全等三角形复习讲义
全等三角形的基本模型复习正式经典ppt课件
![全等三角形的基本模型复习正式经典ppt课件](https://img.taocdn.com/s3/m/b9273e12b207e87101f69e3143323968011cf40f.png)
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
模型三 旋转型 模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全 重合,则称这两个三角形为旋转型三角形.识别旋转型三角形时,如图①, 涉及对顶角相等;如图②,涉及等角加(减)公共角的条件.
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
解:∵AB⊥CD,∴∠EBC=∠DBA=90°.在 Rt△CEB 与 Rt△ADB 中 CBEE= =ABDD,,∴Rt△CEB≌Rt△ADB(HL),∴∠C=∠A,又∵∠C+∠CEB= 90°,∠CEB=∠AEF,∴∠A+∠AEF=90°,∴CF⊥AD
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
解:∵AD⊥AB,BE⊥AB,CD⊥CE,∴∠DAC=∠CBE=∠DCE=90 °,又∵∠DCB=∠D+∠DAC=∠DCE+∠ECB,∴∠D=∠ECB.在△ACD
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
初中数学全等三角形综合复习讲义-全面完整版
![初中数学全等三角形综合复习讲义-全面完整版](https://img.taocdn.com/s3/m/36bb19c9900ef12d2af90242a8956bec0975a520.png)
初中数学全等三角形综合复习讲义-全面完整版初中数学全等三角形综合复讲义——全面完整版一、基础知识1.全等图形的有关概念1)全等图形的定义:两个图形能够完全重合,就是全等图形。
例如,图13-1和图13-2就是全等图形。
2)全等多边形的定义:两个多边形是全等图形,则称为全等多边形。
例如,图13-3和图13-4中的两对多边形就是全等多边形。
3)全等多边形的对应顶点、对应角、对应边:两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。
4)全等多边形的表示:例如,图13-5中的两个五边形是全等的,记作五边形ABCDE≌五边形A’B’C’D’E’(这里符号“≌”表示全等,读作“全等于”)。
表示图形的全等时,要把对应顶点写在对应的位置。
5)全等多边形的性质:全等多边形的对应边、对应角分别相等。
6)全等多边形的识别:对边形相等、对应角相等的两个多边形全等。
2.全等三角形的识别1)根据定义:若两个三角形的边、角分别对应相等,则这两个三角形全等。
2)根据SSS:如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。
3)根据SAS:如果两个三角形有两边及夹角分别对应相等,那么这两个三角形全等。
相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。
4)根据ASA:如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
5)根据AAS:如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。
3.直角三角形全等的识别1)根据HL:如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。
2)SSS、SAS、ASA、AAS对于直角三角形同样适用。
完整版-全等三角形总复习教学课件
![完整版-全等三角形总复习教学课件](https://img.taocdn.com/s3/m/77b3b32e03768e9951e79b89680203d8cf2f6a4d.png)
判定 到角的两边的距离相等的点在角平分线上 2
全等三角形的判定方法
三角形全等判定方法1
三边对应相等的两个三角形全等(可以简写
为“边边边”或“SSS”)。
A
用符号语言表达为:
在△ABC和△ DEF中
B
C
AB=DE
D
BC=EF
CA=FD
∴ △ABC ≌△ DEF(SSS) E
F
2024/9/30
3
三角形全等判定方法2
∴ △ABC≌△DEF(AAS)
2024/9/30
6
三角形全等判定方法5
有一条斜边和一条直角边对应相等的两个直角 三角形全等(HL)。
在Rt△ABC和Rt△DEF中
A
D
AB=DE (已知 ) AC=DF(已知 )
C ∴ △ABC≌△DEF(HL)
2024/9/30
B
F
E
7
知识点
1.全等三角形的性质: 对应边、对应角、对应线段相等, 周长、面积也相等。
A.1对 B.2对 C.3对 D.4对
2024/9/30
17
例3. 已知: AC⊥BC,BD⊥AD,AC=BD. 求证:BC=AD.
D
C
A
B
2024/9/30
18
▪例4:下面条件中, 不能证出Rt△ABC≌Rt△A' B'C'的是[ C] (A.)AC=A'C' , BC=B'C' (B.)AB=A'B' , AC=A'C' (C.) AB=B'C' , AC=A'C' (D.)∠B=∠B' , AB=A'B'
全等三角形的讲义整理讲义
![全等三角形的讲义整理讲义](https://img.taocdn.com/s3/m/67b7525c561252d380eb6e90.png)
全等三角形专题一 全等三角形的性质【知识点1】能够完全重合的两个三角形叫做全等三角形。
(两个三角形全等是指两个三角形的大小和形状完全一样,与他们的位置没有关系。
)【知识点2】两个三角形重合在一起,重合的顶点叫做对应顶点;重合的边叫做 对应边;重合的角叫做对应角。
【例题1】如图,已知图中的两个三角形全等,填空:(1)AB 与 是对应边,BC 与 是对应边, CA 与 是对应边;(2)∠A 与 是对应角,∠ABC 与 是对应角, ∠BAC 与 是对应角【方法总结】在两个全等三角形中找对应边和对应角的方法。
(1)有公共边的,公 共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角是对应角;(4)在两个全等三角形中,最长的边对最长的边,最短的边对最短的边,最大的角对最大的角,最小的角对最小的角。
【练习1】 如图,图中有两对三角形全等,填空: (1)△BOD ≌ ; (2)△ACD ≌ .【知识点3】 全等三角形的对应边相等,对应角相等。
(由定义还可知道,全等三角形的周长相等,面积相等,对应边上的中线和高相DABCOE ABCD等,对应角的角平分线相等)【例题2】 (海南省中考卷第5题) 已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50°【例题3】(清远)如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .【练习2】 如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( )A 20° B.30° C .35° D .40°【练习3】如图,△ABD 绕着点B 沿顺时针方向旋转90°到△EBC , 且∠ABD=90°。
三角形全等的判定(复习)
![三角形全等的判定(复习)](https://img.taocdn.com/s3/m/ed1f22138f9951e79b89680203d8ce2f00666580.png)
SSS、SAS、ASA、AAS、HL(RT△)
方法指引
证明两个三角形全等的基本思路:
(1):已知两边----
找第三边
(SSS)
找夹角
(SAS)
例3:如图,OB⊥AB,OC⊥AC,垂足为B,C,OB=OC AO平分∠BAC吗?为什么?
O
C
B
A
答: AO平分∠BAC
理由:∵ OB⊥AB,OC⊥AC ∴ ∠B=∠C=90° 在Rt△ABO和Rt△ACO中 OB=OC AO=AO ∴ Rt△ABO≌Rt△ACO (HL) ∴ ∠BAO=∠CAO ∴ AO平分∠BAC
E
C
A
B
2
1
D
(2)怎样变换△ABC和△AED中的一个位置,可使它们重合?
(3)观察△ABC和△AED中对应边有怎样的位置关系?
例6:如图所示,AB与CD相交于点O, ∠A=∠B,OA=OB 添加条件 所以 △AOC≌△BOD 理由是
A
O
D
C
B
∠C=∠D
∠AOC=∠BOD
图6
知识应用:
1.已知△ABC和△DEF,下列条件中,不能保证△ABC和△DEF全等的是( ) AB=DE,AC=DF,BC=EF ∠A= ∠ D, ∠ B= ∠ E,AC=DF C.AB=DE,AC=DF, ∠A= ∠D D.AB=DE,BC=EF, ∠ C= ∠ F
F
E
D
C
B
A
例9:如图,已知AC∥EF,DE∥BA,若使△ABC≌△EDF,还需要补 充的条件可以是
全等三角形复习课.PPT课件
![全等三角形复习课.PPT课件](https://img.taocdn.com/s3/m/8b917602b14e852459fb571c.png)
(3):要记住“有三个角对应相等”或“有两边及 其中一边的对角对应相等”的两个三角形不一定全等;
(4):时刻注意图形中的隐含条件,如 “公共角” 、 “公共边”、“对顶角”
2021
27
根据
(用简写法),请写出证明过程。
(2)若∠A=∠D,BC=EF,
则△ABC与△DEF
(填“全等”或“不全等” )
根据
(用简写法)请写出证明过程。
2021
14
3、如图,AB⊥BE于C,DE⊥BE于E,
(3)若AB=DE,BC=EF,
则△ABC与△DEF
(填“全等”或“不全等” )
根据
(用简写法)请写出证明过程。
第12章 全等三角形(复习)
2021
1
注意:两个三角形全等在表示 时通常把对应顶点的字母写在
对应的位置上。
A
D
B
能否记作 ∆ABC≌ ∆DEF?
F CE 应该记作∆ABC≌ ∆DFE
原因:A与D、B与F、C与E对应。
2021
2
A
全等三角形的性质:
全等三角形的对应边相等 B
C
,对应角相等
D
如图: ∵ △ABC≌△DEF
O
A
E
AD=AE,AB=AC.若∠B=20°,CD=5cm,C
则∠C= 20°,BE= 5c.m说说理由.
图(2)
3.如图(3),AC与BD相交于O,若 A
D
OB=OD,∠A=∠C,若AB=3cm,
O
则CD= 3cm . 说说理由.
B 图(3)C
学习提示:公共边,公共角,
对顶角这些都是隐含的边,角相等的条件!
2021
三角形全等判定复习课件
![三角形全等判定复习课件](https://img.taocdn.com/s3/m/f55aedd36429647d27284b73f242336c1eb930fb.png)
三角形全等判定复习课件一、教学内容本课件主要依据教材第十章“三角形全等判定”进行复习。
详细内容包括:SSS(SideSideSide)全等定理、SAS(SideAngleSide)全等定理、ASA(AngleSideAngle)全等定理、AAS(AngleAngleSide)全等定理以及直角三角形的判定方法HL(HypotenuseLeg)。
二、教学目标1. 熟练掌握三角形全等的四个判定方法,并能灵活运用。
2. 能够运用三角形全等判定解决实际问题,提高解决问题的能力。
3. 培养学生的空间想象能力和逻辑推理能力。
三、教学难点与重点重点:三角形全等的判定方法及运用。
难点:如何在实际问题中灵活运用三角形全等判定。
四、教具与学具准备1. 课件PPT2. 直尺、圆规、量角器3. 练习题五、教学过程1. 导入:通过展示实际生活中的全等三角形现象,激发学生兴趣,引入课题。
2. 讲解:复习三角形全等的判定方法,结合实例进行讲解。
a. SSS全等定理:三边对应相等的两个三角形全等。
b. SAS全等定理:两边和夹角对应相等的两个三角形全等。
c. ASA全等定理:两角和一边对应相等的两个三角形全等。
d. AAS全等定理:两角和一边对应相等的两个三角形全等。
e. HL全等定理:斜边和一直角边对应相等的两个直角三角形全等。
3. 例题讲解:讲解典型例题,引导学生运用全等判定方法解决问题。
4. 随堂练习:布置练习题,学生独立完成,教师进行讲解。
六、板书设计1. 三角形全等的判定方法:SSS、SAS、ASA、AAS、HL2. 典型例题及解题步骤3. 练习题及答案七、作业设计1. 作业题目:a. 已知三角形ABC中,AB=AC,BC=8cm,角A=60°,求三角形ABC的面积。
b. 在直角坐标系中,已知点A(2,3),B(4,0),C(0,1),判断三角形ABC是否为直角三角形。
2. 答案:a. 面积=16√3cm²b. 是直角三角形八、课后反思及拓展延伸1. 反思:本节课学生对三角形全等判定方法的掌握程度,以及对实际问题的解决能力。
《全等三角形》讲义(完整版)
![《全等三角形》讲义(完整版)](https://img.taocdn.com/s3/m/956e5e4a657d27284b73f242336c1eb91b373316.png)
全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。
(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
(简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。
(简称ASA ) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(简称AAS ) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。
(简称HL ) 角平分线的性质:在角平分线上的点到角的两边的距离相等.∵OP 平分∠AOB ,PM ⊥OA 于M ,PN ⊥OB 于N , ∴PM=PN角平分线的判定:到角的两边距离相等的点在角的平分线上.∵PM ⊥OA 于M ,PN ⊥OB 于N ,PM=PN ∴OP 平分∠AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
二、典型例题举例A BC PMNO A BC PMNO例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .例3、已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:D 在AB 上,E 在AC 上,AB =AC ,∠B =∠C .求证AD =AE .例5、如图:∠1=∠2,∠3=∠4 求证:AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm ,求DE 的长.AGF C BDE图1AEB DCFAB CDE D C EFBA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:① △BEC ≌△DAE ;②DF⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块专题一: 全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB 、AC 为边作两个等腰三角形ABD 和ACE ,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF ∥DE,BE=CF,求证:AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。
全等三角形讲义
![全等三角形讲义](https://img.taocdn.com/s3/m/8556cfacfe4733687f21aa29.png)
全等三角形讲义(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--全等三角形一、知识点:1.全等形的定义2.全等三角形的定义3.对应顶点、对应边、对应角的定义4.全等三角形的性质二、重难点:1.全等三角形的概念2.对应顶点、对应边、对应角的定义3.全等三角形的性质三、考点全等三角形的性质一、全等形1. 叫做全等形。
全等用符号表示,读作2.两个图形是否为全等形,关键是看两个图形的是否相同,是否相等,而与图形所在的无关;判断两个图形是否是全等形,只要把它们在一起,看是否完全;一个图形经过、、等变换后,所得到的图形与原图形全等。
例题:1.下列说法不正确的是()A.形状相同的两个图形是全等形 B.大小不同的两个图形不是全等形C. 形状、大小都相同的两个图形是全等形D.能够完全重合的两个图形是全等形2.下列说法正确的是()A.面积相等的两个图形是全等图形 B.周长相等的两个图形是全等图形C. 形状相同的两个图形是全等图形D.能够重合的两个图形是全等图形二、全等三角形1. 叫做全等三角形2. 两个全等三角形重合在一起,重合的顶点叫做,重合的边叫做,重合的角叫做3.寻找对应因素的方法:①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角;③全等三角形的公共角是对应角;④全等三角形的公共边是对应边;⑤全等三角形中的对顶角是对应角;⑥全等三角形中一对最长(短)的边是对应边,一对最大(小)的角是对应角例题:1.下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角oO BCDCDABCDCBD2.将ABC ∆沿直线BC 平移,得到DEF ∆,说出你得到的结论,说明理由B AD3.如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 是对应边,已知: 30,43=∠=∠B A ,求ADC ∠的大小。
第14章全等三角形期末复习PPT课件(沪科版)
![第14章全等三角形期末复习PPT课件(沪科版)](https://img.taocdn.com/s3/m/982b8f8c85254b35eefdc8d376eeaeaad1f316d2.png)
复习要点 1.全等三角形的定义
能够完全重合的两个三角形称为全等三角形. 2.全等三角形的性质:
全等三角形的对应边相等. 全等三角形的对应角相等. 全等三角形的对应边上的高相等. 全等三角形的对应边上的中线相等. 全等三角形的对应角的平分线相等.
复习要点 3.全等三角形的判定方法
C
D
∴BC=DC.
16. 如图,已知AC=BD, BC、AD相交于点E,且
BC⊥AC,BD⊥AD. AD 是∠BAC的平分线. 求证:BC
是∠ABD的平分线.
C
证明:∵ BC⊥AC,BD⊥AD,
D
∴∠C=∠D=90°.
在△RtABC和Rt△BAD中
AB=BA
A
B
AC=BD
∴ △RtABC ≌ Rt△BAD (HL)
要证:DE=AE-DC A 要证:AE=BD DC=BE 要证: △ABE≌△BCD
D 1E
∠ABE=∠BCD.
B
C
∠ABC=120° ∠D=60°
例2 如图,在△ABC中, ∠ABC=120°, AB=BC,
BD是∠ABC内的射线 ,若连接DC, ∠D=60°,点E是
线段BD上一点,且∠1=60°. 求证:DE=AE-DC.
一般三角形:SSS SAS ASA AAS 直角三角形:HL SAS ASA AAS
结论:判定两个三角形全等的条件中 至少有一组边对应相等.
复习要点
判定两个三角形全等的条件中至少有
一组边对应相等.
4. 判
S SSS
定
S
SAS
全 第一
等 的
找边S
A HL ASA
思
三角形全等判定复习课件
![三角形全等判定复习课件](https://img.taocdn.com/s3/m/d0dcafa8f605cc1755270722192e453610665b35.png)
三角形全等判定复习课件一、教学内容本课件主要依据教材第九章“几何图形的证明”中第四节“三角形全等的判定”,详细内容包括:SSS(SideSideSide)全等定理、SAS(SideAngleSide)全等定理、ASA(AngleSideAngle)全等定理、AAS(AngleAngleSide)全等定理的判定和应用。
二、教学目标1. 让学生熟练掌握三角形全等的四种判定方法,并能够灵活运用。
2. 培养学生运用三角形全等判定定理解决实际问题的能力。
3. 提高学生几何逻辑思维能力和空间想象能力。
三、教学难点与重点教学难点:三角形全等判定定理的理解和运用。
教学重点:SSS、SAS、ASA、AAS四种全等判定方法的掌握和应用。
四、教具与学具准备1. 教具:三角板、直尺、圆规、多媒体课件。
2. 学具:三角板、直尺、圆规、练习本。
五、教学过程1. 实践情景引入通过展示生活中全等三角形的实例,引导学生发现全等三角形的特点和性质。
2. 知识回顾回顾三角形全等的定义,引导学生回顾已学习的SSS、SAS、ASA、AAS四种全等判定方法。
3. 例题讲解讲解典型例题,分别运用SSS、SAS、ASA、AAS全等判定方法解决问题。
4. 随堂练习让学生独立完成练习题,巩固全等判定方法。
5. 课堂小结六、板书设计1. 三角形全等判定定理:SSS、SAS、ASA、AAS2. 例题及解答过程3. 课堂小结七、作业设计1. 作业题目:(1)已知三角形ABC中,AB=AC,BC=6cm,角A=60°,求三角形ABC的面积。
(2)已知三角形DEF中,DE=4cm,EF=5cm,DF=6cm,求三角形DEF的周长。
(3)已知三角形HIJ中,角H=45°,角I=30°,IJ=4cm,求三角形HIJ的面积。
2. 答案:(1)SABC=9cm²(2)DEF的周长为15cm(3)SHIJ=4cm²八、课后反思及拓展延伸1. 反思:本节课学生对全等判定方法掌握程度,以及在实际问题中的应用情况。
人教版八年级上册数学《三角形全等的判定》全等三角形说课复习
![人教版八年级上册数学《三角形全等的判定》全等三角形说课复习](https://img.taocdn.com/s3/m/53a9304e3069a45177232f60ddccda38366be10a.png)
只须找除直角外的两个条件即可(两个条 件中至少有一个条件是一对对应边相等)。
谢谢
三角形全等的判定 第1课时
课件
人教版 初中数学
情景引入
一张教学用的三角形硬纸板不小心被撕坏了,如 图,你能制作一张与原来同样大小的新教具?能恢复 原来三角形的原貌吗?
学习目 标
1.理解判定三角形全等的“边角边”条件.
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
斜边和一条直角边对应相等的两个直角三角形全等。
(简写成“斜边、直角边”或“HL”)
几何语言:
B
∵∠C=∠C′=90°,
∴在Rt△ABC和Rt△A′B′C′中,
A
C
AB=A′B′,
B′
BC=B′C′,
∴Rt△ABC≌Rt△A′B′C′(HL)。
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
放到Rt△ABC上,它们全等吗? A
B
C
探究验证
N
A
A′
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
B
C
M B′
C′
作法:
(1)画∠MC'N=90°; (2)在射线C'M上截取B'C'=BC;
2023年九年级中考数学复习讲义 三角形及其全等
![2023年九年级中考数学复习讲义 三角形及其全等](https://img.taocdn.com/s3/m/643dda5ea517866fb84ae45c3b3567ec102ddc6d.png)
2023年中考数学复习讲义三角形及其全等第一部分:知识点精准记忆一、三角形的基础知识1.三角形的概念:由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边一半.二、全等三角形1.三角形全等的判定定理:(1)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(2)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(3)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(4)角角边定理:有两角和它们所对的任意一边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”);(5)对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;(3)全等三角形对应的中线、高线、角平分线、中位线都相等.三、线段垂直平分线与角平分线1.线段的轴对称性:线段是轴对称图形,垂直并且平分线段的直线是它的一条对称轴.2.定义:垂直于一条线段,并且平分这条线段的直线,叫做这条线段的垂直平分线.注:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.性质:线段垂直平分线上的点到这条线段两个端点的距离相等.注:对于含有垂直平分线的题目,首先考虑将垂直平分线上的点与线段两端点连接起来.4.角是轴对称图形,角平分线所在的直线是它的对称轴.5.性质:角的平分线上的点到这个角的两边的距离相等.第二部分:考点典例剖析考点一: 三角形的三边关系【例1-1】(2021·广西柳州市·中考真题)若长度分别为3,4,a 的三条线段能组成一个三角形,则整数a 的值可以是________.(写出一个即可)【例1-2】(2021·江苏淮安·中考真题)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是___.考点二: 三角形的内角和外角【例2-1】(2021·河北中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.【例2-2】(2021·江苏宿迁市·中考真题)如图,在△ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∥AB ,交BC 于点E ,则∠BDE 的度数是( )A .30°B .40°C .50°D .60°【例2-3】(2021·浙江绍兴市·中考真题)如图,在中,,点D ,E 分別在边AB ,AC 上,,连结CD ,BE .(1)若,求,的度数.(2)写出与之间的关系,并说明理由.考点三:三角形中的重要线段【例3-1】(2022•大庆)下列说法不正确的是( )A .有两个角是锐角的三角形是直角或钝角三角形B .有两条边上的高相等的三角形是等腰三角形C .有两个角互余的三角形是直角三角形D .底和腰相等的等腰三角形是等边三角形ABC 40A ∠=︒BD BC CE ==80ABC ∠=︒BDC ∠ABE ∠BEC ∠BDC∠【例3-2】(2021·江苏泰州市·中考模拟)如图所示的网格由边长相同的小正方形组成,点、、、、、、在小正方形的顶点上,则的重心是( )A .点B .点C .点D .点【例3-3】如图,在ABC 中,以A 为圆心,任意长为半径画弧,分别交AB 、AC 于点M 、N ;再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ;连结AP 并延长交BC 于点D .则下列说法正确的是( )A .AD BD AB +<B .AD 一定经过ABC 的重心 C .BAD CAD ∠=∠D .AD 一定经过ABC 的外心考点四: 垂直平分线与角平分线的性质 【例4-1】(2021·青海中考真题)如图,在四边形ABCD 中,∠A=90°,AD=3,BC=5,对角线BD 平分∠ABC ,则△BCD 的面积为( )A .7.5B .8C .15D .无法确定【例4-2】在△ABC 中,∠BAC =115°,DE 、FG 分别为AB 、AC 的垂直平分线,则∠EAG 的度数为 A B C D E F G ABC∆D E FGA .50°B .40°C .30°D .25°【例4-3】如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC 交AC 于D 点,AB =4,BD =5,点P 是线段BC 上的一动点,则PD 的最小值是__________.考点五: 全等三角形的性质与判定【例5-1】2020·湖北省直辖县级行政单位·中考真题)如图,已知和都是等腰三角形,,交于点F ,连接,下列结论:①;②;③平分;④.其中正确结论的个数有( )A .1个B .2个C .3个D .4个【例5-2】(2021·陕西中考真题)如图,,,点在上,且.求证:.【例5-3】(2021·广东广州·中考真题)如图,点E 、F 在线段BC 上,,,ABC ADE 90BAC DAE ∠=∠=︒,BD CE AF BD CE =BF CF ⊥AF CAD ∠45AFE ∠=︒//BD AC BD BC =E BC BE AC =D ABC ∠=∠//AB CD A D ∠=∠,证明:.【例5-4】(2021·江苏淮安·中考真题)(知识再现)学完《全等三角形》一章后,我们知道“斜边和一条直角边分别相等的两个直角三角形全等(简称HL 定理)”是判定直角三角形全等的特有方法.(简单应用)如图(1),在△ABC 中,∠BAC =90°,AB =AC ,点D 、E 分别在边AC 、AB 上.若CE =BD ,则线段AE 和线段AD 的数量关系是 .(拓展延伸)在△ABC 中,∠BAC =(90°<<180°),AB =AC =m ,点D 在边AC 上. (1)若点E 在边AB 上,且CE =BD ,如图(2)所示,则线段AE 与线段AD 相等吗?如果相等,请给出证明;如果不相等,请说明理由.(2)若点E 在BA 的延长线上,且CE =BD .试探究线段AE 与线段AD 的数量关系(用含有a 、m 的式子表示),并说明理由.【例5-5】(2020·山东烟台市·中考真题)如图,在等边三角形ABC 中,点E 是边AC 上一定点,点D 是直线BC 上一动点,以DE 为一边作等边三角形DEF ,连接CF .(问题解决)(1)如图1,若点D 在边BC 上,求证:CE+CF =CD ;(类比探究)(2)如图2,若点D 在边BC 的延长线上,请探究线段CE ,CF 与CD 之间存在怎样的数量关系?并说明理由.考点六: 三角形全等综合【例6-1】(2022·北京)在ABC 中,90ACB ∠=,D 为ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得.CE DC = BE CF =AE DF=αα(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF ,若AF EF ⊥,求证:BD AF ⊥; (2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.【例6-2】(2022·山东泰安·中考真题)正方形ABCD 中,P 为AB 边上任一点,AE DP ⊥于E ,点F 在DP 的延长线上,且DE EF =,连接AF BF 、,BAF ∠的平分线交DF 于G ,连接GC .(1)求证:AEG △是等腰直角三角形;(2)求证:2AG CG DG +=;(3)若2AB =,P 为AB 的中点,求BF 的长.第三部分:中考真题一.选择题1.(2022•鄂尔多斯)如图,15AOE ∠=︒,OE 平分AOB ∠,//DE OB 交OA 于点D ,EC OB ⊥,垂足为C .若2EC =,则OD 的长为( )A .2B .23C .4D .43+2.(2022•荆门)数学兴趣小组为测量学校A 与河对岸的科技馆B 之间的距离,在A 的同岸选取点C ,测得30AC =,45A ∠=︒,90C ∠=︒,如图,据此可求得A ,B 之间的距离为( )A .203B .60C .302D .303.(2022•湘西州)如图,在Rt ABC ∆中,90A ∠=︒,M 为BC 的中点,H 为AB 上一点,过点C 作//CG AB ,交HM 的延长线于点G ,若8AC =,6AB =,则四边形ACGH 周长的最小值是( )A .24B .22C .20D .184.(2022•西宁)若长度是4,6,a 的三条线段能组成一个三角形,则a 的值可以是( )A .2B .5C .10D .117.(2022•西宁)如图,60MON ∠=︒,以点O 为圆心,适当长为半径画弧,交OM 于点A ,交ON 于点B ;分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧在MON ∠的内部相交于点P ,画射线OP ;连接AB ,AP ,BP ,过点P 作PE OM ⊥于点E ,PF ON ⊥于点F .则以下结论错误的是( )A .AOB ∆是等边三角形B .PE PF =C .PAE PBF ∆≅∆D .四边形OAPB 是菱形5.(2022•西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是()A.5-B.4C.7D.86.(2022•大连)如图,在ABC∆中,90ACB∠=︒.分别以点A和点C为圆心,大于12 AC的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若3AB=,则CD的长是()A.6B.3C.1.5D.1 7.(2022•青海)如图,在Rt ABC∆中,90ACB∠=︒,D是AB的中点,延长CB至点E,使BE BC=,连接DE,F为DE中点,连接BF.若16AC=,12BC=,则BF的长为( )A.5B.4C.6D.88.(2022•张家界)如图,点O是等边三角形ABC内一点,2OA=,1OB=,3OC=,则AOB∆与BOC∆的面积之和为()A 3B3C33D39.(2022•长沙)如图,在ABC∆中,按以下步骤作图:①分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若22AB=AM的长为()A.4B.2C3D2 10.(2022•海南)如图,直线//m n,ABC∆是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若1140∠=︒,则2∠的度数是()A.80︒B.100︒C.120︒D.140︒11.(2022•黑龙江)如图,ABC∆中,AB AC=,AD平分BAC∠与BC相交于点D,点E 是AB的中点,点F是DC的中点,连接EF交AD于点P.若ABC∆的面积是24, 1.5PD=,则PE的长是()A .90ADC ∠=︒B .DE DF =C .AD BC = D .BD CD =12.(2022•广东)下列图形中有稳定性的是( )A .三角形B .平行四边形C .长方形D .正方形13.(2022•贺州)如图,在Rt ABC ∆中,90C ∠=︒,56B ∠=︒,则A ∠的度数为( )A .34︒B .44︒C .124︒D .134︒14.(2022•永州)如图,在Rt ABC ∆中,90ABC ∠=︒,60C ∠=︒,点D 为边AC 的中点,2BD =,则BC 的长为( )A 3B .23C .2D .415.(2022•荆州)如图,直线12//l l ,AB AC =,40BAC ∠=︒,则12∠+∠的度数是( )A .60︒B .70︒C .80︒D .90︒16.(2022•宜昌)如图,在ABC ∆中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD ∆的周长为( )A .25B .22C .19D .1817.(2022•岳阳)如图,已知//l AB ,CD l ⊥于点D ,若40C ∠=︒,则1∠的度数是( )A .30︒B .40︒C .50︒D .60︒18.(2022•台湾)如图,ABC ∆中,D 点在AB 上,E 点在BC 上,DE 为AB 的中垂线.若B C ∠=∠,且90EAC ∠>︒,则根据图中标示的角,判断下列叙述何者正确?( )A .12∠=∠,13∠<∠B .12∠=∠,13∠>∠C .12∠≠∠,13∠<∠D .12∠≠∠,13∠>∠19.(2022•宜宾)如图,在ABC ∆中,5AB AC ==,D 是BC 上的点,//DE AB 交AC 于点E ,//DF AC 交AB 于点F ,那么四边形AEDF 的周长是( )A .5B .10C .15D .2020.(2022•广元)如图,在ABC ∆中,6BC =,8AC =,90C ∠=︒,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .2.5B .2C .3.5D .321.(2022•宜宾)如图,ABC ∆和ADE ∆都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC ∆内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则23CE =+.其中含所有正确结论的选项是( )A .①②④B .①②③C .①③④D .①②③④22.(2022•杭州)如图,CD AB ⊥于点D ,已知ABC ∠是钝角,则( )A .线段CD 是ABC ∆的AC 边上的高线B .线段CD 是ABC ∆的AB 边上的高线C .线段AD 是ABC ∆的BC 边上的高线D .线段AD 是ABC ∆的AC 边上的高线二.填空题1.(2020·辽宁铁岭市·中考真题)如图,在ABC 中,5,8,9===AB AC BC ,以A 为圆心,以适当的长为半径作弧,交AB 于点M ,交AC 于点N ,分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠的内部相交于点G ,作射线AG ,交BC 于点D ,点F 在AC 边上,AF AB =,连接DF ,则CDF 的周长为___________.2.(2020·辽宁营口市·中考真题)如图,△ABC 为等边三角形,边长为6,AD ⊥BC ,垂足为点D ,点E 和点F 分别是线段AD 和AB 上的两个动点,连接CE ,EF ,则CE +EF 的最小值为_____.3.(2021·辽宁锦州·中考真题)如图,在△ABC 中,AC =4,∠A =60°,∠B =45°,BC 边的垂直平分线DE 交AB 于点D ,连接CD ,则AB 的长为_________________.4题4.(2021·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点C 的坐标为()1,0-,点A的坐标为()3,3-,将点A 绕点C 顺时针旋转90︒得到点B ,则点B 的坐标为_____________.5.(2020·湖北中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为_____.6.(2021·湖北十堰市·中考真题)如图,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,点P 是平面内一个动点,且3AP =,Q 为BP 的中点,在P 点运动过程中,设线段CQ 的长度为m ,则m 的取值范围是__________.7.如图,是一个3×3的正方形网格,则∠1+∠2+∠3+∠4= .三.解答题1.(2022铜仁)如图,点C 在BD 上,,,,⊥⊥⊥=AB BD ED BD AC CE AB CD .求证:ABC CDE △≌△.2.(2022福建)如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E .求证:∠A =∠D .3.(2022广东)如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.4.(2022大庆)如图,在四边形ABDF 中,点E ,C 为对角线BF 上的两点,,,AB DF AC DE EB CF ===.连接,AE CD .(1)求证:四边形ABDF 是平行四边形;(2)若AE AC =,求证:AB DB =.5.(2022云南)如图,在平行四边形ABCD 中,连接BD ,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,∠BDF =90°(1)求证:四边形ABDF 是矩形;(2)若AD =5,DF =3,求四边形ABCF 的面积S .6.(2022梧州)如图,在ABCD 中,E ,G ,H ,F 分别是,,,AB BC CD DA 上的点,且,BE DH AF CG .求证:EF HG =.7.(2022遵义)将正方形ABCD 和菱形EFGH 按照如图所示摆放,顶点D 与顶点H 重合,菱形EFGH 的对角线HF 经过点B ,点E ,G 分别在AB ,BC 上.(1)求证:ADE CDG ≌;(2)若2AE BE ==,求BF 的长8.(2022贵阳)如图,在正方形ABCD 中,E 为AD 上一点,连接BE ,BE 的垂直平分线交AB 于点M ,交CD 于点N ,垂足为O ,点F 在DC 上,且MF AD ∥.(1)求证:ABE FMN ≌△△;(2)若8AB =,6AE =,求ON 的长.9.(2022安徽)已知四边形ABCD 中,BC =CD .连接BD ,过点C 作BD 的垂线交AB 于点E ,连接DE .(1)如图1,若∥DE BC ,求证:四边形BCDE 是菱形;(2)如图2,连接AC ,设BD ,AC 相交于点F ,DE 垂直平分线段AC .(ⅰ)求∠CED 的大小;(ⅱ)若AF =AE ,求证:BE =CF .10.(2022玉林)问题情境:在数学探究活动中,老师给出了如图的图形及下面三个等式:①AB AC = ②DB DC = ③BAD CAD ∠=∠若以其中两个等式作为已知条件,能否得到余下一个等式成立? 解决方案:探究ABD △与ACD △全等.问题解决:(1)当选择①②作为已知条件时,ABD △与ACD △全等吗?_____________(填“全等”或“不全等”),理由是_____________;(2)当任意选择两个等式作为已知条件时,请用画树状图法或列表法求ABD ACD △≌△的概率.11.(2022北部湾)已知MON α∠=,点A ,B 分别在射线,OM ON 上运动,6AB =.(1)如图①,若90α=︒,取AB 中点D ,点A ,B 运动时,点D 也随之运动,点A ,B ,D 的对应点分别为,,A B D ''',连接,OD OD '.判断OD 与OD '有什么数量关系?证明你的结论:(2)如图②,若60α=︒,以AB 为斜边在其右侧作等腰直角三角形ABC ,求点O 与点C 的最大距离:(3)如图③,若45α=︒,当点A ,B 运动到什么位置时,AOB 的面积最大?请说明理由,并求出AOB 面积的最大值.。
全等三角形 复习课件
![全等三角形 复习课件](https://img.taocdn.com/s3/m/d55da9be5122aaea998fcc22bcd126fff6055d1e.png)
全等三角形复习课件一、全等三角形的定义和性质全等三角形是指能够完全重合的两个三角形。
全等三角形的对应边相等,对应角相等。
这是全等三角形最基本也是最重要的性质。
例如,在三角形ABC 和三角形A'B'C'中,如果这两个三角形全等,那么 AB = A'B',BC = B'C',AC = A'C',∠A =∠A',∠B =∠B',∠C =∠C'。
二、全等三角形的判定方法1、 SSS(边边边):如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
例如,三角形 ABC 和三角形 A'B'C'中,AB = A'B',BC = B'C',AC = A'C',则三角形 ABC ≌三角形 A'B'C'。
2、 SAS(边角边):如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
比如,在三角形 ABC 和三角形 A'B'C'中,AB = A'B',∠A =∠A',AC = A'C',则三角形 ABC ≌三角形 A'B'C'。
3、 ASA(角边角):如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
假设在三角形 ABC 和三角形 A'B'C'中,∠A =∠A',AB = A'B',∠B =∠B',那么三角形 ABC ≌三角形 A'B'C'。
4、 AAS(角角边):如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。
比如三角形 ABC 和三角形 A'B'C'中,∠A =∠A',∠B =∠B',BC = B'C',则三角形 ABC ≌三角形 A'B'C'。
全等三角形总复习课件
![全等三角形总复习课件](https://img.taocdn.com/s3/m/cb4fe171366baf1ffc4ffe4733687e21af45ff9d.png)
理解面积的概念和计算方法,找出全等三角形,并利用全等三角形的 性质进行计算。
常见考点
全等三角形的判定和性质、面积的计算和比较、几何图形的面积公式 等。
05
全等三角形的易错点分析
判定定理的混淆
总结词
判定定理的混淆是学生在学习全等三角形时常见的问题,主要表现在不能正确理解和区 分SSS、SAS、ASA、AAS和HL等判定定理。
03
全等三角形的解题策略
构造法
总结词
通过添加辅助线构造新的三角形,利用已知条件证明新构造的三角形与原三角形全等,从而解决问题 。
详细描述
构造法是解决全等三角形问题的一种常用策略。通过作平行线、垂线或延长线等辅助线,构造出新的 三角形,利用已知条件证明新构造的三角形与原三角形全等,从而得出所需结论。在运用构造法时, 需要充分理解题意,寻找合适的构造方式。
详细描述
计算题通常会涉及角度、边长等几何量的计算。在解题过程中,学生需要利用 全等三角形的性质和定理,找到与所求量相关的已知量,通过计算得出结果。
作图题
总结词
作图题是全等三角形应用中较为特殊的一种题型,主要考察学生的空间想象能力 和作图技能。
详细描述
作图题通常会要求学生根据已知条件,画出两个全等的三角形。在解题过程中, 学生需要理解全等三角形的性质和判定定理,并能够根据题目要求进行准确的作 图。
推论
全等三角形的周长、面积 相等。
判定定理
SSS定理
SAS定理
如果两个三角形的三边分别相等,则这两 个三角形全等。
如果两个三角形的两边及其夹角分别相等 ,则这两个三角形全等。
ASA定理
HL定理
如果两个三角形的两角及其夹边分别相等 ,则这两个三角形全等。
全等三角形讲义
![全等三角形讲义](https://img.taocdn.com/s3/m/9fd71a20178884868762caaedd3383c4ba4cb479.png)
ADB C E FO A DEB C F 平移型对称型全等三角形讲义【知识要点】1、全等三角形的定义:(1)操作方式:能够完全重合的两个三角形叫全等三角形; (2)几何描述:大小、形状完全相同的两个三角形叫全等三角形;(几何中就是借助于边、角以及其它可度量的几何量来描述几何图形的大小和形状) 2、全等三角形的几何表示:如图,△ABC ≌△DEF ;(注意对应点、对应边、对应角) 3、全等的性质:(求证线段相等、求证角相等的常规思维方法) 性质1:全等三角形对应边相等; 性质2:全等三角形对应角相等; 几何语言 ∵△ABC ≌△DEF∴AB=DE ;AC=DF ,BC=EF ;∠A=∠D ,∠B=∠E ,∠C=∠F. 性质3:全等三角形的对应边上的高、对应角平分线、对应边上的中线相等 性质4:全等三角形的周长、面积相等 4、三角形全等的常见基本图形【新知讲授】例1、如图,△OAB ≌△OCD ,AB ∥EF ,求证:CD ∥EF.例2、如图,在△ABC 中,AD ⊥BC 于点 D ,BE ⊥AC 于 点E ,AD 、BE 交于点F ,△ADC ≌△BDF (1)∠C=50°,求∠ABE 的度数.(2)若去掉原题条件“AD ⊥BC 于点 D ,BE ⊥AC 于 点E ”,仅保持“△ADC ≌△BDF ”不变,试问:你能证明:“AD ⊥BC 于点 D ,BE ⊥AC ”吗?AD B CE 例3、如图,△ABC ≌△ADE ,延长边BC 交DA 于点F ,交DE 于点G.(1)求证:∠DGB=∠CAE ; (2)若∠ACB=105°,∠CAD=10°,∠ABC=25°,求∠DGB 的度数.例4、如图,Rt △ABC 中,∠C=90°,将Rt △ABC 沿DE 折叠,使A 点与B 点重合,折痕为DE. (1)图中有全等三角形吗?请写出来;(2)若∠A=35°,求∠CBD 的度数;(3)若AC=4,BC=3,AB=5,求△BCD 的周长.例5、如图,△ABF ≌△CDE.(1)求证:AB ∥CD ;AF ∥CE ;(2)若△AEF ≌△CFE ,求证:∠BAE=∠DCF ;(3)在(2)的条件下,若∠B=35°,∠CED=30°,∠DCF=20°,求∠EAF 的度数.AE F C【课后练习】一、选择题1、下面结论是错误的是( ). (A )全等三角形对应角所对的边是对应边 (B )全等三角形两条对应边所夹的角是对应角 (C )全等三角形是一个特殊的三角形(D )如果两个三角形都与另一个三角形全等,那么这两个三角形全等 2、如图,△ABC ≌△AEF ,则下列结论中不一定成立的是( ).(A )AC=AF (B )∠EAB=∠FAC (C )EF=BC (D )EF 平分∠AFB3、如图,已知△ABC ≌△DEF ,AB=DE ,AC=DF ,则下列结论:①BC=EF ;②∠A=∠D ;③∠ACB=∠DEF ;④BE=CF ,其中正确结论的个数是( ).(A )1个 (B )2个 (C )3个 (D )4个4、如图,△ABD ≌△EFC ,AB=EF ,∠A=∠E ,AD=EC ,若BD=5,DF=2.2则CD=( ). (A )2.2 (B )2.8 (C )3.4 (D )4(第2题图) (第3题图) (第4题图) 5、如图,已知△ABD≌△ACD,下列结论: ①△ABC 为等腰三角形;②AD 平分∠BAC ;③AD ⊥BC ;④AD=BC. 其中正确结论的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个二、填空题6、已知:如图,△ACD ≌△AEB ,其中CD=EB ,AB=AD ,则∠ADC 的对边是 ,AC 的对应边是 ,∠C 的对应角是 .7、如图,已知△ABD ≌△DCA ,AB 的对应边是DC ,AD 的对应边是 ,∠BAD 的对应角是 ,AB 与CD 的位置关系是 .8、如图,若△OAD ≌△OBC ,且∠O=65°,∠C=20°则∠OAD= .AAFA D C E F(第6题图) (第7题图) (第8题图)三、解答题9、如图,直线l ⊥BC ,将△ABC 沿直线l 翻折得到△DEF ,AB 分别交DF 、DE 于M 、Q 两点,AC 交DF 于点Q.(1)图中共有多少对全等三角形?(不添加其它字母)(2)写出(1)中所有的全等的三角形. 10、如图,△ABC ≌△ADE ,点E 正好在线段BC 上.(1)求证:∠DEB=∠EAC ;(2)若∠1=50°,求∠DEB 的度数.【知识要点】全等三角形判定定理 1、“SAS ”定理:有两边及夹角对应相等的两个三角形全等;①求证全等的格式:(“全等五行”)如:②利用全等进行几何证明的三大环节:预备证明、“全等五行”、全等应用; ③“边边角”不能证明两个三角形全等;DBDA1FB CDAA BC D EO在△ABC 和△DEF 中:AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ∽△DEF.(SAS )【新知讲授】“SAS”公理的运用例1、如图,C为AB的中点,CD∥BE,CD=BE,求证:∠D=∠E.巩固练习1、如图,点E、A、C在同一条直线上,AB∥CD,AB=CE,AC=CD,求证:BC=DE.2、已知:如图,AB=AC,D、E分别为AB、AC的中点,求证:∠B=∠C.例2、已知:如图,AB=CD,∠ABC=∠DCB,求证:∠ABD=∠ACD.巩固练习:1、已知:如图,AB ∥CD ,AB=CD ,AE=DF ,求证:CE ∥BF.2、已知:如图,AB=AD ,AC=AE ,∠1=∠2,求证:∠DEB=∠2.例3、如图,BD 、CE 为△ABC 的两条中线,延长BD 到G ,使BD=DG ,延长CE 到F ,使CE=EF.(1)求证:AF=AG ;(2)试问:F 、A 、G 三点是否在同一直线线?证明你的结论.巩固练习:1.已知:如图,AB ⊥BD 于点B ,CD ⊥BD 于点D ,AB=CD ,BE=DF ,求证:∠EAF=∠ECF.A BC DEF A B C D EF2.已知:如图,AB=AC,AD平分∠BAC,求证:∠DBE=∠DCE.例4、已知:如图,OA=OB,OC=OD,求证:∠ACD=∠BDC. (提示:不能用等腰三角形的性质)巩固练习:1、已知:如图,OD=OE,OA=OB,求证:∠A=∠B.2、已知:如图,AB=CD,BE=CF,∠B=∠C,求证:∠EAF=∠EDF.AD B C EF A D B C EA DC B 【课后作业】1、已知:如图,AB ⊥BD ,CD ⊥BD ,AB=DE ,BE=CD ,试判断△ACE 的形状并说明理由.2、如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE=DF ,AB=DC ,求证:∠ACE=∠DBF.3、已知:如图,OD=OE ,OC 平分∠AOB ,求证:∠A=∠B.4、如图,四边形ABCD 中,AD=BC ,AD ∥BC ,求证:AB=CD ,AB ∥CD.5、如图,已知,AB=AC ,AD=AE ,∠BAC=∠DAE.(1)求证:BD=CE ;(2)若∠BAC=∠DAE=α,延长BD 交CE 于点P ,则∠BPC 的度数为 .(用含α的式子表示)ABED C ADBC EF6、如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .(1)求证:△ACD≌△BCE; (2)若∠D=50°,求∠B 的度数.2、“SSS ”定理:三边对应相等的两个三角形全等;如:3、①“ASA ”定理:两角及两角所夹的边对应相等的两个三角形全等;②“AAS ”定理:两角及其中一角所对的边对应相等的两个三角形全等; 如:【定理运用】例1、如图,E 、F 两点在线段BC 上,AB=CD ,AF=DE ,BE=CF ,求证:∠AFB=∠DEC.巩固练习:1、如图,已知,AB=AC ,AD=AE ,BD=CE ,延长BD 交CE 于点P ,求证:∠BAC=∠DAE ;在△ABC 和△DEF 中:AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩∴△ABC ∽△DEF.(SSS )在△ABC 和△DEF 中: B E BC EF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴△ABC ∽△DEF.(ASA ) 在△ABC 和△DEF 中:A DB E BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ∽△DEF.(AAS )C A E BD例2、已知:如图,AB=AC ,AD=AE ,∠1=∠2,求证:AF=AG.巩固练习:1、如图,已知,AB=CD ,BE=DF ,AF=CE ,求证:AD ∥BC.例3、如图,C 为线段AB 的中点,AD ∥CE ,∠D=∠E ,求证:CD=EB.巩固练习1、如图,AD 为△ABC 的高线,E 、F 为直线AD 上两点,DE=DF ,BE ∥CF ,求证:AB=AC.E AF DC B 2、如图,∠ABC=∠DCB,BD 、CA 分别是∠ABC、∠DCB 的平分线,求证:AB=DC.例4、如图,△ABC 中,AB=AC ,D 、E 分别在BC 、AC 的延长线上,∠1=∠2=∠3,求证:AD=AE.巩固练习:1、已知:如图,∠A=∠D ,OA=OD ,求证:∠1=∠2.2、已知:AD ∥BC ,AE ⊥BD ,CF ⊥BD ,AE=CF ,求证:AB=CD.E A D C B 例5、已知:如图,AB=CD ,∠A=∠D ,求证:∠ABC=∠DCB.巩固练习:1、已知:如图,AB=AC ,AD=AE ,求证:∠DBC=∠ECB.2、已知:如图,△ABC 中,∠BAC=∠BCA ,延长BC 边的中线AD 到E 点,使AD=DE ,F 为BC 延长线上一点,且CE=CF ,求证:AF=2AD.例6、在△OAB 和△OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD ,AC 、BD 交于点P.(1)①如图1,∠AOB=∠COD=60°,则∠APD= ,AC 与BD 的数量关系是 ;②如图2,∠AOB=∠COD=90°,则∠APD= ,AC 与BD 的数量关系是 ;(2)如图3,∠AOB=∠COD=α°,则∠APD 的度数为 (用含α的式子表示),AC 与BD 之间的等量关系是 ;填写你的结论,并给出你的证明;图1 图2 图3AB CE FDO P D C BA O P D CB AααO P D CB AEBCD CEABE A D B CF ADF图1图2图3F巩固练习:点C 为线段AB 上一点,分别以AC 、BC 为腰在直线AB 的同侧作等腰△ACD 和等腰△BCE ,且CA=CD ,CB=CE ,∠ACD=∠BCE ,直线AE 、BD 交于点F.(1)如图1,若∠ACD=60°,则∠AFB= ;(2)如图2,若∠ACD=α°,则∠AFB= ;(用α的代数式表示) (3)如图3,将图2中的△ACD 绕点C 顺时针旋转一个角度,延长BD 交线段AE 于点F ,试探究∠AFB 与α之间的数量关系,并给出你的证明.例7、已知:AB=AC ,AD=AE ,AF ⊥CD ,AG ⊥BE ,求证:AF=AG.巩固练习:1、如图,已知,AB=AD ,AC=AE ,∠1=∠2.(1)求证:BC=DE ;(2)若AF 平分∠BAC ,求证:AF=AC.AB EDC2、已知:如图,AB=AC ,AD=AE ,求证:AO 平分∠BAC.3、如图,等腰Rt △ABC 中AB=AC ,过A 任作直线l ,BD ⊥l 于点D ,CE ⊥l 于点E. (1) 若l 与BC 不相交,求证:BD+CE=DE ;(2) 当直线l 绕A 点旋转到与BC 相交时,其它条件不变,试猜想BD 、CE 和DE 的关系? 画图并给出证明.课后作业:1、如图,等腰Rt △ABC 和等腰Rt △ADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE=90°. (1)求证:BD=CE ;(2)求证:BD ⊥CE.A B C D EA B CA BDCOA DBC E AD C B 2、已知:如图,AB=AC ,AD=AE ,BD=CE ,求证:∠BAE=∠CAD.3、如图,四边形ABCD 中,AB=CD ,AD=BC ,求证:AB ∥CD ,AD ∥BC.4、已知:如图,在四边形ABCD 中,AB=CB ,AD=CD ,求证:∠A=∠C.5、已知:如图,AD=BC ,AC=BD ,求证:∠D=∠C.A DBCC M E A BD 6、如图1,等腰△ABC 中AB=AC ,D 、E 分别在AC 、AB 上,且AD 、AE ,M 、N 分别BE 、CD 的中点.(1)CD BE ,AM AN ;(填“>”、“=”、“<”)(2)如图2,把图1中的△ADE 绕A 点逆时针旋转任意一个角度,(1)中的两个结论是否仍然成立?若成立请证明,若不成立请说明理由.7、如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,求证:AB=CD ,AD=BC.8、已知:如图,AB//DE ,AE//BD ,AF=DC ,EF=BC 。
全等三角形复习课件.说课课件
![全等三角形复习课件.说课课件](https://img.taocdn.com/s3/m/5390a247773231126edb6f1aff00bed5b9f373fc.png)
2023全等三角形复习课件.说课课件CATALOGUE目录•课程引入•全等三角形性质与判定•三角形全等的证明方法•全等三角形在实际生活中的应用•复习巩固与提高•说课内容展示与讲解01课程引入全等三角形是指能够完全重合的两个三角形,即形状相同且大小相等的三角形。
复习全等三角形基本概念定义全等三角形的对应边相等,对应角相等,周长相等,面积相等。
性质用全等符号“≌”表示两个三角形全等。
表示方法通过本次复习,使学生进一步熟悉全等三角形的性质和判定方法,掌握全等三角形的证明方法,提高运用全等三角形解决问题的能力。
复习目标采用讲解与练习相结合的方式,通过典型例题的分析和解题方法的指导,帮助学生巩固全等三角形的知识,提高解题能力和思维水平。
复习方法引入复习目标和方法02全等三角形性质与判定1全等三角形性质回顾23定义:两个三角形全等是指能够完全重合的两个三角形。
全等三角形的性质:全等三角形的对应边相等,对应角相等。
运用全等三角形的性质可以进行简单的几何证明。
全等三角形判定方法总结•定义:两个三角形全等是指能够完全重合的两个三角形。
•常用的判定方法有:SSS、SAS、ASA、AAS、HL。
•SSS:三边对应相等的两个三角形全等。
•SAS:两边及其夹角对应相等的两个三角形全等。
•ASA:两角及其夹边对应相等的两个三角形全等。
•AAS:两角及其中一个角的对边对应相等的两个三角形全等。
•HL:斜边和一条直角边对应相等的两个直角三角形全等。
经典例题解析在△ABC和△DEF中,AB=DE,AC=DF,∠B=∠E,求证:△ABC≌△DEF。
例题1解析例题2解析此题考查的是全等三角形的判定,根据ASA可以进行证明。
在Rt△ABC和Rt△DEF中,∠A=∠D=90°,BC=EF,求证:△ABC≌△DEF。
此题考查的是全等三角形的判定,根据HL可以进行证明。
03三角形全等的证明方法直接证明方法讲解根据全等三角形的定义,直接证明两个三角形全等的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 下列各图中,一定全等的是( )
A. 各有一个角是45o 的两个等腰三角形
B. 两个等边三角形
C. 各有一个角是45o ,腰长都是3cm 的两个等腰三角形
D. 腰和顶角对应相等的两个等腰三角形
考点二:如何判定三角形全等
典型例题
1.如图1,已知AB ∥CD ,AD ∥BC ,E.F 是BD 上两点,且BF =DE , 则图中共有 对全等三角形.
2.如图2,AB ∥CD ,AD ∥BC ,OE=OF,图中全等三角形共有______对.
3. 已知:△ABC 是等边三角形,∠GAB=∠HBC=∠DCA ,∠GBA=∠HCB=∠DAC 。
求证:△ABG ≌△BCH ≌△CAD 。
4.已知,如图,∠1=∠2,∠C =∠D ,AD =EC ,△ABD ≌△EBC 吗?为什么?
知识概括、方法总结与易错点分析
针对性练习:
1.(2008湖北咸宁)如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上 两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接 EF ,下列结论:
①△AED ≌△AEF ;②△ABE ∽△ACD ;③BE DC DE +=; ④∠FBE =90° 其中正确【 】A .②④; B .①④; C .②③; D .①③.
2.已知:∠A =∠D ,∠ACB =∠DBC ,试说明△ABC ≌△DCB ;△AOB ≌△DOC
A
D
B
C
E
F
图1
(?8??)
A
B
C
D
E
F
A B C
D
E
1 2
D
C
B A
考点三:全等三角形的性质运用
典型例题
1.如图所示,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.
2.已知:如图AC=BD,∠CAB=∠DBA。
求证:∠CAD=∠DBC。
3.如图,AE⊥BC,DF⊥BC,E,F是垂足,且AE=DF,AB=DC,求证:∠ABC=∠DCB.
4.如图,在边长为1的正方形ABCD中,E、F分别是AB、AD上的点,若∠ECF=45o,求证:AE+EF+FA=2。
5. 如图ABD
∆和ACE
∆均为等边三角形,求证:DC=BE。
知识概括、方法总结与易错点分析
针对性练习:
1.如图,已知在△ABC中,AB=AC,D为BC上一点,BF=CD,CE=BD,那么∠EDF等于( )
A B
C
E
P
D
A
D
B C
E
132。