倾斜角与斜率 .ppt
合集下载
倾斜角与斜率ppt课件
![倾斜角与斜率ppt课件](https://img.taocdn.com/s3/m/eaebb5b6900ef12d2af90242a8956bec0975a5e3.png)
2.注意两个公式的适用条件,注意考虑直线垂直于x轴这种 情形,善于运用分类讨论、数形结合思想来思考和解决 问题.
新知探究
题型探究
感悟提升
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
25
新知探究
题型探究
感悟提升
解析 有两种情况: ①如图(1),直线l向上方向与x轴正向所成的角为60°,即直 线l的倾斜角为60°. ②如图(2),直线l向上方向与x轴正向所成的角为120°,即直 线l的倾斜角为120°. 答案 60°或120° [规律方法] (1)由已知角推断倾斜角,常画出图形,借助图 形来解决,注意画图时要考虑出现的各种情况. (2)斜率或倾斜角之间的大小比较要根据k=tan α在0°≤α< 90°及90°<α<180°的增减性来判断.
又 PB 的倾斜角是 45°,PA 的倾斜角是 135°,
所以 α 的取值范围是 45°≤α≤135°.
新知探究
题型探究
感悟提升
类型三 斜率公式的应用
【例 3】 已知实数 x,y 满足 y=-2x+8,且 2≤x≤3,求xy的最 大值和最小值.
[思路探索] 化xy=xy--00利用斜率公式数形结合求解.
答案 D
新知探究
题型探究
感悟提升
5.已知点A(1,2),在坐标轴上求一点P,使直线PA的倾斜
角为60°.
解 ①当点 P 在 x 轴上时,设点 P(a,0),
∵A(1,2),∴k=0a- -21=a--21.
又∵直线 PA 的倾斜角为 60°, ∴tan 60°=a--21.解得 a=1-233.
∴点
新知探究
题型探究
感悟提升
新知导学
1.倾斜角的概念和范围
新知探究
题型探究
感悟提升
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
25
新知探究
题型探究
感悟提升
解析 有两种情况: ①如图(1),直线l向上方向与x轴正向所成的角为60°,即直 线l的倾斜角为60°. ②如图(2),直线l向上方向与x轴正向所成的角为120°,即直 线l的倾斜角为120°. 答案 60°或120° [规律方法] (1)由已知角推断倾斜角,常画出图形,借助图 形来解决,注意画图时要考虑出现的各种情况. (2)斜率或倾斜角之间的大小比较要根据k=tan α在0°≤α< 90°及90°<α<180°的增减性来判断.
又 PB 的倾斜角是 45°,PA 的倾斜角是 135°,
所以 α 的取值范围是 45°≤α≤135°.
新知探究
题型探究
感悟提升
类型三 斜率公式的应用
【例 3】 已知实数 x,y 满足 y=-2x+8,且 2≤x≤3,求xy的最 大值和最小值.
[思路探索] 化xy=xy--00利用斜率公式数形结合求解.
答案 D
新知探究
题型探究
感悟提升
5.已知点A(1,2),在坐标轴上求一点P,使直线PA的倾斜
角为60°.
解 ①当点 P 在 x 轴上时,设点 P(a,0),
∵A(1,2),∴k=0a- -21=a--21.
又∵直线 PA 的倾斜角为 60°, ∴tan 60°=a--21.解得 a=1-233.
∴点
新知探究
题型探究
感悟提升
新知导学
1.倾斜角的概念和范围
直线的倾斜角、斜率及直线的方程ppt
![直线的倾斜角、斜率及直线的方程ppt](https://img.taocdn.com/s3/m/656be94953ea551810a6f524ccbff121dd36c5ec.png)
通过斜率可以判断直线的倾斜方向,进而确定直线的位置和 走势。
点斜式方程的局限性
点斜式方程只适用于已知一点和 斜率的直线,对于其他情况需要
使用其他形式的直线方程。
当直线与x轴垂直时,斜率不存 在,点斜式方程不适用。
在实际应用中,需要根据具体情 况选择合适的直线方程形式。
05 直线的两点式方程与斜率 的关系
点斜式方程
01
点斜式方程是直线方程的一种形 式,它表示通过一个固定点(x1, y1)和斜率m的直线。
02
点斜式方程可以用来求解直线的 方程,特别是当已知直线上的一 点和斜率时。
两点式方程
两点式方程是直线方程的另一种形式, 它表示通过两点(x1, y1)和(x2, y2)的 直线。
两点式方程也可以用来验证两点是否 在同一直线上。
整理得到$y - y_1 = m(x - x_1)$,其中$m$为直线斜率。
因此,点斜式方程为$y - y_1 = m(x - x_1)$,它是通过直线上两点坐标推导出来的。
斜率在点斜式方程中的应用
斜率$m$表示直线在坐标系上的倾斜程度,当$m > 0$时, 直线从左下到右上倾斜;当$m < 0$时,直线从左上到右下 倾斜;当$m = 0$时,直线与x轴平行。
两点式方程仅适用于已知两点坐标的情 况,对于其他情况可能不适用。
当两点坐标相同时,即直线过一个点时, 另外,当直线与坐标轴平行或重合时,
两点式方程将失去意义。
斜率不存在,此时两点式方程也无法表
示直线。
06 直线的方程在实际问题中 的应用
利用直线方程解决几何问题
确定两点间的直线方程
已知两点坐标,利用直线方程求解直线方程。
推导过程中,利用了直线上两点间斜率相等的性质,即斜率是固定的值。
点斜式方程的局限性
点斜式方程只适用于已知一点和 斜率的直线,对于其他情况需要
使用其他形式的直线方程。
当直线与x轴垂直时,斜率不存 在,点斜式方程不适用。
在实际应用中,需要根据具体情 况选择合适的直线方程形式。
05 直线的两点式方程与斜率 的关系
点斜式方程
01
点斜式方程是直线方程的一种形 式,它表示通过一个固定点(x1, y1)和斜率m的直线。
02
点斜式方程可以用来求解直线的 方程,特别是当已知直线上的一 点和斜率时。
两点式方程
两点式方程是直线方程的另一种形式, 它表示通过两点(x1, y1)和(x2, y2)的 直线。
两点式方程也可以用来验证两点是否 在同一直线上。
整理得到$y - y_1 = m(x - x_1)$,其中$m$为直线斜率。
因此,点斜式方程为$y - y_1 = m(x - x_1)$,它是通过直线上两点坐标推导出来的。
斜率在点斜式方程中的应用
斜率$m$表示直线在坐标系上的倾斜程度,当$m > 0$时, 直线从左下到右上倾斜;当$m < 0$时,直线从左上到右下 倾斜;当$m = 0$时,直线与x轴平行。
两点式方程仅适用于已知两点坐标的情 况,对于其他情况可能不适用。
当两点坐标相同时,即直线过一个点时, 另外,当直线与坐标轴平行或重合时,
两点式方程将失去意义。
斜率不存在,此时两点式方程也无法表
示直线。
06 直线的方程在实际问题中 的应用
利用直线方程解决几何问题
确定两点间的直线方程
已知两点坐标,利用直线方程求解直线方程。
推导过程中,利用了直线上两点间斜率相等的性质,即斜率是固定的值。
课件2:2.1.1 倾斜角与斜率
![课件2:2.1.1 倾斜角与斜率](https://img.taocdn.com/s3/m/6e0859fefc0a79563c1ec5da50e2524de418d040.png)
(2)设直线 l2 的倾斜角为 α,α=15°+75°=90°,
所以直线 l2 的倾斜角为 90°.
答案:(1)D (2)90°
方法规律 1.解答本题应注意根据倾斜角的概念及倾斜角的取值范围解答. 2.求直线的倾斜角主要根据定义来求,其关键是根据题意画出 图形,找准倾斜角,有时要根据情况分类讨论.
探究题 3 解析:直线的斜率是由直线的倾斜角决定的,
k=tan α(a≠90°).当 0°≤α<90°时,倾斜角越大,斜率越大; 当 90°<α<180°时,斜率是负的,倾斜角越大,斜率也越大. 先通过图形判断出直线的倾斜角在 0°≤α<90°范围内.
根据“直线的倾斜角越大,斜率越大”可知 k1<k2<k3.
倾斜 准,x 轴_正__向___与直线 l__向__上__的方向之间所
α 角 成的角 α 叫做直线 l 的倾斜角.当直线 l 与 x
轴平行或重合时,我们规定它的倾斜角为 0°
定义
表示或记法
斜率 一条直线的倾斜角 α 的__正__切___值_____
k=tan α
(2)倾斜角与斜率的对应关系
图示
倾斜角 (范围) 斜率 (范围)
α=0° __k_=__0_
0°<α<90° α=_9__0_°__
__k_>_0__
斜率 不存在
90°<
α<180°
_k_<_0___
由上表可知直线 l 的倾斜角 α 的取值范围是__0_°___≤__α__<_1_8_0_°__,斜率 k 的
取值范围是_(_-__∞__,__+__∞__)______.
当 135°≤α<180°时,倾斜角为 α-135°
所以直线 l2 的倾斜角为 90°.
答案:(1)D (2)90°
方法规律 1.解答本题应注意根据倾斜角的概念及倾斜角的取值范围解答. 2.求直线的倾斜角主要根据定义来求,其关键是根据题意画出 图形,找准倾斜角,有时要根据情况分类讨论.
探究题 3 解析:直线的斜率是由直线的倾斜角决定的,
k=tan α(a≠90°).当 0°≤α<90°时,倾斜角越大,斜率越大; 当 90°<α<180°时,斜率是负的,倾斜角越大,斜率也越大. 先通过图形判断出直线的倾斜角在 0°≤α<90°范围内.
根据“直线的倾斜角越大,斜率越大”可知 k1<k2<k3.
倾斜 准,x 轴_正__向___与直线 l__向__上__的方向之间所
α 角 成的角 α 叫做直线 l 的倾斜角.当直线 l 与 x
轴平行或重合时,我们规定它的倾斜角为 0°
定义
表示或记法
斜率 一条直线的倾斜角 α 的__正__切___值_____
k=tan α
(2)倾斜角与斜率的对应关系
图示
倾斜角 (范围) 斜率 (范围)
α=0° __k_=__0_
0°<α<90° α=_9__0_°__
__k_>_0__
斜率 不存在
90°<
α<180°
_k_<_0___
由上表可知直线 l 的倾斜角 α 的取值范围是__0_°___≤__α__<_1_8_0_°__,斜率 k 的
取值范围是_(_-__∞__,__+__∞__)______.
当 135°≤α<180°时,倾斜角为 α-135°
直线的倾斜角与斜率PPT课件
![直线的倾斜角与斜率PPT课件](https://img.taocdn.com/s3/m/efbe8b30001ca300a6c30c22590102020740f2b4.png)
(1) 与两点的顺序无关; (2) 公式表明,直线的斜率可以通过直线上任意两
点的坐标来表示,而不需要求出直线的倾斜角 (3) 当x1=x2时,公式不适用,此时α=900
Y
.p
00 900 Y K>0
. 900 1800
p
K<0
O
X
O
X
(1)
(2)
Y
. K不存在 Y
p 90o
.p
K=0
1 2
钝角
O
x
kCA
1 2 03
1
锐角
C
(2)k [1,+) (-,- 1]
2
例题分析
例2、在平面直角坐标系中,画出经过原点且斜率
分别为1,-1,2和-3的直线 l1, l2 , l3及l4 。
y
l3
l1
A3 (1,2) A1 (1,1)
O
x
A2 (1,-1)
Al44 (l12,-3)
例2 从 M(2, 2 )射出一条光线,经过 x轴反射
直线
圆
圆
直线
3.1.1 直线的倾斜角与斜率
y
A
1.由一点能否确定一条直线吗?
2.观察并回答问题:
1
B
CO
1x
在图中,直线 AB,AC 都经过哪一点?
它们相对于 x 轴的倾斜程度相同吗?
直线的倾斜角定义 一般地,平面直角坐标系内,直线向上
的方向与 x 轴正方向所成的最小正角 叫做
这条直线的倾斜角.
已知直线的倾斜角,求对应的斜率 k :
(=0;
(2)=30;
(3)=135;
(4)=120.
如果给定直线的倾斜角,我们当然可以根据斜率
直线的斜率与倾斜角ppt
![直线的斜率与倾斜角ppt](https://img.taocdn.com/s3/m/8b6d9ce1f424ccbff121dd36a32d7375a417c6ec.png)
斜率的计算公式
对于直线上的两点$(x_1, y_1)$和 $(x_2, y_2)$,斜率$m$可由下式计算: $m = frac{y_2 - y_1}{x_2 - x_1}$。
当$x_2$与$x_1$相等时,斜率不存在 ,表示直线垂直于x轴。
斜率与倾斜角的关系
斜率与倾斜角$alpha$之间存在一一 对应关系,即斜率等于倾斜角正切值, 即$m = tanalpha$。
倾斜角定义
直线倾斜角是指直线与x 轴正方向之间的夹角,通 常用α表示,取值范围为 [0,π)。
计算方法
斜率m=tan(α),其中α为 直线的倾斜角。
直线的斜率与倾斜角的关系及应用
关系
直线的斜率与倾斜角α是线性关系,即 m=tan(α)。当α在[0,π/2)范围内时,斜 率为正,表示直线从左下到右上上升; 当α在(π/2,π)范围内时,斜率为负,表 示直线从左上到右下下降。
直线的斜率与倾斜角
目录
• 直线的斜率 • 直线的倾斜角 • 直线的斜率与倾斜角的应用 • 特殊情况的讨论 • 总结与回顾
01 直线的斜率
斜率的定义
01
斜率是直线在平面上的倾斜程度 ,表示为直线上的任意两点间纵 坐标差与横坐标差之商。
02
斜率是直线的重要属性,用于描 述直线的方向和倾斜程度,是解 析几何中重要的概念之一。
中研究直线的基础。
计算距离和角度
利用直线的斜率和倾斜角,可以计 算直线上的点到直线的垂直距离, 以及两条直线之间的夹角。
解决几何问题
在解决几何问题时,如求两条直线 的交点、判断直线与圆的位置关系 等,需要使用直线的斜率和倾斜角。
在物理学中的应用
描述运动轨迹
在物理学中,直线的斜率和倾斜 角可以用来描述物体的运动轨迹, 如自由落体运动、抛物线运动等。
直线的倾斜角与斜率课件PPT
![直线的倾斜角与斜率课件PPT](https://img.taocdn.com/s3/m/b54cec194afe04a1b071def0.png)
解析: ①k=-53---0 2=-1,即 tan α=-1, 所以 α=135°. ②斜率不存在,α=90°. ③k=-52----22 =0,α=0°.
直线倾斜角与斜率的综合应用 多维探究型 已知直线 l 过 P(-2,-1),且与以 A(-4,2),B(1,3)为端点的线段 相交,求直线 l 的斜率的取值范围.
答案: B
2.直线 l 的倾斜角是斜率为 33的直线的倾斜角的 2 倍,则 l 的斜率为( )
A.1
B. 3
C.2 3 3
D.- 3
解析: ∵tan α= 33,0°≤α<180°, ∴α=30°,∴2α=60°, ∴k=tan 2α= 3.故选 B. 答案: B
3.已知点 M(5,3)和点 N(-3,2),若直线 PM 和 PN 的斜率分别为 2 和-74,
自主探究 探究 1:若两条直线平行,斜率一定相等吗?
【答案】不一定,垂直于 x 轴的两条直线,虽然平行,但斜率 不存在.
探究 2:若两条直线垂直,它们的斜率之积一定为-1 吗?
【答案】不一定,如果两条直线 l1,l2 中的一条与 x 轴平行(或 重合),另一条与 x 轴垂直(也即与 y 轴平行或重合),即两条直线中 一条的倾斜角为 0°,另一条的倾斜角为 90°,从而一条直线的斜率 为 0,另一条直线的斜率不存在,但这两条直线互相垂直.
A.-52,3
B.-∞,-52∪[3,+∞)
C.-32,1
D.-∞,-32∪[1,+∞)
解析: kPA=3,kPB=-52,如图, 当 l 与线段 AB 有公共点时, k≥3 或 k≤-52. 故选 B. 答案: B
谢谢观看!
自学导引
1.两直线平行的判定
(1)对于两条不重合的直线 l1,l2,其斜率分别为 k1,k2,有 __k_1=__k_2__⇔l1∥l2.
直线的倾斜角与斜率、直线方程_图文
![直线的倾斜角与斜率、直线方程_图文](https://img.taocdn.com/s3/m/0367765b561252d380eb6ec5.png)
直线的倾斜角θ越大,斜率k就越大,这种说法正确吗?
(1)过点M(-2,m),N(m,4)的直线的斜率为1,则m= ________.
(2)直线x+y=1的倾斜角为________.
2.
填一填:(1)1 (2)135° 2.填一填:(1)3x+4y-14=0 (2)x+y-3=0 (3)x-y -7=0或4x+3y=0
直线l2的方程为( )
A. x+3y-5=0
B. x+3y-15=0
C. x-3y+5=0
D. x-3y+15=0
B
[] 已知直线l经过A(2,1),B(1,m2)(m∈R)两点,那 么直线l的倾斜角的取值范围是________.
2 [2013·](1)过点(-1,3)且平行于直线x-2y+3=0
的直线方程为( )
A. x-2y+7=0
B. 2x+y-1=0
C. x-2y-5=0
D. 2x+y-5=0
1. (1)直线的倾斜角 ①定义:x轴________与直线________的方向所成的角叫 做这条直线的倾斜角.当直线与x轴平行或重合时,规定它的 倾斜角为________. ②倾斜角的范围为__________.
(2)直线的斜率 ①定义:一条直线的倾斜角α的________叫做这条直线的 斜率,斜率常用小写字母k表示,即k=________,倾斜角是 90°的直线没有斜率. ②过两点的直线的斜率公式 经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式 为k=________.
备考· No.1 角度关键词:易错分析 解题过程中容易犯有两处错误:一是未考查点P与圆的位 置关系;二是运用直线方程的点斜式时,忽视了点斜式方程中 隐含的条件:此方程只能表示斜率存在的直线.
倾斜角与斜率的关系及几何意义PPT课件
![倾斜角与斜率的关系及几何意义PPT课件](https://img.taocdn.com/s3/m/c8b3f6a8cf84b9d529ea7a8b.png)
例题:已知直线l的倾斜角为,斜率为k
(1) 45 ,60 时,则斜率k的取值范围_____[1, 3 ) (2) 45 ,135 时,则斜率k的取值范围_____(,1) [1,)
(3)k 0,1时,则倾斜角的取值范围_____[0 ,45 ] (4)k 1,1时,则倾斜角的取值范围_____[0 ,45 ] [135 ,180 )
第4页/共6页
例题:已知两点A (-2,- 3) ,B(3,0) ,过点P(-1,2)的直线l与线段AB 始终有公共点,求直线l的斜率k的取值范围.
P·
·
B
·
A
直线PA的斜率为5 直线PB的斜率为-1/2 直线L的倾斜角大于直线PA的倾斜角,
小于直线PB的倾斜角
1、当直线倾斜角大于直线PA的倾斜角,逐渐接近90度时,斜率的范围为[5,+∞) 2、当直线倾斜角大于90度逐渐靠近直线PB时,斜率的范围为(-∞,-1/2]
综上所述直线L的斜率k∈ (-∞,-1/2]∪[5,+∞)
第5页/共6页
感谢您的观看!
第6页/共6页
直线pa的斜率为5直线pb的斜率为12直线l的倾斜角大于直线pa的倾斜角小于直线pb的倾斜角1当直线倾斜角大于直线pa的倾斜角逐渐接近90度时斜率的范围为52当直线倾斜角大于90度逐渐靠近直线pb时斜率的范围为12综上所述直线l的斜率k125
直线的倾斜角
定义:在平面直角坐标系中,当直线l与x轴相交时,我们取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.
参考定义:一条与x轴相交的直线,把x轴绕着交点按逆时针方向旋转到和直线
重
合y
时
,
所
转
过
倾斜角与斜率课件
![倾斜角与斜率课件](https://img.taocdn.com/s3/m/f024be28571252d380eb6294dd88d0d232d43c5e.png)
应用于建筑设计、道路坡度计算 和管道输水压力分析等领域。
数学
倾斜角和斜率是解析几何和微积 分中重要的概念。
倾斜角和斜率的常见误区及解决方法
1 常见误解
倾斜角和斜率是同一概念;倾斜角始终为正 角。
2 避免误解和解决问题
明确区分倾斜角和斜率的定义;了解不同情 况下倾斜角的取值范围。
总结
重要性
倾斜角和斜率在数学和实际应用中具有重要作用。
计算倾斜角和斜率的方法
1
倾斜角
Байду номын сангаас
通过三角函数计算,公式为tan(倾斜角)
斜率
2
= 斜率。
通过两点间纵坐标差值除以横坐标差值
计算。
3
计算公式
倾斜角 = arctan(斜率);斜率 = (纵坐标 差值) / (横坐标差值)。
应用倾斜角和斜率于实际问题中
地理学
工程学
倾斜角和斜率可用于地形图分析、 地震摆动和河道流速计算。
本节课的学习内容
介绍了倾斜角和斜率的概念、计算方法和应用,以及解决常见误区的方法。
参考文献
推荐资料
《高等数学》教材;《地质学基础》教材。
参考文献列表
1. Smith, J. et al. (2018). Introduction to Slope and Y-Intercept. Journal of Mathematics, 25(3), 45-67.
倾斜角与斜率ppt课件
本ppt课件介绍倾斜角和斜率的概念,并探讨它们之间的关系。还将介绍计算 倾斜角和斜率的方法,并应用于实际问题。最后,解决常见误区并总结重点。
倾斜角和斜率的概念
定义
倾斜角是一条线段与x轴正向 的夹角。
课件_人教版数学必修二《倾斜角与斜率》PPT课件_优秀版
![课件_人教版数学必修二《倾斜角与斜率》PPT课件_优秀版](https://img.taocdn.com/s3/m/8e81fef3763231126fdb114e.png)
解: P1, P2, P3在一条直线上
k k P1P2
P2P3
即32 13 x1 3x
x 7. 3
20
小结 ① 经历倾斜角这个反映倾斜程度的几何量的形成 过程,能自然过渡到倾斜角的概念。 ② 通过对坡角、坡度概念回顾,经过知识迁移到 直线 的斜率中,并得到了斜率的定义。 ③ 经历用代数方法刻画直线斜率的过程,推导出 过已知两点的 直线的斜率坐标公式。
任一条直线都有倾斜角,也2 都有斜率;1
x
所成的角 叫做直线的
结论:坡度越大,楼梯越陡.
设直线的倾斜程度为k
在RtP2Q1中 P
tan
P2Q P1Q
y2 y1 x1 x2
0 ktany2y1y2y1
x1x2 x2x1
17
三、直线的斜率公式:
经过两点 P1(x1, y1),P2(x2, y2)(x1 x2)
我们把一条直线的倾斜角 的正切值
叫做这条直线的斜率.
用小写字母 k 表示,即: ktan
12
例题:已知直线的倾斜角,求直线的斜率:
1a30 ktan30 3 3
2a45 kta4n51
3a60 kta6n0 3
4a120 ktan1203
5a150ktan150 3
3
13
是否每条直线都有斜率? 0 a180
8
练习:下列图中标出的直线的倾斜角对不对?
y
o x
(1)
y
o
x
(2)
y
o
x (3)
y
ox
(4)
9
日常生活中,还有没有表示倾斜程度的量?
坡度(比 前 升 )进 高量 量
10
高中数学选择性必修一(人教版)《2.1.1倾斜角与斜率》课件
![高中数学选择性必修一(人教版)《2.1.1倾斜角与斜率》课件](https://img.taocdn.com/s3/m/adb7514e54270722192e453610661ed9ac51555a.png)
(一)教材梳理填空 1.斜率的定义 一条直线的倾斜角 α 的 正切值 叫做这条直线的斜率. 斜率常用小写字母 k 表示,即 k= tan α. 2.斜率公式 过两点 P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为 y2-y1 k=_x_2_-__x_1 _.
3.斜率与倾斜角的对应关系
二、应用性——强调学以致用 2.利用斜率公式证明不等式:ba++mm>ab(0<a<b 且 m>0).
[析题建模] 分析所给式子结构特点 ―联―想→ 斜率坐标公式 ―构―造―法―分―析→ 不等式表达的几何意义 ―→ 得证
证明:∵0<a<b,∴点 P(b,a)在第一象限且位于直线 y=x 的 下方.又 m>0,∴-m<0,∴点 M(-m,-m)在第三象限且 必在直线 y=x 上.∴直线 MP 的倾斜角大于 OP(O 为坐标原 点)的倾斜角,即 kMP>kOP,又 kMP=ba+ +mm,kOP=ab,∴ab+ +mm>ab.
为锐角,则 m 的取值范围是
()
A.(-∞,1)
B.(-1,+∞)
C.(-1,1)
D.(-∞,-1)∪(1,+∞)
解析:∵直线 l 的倾斜角为锐角, ∴斜率 k=m12--21>0,∴-1<m<1. 答案:C
2.[求参数值]已知三点 A(a,2),B(3,7),C(-2,-9a)在同一条 直线上,则实数 a 的值为________.
[方法技巧] 求直线斜率的两种类型
一种是已知倾斜角求直线的斜率,注意倾斜角为 90°的情 况;另一种是已知两点的坐标求直线的斜率,注意斜率不存在 的情况.
[对点练清] 1.设 A(m,-m+3),B(2,m-1),C(-1,4),直线 AC 的斜率
3.斜率与倾斜角的对应关系
二、应用性——强调学以致用 2.利用斜率公式证明不等式:ba++mm>ab(0<a<b 且 m>0).
[析题建模] 分析所给式子结构特点 ―联―想→ 斜率坐标公式 ―构―造―法―分―析→ 不等式表达的几何意义 ―→ 得证
证明:∵0<a<b,∴点 P(b,a)在第一象限且位于直线 y=x 的 下方.又 m>0,∴-m<0,∴点 M(-m,-m)在第三象限且 必在直线 y=x 上.∴直线 MP 的倾斜角大于 OP(O 为坐标原 点)的倾斜角,即 kMP>kOP,又 kMP=ba+ +mm,kOP=ab,∴ab+ +mm>ab.
为锐角,则 m 的取值范围是
()
A.(-∞,1)
B.(-1,+∞)
C.(-1,1)
D.(-∞,-1)∪(1,+∞)
解析:∵直线 l 的倾斜角为锐角, ∴斜率 k=m12--21>0,∴-1<m<1. 答案:C
2.[求参数值]已知三点 A(a,2),B(3,7),C(-2,-9a)在同一条 直线上,则实数 a 的值为________.
[方法技巧] 求直线斜率的两种类型
一种是已知倾斜角求直线的斜率,注意倾斜角为 90°的情 况;另一种是已知两点的坐标求直线的斜率,注意斜率不存在 的情况.
[对点练清] 1.设 A(m,-m+3),B(2,m-1),C(-1,4),直线 AC 的斜率
2-1-1倾斜角与斜率 课件(共43张PPT)
![2-1-1倾斜角与斜率 课件(共43张PPT)](https://img.taocdn.com/s3/m/95104c2324c52cc58bd63186bceb19e8b8f6ece9.png)
④若直线的倾斜角为α,则sinα∈(0,1);
⑤若α是直线l的倾斜角,且sinα= 22,则α=45°.
其中正确命题的个数是( A )
A.1
B.2
C.3
D.4
【解析】 (1)都不满足倾斜角的定义,图(3)中α与倾斜角的 大小一样,但不是倾斜角.
(2)任意一条直线有唯一的倾斜角;倾斜角不可能为负;倾 斜角为0°的直线有无数条,它们都垂直于y轴,因此①正确,② ③错误.④中当α=0°时,sinα=0,故④错误.⑤中α有可能为 135°,故⑤错误.
答:不对.
当x1≠x2时,k=yx22- -yx11=xy11--xy22; 当x1=x 2时,斜率不存在.
课时学案
题型一 倾斜角的求法
例1 (1)下列图中标出的直线的倾斜角中正确的有___0_____ 个.
(2)给出下列命题:
①任意一条直线有唯一的倾斜角;
②一条直线的倾斜角可以为-30π;
③倾斜角为0°的直线只有一条,即x轴;
2.斜率与倾斜角的关系
设直线的倾斜角为α,斜率为k.
α的大小 0°
0°<α<90°
90° 90°<α<180°
k的范围 k=0
k>0
不存在
k<0
k的增减性 相同 随α的增大而增大 无 随α的增大而增大
3.任意过P1(x1,y1),P2(x2,y2)的直线的斜率均为k=
y2-y1 x2-x1
对吗?
在平面直角坐标系中,每一条直线都有一个确定的倾斜 角,而且方向相同的直线,其倾斜程度相同,倾斜角相等;方 向不同的直线,其倾斜程度不同,倾斜角不相等.因此,我们 可以用倾斜角表示平面直角坐标系中一条直线的倾斜程度,也 就表示了直线的方向.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tan y2 y1
x2 x1
y
y
P1(x1, y1)
P2 ( x2 , y2 )
o
x
P1(x1, y1)
P2 (x2 , y2 )
o
x
说明:此公式与两点坐标的顺序无关.
思考6 当直线P1P2平行于x轴,或与x轴重合时,
k y2 y1 还适用吗?为什么? x2 x1
适用
y
P1(x1, y1) P2 (x2 , y2 )
l
y
O
l
l
P
x
这些直线有何区别? 它们的倾斜程度不同.
如何描述直线 的倾斜程度?
一、直线的倾斜角
x轴正向与直线l向上方向之间所成的角.
yl
α
o
规定:当直线l和x轴平行或 重合时,它的倾斜角为0°.
直线倾斜角α的范围为:
x
0o 180o.
注意:1、对直线的倾斜角的理解 (1)倾斜角定义中含有三个条件: ①x轴正、方向; ②直线向上的方向; ③小于180°的非负角. 2.倾斜角的范围 直线的倾斜角α的范围为__0_°__≤__α__<1_8_0_°__.
提示:(1)错误.除了倾斜角,还可以用坡度(比)描述倾斜程度. (2)错误.倾斜角不是90°的直线有且只有一个斜率和它对应. (3)正确.确定平面直角坐标系内的一条直线位置的几何要素:一 个点P和一个倾斜角α. (4)正确.斜率公式与两点的顺序无关,即两纵坐标和横坐标在公 式中的次序可以同时调换. 答案:(1)× (2)× (3)√ (4)√
kCA
1 2 03
3 3
1.
由 kAB 及 0 k知CA,直0 线AB与CA的倾斜角均为锐角;
由 kBC <知0,直线BC的倾斜角为钝角.
斜率为正,倾斜角为锐角; 斜率为负,倾斜角为钝角; 斜率为0,倾斜角为0°; 斜率不存在时,倾斜角为直角.
O
x
k y2 y1 0 x2 x1
思考7 当直线平行于y轴,或与y轴重合时,公
式还适用吗? 不适用,因为分母为0, 斜率不存在.
y
P1 (x1, y1 )
O
P2 (x2 , y2 )
x
三、斜率公式
经过两点 P1(x1, y1), P2 (x2 , y2 ) ( x1 x2 )的直线的斜率公式
y
α
o
x
二、直线斜率的定义
一条直线的倾斜角 的正切值叫做这条直线的斜率
(slope).
y
通常用小写字母k表示,即
k tan ( 90o).
注意:α= 90o时,k不存在.
α
o
x
倾斜角α不是90°的直线都有斜率.
斜率与倾斜角的对应关系
图示
倾斜角(范 围)
α=0°
0°<α<9 0°
α=_9_0_°
o x1
x2 x
k
tan
tan P2P1Q
QP2 P1Q
y2 y1 0.
x2 x1
结论:当 0o 90o时,斜率k≥0.
若α为钝角,α= 180o -θ(设∠P2P1Q=θ),且x1 > x2,y1 < y2,
tanα= tan(180o -θ)= -tanθ.
y
y2
P2 (x2 , y2 )
公式特点:
k
y2 x2
y1 x1
( x1
x2 ).
(1)与两点坐标的顺序无关.
(2)公式表明,直线的斜率可以通过直线上任意两点的
坐标来表示,而不需要求出直线的倾斜角. (3)当x1=x2时,公式不适用,此时α=90°.
判断:(正确的打“√”,错误的打“×”) (1)倾斜角是描述直线的倾斜程度的惟一方法.( ) (2)任何一条直线有且只有一个斜率和它对应.( ) (3)一个倾斜角α不能确定一条直线.( ) (4)斜率公式与两点的顺序无关.( )
在RtΔP2QP1中,tanθ=
P2Q P1Q
= y2 - y1 , x1 - x2
y1
Q(x2 , y1)
P1(x1, y1)
所以k
=
tanα=
-
y2 x1
- y1 - x2
=
y2 x2
-
y1 x1
0.
o x2 x1 x
结论:当 90o 180o时,斜率k<0.
同样,当 P2P的1 方向向上时,也有 成立.
思考:一条直线的倾斜角为0°,这条直线一定与x轴平行吗? 提示:不一定,也可能与x轴重合.
练习:请标出以下直线的倾斜角.
y
y
y
O
x
O
x
O
x
思考2 直线的倾斜程度与倾斜角有什么关系?
①平面直角坐标系中每一条直线都
有确定的倾斜角;
y l
②倾斜程度不同的直线有不同的倾
斜角;
③倾斜程度相同的直线其倾斜角 O
相同.
l"
l'" l
P
x
思考3 确定平面直角坐标系中一条直线的几何要
素是什么?
y
l
P
【提示】直线上的一个定点及它
α
o
的倾斜角二者缺一不可.
x
思考4 日常生活中,还有没有表示倾斜程度的量呢?
升 高 45° 量
前进量
坡度(比)
升高量 前进量
3m
3m
坡度越大,楼梯越陡.
升 高 45° 量
前进量
“坡度(比)”是 “倾斜角”的正切值.
90°<α<180 °
斜率(范围) _k_=0__
_k_>_0_ 不存在
__k<_0_
思考5 已知一条直线上的两点坐标,如何计算斜率?
y
如图,若α为锐角,
y2
P2 (x2 , y2 ) P2P1Q,
y1
Q(x2 , y1)
P1(x1, y1)
且x1 x2 , y1 y2 在Rt P2 P1Q中,
例、选择题 下列说法正确的是( ) A.平面直角坐标系内的任意一条直线都有倾斜角和斜率 B.直线倾斜角的范围是 0°≤α<180° C.若一条直线的倾斜角为α,则此直线的斜率为 tanα D.若一条直线的斜率为 tanα,则此直线的倾斜角为α
解析:倾斜角为90°的直线斜率不存在,故A,C错误;直 线的斜率可以用π+kα求出,但是直线倾斜角的范围是 0°≤α<180°,故D错误.
第三章 直线与方程
3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率
笛卡儿(1596-1650):法国数 学家、物理学家和哲学家,堪称 17世纪以来欧洲哲学界和科学界 最有影响的巨匠之一,被誉为 “近代科学的始祖”.
几何问题 代数化
观察下面的跷跷板,跷跷板的位置固定吗?
思考1 已知直线l经过点P,直线l 的位置能够确 定吗? 不确定.过一个点有无数条直线.
答案:B
例1 如图,已知A(3,2),B(-4,1),C(0,-1),求 直线AB,BC,CA的斜率,并判断这些直线的倾斜角是 锐角还是钝角.
分析:直接利用公式求解.
解:直线AB的斜率kAB
1 2 4 3
1 7
;
B
直线BC的斜率
kBC
1 1 0 (4)
2 4Biblioteka 1; 2yA
O C
x
直线CA的斜率