中考数学专题知识突破专题五数学思想方法
初中数学解题技巧:常用的数学思想方法
初中数学解题技巧:常用的数学思想方法初中数学解题技巧:常用的数学思想方法1、数形结合思想:确实是依照数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是能够相互转化的。
数学学科的各部分之间也是相互联系,能够相互转化的。
在解题时,假如能恰当处理它们之间的相互转化,往往能够化难为易,化繁为简。
如:代换转化、已知与未知的转化、专门与一样的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要依照研究对象性质的差异,分各种不同情形予以考查,这种分类摸索的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就能够了。
为此,把已知条件代入那个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解那个方程或方程组就使问题得到解决。
5、配方法:确实是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法能够把一个较为复杂的式子化简,把问题归结为比原先更为差不多的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,那个条件的成立还不明显,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。
这种思维过程通常称为“执果寻因”8、综合法:在研究或证明命题时,假如推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”9、演绎法:由一样到专门的推理方法。
中考数学专题复习课件:数学思想方法ppt 通用
此时C(0,2)或C(0,-2). 如图,②当点C位于x轴上时,设C(a,0).
则|- -a|+|a- |=6,即2a=6或-2a=6,
解得a=3或a=-3,
5
5
此时C(-3,0)或C(3,0).
综上所述,点C的坐标是(0,2),(0,-2),(-3,0),(3,0). 答案:(0,2)(0,-2)(-3,0)(3,0)
【解析】(1)当x=0时,
3-1的偶数次方等于1, (2)当x≠0时,只有1x=1和
所以
(
0 =(-2) =1成立. x x
2)
x ①当 -2=1 时,解得x=27. 3 x 此时( -2)x=127=1成立, 3 x 3
-2=±1.
②当 x-2=-1时ຫໍສະໝຸດ 解得x=3.3x 3 此时( -2) =(-1) =-1≠1,不成立. x
专题一 数学思想方法
考点 一
分类讨论思想 分类讨论思想常见的五种类型
1.二次根式中的分类讨论思想:对于二次根式
的化简,往
往需要对字母的取值情况进行分类讨论.当a≥0时, 当a<0时,
2
a2
=a;
=-a.
a2
a 2.方程中的分类讨论思想 :若含有字母系数的方程有实数根
时,要考虑二次项系数是否等于0,进行分类讨论.
3.三角形问题中的分类讨论思想:在直角三角形中,如果没有 指明哪条边是直角边、斜边,这需要分类讨论;在等腰三角形 中,无论边还是顶角与底角不确定或底边与腰不确定的情况下 , 都需要分类讨论;与三角形的高有关的问题,有时要分钝角三 角形、直角三角形、锐角三角形分别讨论解决. 4.相似三角形中的分类讨论思想:如果题目中出现两个三角形
试析中考数学压轴题中的数学思想及解题思路
试析中考数学压轴题中的数学思想及解题思路数学思想是指在解题过程中运用的数学理论、原理和方法。
解题思路是指在解决问题时的思维方式和方法论。
在中考数学压轴题中,数学思想和解题思路起着至关重要的作用。
数学思想主要包括逻辑思维、抽象思维、推理思维、归纳思维和创造思维等。
首先是逻辑思维。
在解题过程中,需要进行严密的逻辑推理,将问题分解为更小的问题,找到解题的路径和方法。
在解决几何题时,通过运用几何公理、定义和定理,利用逻辑推理进行证明,从而得到题目的解答。
其次是抽象思维。
数学中经常需要将具体问题抽象为数学模型,通过对模型的研究和分析,得出问题的结论。
在解决函数题时,我们可以将实际问题抽象为函数关系,通过对函数的性质和变化规律的研究,来解决问题。
再次是推理思维。
数学中推理是非常重要的思维方式,通过已知条件和数学原理,推出问题的解答。
在解决代数方程题时,可以通过等式的性质和运算规则,推导出未知数的值。
另外是归纳思维。
在数学中,通过观察具体例子的特征和规律,总结出一般性的结论。
在解决数列题时,可以通过观察数列的前几个项的规律,来推导出数列的通项公式。
最后是创造思维。
数学是创造性的科学,解题过程中需要思考如何用已有的数学概念和方法来解决新问题。
通过构造合适的几何图形来解决几何难题,或者运用数学定理来证明一个问题。
分析法是指将问题分解为更小的部分,找到解题的路径和方法。
在解决应用题时,可以通过对问题的分析,将复杂的问题简化为更容易解决的几个部分,然后逐个解决。
逆向思维法是指通过逆向思考问题,从问题的答案出发找到解题的路径。
在解决数论题时,可以从要证明的结论出发,通过逆向推理,找到问题的前提条件和证明方法。
类比思维法是指将问题和已知的类似问题进行对比,找到解题的思路和方法。
在解决几何证明题时,可以找到与已知条件类似的定理或性质,从而借鉴其证明思路和方法。
迭代思维法是指通过不断迭代和尝试,逐步逼近问题的解答。
在解决数值计算题时,可以通过多次迭代计算,逐步逼近所求的解。
中考数学复习 数学思想方法专题 优质课件
例3 抛物线y=ax2+bx+c图象如图所示,则一次函数
y=-bx-4ac+b2与反比例函数y= a b c在同一坐标系内
的图象大致为( )
x
【解析】 从抛物线的图象可知:开口向上,∴a>0, 当x=1时,抛物线的图象在x轴的下方, ∴∴a由+ab++bc+<c0<,又0,由得x=反比2a例b >函0数及ya=>a0可bx 得c 的b图<象0,在第二、 四象限,由b<0即-b>0可知一次函数y=-bx-4ac+b2的图 象过第一、三象限,综上就应选D.
❖例4、已知△ABC内接于⊙ O,∠OBC=400 , 则∠A=__5_0_或_1_3_0度
A
500
●O
1000
400
C
B
1300
A
❖ 例3、在⊙O中弦AB平行于弦CD,AB=6,
CD=8,圆半径为5,则AB、CD之间的距离是 _____1_或_7_.
A C
E
B
∟
●O D
F
❖ 例题4. 相交两圆的半径分别是8cm和5cm,公共弦长为
专题考点一 整体思想
• 整体思想:整体是与局部相对应的,按常规不易求某一个 或多个未知量时,可打破常规,根据题目的结构特征,把 一组数或一个代数式看作一个整体,从而使问题得到解决。
2a-3b=13
a=8.3
【例1】(2020淮北模拟)若方程
的解是
•
3a+5b=30.9
b=1.2
•
2(x+2)-3(y-1)=13
∵b>0,x>0,∴2bx>0.
∴a 2 +b 2 <c 2.
专题考点三 数形结合思想
四川省中考数学复习难题突破专题五:实践与应用
难题突破专题五实践与应用现实生活中存在大量的有关数量关系的问题,需要从所研究的问题中捕捉数量关系,建立相应的数学模型——方程(组)、不等式(组)、函数表达式,再通过对数学模型的研究,使原问题获得解决,为此学生要过好三关:1.审题关.应用题出题形式多样,如利用对话或图表呈现相关信息.对于文字叙述冗长的问题,要从数学的角度去除无关信息,抓住有用信息,捕捉数量关系,为此学生要提高阅读能力和搜集信息的能力.2.转化关.在分析数量关系时要抓住反映数量关系的关键词语,如“共”“少”“是”“剩下”等,根据相等、不等关系分别列方程(组)、不等式(组),根据变量之间的对应关系列函数表达式,切忌混淆数量关系,建立错误的数学模型.3.解题关.加强解方程(组)、不等式(组)的训练,确保求解正确,充分考虑结果的多样性,使答案简明、准确.在空间与图形的综合题中,常遇到求未知几何量或探索存在性问题,可通过探索图形性质,寻找未知几何量和已知几何量之间的等量关系或不等关系,列出方程(组)或不等式(组),利用其有解、无解探索存在性问题,通过求解来求几何量.类型1 分析数量之间的相等或不等关系,建立方程(组)或不等式(组)1 某电器超市销售每台进价分别为200元、170元的A,B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A,B两种型号的电风扇的销售单价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.例题分层分析(1)设A,B两种型号电风扇的销售单价分别为x元,y元,根据3台A种型号、5台B种型号的电风扇收入1800元,4台A种型号、10台B种型号的电风扇收入3100元,可列得方程组____________,从而求出A,B两种型号的电风扇的销售单价.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多于5400元,可列不等式__________________,从而得到结果.(3)根据利润为1400元,可列出方程__________,求出a 的值,即可判断是否能实现目标.类型2 分析数量之间的对应关系,建立函数表达式2 某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y 与x 满足下列表达式:y =⎩⎪⎨⎪⎧54x (0≤x≤5),30x +120(5<x≤15).图Z5-1(1)李明第几天生产的粽子数量为420只?(2)如图Z5-1,设第x 天每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画.若李明第x 天创造的利润为w 元,求w 与x 之间的函数表达式,并求出第几天的利润最大,最大利润是多少元.(利润=出厂价-成本)(3)设(2)中第m 天的利润达到最大值,若要使第(m +1)天的利润比第m 天的利润至少多48元,则第(m +1)天每只粽子至少应提价多少元?例题分层分析(1)把y =420代入y =30x +120,解方程即可求得.(2)根据图象求得成本p 与x 之间的函数表达式为:当0≤x≤9时,p =________;当9<x≤15时,p =____________.根据利润等于出厂价减去成本列出等式,然后整理即可得到w 与x 的函数表达式为:当0≤x≤5时,w =________;当5<x≤9时,w =__________;当9<x≤15时,w =________.再根据一次函数的增减性和二次函数的增减性解答.(3)根据(2)得出m +1=________,根据利润等于出厂价减去成本得出提价a 与利润w 的关系式为w =__________,再根据题意列出不等式,求解即可.解题方法点析此类问题考查的是函数在实际生活中的应用,主要是利用函数的增减性求最值,难点在于读懂题目信息,列出相关的函数表达式.类型3 函数与方程、不等式之间的关系3 某农业观光园计划将一块面积为900 m2的园圃分成A,B,C三个区域,分别种植甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株,已知B区域面积是A的2倍,设A区域面积为x m2.(1)求该园圃栽种花卉总株数y关于x的函数表达式.(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?(3)已知三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元,请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价.例题分层分析(1)设A区域面积为x m2,则B区域面积是______m2,C区域面积是________m2,根据每平方米栽种甲3株或乙6株或丙12株,即可解答.(2)当y=6600时,即可得到方程________,解之可得.(3)设三种花卉的单价分别为a元、b元、c元,根据题意得方程组______________;整理得方程________,根据三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,可得b=________,c =________,a=________,即可解答.解题方法点析此类题目需根据题意构建函数模型,然后再与方程、不等式相互转化.专题训练1.某市为提倡节约用水,采取分段收费的方法.若每户每月用水不超过20 m3,每立方米收费2元;若用水超过20 m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水________m3.2.[2019·沈阳] 某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是________元时,才能在半月内获得最大利润.3.[2019·河池] 某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.(1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?4.[2019·衢州] 五一期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.图Z5-2根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.5.小慧和小聪沿图Z5-3①中景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点,上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义.(3)如果小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他几点钟遇见小慧?图Z5-3参考答案类型1 分析数量之间的相等或不等关系,建立方程(组)或不等式(组) 例1 【例题分层分析】(1)⎩⎪⎨⎪⎧3x +5y =1800,4x +10y =3100 (2)200a +170(30-a)≤5400(3)(250-200)a +(210-170)(30-a)=1400解:(1)设A ,B 两种型号的电风扇的销售单价分别为x 元,y 元,依题意,得⎩⎪⎨⎪⎧3x +5y =1800,4x +10y =3100,解得⎩⎪⎨⎪⎧x =250,y =210.答:A ,B 两种型号电风扇的销售单价分别为250元、210元. (2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a)台. 依题意,得200a +170(30-a)≤5400, 解得a≤10.答:A 种型号电风扇最多能采购10台.(3)依题意,得(250-200)a +(210-170)(30-a)=1400,解得a =20, ∵a ≤10,∴在(2)的条件下,超市不能实现利润为1400元的目标.类型2 分析数量之间的对应关系,建立函数表达式 例2 【例题分层分析】(2)4.1 0.1x +3.2 102.6x 57x +228 -3x 2+72x +336 (3)13 510(a +1.5)解:(1)设李明第n 天生产的粽子数量为420只, 由题意可知30n +120=420, 解得n =10.答:李明第10天生产的粽子数量为420只. (2)当0≤x≤9时,p =4.1; 当9<x≤15时,设p =kx +b ,把(9,4.1),(15,4.7)代入,得⎩⎪⎨⎪⎧9k +b =4.1,15k +b =4.7,解得⎩⎪⎨⎪⎧k =0.1,b =3.2,∴p =0.1x +3.2.①当0≤x≤5时,w =(6-4.1)×54x=102.6x , 当x =5时,w 最大=513;②当5<x≤9时,w =(6-4.1)×(30x+120)=57x +228, 当x =9时,w 最大=741;③当9<x≤15时,w =(6-0.1x -3.2)×(30x+120)=-3x 2+72x +336, ∵-3<0,∴当x =12时,w 最大=768.综上,当x =12时,w 有最大值,最大值为768. (3)由(2)可知m =12,m +1=13, 设第13天提价a 元, 由题意,得w 13=(6+a -p)·(30x+120)=510(a +1.5), ∴510(a +1.5)-768≥48, 解得a≥0.1.答:第13天每只粽子至少应提价0.1元. 类型3 函数与方程、不等式之间的关系 例3 【例题分层分析】 (1)2x 900-3x (2)-21x +10800=6600(3)⎩⎪⎨⎪⎧a +b +c =45,600a +2400b +3600c =84000 3b +5c =95 15 10 20解:(1)y =3x +12x +12(900-3x)=-21x +10800. (2)当y =6600时,-21x +10800=6600, 解得x =200,∴2x =400,900-3x =300.答:A ,B ,C 三个区域的面积分别是200 m 2,400 m 2,300 m 2.(3)设三种花卉的单价分别为a 元、b 元、c 元,在(2)的前提下,分别种植甲、乙、丙三种花卉的株数为600株,2400株,3600株,根据题意得⎩⎪⎨⎪⎧a +b +c =45,600a +2400b +3600c =84000,整理得3b +5c =95,∵三种花卉的单价(都是整数)之和为45元,且差价均不超过10元, ∴b =15,c =10,∴a =20, ∴种植面积最大的花卉总价为 2400×15=36000(元).答:种植面积最大的花卉总价为36000元. 专题训练1.28 [解析] 设该用户5月份实际用水x 立方米,则20×2+(x -20)×3=64,解得x =28. 2.353.解:(1)设排球单价为x 元,足球单价为(x +30)元, 由500x =800x +30,解得x =50, 经检验,x =50是原方程的解, ∴x +30=80.答:排球单价为50元,足球单价为80元. (2)设买排球a 个,足球b 个, 则50a +80b =1200,即5a +8b =120, ∴a =120-8b 5.∵a ,b 为自然数,∴b =0时,a =24, b =5时,a =16, b =10时,a =8, b =15时,a =0.答:共有4种方案:0个足球和24个排球,5个足球和16个排球,10个足球和8个排球,15个足球和0个排球.4.解:(1)由题意可知y 1=k 1x +80,且图象过点(1,95),则有95=k 1+80,∴k 1=15, ∴y 1=15x +80(x≥0), 由题意知y 2=30x(x≥0). (2)当y 1=y 2时,解得x =163;当y 1>y 2时,解得x <163;当y 1<y 2时,解得x >163.∴若租车时间为163小时,则选择甲、乙公司一样合算;若租车时间小于163小时,则选择乙公司合算;若租车时间大于163小时,则选择甲公司合算.5.解:(1)小聪从飞瀑到宾馆所用的时间为50÷20=2.5(h) , ∵小聪上午10:00到达宾馆,∴小聪从飞瀑出发的时刻为10-2.5=7.5, ∴小聪早上7:30从飞瀑出发.(2)设直线GH 的函数表达式为s =kt +b , 由于点G(12,50),点H (3, 0),则有⎩⎪⎨⎪⎧12k +b =50,3k +b =0, 解得⎩⎪⎨⎪⎧k =-20,b =60,∴直线GH 的函数表达式为s =-20t +60, 又∵点B 的纵坐标为30,∴当s =30时,令-20t +60=30,解得t =32,∴点B(32,30).点B 的实际意义是:上午8:30小慧与小聪在离宾馆30km (即景点草甸) 处第一次相遇. (3)设直线DF 的函数表达式为s =k 1t +b 1,该直线过点D 和 F(5,0), ∵小慧从宾馆到飞瀑所用时间为50÷30=53(h),∴小慧从飞瀑准备返回时t =5-53=103,即D(103,50).则有⎩⎪⎨⎪⎧103k 1+b 1=50,5k 1+b 1=0, 解得⎩⎪⎨⎪⎧k 1=-30,b 1=150, ∴直线DF 的函数表达式为s =-30t +150, ∵小聪上午10:00到达宾馆后立即以30km/h 的速度返回飞瀑,所需时间为50÷30=53.HM 为小聪返回时路程s(km)关于时间t(h)的函数关系,∴点M 的横坐标为3+53=143,点M(143,50),设直线HM 的函数表达式为s =k 2t +b 2,该直线过点H(3,0) 和点M(143,50), 则有⎩⎪⎨⎪⎧143k 2+b 2=50,3k 2+b 2=0,解得⎩⎪⎨⎪⎧k 2=30,b 2=-90,∴直线HM 的函数表达式为s =30t -90,由⎩⎪⎨⎪⎧s =30t -90,s =-30t +150,解得⎩⎪⎨⎪⎧s =30,t =4,故返回途中小聪11:00遇见小慧.2019-2020学年数学中考模拟试卷一、选择题1.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )A.2B.3C.4D.52.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有36枚图钉可供选用,则最多可以展示绘画作品( )A.22张B.23张C.24张D.25张3.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高4.已知函数:①y =x ;②y =1x -(x <0);③y =﹣x+3;④y =x 2+x (x≥0),其中,y 随x 的增大而增大的函数有( )A .1个B .2个C .3个D .4个5.如图,在矩形ABCD 中,120AOB ∠=︒,3AD =,则AC =( )A .6B .C .5D .6.已知x ﹣1x =6,则x 2+21x 的值为( ) A .34 B .36 C .37 D .387.如图,△ABC 内接于⊙O ,若∠OAB =35°,则∠C 的度数是( )A .35°B .45°C .65°D .55°8.下列计算正确的是( )A .(a 3)3=a 6B .a 6÷a 2=a 3C .a 5+a 3=a 8D .a•a 3=a 49.如图,△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC 的大小是( )A.30°B.45°C.60°D.70°10.下列命题正确的是( )A .对角线互相垂直平分的四边形是正方形B .两边及其一角相等的两个三角形全等C 3D .数据4,0,4,6,6的方差是4.811.下列计算正确的是( )A .3a ﹣a =3B .(a 2)3=a 6C .3a+2a =2a 2D .a 2﹣a 2=a 412的正方形ABCD 中,点E 是边AD 上的一点,连结BE ,将△ABE 绕着点B 顺时针旋转一定的角度,使得点A 落在线段BE 上,记为点F ,此时点E 恰好落在边CD 上记为点G ,则AE 的长为( )A B C D .1二、填空题13.已知:如图,△ABC 中,过AB 的中点F 作DE ⊥BC ,垂足为E ,交CA 的延长线于点D .若EF =3,BE =4,∠C =45°,则DF :FE 的值为_____.14.如果全国每人每天节约一杯水,那么全国每天节水约32500m 3, 用科学记数法表示:__________15.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S 甲2=7.5,S 乙2=1.5,S 丙2=3.1,那么该月份白菜价格最稳定的是_____市场. 16.如图,已知点A 在反比例函数(0)k y x x=> 的图象上,作Rt ABC ,边BC 在x 轴上,点D 为斜边AC 的中点,连结DB 并延长交y 轴于点E ,若BCE 的面积为6,则k=___。
乐冲刺分享中考数学常用的17种思想方法
中考数学常用的17种思想方法1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
又如三角形可以按边分,也可以按角分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
中考数学复习:常用的数学思想方法
2019年中考数学复习:常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。
这种思维过程通常称为“执果寻因”8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”9、演绎法:由一般到特殊的推理方法。
中考数学知识点重难点突破与训练5---代数式求值方法梳理
22t
,求 4x 2z
3y 的值 5t
作业12.
若
x 3
=
y 4
=
z 5
,且 3x
2 y + z = 18 ,求 z + 5y
3z 的值;
作业13. 如果 x + y = 2z ,且 x y ,则 x x y + y y z =
题型四 常值代换法求值
常值代换法是指将待求的代数式中的常数用已知条件中的代数式来代换,然后通过计算
的值为
1 4
,则
4y2
1 + 6y
的值为 1
.
A1
B.-1
C.- 1 7
D1 5
解析
由
2y2
2 + 3y
+
7
=
1 4
,取倒数得,
2y2
+ 3y 2
+
7
=
4
,即
2y2
+
3y
=1.
( ) 所以 4 y2 + 6 y 1 = 2 2 y2 + 3y
1 = 2×1
1
=
1 ,即
4
y2
1 +6
y
1 =1
变式6
已知
因此,求解等比条件求值问题,若用等比性质来解,需进行复杂的变形,这时选用等比设值
法来解比较好 另外,对等比条件的证明题,运用等比设值法往往可获得巧解
变式8
设
a+2b-5c=0,2a-3b+4c=0(c≠0),求
3a 2 6a 2
+
2b 2 5b 2
+ +
中考数学题思想方法总结
中考数学题思想方法总结中考数学题的思想方法主要包括以下几个方面:1.分析题意:在做中考数学题时,首先要仔细阅读题目,理解题意。
分析问题的背景、条件和要求,搞清楚题目要求解决的具体问题是什么,明确解题的目标。
2.寻找解题思路:在明确题目要求后,需要根据题目的特点和所学的数学知识,寻找解题的思路。
可以从已有的数学知识中寻找相关的定理或方法,也可以根据题目中提供的条件进行分析,将问题转化为已知条件的数学模型,从而引导思路。
3.合理利用已知条件:中考数学题目中往往会提供一些已知条件,这些条件是解题的关键。
需要灵活运用这些条件,将问题简化或转化为更易解决的形式。
可以使用图形、表格等方式来清晰地表示已知条件,以便进一步推导和解题。
4.运用合适的数学方法:在寻找解题思路的过程中,需要根据题目的要求和已知条件选择合适的数学方法。
常见的数学方法包括代数方法、几何方法、比例方法、方程求解方法等。
根据题目的特点选择合适的方法可以简化解题过程,提高解题效率。
5.进行逻辑推理和计算:在确定解题思路和方法后,进行逻辑推理和计算。
通过合理的推理和计算,将已知条件和要求之间的联系联系起来,逐步推导出解答。
需要注意计算的准确性和步骤的清晰性,及时检查计算过程和结果是否正确。
6.整理和复核答案:完成解题后,要逐步整理解答过程,以便他人理解和复核。
检验所得的结果和解答是否符合题目要求,是否合理。
如果有必要,还可以通过多个角度或方法核对答案,以确保解答的正确性。
总结:中考数学题的思想方法主要包括分析题意、寻找解题思路、合理利用已知条件、运用合适的数学方法、进行逻辑推理和计算,以及整理和复核答案。
通过灵活运用这些方法,可以帮助学生提高解题的能力和水平,更好地应对中考数学题。
数学思想方法有哪些
数学思想方法有哪些
1. 归纳法: 通过对少量特殊情况的验证,从而得到一般情况的结论。
2. 逆向思维: 从已知结果出发,逆向推导出问题的解决方法。
3. 等式变形: 使用代数运算法则,将方程或不等式中的项进行重组和移项,从而简化问题。
4. 反证法: 假设问题的反面而推导出矛盾的结论,从而得出原命题的正确性。
5. 分而治之: 将复杂的问题分解为若干个相对简单的子问题,然后逐个解决这些子问题。
6. 枚举法: 通过穷举所有可能的情况,找出满足条件的解。
7. 几何方法: 利用几何图形的性质和关系,进行推导和证明。
8. 求反函数: 通过求解原函数的反函数,得到问题的解。
9. 近似方法: 将复杂的问题简化为近似的计算方式,得到问题的近似解。
10. 统计分析: 利用统计学的方法对问题进行分析和推断,并得出相应的结论。
【中考数学专题突破复习】《05第二部分专题五圆》(精练册)PPT课件
∴∠DAC=∠ACO,
∵AO=CO,∴∠CAO=∠ACO,
∴∠DAC=∠CAO,∴AC平分∠DAE;
返回类型清单
返回类型清单
专题五 圆— 静态圆型问题
(2)若CD=2 ,AD=6.
①求半圆的直径AB;
解:如图,连接BC,
∵CD=2
,AD=6,∴tan∠DAC= = = ,
= .
如图,过点C作CM⊥AE,垂足为M,
在Rt△ACM中,AC=4 ,∠CAM=30°,
∴CM=2
,∴S△AOC= ×4×2
∴S阴影=S扇形COB+S△AOC= +4
=4 ,
.
专题五 圆— 静态圆型问题
返回类型清单
5.(2022·石家庄四十一中模拟)如图,AB是☉O的直径,点D,E在☉O上,点C在
∴∠ADB=∠OEC.∵AB是☉O的直径,∴∠ADB=90°.
∴∠OEC=90°.又∵OE为☉O的半径,∴CE是☉O的切线;
返回类型清单
专题五 圆— 静态圆型问题
(2)判断△ADF的形状并证明;
解:△ADF是等腰三角形,证明:
设∠BDE=α,∠ADF=90°-α,∠A=2α,
在△ADF中,∠DFA=180°-2α-(90°-α)=90°-α,
A.4
B.-5或3
B.C.2
D.-1-2 或-1+2
1
2
3
4
5
6
7
专题五 圆— 静态圆型问题
返回类型清单
2.(2022·唐山丰润二模)如图,四边形ABCD内接于☉O,点P为边AD上任意一
数学思想方法(整体思想、转化思想、分类讨论思想
数学思想方法(整体思想、转化思想、分类讨论思想专题知识突破五数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
例1 (2014•德州)如图,正三角形ABC的边长为2,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是.思路分析:观察发现,阴影部分的面积等于正三角形ABC的面积减去三个圆心角是60°,半径是2的扇形的面积..考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
中考数学专题复习:数学思想方法
专题01 数学思想方法【要点提炼】一、【分类讨论的思想方法】有些问题包含的对象比较复杂,很难用一种情况概括它的全貌,这时往往按照一种标准把问题分成几类,分别进行讨论,再综合起来进行说明,这种思想方法称为分类讨论思想。
二、【数形结合思想】数形结合思想就是数学问题的题设与结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,使问题得到解决。
在进行二次根式的化简时,可以利用数轴确定字母的取值范围,然后对式子进行化简。
三、【整体思想】整体思想是一种重要的思想方法,它把研究对象的一部分(或全部)视为整体,在解题时,则把注意力和着眼点放在问题整体结构上,从而触及问题的本质,避开不必要的计算,使问题得以简化。
四、【转化的思想方法】如果a.b互为相反数,那么a+b=O,a= -b;如果c,d互为倒数,那么cd=l,c=1/d;如果|x|=a(a >0),那么x=a或-a.【专题训练】一、单选题(共10小题)1.将一元二次方程x2+4x+2=0配方后可得到方程()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=6 D.(x+2)2=6【答案】B【解答】解:x2+4x+2=0,x2+4x=﹣2,x2+4x+4=2,(x+2)2=2.故选:B.【知识点】解一元二次方程-配方法2.若对所有的实数x,x2+ax+a恒为正,则()A.a<0 B.a>4 C.a<0或a>4 D.0<a<4【答案】D【解答】解:令y=x2+ax+a,这个函数开口向上,式子的值恒大于0的条件是:△=a2﹣4a<0,解得:0<a<4.故选:D.【知识点】配方法的应用3.已知a,b,c为有理数,当a+b+c=0,abc<0,求的值为()A.1或﹣3 B.1,﹣1或﹣3 C.﹣1或3 D.1,﹣1,3或﹣3【答案】A【解答】解:∵a+b+c=0,∴b+c=﹣a、a+c=﹣b、a+b=﹣c,∵abc<0,∴a、b、c三数中有2个正数、1个负数,则原式=+﹣=﹣1﹣1﹣1=﹣3或1﹣1+1=1或﹣1+1+1=1.故选:A.【知识点】绝对值、代数式求值4.若a﹣b=3,ab=1,则a3b﹣2a2b2+ab3的值为()A.3 B.4 C.9 D.12【答案】C【解答】解:a3b﹣2a3b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2将a﹣b=3,ab=1代入,原式=1×32=9,故选:C.【知识点】整式的混合运算—化简求值5.实数a、b在数轴上的位置如图所示,化简的结果是()A.﹣2 B.0 C.﹣2a D.2b【答案】A【解答】解:由数轴可知﹣2<a<﹣1,1<b<2,∴a+1<0,b﹣1>0,a﹣b<0,∴=|a+1|+|b﹣1|﹣|a﹣b|=﹣(a+1)+(b﹣1)+(a﹣b)=﹣a﹣1+b﹣1+a﹣b=﹣2故选:A.【知识点】二次根式的性质与化简、实数与数轴6.若一个正比例函数的图象经过点A(1,﹣2),B(m,4)两点,则m的值为()A.2 B.﹣2 C.8 D.﹣8【答案】B【解答】解:设正比例函数的解析式为y=kx(k≠0),将A(1,﹣2)代入y=kx,得:﹣2=k,∴正比例函数解析式为y=﹣2x.当y=4时,﹣2m=4,解得:m=﹣2.故选:B.【知识点】待定系数法求正比例函数解析式7.下列分式方程无解的是()A.B.C.D.【答案】B【解答】解:∵方程A去分母,得2x=3(x﹣3),解得x=9,当x=9时,x(x﹣3)≠0,所以原方程的解为x=9;方程B去分母,得x2﹣1=2x﹣2,解得x=1,当x=1时,(x﹣1)(x2﹣1)=0,所以原方程无解;方程C去分母,得x+3﹣4x=0,解得x=1,当x=1时,2x(x+3)≠0,所以原方程的解为x=1;方程D去分母,得3x=2x+3x+3,解得x=﹣,当x=﹣时,3x+3≠0,所以原方程的解为x=﹣.故选:B.【知识点】分式方程的解8.当时,x+y的值为()A.2 B.5 C.D.【答案】D【解答】解:∵+=﹣,∴两边平方得出x+y+2=8﹣2,∵=﹣,∴两边同乘2,得2=2﹣2,∴x+y+2﹣2=8﹣2,则x+y=8﹣4+2.故选:D.【知识点】二次根式的化简求值9.已知变量y与x的关系满足下表,那么能反映y与x之间的函数关系的解析式是()x…﹣2 ﹣10 1 2 …y…4 3 2 1 0…A.y=﹣2x B.y=x+4 C.y=﹣x+2 D.y=2x﹣2【答案】C【解答】解:设y与x之间的函数关系的解析式是y=kx+b(k≠0),则,解得,所以,y与x之间的函数关系的解析式是y=﹣x+2.故选:C.【知识点】待定系数法求一次函数解析式10.如图,在平面直角坐标系xOy中,已知点A(﹣9,7),B(﹣3,0),点P在x轴的正半轴上运动,将线段AB沿直线AP翻折到AC,当点C恰好落在y轴上时,直线AP对应的函数表达式可以是()A.y=x+8 B.y=﹣C.y=﹣x+1 D.y=﹣x+4【答案】B【解答】解:连接BC,交P A于Q,由题意可知,P A垂直平分BC,设直线P A的解析式为y=kx+b,把A(﹣9,7)代入得,7=﹣9k+b,∴b=9k+7,∴直线P A的解析式为y=kx+9k+7,设直线BC的解析式为y=﹣x+n,把B(﹣3,0)代入得0=+n,∴n=﹣,∴C(0,﹣),∴Q(﹣,﹣),∵Q在直线P A上,∴﹣=﹣k+9k+7,整理得,15k2+14k+3=0,解得k1=﹣,k2=﹣,∴直线P A的解析式为y=﹣x+,或y=﹣x+4,故选:B.【知识点】待定系数法求一次函数解析式二、填空题(共8小题)11.用配方法解方程x2﹣2x﹣6=0,原方程可化为﹣.【答案】(x-1)2=7【解答】解:方程变形得:x2﹣2x=6,配方得:x2﹣2x+1=7,即(x﹣1)2=7.故答案为:(x﹣1)2=7.【知识点】解一元二次方程-配方法12.如图,字母b的取值如图所示,化简:|b﹣1|+=.【答案】4【解答】解:由数轴得2<b<5,所以原式=|b﹣1|+=|b﹣1|+|b﹣5|=b﹣1+5﹣b=4.故答案为4.【知识点】实数与数轴、二次根式的性质与化简13.若关于x的方程﹣1=有无解,则m=﹣﹣.【解答】解:去分母得:2mx+x2﹣x2+3x=2x﹣6,整理得:(2m+1)x=﹣6,当2m+1=0,即m=﹣时,整式方程无解,即分式方程无解;当2m+1≠0,即m≠﹣时,x=﹣,由分式方程无解,得到x=0或x=3,把x=0代入整式方程无解;把x=3代入整式方程得:m=﹣,综上,m=﹣或﹣,故答案为:﹣或﹣【知识点】分式方程的解14.如图,点P、A、B、C在同一平面内,点A、B、C在同一直线上,且PC⊥AC,在点A处测得点P在北偏东60°方向上,在点B处测得点P在北偏东30°方向上,若AP=12千米,则A,B两点的距离为千米.【解答】解:∵PC⊥AC,在点A处测得点P在北偏东60°方向上,∴∠PCA=90°,∠P AC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在点B处测得点P在北偏东30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴BC===2千米,∴AB=AC﹣BC=6﹣2=4(千米),故答案为:4千米.【知识点】解直角三角形的应用-方向角问题15.如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=3,则BD的长度为.【解答】解:∵∠C=90°,∠ADC=60°,∴∠DAC=30°,∴CD=AD,∵∠B=30°,∠ADC=60°,∴∠BAD=30°,∴BD=AD,∴BD=2CD,∵BC=3,∴CD+2CD=3,∴CD=,∴DB=2,故答案为:2.【知识点】勾股定理、含30度角的直角三角形16.在平面直角坐标系xOy中,一次函数y=k1x+b(k1,b均为常数)与正比例函数y=k2x(k2为常数)的图象如图所示,则关于x的不等式k2x<k1x+b的解集为.【答案】x<3【解答】解:两条直线的交点坐标为(3,﹣1),且当x<3时,直线y=k2x在直线y=k1x+b的下方,故不等式k2x<k1x+b的解集为x<3.故答案为x<3.【知识点】一次函数与一元一次不等式、一次函数的图象17.如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.若劣弧的长为,则图中阴影部分的面积为.【解答】解:连接OA,如图,∵AD=AB,∴∠B=∠D=30°,∵OA=OB,∴∠OAB=∠B=30°,∴∠AOC=2∠B=60°,∵劣弧的长为,∴=,解得OC=2,∵∠D=30°,∠DOA=60°,∴∠OAD=90°,∴AD=OA=2,∴图中阴影部分的面积=S△AOD﹣S扇形AOC=×2×2﹣=2﹣π.故答案为2﹣π.【知识点】弧长的计算、扇形面积的计算、圆周角定理18.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为直线x=﹣1.则该抛物线的解析式为﹣﹣.【答案】y=-x2-2x+3【解答】解:∵抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),对称轴为直线x=﹣1,∴A点坐标为(﹣3,0),设抛物线解析式为y=a(x+3)(x﹣1),把C(0,3)代入得3=a×3×(﹣1),解得a=﹣1,∴抛物线解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3.故答案为y=﹣x2﹣2x+3.【知识点】抛物线与x轴的交点、待定系数法求二次函数解析式、二次函数的性质三、解答题(共8小题)19.解不等式组:并把解集在数轴上表示出来.【解答】解;解不等式x+1<2,得:x<1,解不等式2(1﹣x)≤6,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,将不等式组的解集表示在数轴上如下:【知识点】在数轴上表示不等式的解集、解一元一次不等式组20.(1)解方程:.(2)关于x的分式方程无解,求a的值.【解答】解:(1)方程整理得:+=+,即=,当2x+8=0,即x=﹣4时,方程成立;当2x+8≠0,即x≠﹣4时,方程无解,经检验x=﹣4是分式方程的解;(2)去分母得:x2﹣ax﹣3x+3=x2﹣x,即﹣ax﹣3x+3=﹣x,由分式方程无解,得到x=0或x﹣1=0,解得:x=0或x=1,把x=0代入整式方程得:无解;把x=1代入整式方程得:a=0,则a的值为1.【知识点】分式方程的解、解分式方程21.某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙(墙长25m)另外三边用木栏围成,木栏长40m.(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.(2)养鸡场面积能达到最大吗?如果能,请你用配方法求出;如果不能,请说明理由.【解答】解:(1)设鸡场垂直于墙的一边AB的长为x 米,则x(40﹣2x)=168,整理得:x2﹣20x+84=0,解得:x1=14,x2=6,∵墙长25m,∴0≤BC≤25,即0≤40﹣2x≤25,解得:7.5≤x≤20,∴x=14.答:鸡场垂直于墙的一边AB的长为14米.(2)围成养鸡场面积为S,则S=x(40﹣2x)=﹣2x2+40x=﹣2(x2﹣20x)=﹣2(x2﹣20x+102)+2×102=﹣2(x﹣10)2+200,∵﹣2(x﹣10)2≤0,∴当x=10时,S有最大值200.即鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值200米2.【知识点】一元二次方程的应用、二次函数的应用、配方法的应用22.如图,已知四边形ABCD是平行四边形,△AOB是等边三角形.(1)求证:四边形ABCD是矩形.(2)若AB=5cm,求四边形ABCD的面积.【解答】解:(1)平行四边形ABCD是矩形.理由如下:∵四边形ABCD是平行四边形(已知),∴AO=CO,BO=DO(平行四边形的对角线互相平分),∵△AOB是等边三角形(已知),∴OA=OB=OC=OD(等量代换),∴AC=BD(等量代换),∴平行四边形ABCD是矩形(对角线相等的平行四边形是矩形);(2)因为AB=5,在Rt△ABC中,由题意可知,AC=10,则BC==5,所以平行四边形ABCD的面积S=5×5=25(cm2).【知识点】等边三角形的性质、矩形的判定与性质、平行四边形的性质23.如图,等腰△ABC中,AC=BC=8,点D、E分别在边AB、BC上(不与顶点重合),且∠CDE=∠A=∠B,CE=5,设AD=x,BD=y.(1)求y关于x的函数关系式(不用写x的取值范围);(2)当AB=10时,求AD的值.【解答】解:(1)∵CB=8,CE=5,∴BE=CB﹣CE=3,∵∠ADB是△ADC的一个外角,∴∠BAE+∠CDE=∠A+∠ACD,∵∠CDE=∠A,∴∠ACD=∠BDE,∵∠A=∠B,∴△ACD∽△BDE,∴=,即=,整理得,y=;(2)当AB=10,即x+y=10时,10﹣x=,整理得,x2﹣10x+24=0,解得,x1=4,x2=6,则AD的值为4或6.【知识点】等腰三角形的性质、相似三角形的判定与性质24.四边形ABCD内接于⊙O,AC为其中一条对角线.(Ⅰ)如图①,若∠BAD=70°,BC=CD.求∠CAD的大小;(Ⅱ)如图②,若AD经过圆心O,连接OC,AB=BC,OC∥AB,求∠ACO的大小.【解答】解:(1)∵BC=CD,∴=,∴∠CAD=∠CAB=∠BAD=35°;(2)连接BD,∵AB=BC,∴∠BAC=∠BCA,∵OC∥AB,∴∠BAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠BAC=∠BCA=∠OAC,由圆周角定理得,∠BCA=∠BDA,∴∠BAC=∠BDA=∠OAC,∵AD是⊙O的直径,∴∠ABD=90°,∴∠ACO=30°.【知识点】圆心角、弧、弦的关系、圆内接四边形的性质、圆周角定理25.如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=.(1)求OD的长;(2)计算阴影部分的面积.【解答】解:(1)∵AB⊥OD,∴∠OCB=90°,AC=BC=AB=,∵点C为OD的中点,∴OC=OB,∵cos∠COB==,∴∠COB=60°,∴OC=BC=×=1,∴OB=2OC=2,∴OD=OB=2;(2)阴影部分的面积=S扇形BOD﹣S△COB=﹣××1=π﹣.【知识点】勾股定理、垂径定理、扇形面积的计算26.如图,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的顶点为P.已知B(1,0),C(0,﹣3).请解答下列问题:(1)求抛物线的解析式,并直接写出点P的坐标;(2)抛物线的对称轴与x轴交于点E,连接AP,AP的垂直平分线交直线PE于点M,则线段EM 的长为.注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,顶点坐标是(﹣,).【解答】解:(1)∵抛物线经过点B(1,0),C(0,﹣3),代入得:,解得:,∴抛物线表达式为:y=x2+2x﹣3=(x+1)2﹣4,∴顶点P的坐标为(﹣1,﹣4);(2)∵直线PE为抛物线对称轴,∴E(﹣1,0),∵B(1,0),∴A(﹣3,0),∴AP==,∵MN垂直平分AP,∴AN=NP=,∠PNM=90°,∵∠APE=∠MPN,∴△PMN∽△P AE,∴,即,解得:PM=,∴EM=PE﹣PM=4﹣=,故答案为:.【知识点】二次函数图象与系数的关系、线段垂直平分线的性质、待定系数法求二次函数解析式、抛物线与x轴的交点、二次函数图象上点的坐标特征。
中考数学一轮复习第二部分热点专题突破专题5化“斜”为“直”课件4.ppt
A.43
B.54
C.65
D.76
1 2 3 4 5 6 7 8 9 10 11
【解析】如图,作FN∥AD,交AB于点N,交B∥CD,
∵FN∥AD,∴四边形ANFD是平行四边形,
∵∠D=90°,∴四边形ANFD是矩形,
∵AE=3DE,设DE=a,
则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,
【解析】我们可以认为这里的正方形ABCD是“斜放”在一组平行线中,正因为“斜放”才
给我们带来难度,我们通过“过点A作AF⊥l3分别交l2,l3于点E,F,过点C作CH⊥l2分别交 l2,l3于点H,G”即可实现“化直”的目的.
类型1
类型2
类型3
【答案】 过点A作AF⊥l3分别交l2,l3于点E,F,过点C作CH⊥l2分别交l2,l3于点H,G.
( 1 )求b,c的值; ( 2 )点P为二次函数y=-x2+bx+c的图象在第一象限部分上的一动点,其横坐标为 x( 0<x<3 ),写出四边形OAPB的面积S关于点P的横坐标x的函数关系式,并求S的最大 值. 【解析】( 1 )用待定系数法求解;( 2 )过点P作PC⊥x轴于点C,过点P作PD⊥y轴于点 D,四边形AOBP转化为矩形CPDO和Rt△BDP,Rt△APC.用关于x的式子表示出这三个 图形的面积,即可求出四边形OAPB的面积S关于x的函数关系式,从而求出S的最大值.
类型3
【名师点拨】 解答本题的关键是过点A作AF⊥BC于点F,从而把关于斜△ABE的问题 转化为两个直角三角形( Rt△ABF和Rt△AEF )的问题.其实这种通过作垂线或平行线 把斜三角形化成直角三角形的方法在解直角三角形问题中极为常见,注意学习体会.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015中考数学专题知识突破专题五数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
例1 若a-2b=3,则2a-4b-5= .1.已知实数a,b满足a+b=2,a-b=5,则(a+b)3•(a-b)3的值是.2.(2014•威海)已知x2-2=y,则x(x-3y)+y(3x-1)-2的值是()A.-2 B.0 C.2 D.4考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
例2 如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).变式训练1.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连结DE,则DE的最小值为。
2. (2014•潍坊)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.考点三:分类讨论思想在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。
分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏.例3 某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?变式训练1.(2014•潍坊)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.2.(2014•德州)问题背景:如图1:在四边形ABC中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.四、达标检测1.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()A.πB.4πC.π或4πD.2π或4π2.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有▱ADCE中,DE最小的值是()A.2 B.3 C.4 D.53.若a2−b2=16,a−b=13,则a+b的值为.4.CD是⊙O的一条弦,作直径AB,使AB⊥CD,垂足为E,若AB=10,CD=8,则BE的长是A.8 B.2 C.2或8 D.3或75.如图,在Rt△AOB中,OA=OB=32,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为.6.某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数如图①所示,小李种植水果所得报酬z(元)与种植面积n (亩)之间函数关系如图②所示.(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是元,小张应得的工资总额是元,此时,小李种植水果亩,小李应得的报酬是元;(2)当10<n≤30时,求z与n之间的函数关系式;(3)设农庄支付给小张和小李的总费用为w(元),当10<m≤30时,求w与m之间的函数关系式.五、拓展延伸1.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为( ) A .25 cmB .45cmC .25 cm 或45cmD .2cm 或43cm2.等腰三角形的一个角是80°,则它顶角的度数是( ) A .80° B .80°或20° C .80°或50° D .20° 3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A .12 B .15 C .12或15 D .18 4.(2013•荆州如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( ) A .2π B .3πC .4πD .π 5.如图,在等腰梯形ABCD 中,AD=2,∠BCD=60°,对角线AC 平分∠BCD ,E ,F 分别是底边AD ,BC 的中点,连接EF .点P 是EF 上的任意一点,连接PA ,PB ,则PA+PB 的最小值为 .6.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是 .7.在平面直角坐标系中,已知点A (-5,0),B (5,0),点C 在坐标轴上,且AC+BC=6,写出满足条件的所有点C 的坐标 .如图,在平面直角坐标系中,直线l 经过原点O ,且与x 轴正半轴的夹角为30°,点M 在x 轴上,⊙M 半径为2,⊙M 与直线l 相交于A ,B 两点,若△ABM 为等腰直角三角形,则点M 的坐标为 9.如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为10.如图,已知直线y=x+4与两坐轴分别交于A 、B 两点,⊙C 的圆心坐标为 (2,O ),半径为2,若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值和最大值分别是 11.已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM+PN 的最小值= .12.如图,正方形ABCD 的对角线相交于点O ,正三角形OEF 绕点O 旋转.在旋转过程中,当AE=BF 时,∠AOE 的大小 是三、解答题1.已知抛物线y 1=ax 2+bx+c (a ≠0)与x 轴相交于点A ,B (点A ,B 在原点O 两侧),与y 轴相交于点C ,且点A ,C 在一次函数y 2=34x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x 的取值范围.3. (2014•宿迁)如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.4. 如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点(P 与点A,O不重合),AP的延长线交半圆O于点D,其中OA=4.(1)判断线段AP与PD的大小关系,并说明理由;(2)连接OD,当OD与半圆C相切时,求AP的长;(3)过点D作DE⊥AB,垂足为E(如图②),设AP=x,OE=y,求y与x之间的函数关系式,并写出x的取值范围.5.(2014•北京)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足-M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.是有界函数,求其边界值;(2)若函数y=-x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数2y x(-1≤x≤m,m≥0)的图象向下平移m个单位,得到的数学思想方法(一)部分题参考答案=140元,小张应得的工资总额是:140×20=2800元,此时,小李种植水果:30-20=10亩,小李应得的报酬是1500元;故答案为:140;2800;10;1500;(2)当10<n≤30时,设z=kn+b(k≠0),∵函数图象经过点(10,1500),(30,3900),∴101500 303900k bk b+=⎧⎨+=⎩,解得120300 kb=⎧⎨=⎩,所以,z=120n+300(10<n≤30);(3)当10<m≤30时,设y=km+b,∵函数图象经过点(10,160),(30,120),∴10160 30120k bk b+=⎧⎨+=⎩,解得-2180 kb=⎧⎨=⎩,∴y=-2m+180,∵m+n=30,∴n=30-m,∴①当10<m≤20时,10<n≤20,w=m(-2m+180)+120n+300,=m(-2m+180)+120(30-m)+300,=-2m2+60m+3900,②当20<m≤30时,0<n≤10,w=m(-2m+180)+150n,=m(-2m+180)+150(30-m),=-2m2+30m+4500,所以,w与m之间的函数关系式为w=-22603900(1020) -22304500(2030)m m mm m m++<≤⎧⎨++<≤⎩.解:根据OC长为8可得一次函数中的n的值为8或-8.分类讨论:①n=8时,易得A(-6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(-6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x=6102-+=2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=-8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(-10,0),而A、B关于对称轴对称,∴对称轴直线x=6102-+=-2,要使y1随着x的增大而减小,且a>0,∴x<-2.解:(1)AP=PD.理由如下:如图①,连接OP.∵OA是半圆C的直径,∴∠APO=90°,即OP⊥AD.又∵OA=OD,∴AP=PD;(2)如图①,连接PC、OD.∵OD是半圆C的切线,∴∠AOD=90°.由(1)知,AP=PD.又∵AC=OC,∴PC∥OD,∴∠ACP=∠AOD=90°,∴AP的长=902180π⨯=π;y=x+1(-4≤x ≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=-x+1的图象是y 随x 的增大而减小,∴当x=a 时,y=-a+1=2,则a=-1当x=b 时,y=-b+1.则212 1b b aa -≤-+≤⎧⎪⎨⎪-⎩>= ∴-1<b ≤3;(3)若m >1,函数向下平移m 个单位后,x=0时,函数值小于-1,此时函数的边界t ≥1,与题意不符,故m ≤1.当x=-1时,y=1 即过点(-1,1)当x=0时,0y =最小 ,即过点(0,0),都向下平移m 个单位,则(-1,1-m )、(0,-m )。