 4. 长度的性质
ch5-4 实对称矩阵的相似矩阵
![ch5-4 实对称矩阵的相似矩阵](https://img.taocdn.com/s3/m/97db90c70c22590102029dda.png)
解: 由 A E
1 1 1 对1 1,由A E ~ 0 0 , 得 1 1 ; 1 1 1 对2 3,由A 3 E ~ 0 0 , 得 2 1
1
素的对角矩阵.
福 州 大 学
2013-7-21
4
三、利用正交矩阵将实对称矩阵 对角化的方法
根据上述结论,利用正交矩阵将实对称矩阵 化为对角矩阵,其具体步骤为: 1. 求A的特征值 1 , 2 ,, n ; 2. 由 A i E x 0, 求出A的特征向量 ; 3. 将特征向量正交化; 4. 将特征向量单位化得 P1 , P2 ,, Pn . 5。写出正交阵 P P 1
征向量,求A的属于特征值 1的特征向量。
T 解 设A的属于特征值 1的特征向量为 3 x1,x2,x3) , (
3与1 , 2正交, [3 ,1] [3 ,2 ] 0
x1 x2 x3 0 2 x1 2 x2 x3 0
1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 2 2 1 令 x2 = 1 x1 x2 T 3 11 0 ( ,) , x3 0
福Hale Waihona Puke 州 大 学2013-7-21
3
性质3:实对称矩阵A的k重特征值所对应的线性无 关的特征向量恰有k个。 由此推出:实对称矩阵A一定能对角化。
二、实对称矩阵的相似对角化:
定理1:实对称矩阵A一定与对角矩阵相似。
实
定理2: A为n阶对称矩阵, 则必有正交矩阵P , 使 设
P AP , 其中 是以 A的 n 个特征值为对角元
实对称矩阵的特征值和特征向量
![实对称矩阵的特征值和特征向量](https://img.taocdn.com/s3/m/6fa6a74b312b3169a451a480.png)
线性方程组
(A i E)x 0 是实系数方程组,由 A i E 0知必有实的基础解
系, 从 而 对 应 的 特 征 向 量 可以 取 实 向 量.
P4/12
§3 实对称矩阵的特征值和特征向量
定理3.10 设1, 2是对称矩阵的两个特征值, p1, p2是对应的特征向量. 若1 2, 则p1, p2正交.
二、用正交矩阵将对称矩阵对角化的步骤
1) 作 E A 0 求诸i, i = 1, 2, …, m
2) 解 (iE A)x 0 得基础解系
i1 ,i 2 ,L , r i,nri i r (i E A)
3) 正交化得 i1 ,i 2 ,L i,nri
4) 单位化得 ij
§3 实对称矩阵的特征值和特征向量
一、对称矩阵的性质 二、利用正交矩阵将对称矩阵对角化的方法
1
§3 实对称矩阵的特征值和特征向量
一、对称矩阵的性质
本节所提到的对称矩阵, 除非特别说 明, 均指实对称矩阵.
定理3.9 对称矩阵的特征值为实数.
证明 设复数为对称矩阵A的特征值 ,复向量x为
对应的特征向量,
P8/12
§3 实对称矩阵的特征值和特征向量
将1 = 3代入(EA) x = 0, 得基础解系 a1 = (2, 1, 0)T, a2 = (2, 0, 1)T.
将其正交化:
b1 = a1,
b2
a2
a2 b1
, ,
b1 b1
b1
2, 0,1T
4 2,1, 0T
例3.6 设三阶对称阵A的特征值1 = 0, 2 = 1(二重). 属于1的特征向量为a1 = (0, 1, 1)T, 求A. 解 对应于2 = 1的线性无关的特征向量有两个, 设为a2, a3. 则a2, a3均a1与正交, 即满足
线性代数3.3实对称矩阵的特征值和特征向量
![线性代数3.3实对称矩阵的特征值和特征向量](https://img.taocdn.com/s3/m/9701914d03020740be1e650e52ea551810a6c921.png)
05
实对称矩阵的应用举例
在二次型中的应用
二次型的标准型
通过实对称矩阵的正交变换,可 以将二次型化为标准型,从而简 化问题的求解。
二次型的正定性
利用实对称矩阵的特征值性质, 可以判断二次型的正定性,进而 解决优化问题。
二次曲面分类
实对称矩阵的特征值和特征向量 可用于二次曲面的分类,如椭球 面、双曲面等。
1. 求出矩阵$A$的特征多项式$f(lambda)$。
3. 对于每个特征值$lambda_i$,求出对应的特征向量 $alpha_{i1}, alpha_{i2}, ldots, alpha_{ik}$,其中$k$是 $lambda_i$的重数。
5. 计算$P^{-1}AP = Lambda$,其中$Lambda = text{diag}(lambda_1, lambda_2, ldots, lambda_n)$。
线性代数3.3实对称 矩阵的特征值和特征
向量
目录
• 引言 • 实对称矩阵的应用举例 • 总结与展望
01
引言
课程背景与目标
课程背景
线性代数是数学的一个重要分支,广泛应用于各个学科领域。实对称矩阵作为一 类特殊的矩阵,具有很多重要的性质和应用。特征值和特征向量是矩阵理论中的 核心概念,对于理解矩阵的性质和解决实际问题具有重要意义。
迭代法
通过构造迭代序列来逼近特 征值和特征向量,如幂法、 反幂法等。
特征值与矩阵性质的关系
特征值与矩阵的行列式
矩阵的所有特征值的乘积等于其行列式 的值。
特征值与矩阵的秩
如果矩阵至少有一个非零特征值,则 其秩大于等于1;如果矩阵所有特征
值都为零,则其秩为零。
特征值与矩阵的迹
对称矩阵的特征值和特征向量二-新
![对称矩阵的特征值和特征向量二-新](https://img.taocdn.com/s3/m/af377667f5335a8102d2201c.png)
17
跳转到第一页
对 2E A X 0的系数矩阵2E A施行初等行变换, 化为行最简形矩阵
2 E A 0 1 0 1 0 0
2 2 0
2 3 2
0 1 2 0 0 4
1 1 2
0 2 4
3.求正交矩阵P , 使得P 1 AP为对角矩阵
13
跳转到第一页
例1 利用正交矩阵将对称矩阵A 对角化
2 2 0 A 2 1 2 0 2 0
解: 第一步,求矩阵A的特征值
2
E A
2 0
2 0 1 2 2
14
跳转到第一页
2
12
跳转到第一页
三、 利用正交矩阵将实对称矩阵对角化的方法 利用正交矩阵将实对称矩阵对角化, 其具体步骤为:
1.求A的全部特征值1 , 2 , , n
2.由 i E A x 0(i 1, 2 , n), 求出A 的属于i的极大线性无关特征向量组, 并将极大线性无关特征向量组中的特征向量 正交化、单位化.
*证 对实对称矩阵的阶数,采用数学归纳法证明. 当k =1,A为1阶实对称矩阵,A a , 有E 1 , 使得E 1 AE =E T AE = 1 , 其中1 a .定理成立. 假设k =n-1定理成立.
7
当k =n, 设A为n阶实对称矩阵, 第一步 构建一个正交矩阵M , 设1是属于A的特征值1的一个单位特征向量, 使用施密特方法选n-1个非零向量 2 , , n , 使得1 , 2 , , n , 为正交单位向量组, 以1 , 2 , , n , 为列向量构建一个正交矩阵M , M (1 , 2 , , n )
实对称矩阵特征值和特征向量
![实对称矩阵特征值和特征向量](https://img.taocdn.com/s3/m/23e800eda98271fe900ef96d.png)
(1) ( , ) = ( , ) ;
(2) (k , )= k( , );
(3) ( + , )= (, )+ ( , );
(4) ( , ) 0 , 且( ,)= 0 = 0 .
其中 , , 为 Rn 中的任意列向量,k R .
P13-2
第三章
3.Def.: 设 = (a1 , a2 , … , an)T Rn ,称 ( , ) T
s1
( s (2
, ,
2 2
) )
2
( s (1
, ,
1 1
) )
1
例1 求与向量组
1 = (1, 1, 1)T ,2 = (1, -2, -3)T ,3 = (1, 2, 2)T
等价的一个正交单位向量组.P13-6第三章Fra bibliotek例2 已知
1 1, 1, 1T , 2 1, 1, 3T
求 3 使之与1 , 2 都正交.
2
2
(2 , 1 ) (1, 1)
1
3
3
(3 , 2 ) (2 , 2 )
2
(3 , 1 ) (1, 1)
1
s
s
( s , s1 ) ( s1 , s1 )
s1
( (
s 2
, ,
2 2
) )
2
( s (1
, ,
1 1
) )
1
则 1 , 2 , … , s 是一个正交向量组, 且
{ 1 , 2 , … , s } { 1 , 2 , … , s }
Q-1AQ 成为对角矩阵.
四、实对称矩阵对角化方法
例1 求正交矩阵 P , 使 P-1AP 为对角矩阵.
3.3实对称矩阵的特征值和特征向量(简)
![3.3实对称矩阵的特征值和特征向量(简)](https://img.taocdn.com/s3/m/b6da5cefb8f67c1cfad6b83d.png)
1 1 Q AQ n
2
实对称矩阵的特征值的性质 一、 定理3.12 实对称矩阵的特征值都是实数. 则 说明: 若A是实数域上的 对称矩阵,
a 11
E A
a 21 a n1
n
a 12
a1n a2n
| A | | E A |
) 移项得: (| A | 1 | E A | 0 即 2 | E A | 0 | E A | 0
例 4 . 设矩阵 A 与 B 相似 , 1 其中 A 2 3 1 4 3 1 2 2 , B 0 a 0 0 2 0 0 0 , b
T
1 ( T ) T 1 T A T A T ( A ) T
( 2 ) 2( T )
( 1 2 )( T ) 0 1 2
0
T
即
定理3.14 设A是n阶实对称矩阵, 则存在n阶正交
a 22
an2
n2
a nn
nm
( 1 ) 1 ( 2 )
...( m )
1 , 2 , ..., m 都是实数.
定理3.13 实对称矩阵的 对应于不同特征值的 特征向量 是相互正交的. A是实对称矩阵, A的两个特征值 1 , 2 1 2 则 A 1 A 2 证
1 1 1 1
1, 2 ,
1
两两正交.再将它们单位化.
1
2 1 1 1 2 2 2 1 0
6 1 2 2 1 6 32 2 3 2 6
3.3 实对称矩阵的特征值和特征向量
![3.3 实对称矩阵的特征值和特征向量](https://img.taocdn.com/s3/m/bc6e37bb960590c69ec3764f.png)
0 2 3
1
2
0
解
E A 2
0
2
2
2
( 1)( 2 )( 5 )
特征值:
3 1 1, 2 2 , 3 5
0
特征向量分别为:
1 , 2 , 3 不同, 1 , 2 , 3 两两正交, 现把它们单位化. 2 1 2 3 3 3 1 1 1 1 3 32 1 1 1 2 2 2 1 3 3 3 3 3 1 2 2 2 1 3 3 3 则 1 , 2 , 3 是单位正交向量组 . 2 x3
1 1 1 , 3 0 0 1
也即 x1 + x2 + x3 = 0
2
x1 x 2 x 3
解得其基础解系为
1 1 0 1 0 1
3
解 设特征值 3 对应的特征向量为
则 x 必与 1 正交, 即 x 1 0 .
T
也即 x1 + x2 + x3 = 0
2
1 1 1 , 3 0 0 1
x1 x x2 x3
令 3) Q ( 1 , 2 , , n ), 则正交矩阵
Q
1
Q 使得
AQ Λ
例3 求一个三阶实对称矩阵A, 它的特征值为6,3,3,
且对应于6的一个特征向量为1 (1,1,1) .
T
析
实对称矩阵一定可以对角化, 6
则存在可逆矩阵 P, 有 P
4.3 实对称矩阵的特征值特征向量
![4.3 实对称矩阵的特征值特征向量](https://img.taocdn.com/s3/m/8a15df24482fb4daa58d4b53.png)
用α i与上式两边内积运算得:α
得 k 1α
i Tα 1+k2α i Tα 2+…+kiα i Tα
i
T(k
1α 1+k2α 2+…+ksα s)=0,
Tα s=(i=1,2,…,s)
i+…+ksα i
又 α iTα j=0 (i≠j) 所以有: kiα iTα i=0 (i=1,2,…,s) 又 α i≠0 得α iTα i>0 因此: ki=0 (i=1,2,…s),则 α 1,α 2,…α s线性无关。
可得:
x1T T x2 T Q Q x T n
x1
x2
xn
T x1T x1 x1 x2 T T x2 x1 x 2 x2 T x Tx x n x2 n 1 ∵Q为正交矩阵等价于 QTQ=I
(3)∣α Tβ |≤‖α ‖‖β ‖
即是
a1b1 a2b2 an bn
a
i 1
n
2 i
bi2
i 1
n
此不等式称柯西-布涅可夫斯基不等式,下面证明此不等式 证明: (1)当α与β线性相关时,有α=kβ或β=kα,显然有
∣αTβ|=‖α‖‖β‖
(2)当α与β线性无关时,对任一实数x, 有: xα+β≠0 因此恒有 ‖xα+β‖>0 即有 ‖xα+β‖2=(xα+β)T(xα+β) =(xαT+βT)( xα+β) =(αTα)x2+(αTβ+βTα)x+βTβ =(αTα)x2+(2αTβ)x+βTβ>0 所以有 恒成立.
线性代数(第二版)第三节实对称矩阵的特征值和特征向量
![线性代数(第二版)第三节实对称矩阵的特征值和特征向量](https://img.taocdn.com/s3/m/1b957f710722192e4536f6dc.png)
二、实对称矩阵对角化方法
根据定理 4.14 ,任一实对称矩阵 A 都可以对角
化. 因此,对 A 的任一 ni 重特征值 i,齐次方程组
( iE – A )X = 0 的基础解系中必含有 ni 个线性无关
的向量,它们都是 A 的属于 i 的特征值(
定 定 理 理 44 ..11 00
定 定 理 理 44 ..11 00
+ – –
A … A ) ) + 的 的 r s 秩 秩 =
等 等 n ,于 于知n n这 – –
样的 n n ii ..
特
征
向
量
共
可
得
n 个.
矩 矩
定 定 理 理
4 4 .. 1 1 2 2
实 实 对 对 称 称 矩 矩 阵 阵 的 的 特 特 征 征 值 值 都 都 是 是 实 实 数 数 ..
由 阵 阵 r 1 ( ( + ii rE E 2
+ – –
A … A ) ) + 的 的 r s 秩 秩 =
等 等 n ,于 于 知
这样的 n n – – n n ii ..
特
征
向
量
共
可
得
n 个.
矩 矩
定 定 理 理
4 4 .. 1 1 2 2
实 实 对 对 称 称 矩 矩 阵 阵 的 的 特 特 征 征 值 值 都 都 是 是 实 实 数 数 ..
证 证 法 法 二 二 利 利 用 用 性 性 质 质
设
A 的互不相等的特征值为
1 , … ,
s,
它们的重数依次为
r1 , …
根据
定 定 理 理
4 4 .. 1 1 0 0 及 及 定 定 理 理
实对称矩阵
![实对称矩阵](https://img.taocdn.com/s3/m/49c0d024caaedd3383c4d388.png)
( 1 ) ( 2 8 ) = 0
A的特征值为 12 1 ,38
当 12 1,解方程组( A ( 1 ) E ) x 0
即
4 2 4 x1 0
2
1
2
x2
0
4 2 4 x3 0
得到两个线性无关的特征向量 1 ( 1 , 0 , 1 ) , 2 ( 1 , 2 , 0 )
1、求矩阵A的特征值 2、求特征向量 3、将特征向量正交化、单位化 4、构造正交矩阵,写出对应的对角形矩阵
3 2 4
练习 设实对称矩阵
A
2
0
2
4 2 3
求正交矩阵P,使 P1AP 为对角矩阵.
解 A的特征多项式为
3 2 4
A E 2 0 2 3 62 1 5 8
4 2 3
(3) 非零的实反对称矩阵不可能相似于实对角矩阵.
幂等矩阵
定义
设 A 为 n 阶方阵, 若满足 A2 A 则称 A 为幂等矩阵.
性质
(1) 幂等矩阵的特征值为0或1.
(2)
幂等矩阵一定相似于形如
Er
0
0
0
的对称阵.
幂零矩阵
定义 设 A 为 n 阶方阵, 若满足 Am 0 (m为正整数),则称
➢实对称矩阵的对角化
定理 设A是n阶对称矩阵,则必有正交矩阵P,使得
PAP,其中 是以A的n个特征值为
对角元素的对角矩阵,正交矩阵P的列向量 是A的特征值所顺次对应的单位正交特征向 量。
例 用正交变换把下列对称矩阵对角化
2 2 2
2
5
4
2 4 5
解 (1)求方阵A的特征值
由 AE 0 得特征值 121,310
实对称矩阵的特征值和特征向量
![实对称矩阵的特征值和特征向量](https://img.taocdn.com/s3/m/de6e875fb84ae45c3b358cac.png)
把 1(2,1,0)T 2(2,0,1)T
正交化:
11(2,1, 0)T
2
2
12TT111
(2,0,1)T
4(2,1,0)T(2,4,1)T
5
55
将 1,2,3单位化,得到
21 1 12 2
5(2,1,0)T 5
5(2,4,5)T 15
1 0 1
1 0 1
1 11
2(0,1,1)T 2
32 3 322
(1,0, 0)T 2(0,1,1)T
2
一、 实对称矩阵特征值的性质
定理4.12 实对称矩阵的特征值都是实数。
证明:设 A是n阶实对称矩阵, 0是矩阵 A的在复数 域上的任一特征值,属于 0 的特征向量为
(a 1,a2, ,an)T
则 A0 ( 0 ),于是,两边取复数共轭得到
在不计排列顺序情况下,这种对角化形式是唯一的。
(实对称矩阵A 的标准形!!)
例2 对矩阵 2 2 2 A 2 1 4 2 4 1
求一正交阵 Q , 使 Q1AQ 成对角矩阵。 解: 矩阵 A的特征多项式为
22 2 2 2 0 d eE tA ()2 142 1 3
A 0 A 0 A 0 (4.11)
实对称矩阵特征值的性质
对最后一式取复数转置, 得到
TA0T
定理4.12 实对称矩阵 的特征值都是实数。
两边再右乘 , 得到 T A 0 T 0 T 0 T ( 0 0 ) T 0
1
Q TA Q Q 1A Q
于是 AQQT
2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例
A
特征值:
1 2 0
1,
2 0
2 2
2 3
E
2, 5,特征向量:
1 2 0 A 2 2 2
0 2 3
( 1 ) ( 2 ) ( 5 )
2
1 :
1
2 1
2
:
2
2 3
1 : 1
1 1
1 1
求正交矩阵Q, 使
1
Q-1AQ为对角矩
阵 1.
1
特征值 0, 0, 3
0:
1
1
2
0
1 2
0
1
3:
1 1
将 1,正2 交化. 令
1
0: 1 1
1
0
1 2
2 2
1
1 2 1 2 再将 1,2, 单位化.
说明:若A是实数域上的对称矩阵,则
a11 a12 EA a21 a22
a1n a2n
an1 an2
ann
( 1 ) n 1 ( 2 ) n 2 ...( m ) n m
1,2,...,m都是实数.
定理4.13 实对称矩阵的 对应于不同特征值的
特征向量 是相互正交的.
A是实对称矩阵, A的两个特征值1 , 2
例A
1 1 1
1 1 1
1 1 1
求正交矩阵Q,
使
Q-1AQ为对角矩 阵.
1 1 1
解 EA 1 1 1 2(3)1
1 1 1
特征值: 0, 0, 3
1
1
0: 1
1 0
2
0 1
1
3:
1 1
1 2 将 1,正2 交化.
1 1 1
例
A
1 1
1
3 1
1,2,3
为单位正
交向量组
1
令
Q
2
3
1 3
2
1 2
2 :
2 3
2 3
1 3
5 :
2
2 3 1 3 2 3
3
1 3 2
1 3 2 3 2 3
Q2122为 正将133232 1交它,5矩们:2,3阵单3两位31两3 化1 正3 0 交 1332302
Q1AQ
0 0
2 0
0 5
则 o A
A A2 A(A) A( ) ( A )
( ) 2 ( 2 ) o
o∴-2 =0
∴(-1)=0 ∴ =0或1
证明: 设λ1λ2是矩阵A的 两个不同特征值,对应的
特征向量分别是 1 , 2 则 1 2不是A的特征向量.
证 已知 A 1 11 A 2 22
A 1
A 2 1 2 则
证 1 ( T ) T 1 T A T A T ( A )T
(12)( T ) 0
(2 )T 2 ( T )
12 T 0 即
定理4.14 设A是n阶实对称矩阵,则存在n阶正 矩阵Q,使得 Q 1 AQ 是对角矩阵. 交
3
1 3
为单位向 量.
对应于 0
对应于 3
令
1 1 26
Q 1,2,3
1 2
1 6
0
2 6
1 3
1 3
1 3
Q为正交矩阵.
0 0
Q1AQ
0
0
0 0
0
0 3
例 如果矩阵A满足 A2 A 则称A是幂等矩阵. 试证幂等矩阵 的特征值 只能是0或1.
证 设是A的任一特征值, 是对应的特征向量,
用反证法 假设1 2是A的特征向量,
则有特征值λ, 使 A (1 2) (1 2)
12A1A211 2 2
(1 ) 1 (2 ) 2 o
1 , 2 是对应于不同特征值的特征向量,
1,2 线性无关. 10, 20 12 矛盾. 12不是A的特征向量.
§4.3 实对称矩阵 的特征值和特征向量 实数域上的 对称矩阵称为实对称矩阵.
如 2 8 0
8
0
4
3
6
A为对称矩阵
AT A
0 4 1 2
3
6
2
1
本节证明:实对称矩阵 一定可以对角化,且对任一
实对称矩阵A,存在正交矩阵Q,使得
1
Q1AQ
2
n
一、实对称矩阵的特征值的性质 定理4.12 实对称矩阵的特征值都是实数.
1 1 1
A
1 1
1 1
1 1
0: 11
特征值: 0, 0, 3
1
1 0
22
1
2 1
2
1
1
3:
1 1
1,2, 两两正交. 再将它们单位化.
1
1
1
21
1
2
1 2
0
2
1
12 3232
2
6
1
6
2 6
3
1 3
1 3
1
1,2 ,3 两两正交,