(完整)高中物理牛顿第二定律——板块模型解题基本思路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理基本模型解题思路
——板块模型
(一)本模型难点:
(1)长板下表面是否存在摩擦力,摩擦力的种类;静摩擦力还是滑动摩擦力,如滑动摩擦力,N F 的计算
(2)物块和长板间是否存在摩擦力,摩擦力的种类:静摩擦力还是滑动摩擦力。
(3)长板上下表面摩擦力的大小。
(二)在题干中寻找注意已知条件:
(1)板的上下两表面是否粗糙或光滑
(2)初始时刻板块间是否发生相对运动
(3)板块是否受到外力F ,如受外力F 观察作用在哪个物体上
(4)初始时刻物块放于长板的位置
(5)长板的长度是否存在限定
一、光滑的水平面上,静止放置一质量为M ,长度为L 的长板,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为μ。
首先受力分析:
对于m :由于板块间发生相对运动,所以物块所受长板向左的滑动摩擦力, 即:
⎪⎩⎪⎨⎧===m N N ma f F f mg F 动
动μg a m μ= (方向水平向左)
由于物块的初速度向右,加速度水平向左,所以物块将水平向右做匀减速运动。
对于M :由于板块间发生相对运动,所以长板上表面所受物块向右的滑动摩擦力,但下表面由于光滑不受地面作用的摩擦力。
即:
动f N F N F '
⎪⎩⎪⎨⎧==+='M N N N Ma f F f F Mg F 动
动μ
M mg a M μ= (方向水平向右) 由于长板初速度为零,加速度水平向右,所以物块将水平向右做匀加速运动。
假设当M m v v
=时,由于板块间无相对运动或相对运动趋势,所以板块间的滑动摩擦力会突然消失。则物块和长板将保持该速度一起匀速运动。
关于运动图像可以用t v -图像表示运动状态:
公式计算:
设经过时间 t 板块共速,共同速度为共v 。
由 共v v v M m == 可得: m 做匀减速直线运动: t a v v m -=0共
M 做初速度为零的匀加速直线运动:t a v M M =
可计算解得时间: t a t a v M m =-0
物块和长板位移关系:
m : 202
1t a t v x m m -= M : 22
1t a x M M = 相对位移:
M m x x x -=∆
v v
二、粗糙的水平面上,静止放置一质量为M ,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为1μ,长板和地面间的动摩擦因数为2μ,长板足够长。
首先受力分析:
对于m :由于板块间发生相对运动,所以物块所受长板向左的滑动摩擦力,
即: ⎪⎩⎪⎨⎧===m N N ma f F f mg F 动
动μg a m 1μ= (方向水平向左)
由于物块的初速度向右,加速度水平向左,所以物块将水平向右做匀减速运动。
对于M :由于板块间发生相对运动,所以长板上表面所受物块向右的滑动摩擦力,下表面受到地面施加方向向左的摩擦力f 的作用。
即:
由于长板所受的上表面向右的滑动摩擦力mg 1μ和下表面地面所施加的最大静摩擦力大小关系未知,这里我们认为最大静摩擦力等于滑动摩擦力,所以我们要进行讨论:
(1)当g m M mg )(21+≤μμ时:
M 仍然保持静止不动, m 以加速度m a 做匀减速直线运动。
(2)当g m M mg )(21+>μμ时:
M 则产生一定的加速度: M Ma g m M mg =+-)(21μμ ,
可求得M 的加速度M a ,方向向右。
所以M 将做初速度为零,加速度M a 的匀加速直线运动,
N
N
F N F 'Mg
mg 1μf
设经过时间1t 二者速度相等,即共v v v M m ==
解得时间: 110t a t a v M m =-
解得二者共同的速度:共v
m 位移:21102
1t a t v x m m -= M 位移:212
1t a x M M = 二者在此过程中发生的相对位移:M m x x x -=∆
当二者速度相同时,无相对运动,所以二者间滑动摩擦力突然消失,但由于长板下表面为粗糙,假设二者可以一起匀减速运动:
M m +:共a m M g m M )()(2+=+μ 解得:g a 2μ=共
由于 g g 12μμ<,所以假设成立。当二者速度相同时,二者共同以加速度共a 做匀减速运动,不再发生相对运动。 共同匀减速时间:共共
a v t =2
关于运动图像可以用t v -图像表示运动状态:
三、光滑的水平面上,静止放置一质量为M 的长板,长板上静止放置一质量为m 的物块,现对物块施加一外力F ,板块间动摩擦因数为μ,
假设长板与物块无相对运动一起加速,所以我们可以采用整体法来进行求解:
v 1
a m M F )(+=
当外力F 增大时,整体的加速度a 增大,说明长板和物块的加速度同时增大, 但对于m :由于受到外力F 的作用作为动力来源,所以m 的加速度无最大值。
但对于M :由于加速度的来源是m 施加的静摩擦力产生,二者间的静摩擦力存在最大值,所以当二者间静摩擦力达到最大值时M 的加速度也就存在着对应的最大值,
即: Ma mg =μ,将M mg a μ=
带入上式, 解得:M
g
m M m F )(+=μ 为一临界值。
当 M g m M m F )(0+≤<μ 时,板块间无相对滑动,一起匀以共同的加速度匀加速运动 F 增大,二者间的静摩擦力增大。 当M g
m M m F )(+>μ 时,板块间发生相对滑动,M m a a >
F 增大,二者间的滑动摩擦力不变为mg f μ= ,m a 增大,M a 不变
四、光滑的水平面上,静止放置一质量为M 的长板,长板上静止放置一质量为m 的物块,现对长板施加一外力F ,板块间动摩擦因数为μ,
假设长板与物块无相对运动一起加速,所以我们可以采用整体法来进行求解: a m M F )(+=
当外力F 增大时,整体的加速度a 增大,说明长板和物块的加速度同时增大,
但对于m :由于加速度的来源是M 施加的静摩擦力产生,二者间的静摩擦力存在最大值, 所以当二者间静摩擦力达到最大值是m 的加速度也就存在着对应的最大值。
但对于M :由于受到外力F 的作用作为动力来源,所以m 的加速度无最大值。 a