模具设计与制造——第8章 锤上模锻工艺及模具设计

合集下载

锻造工艺与模具设计-锤上模锻

锻造工艺与模具设计-锤上模锻

锻造工艺与模具设计-锤上模锻引言锤上模锻是一种传统的金属锻造工艺,它使用锤子和模具将金属加热至一定温度后进行锤击,使其塑性发生变化,并通过模具的形状来塑造金属的最终形态。

本文将介绍锤上模锻的工艺流程以及模具设计的要点和注意事项。

锤上模锻的工艺流程锤上模锻的工艺流程通常包括以下几个步骤:1.材料准备:选择适当的金属材料,并对其进行预处理,如去除表面氧化物、清除杂质等。

2.加热:将金属材料加热至适当的温度,以增加其塑性。

加热温度通常根据材料的种类和要求的锻造效果来确定。

3.锤击:在金属材料达到适当温度后,使用锤子对其进行锤击。

锤击力度和频率需根据材料的塑性和形状来调整,以达到锻造工件的要求。

4.模具设计:根据锻造工件的形状和尺寸要求,设计制作适用的模具。

模具应具有足够的强度和刚度,以承受锤击的力量,并能形成金属的预期形状。

5.成品处理:锻造完成后,对锻造工件进行必要的处理,如退火、淬火、表面处理等,以提高其性能和外观质量。

模具设计的要点和注意事项1. 模具材料的选择模具材料应具有足够的硬度和强度,以抵抗锤击力量的作用。

常用的模具材料有合金工具钢、高速钢等。

在选择模具材料时,还需要考虑其热膨胀系数和导热性能,以确保模具在高温条件下能保持形状稳定性。

2. 模具结构设计模具的结构设计应考虑到工件的形状和尺寸要求,以及锤击的力量和频率。

模具应具有足够的强度和刚度,以承受锤击的力量,并能准确地形成金属的预期形状。

同时,模具的结构应合理,方便装卸和调整,以提高生产效率。

3. 模具表面处理模具的表面处理对于形成工件的表面质量和精度非常重要。

常用的表面处理方法包括电火花加工、抛光、渗碳等。

表面处理可以改善模具的耐磨性和抗粘附性,以减少模具的磨损和延长使用寿命。

4. 模具的维护与保养模具在锤上模锻过程中会受到较大的冲击和热应力,因此需要定期进行维护和保养,以确保其性能和使用寿命。

维护和保养包括清洁、修复损坏、润滑等工作。

下篇第8章-锤上模锻工艺与模具设计

下篇第8章-锤上模锻工艺与模具设计

主讲教师:刘维锤上模锻工艺根据所用锻压设备及其锻造变形方式,通常将模锻分为锤上模锻、压力机模锻及平锻机模锻等。

模锻锤包括蒸汽空气模锻锤、无砧座锤、高速锤和液压模锻锤。

蒸汽空气模锻锤应用最普遍,一般简称为模锻锤。

锤上模锻工艺在压力作用下,毛坯在锻模型腔中被迫产生塑性变形,从而获得比自由锻更高质量的锻件。

它是大批量锻件生产的主要方法,具有以下特点:①金属在型腔中的变形时在锤头的多次打击下逐步完成的,锤头的冲击力使金属变形,可利用金属的流动惯性,迫使金属充填型腔。

②在锤上可实现多工步成形,锤头打击速度快,生产效率高。

③模锻锤的导向精度不高,锤头行程不固定,模锻件的尺寸精度不高。

④无顶出装置,锻件出模困难,模锻斜度可适当大些。

⑤生产操作方便,劳动强度比自由锻小。

模锻件的分类●按照锻件分模线和主轴线(通过锻件各截面重心的连线在平面图上的投影)的形状以及锻件在平面图上轮廓尺寸比例,将模锻件分为:短轴类锻件长轴类锻件复杂类锻件模锻件的分类短轴类锻件:锻件在平面图上两个相互垂直方向的尺寸相等或相接近,在水平面上的投影为圆形或方形。

主要变形工步的锤击方向与主轴线平行,模锻时金属沿高度、宽度、长度方向同时流动,属于体积变形。

如齿轮、法兰盘、十字头等锻件。

模锻件的分类长轴类锻件:轴线的长度大于其它两个方向的尺寸,锤击方向与轴线垂直,金属沿主轴线流动小,主要沿高度和宽度方向流动。

如连杆和直轴等。

模锻件的分类复杂类锻件:具有短轴类和长轴类两类锻件特征的组合。

模锻件的工艺性便于锻后拔模:如图所示零件,上、下端面及柱面上均带有侧凹,不论将分型面设于什么位置,都不能保证锻后拔模,因此,必须增设锻造余块(敷料)改变锻件外形轮廓。

模锻件的工艺性力求形状简单、对称,避免截面差别过大的凸起、凹入或壁厚过薄:图a)所示零件最小和最大截面之比小于0.5,而且凸缘直径与壁厚相差过大,模锻时,凸缘端部不易充满,容易粘模。

而且凸缘厚度过薄,锻模散热性差。

轻卡转向节外半轴锤上模锻造工艺设计及模具设计说明书

轻卡转向节外半轴锤上模锻造工艺设计及模具设计说明书

轻卡转向节外半轴锤上模锻造工艺设计及模具设计说明书【注意事项】
【工艺设计及模具设计说明书】
【章节一、引言】
本章主要介绍工艺设计及模具设计的目的、背景和范围。

【章节二、产品简介】
本章主要介绍所设计的产品——轻卡转向节外半轴锤,包括产品的定义、用途、技术要求等。

【章节三、工艺流程设计】
本章主要介绍轻卡转向节外半轴锤的模锻工艺流程,包括原料准备、加热处理、模锻工艺参数等。

【章节四、材料选择与热处理】
本章主要介绍轻卡转向节外半轴锤的材料选择和热处理工艺,包括材料性能要求、材料种类选择、热处理工艺参数等。

【章节五、模具设计】
本章主要介绍轻卡转向节外半轴锤的模具设计,包括模具结构设计、模具零部件设计、模具制造工艺等。

【章节六、附图】
本章列出了本文档中所涉及到的附件,包括图纸、表格、图片等。

【章节七、法律名词及注释】
本章列出了本文档中所涉及到的法律名词及其注释,以便读者
理解和应用。

【章节八、结束语】
本章主要对全文进行总结,并指出未来可能的发展方向和建议。

【附件】
附件一、轻卡转向节外半轴锤工艺流程图
附件二、轻卡转向节外半轴锤模具设计图
附件三、热处理工艺参数表
:::
【法律名词及注释】
1、法律名词一、
注释:
2、法律名词二、
注释::::
(文档结束符)【声明】。

锤上模锻工艺及模具设计

锤上模锻工艺及模具设计
⑺、锻件上形状复杂且较高的部分应尽量 放在上模。
二、飞边槽的确定
开式模锻的终锻型腔周边必需有飞边槽,其形式及尺寸大小
对锻件成形影响很大。
1、金属变形分析:
第一阶段:从开始模压到金属与模具侧壁接触为止的镦粗变形 阶段。高度减小,径向尺寸逐渐变大,变形力不是 太大。
第二阶段:飞边形成阶段:金属一方面充填模腔,一方面由桥 口处流出形成飞边,并逐渐减薄。这时由于模壁阻 力,特别是飞边桥口部分的阻力作用,迫使金属充 满型腔。金属处于三向压应力状态,变形抗力迅速 增大。
模壁产生一个脱模分力P型Sin 来抵消模壁 对锻件的摩擦阻力Tcos ,从而减小取出
锻件所需的力P取出:
P取出 Sin
= Tcos
),
- P 型 Sin =P 型 ( Cos – 越大,P取出就越小,大到一
定值后锻件会自行从型槽中脱开。
3、常用斜度:锻件冷却后,其外壁因收缩而离开型腔,容易出模, 而内壁收缩,则使锻件包住型腔突出部分,出模困难,因此,内斜 度应比外斜度大一级。
⑴ 锻件热处理及硬度要求,测试硬度的位置;
⑵、未注明的模锻斜度和园角半径;
⑶、允许的表面缺陷深度(包括加工表面和非加工表面);
⑷、允许的错移量和残余毛边的宽度;
⑸、需要取样进行金相组织和机械性能实验时,应注明锻
件上的取样位置;
⑹、表面清理方法;
⑺、其他特殊要求,如同心度,弯曲度等。
第四节 终锻型腔的设计
⑵、当设备吨位不足产生模锻不足(打不靠),可适当减小 锻件的高度尺寸(因为锻件在高度方向有个打不靠的值),其值 可接近负偏差;相反,当设备吨位偏大或锻模承击面不够时,易 产生承击面塌陷时,可适当增加热锻件图的高度尺寸,其值可接 近正公差;

塑性成形工艺第十一章锤上模锻工艺及模具设计

塑性成形工艺第十一章锤上模锻工艺及模具设计

塑性成形工艺第十一章锤上模锻工艺及模具设计锤上模锻工艺是一种常见的金属塑性成形工艺,通过锤击和挤压金属材料,使其在锻模的作用下得到塑性变形,从而得到所需形状和尺寸的零件。

本文将从锤上模锻工艺及模具设计两个方面进行详细介绍。

一、锤上模锻工艺锤上模锻工艺是将预热好的金属坯料放置于模具中,通过锤击和挤压使其在模具的作用下得到塑性变形,从而得到所需形状和尺寸的零件。

具体的工艺流程如下:1.材料选择:根据零件的要求选择合适的金属材料,并对其进行预热处理,以提高其塑性和可锻性。

2.模具设计:根据零件的形状和尺寸要求,设计和制造适用的锻模。

3.预热坯料:将金属坯料放入预热炉中对其进行预热处理,使其达到适合锻造的温度。

4.放料:将预热好的金属坯料取出,放置于模具中。

5.锤击和挤压:用锤子对金属坯料进行锤击和挤压,使其在模具的作用下得到塑性变形,并逐渐冷却固化。

6.去毛刺:在锻造后对零件进行去除表面的毛刺处理。

7.检验和整形:对锻造后的零件进行质量检验,如尺寸、表面质量等,并进行修整和整形。

二、模具设计模具是实现锤上模锻工艺的重要工具,合理的模具设计能够保证锻件的形状和质量。

以下是模具设计的一些要点:1.模具材料:模具需要具有足够的硬度和耐磨性,常用的模具材料有合金工具钢、合金炉电极材料等。

2.模具结构:模具应具有足够的强度和刚度,能够承受锻造过程中的冲击和挤压力。

模具的结构应尽可能简单,易于制造和安装。

3.模具尺寸:模具的尺寸应根据零件的形状和尺寸要求进行合理确定。

模具的开裂数量和形式、上、下模的高度和准确度等都需要进行细致的计算和设计。

4.模具润滑:模具表面应涂抹适当的润滑剂,以减小模具与金属之间的摩擦力,提高成形性能。

5.模具冷却:模具内部应设置冷却装置,以保持模具在工作过程中的合适温度,减少模具磨损和延长使用寿命。

总之,锤上模锻工艺及模具设计是塑性成形工艺中的重要环节。

通过合理的工艺流程和模具设计,可以获得形状和尺寸精确的零件,并满足各种机械零件的使用要求。

连杆零件锤上锻模工艺及模具设计

连杆零件锤上锻模工艺及模具设计

2.7 热锻件图 2.8 飞边槽 作用:容纳多余金属,对锻造时飞边起缓冲作用
飞边槽设计
2.9 钳口 2.10 吨位计算 2.11 终段 型腔建模
选取最大截面处分模 2.2 余量及公差 由《模锻简明设计手册》可确定模锻件长度,宽度,高度的公差 长度公差:+1.3������������ − 0.7������������ 宽度公差:+1.1������������ − 0.5������������ 高度公差:+1.2������������ − 0.6������������ 大小头的加工余量为:1.7~2.8������������ 水平尺寸加工余量为:2.0~2.5������������ 2.3 拔模斜度 查设计手册可得本次零件的拔模斜度为7° 2.4 冲孔连皮 一般情况下孔径大于 30mm 的时就需要考虑冲孔连皮,连皮厚度可按以下 操作
ℎ < 0.4������������ = 0.12������ + ������������������������������ = 1.35������������ ������������������������ = 0.65������������
2.5 圆角 一般锻件圆角为 1mm,1.5mm,2mm,2.5mm 等数值 该锻件大段去 2mm 圆角 小端部位取 3mm 圆角 2.6 终段件与零件之间的比较“连杆零件来自上锻模工艺及模具设计”基本流程
“连杆零件锤上锻模工艺及模具设计”基本流程
1. 连杆零件分析 1.1 锤上模锻的特点及设计方法 特点: ①工艺灵活, 适应性广, 可以生产各类复杂锻件; 可单型槽模锻, 也可多型槽模锻;可单件模锻,还可多件模锻或一料多件连续 模锻; ②锤头的行程、打击速度和打击能量均可调节; ③冲填型槽能力强; ④可以提高零件的使用寿命; ⑤生产效率高; ⑥模锻件机械加工余量小,材料利用率高,锻件生产成本较低; 设计方法:1.锻件图设计;2.计算锻件的主要参数;3.锻锤吨位的确定;4.确定 飞边槽的形式和尺寸;5.终锻模膛的设计;6.预锻模膛设计; 7.绘制计算毛胚图;8.制胚工步选择;9.确定胚料尺寸;10. 其他模膛设计;11.模锻结构设计;12.模锻工艺流程设计。 1.2 零件的基本特征 连杆: 作用是传递活塞与曲轴间的作用力,并将活塞的往复运动变成曲 轴的旋转运动。 连杆为模锻件, 由连杆小头、 杆身和连杆大头组成,

锻造工艺与模具设计-锤上模锻

锻造工艺与模具设计-锤上模锻
38
(4) 锻件某些部位在 切边或冲孔时易产生 变形而影响加工余量 ,应在热锻件图的相 应部位增加一定的弥 补量,提高锻件合格 率,如图所示。
39
(5) 一些形状特别 的锻件,不能保证 坯料在下模膛内或 切边模内准确定位 。在锤击过程中, 可能因转动而导致 锻件报废。热锻件 图上需增加定位余 块,保证多次锻击 过程中的定位以及 切飞边时的定位。
圆饼类锻件分模位置
(5)锻件形状较复杂部分应该尽量安排在上模。
15
6.3.2 余块、余量和锻造公差
锻件上凡是尺寸精度和表面品质(表面粗糙度) 达不到零件图要求的部位,需要在锻后进行机械加 工,这些部位应预留加工余量。
模锻件的加工余量要大小恰当。 精密模锻的目的是在不影响零件加工品质的前 提下模锻出小余量或者无余量精锻件。
形状尽可能与零件形状相同,以及锻件容易 从锻模模膛中取出。
确定分模面时,应以镦粗成形为主,还 应考虑材料利用率。
分模面的位置与模锻方法直接有关,它 决定着锻件内部金属纤维方向。
11
锻件分模位置一般都选择在具有最大轮廓 线的地方。此外,还应考虑下列要求:
(1)尽可能采用直线分模,使锻模结构简单, 防止上下模错移。
29
4、压凹 当锻件内孔直径较小,不易锻出连皮,应改为压凹形式, 通过压凹变形有助于小头部分饱满成形。
压凹
带连皮的模锻件,不需绘出连皮的形状和尺寸。产品 图的主要轮廓线要用点划线在模锻件图上表示,便于表示 各部分的加工余量。
30
6.3.6 锻件图和锻件技术条件
锻件图(冷)是在零件图基础上,加上余量、余块 或其它特殊留量后绘制的图,图中锻件外形用 粗实线表示,零件外形用双点划线表示。
一般情况下,热锻件图形状与锻件图形状完全相 同。但在某些情况下,需将热锻件图尺寸作适当 的改变以适应锻造工艺过程要求。

起重机连杆锤上模锻工艺及模具设计-课程设计说明书

起重机连杆锤上模锻工艺及模具设计-课程设计说明书

目录引言 (2)1 锤锻工艺设计 (3)1.1热锻件图 (3)1.1.1分模面 (3)1.1.2余量及公差 (3)1.1.3拔模斜度 (4)1.1.4圆角半径 (4)1.1.5冲孔连皮 (4)1.1.6技术条件 (4)1.2锻件的主要参数 (4)1.3 设备吨位 (5)1.4计算毛坯图 (5)1.5制坯工步 (7)1.6坯料尺寸 (8)1.7模锻工艺流程 (8)2锻锤模具设计 (10)2.1 终锻模膛设计 (10)2.1.1 飞边槽设计 (10)2.1.2 钳口设计 (10)2.1.3 终锻模膛 (10)2.2 预锻模膛设计 (11)2.3 拔长模膛设计 (13)2.4滚压模膛设计 (14)2.5模膛排布 (15)2.5.1 排布顺序 (15)2.5.2 模膛壁厚 (15)2.5.3 模膛宽度方向排布 (15)2.5.4 模膛长度方向排布 (15)2.6模块设计 (15)2.7 锁扣设计 (16)2.8燕尾设计 (16)2.9模具校核 (16)2.10模具 (16)参考文献 (18)引言连杆是连杆机构中两端分别与主动和从动构件铰接以传递运动和力的杆件。

连杆是机器的主要运动件之一,它受载情况复杂,是较难设汁的重要零件之一。

连杆的工作条件要求连杆具有较高的强度和抗疲劳性能;又要求具有足够的钢性和韧性。

连杆是长轴类锻件中有代表性的锻件之一。

起重机连杆是起重机发动机的主要零件之一,工作时在高速下运转,工作条件比较繁重。

连杆的形状比较复杂,既有和曲轴相连的大头部,又有工字形断面的杆部,还有通过活塞销与活塞相连的小头部。

起重机连杆绝大多数都不需要机械加工,所以对连杆锻件的尺寸要求比较严格。

本次专业课程设计以起重机连杆为例,介绍它的锤锻工艺制订以及锻模设计的内容和步骤。

本次专业课程设计摒弃了传统的锤锻工艺设计手段,针对传统的手工计算、绘图和分析的方法将有很大的误差和设计时间周期长并且费时费力等缺点,应用了计算机辅助设计(CAD)技术,通过大型三维CAD软件UG进行零件的造型、工艺计算及工艺分析,提高了设计效率以及计算的准确性。

锻造锤上模锻工艺模锻

锻造锤上模锻工艺模锻
(5) 冲孔连皮 Recess
锤上模锻不能(难以)直接锻出通孔,孔内必须留有一定厚度的金属层,此层即为冲孔连皮。
连皮太薄,锤击力太大;连皮太厚,锻件变形。
一般孔径d=25~80 mm时,连皮厚度S=4~8 mm。当孔径d<25 mm或冲孔深度h>3d时,只在冲孔处压出凹穴。
技术要求
齿轮坯模锻件图
1
2
3
4
5
模锻零件的结构工艺性
感谢观看
THANK FOR YOU WATCHING
演讲人姓名
演讲时间
第二节 锻造方法-模锻** Forging
模锻:是使金属在冲击力或压力作用下,在模锻模膛内变形,从而获得锻件的工艺方法。
模锻分类: 锤上模锻、曲柄压力机上模锻、摩擦压力机上模锻、胎膜锻
生产效率高。一般比自由锻高出3~4倍,甚至十几倍。
锻件表面光洁,尺寸精度高,加工余量小,节约材料和切削加工工时。
确定变形工步
锻锤吨位的确定 锻锤吨位根据锻件的重量确定 模锻件的精整 切边Trimming、冲孔 Punching Ward
校正 Sizing 热处理Heat Treatment 清理 Cleaning 精压 Coining :提高锻件精度和降低表面粗糙度 平面精压:用来获得模锻件某些平行平面的精确尺寸。 体积精压:用以提高模锻件所有尺寸的精度和表面质量。 精压后模锻件的尺寸精度公差可达±0.10~0.25 mm,表面粗糙度Ra值为1.25~0.63μm。一般不再进行切削加工。
模锻的特点与应用
锤上模锻 Die Forging 锻模结构
一、锤上模锻工艺 Die Forging 1、模锻的变形工步和模锻模膛
下料Cropping→加热Heating→制坯Preforming→模锻Die Forging→精整Sizing→热处理Heat Treatment→清理Cleaning→检验Inspection

第八章---锻模设计

第八章---锻模设计

圆角半径R’:
R’= R+c
式中 R —— 终锻模膛相应部位
上的圆角半径;
终 锻 模 膛 深
c—— 系数。 H<10mm,c=2; H=20~25mm,c=3; H=25~50mm,c=4; H>50mm,c=5。
4.带枝芽的锻件 为了便于金属流入枝芽处,简化预锻模膛的枝芽形
状,与枝芽连接处的圆角半径适当增大,必要时可在分 模面上设阻尼沟,加大预锻时金属流向飞边槽的横向阻 力,如图8-6所示。
⑵在设有预锻模膛时,偏心打击将不可避免,应把预锻模 膛和终锻模膛分设在锻模中心的两旁,并同时在键槽中 心线上,使a/b ≤ 1/2或a ≤ l/3L。
⑶制坯模膛的布置第一道制坯工步应当安排在吹风管的 对面,以避免氧化皮落在终锻模膛里。
弯曲模膛的位置要便于弯曲后可直接地把坯料送到 终锻模膛中,如图8-29a所示 。
第八章 锻模设计 第一节 终锻模膛设 终锻模膛用来完成锻件最终成形。 组成:模膛、飞边槽和钳口。
一、热锻件图 热锻件图的尺寸应比冷锻件图上的相应尺寸有所放
大。理论上加放收缩率后的尺寸L按下式计算:
L=l(1+δ)
式中:l —— 冷锻件尺寸; δ —— 终锻温度下金属的收缩率。
二、飞边槽 1.开式模锻中金属流动过程分析
拔长、滚挤、弯曲、卡压、成形等制坯工步和预锻 及终锻工步所组成。
(1)直长轴线锻件 一般采用拔长、滚挤、卡压、成形等制坯工步。得到
中间毛坯,长度与终锻模膛的长度相等,沿锻件轴线的每 一横截面积等于相应处锻件截面积与飞边截面积之和。
(2)弯曲轴线锻件(图8-13) 制坯工步与前面的大致相同,但增加了一道弯曲
的设计最为重要。
⑴终锻工步设计

模锻成形工艺及模具设计特点

模锻成形工艺及模具设计特点

模锻成形工艺及模具设计特点锻锤的优点在于打击速度快,因而模具接触时间短,适合要求高速变形来填充模具的场合。

由于其快速、灵活的操作特性,其适应性非常强,有人成为“万能”设备,因而特别适用于多品种、小批量的生产。

模锻锤属于力大能小,能量可以累积,强冲击负荷和没有固定下死点的定能设备,锻锤的强冲击负荷和多次锻击成形特点,使金属在高度方向流动和填充良好,特别适用于生产薄平带筋的锻件。

锤锻主要工作特点(1)靠冲击力使金属变形,锤头在行程的最后,速度约4-9m/s(2)受力系统不是封闭的,冲击力通过下砧传给基础(3)单位时间内的打击次数多(1~10t模锻锤为40~100次/min)(4)锤头行程不固定(5)承受偏载能力和导向精度均较差(6)无顶出装置模锻工艺和模具设计特点(1)金属在各模膛中的变形是锤头的打击下逐步完成的,锤头的打击速度虽然快,但在打击中每一次的变形量较小(2)由于考冲击力使金属变形,可以利用金属的流动惯性,有利于金属填充模膛。

锻件上难充满的部分应尽量放在上模(3)在锤上可实现多种模锻工步,特别是对长轴类锻件进行滚压,拔长等制坯工步非常方便(4)由于模锻锤的导向精度不太高,工作时的冲击性质和锤头行程不固定等,因此模锻件的尺寸不太高(5)由于无顶出装置,锻件起模较困难,模锻斜度应适当大些(6)由于冲击力使金属变形,模具一般采用整体结构(7)由于靠冲击力使金属变形和锤头行程速度快,通常才用锁扣装置导向,较少采用导柱导套。

典型的锤模锻经过6个工序①镦粗:用来以减小坯料高度,增大横截面积(图中无镦粗工序)。

②拔长:将坯料绕轴线翻转并沿轴线送进,用来减小坯料局部截面,延长坯料长度。

③滚压:操作时只翻转不送进,可使坯料局部截面聚集增大,并使整个坯料的外表圆浑光滑。

④弯曲:用来改变坯料轴线形状。

⑤预锻:改善锻件成形条件,减少锻模膛的磨损。

⑥终锻:使锻件最终成形,决定锻件的形状和精度。

第8.3章模锻

第8.3章模锻

金属工艺学
1.错模 . 锤头导轨的间隙过大、模具缺少 锤头导轨的间隙过大、 平衡导锁以及模具安装不合理等原因 都可能产生错模,如图所示。 都可能产生错模,如图所示。 2.欠压 . 即上、下模分模面未打靠, 即上、下模分模面未打靠,也称 锻不足” “锻不足”。 3.局部充不满 . 由于坯料体积过小或坯料放偏等原因致使 锻件上的凸筋、 锻件上的凸筋、外圆角等部位因模槽未充满 而欠缺,这种缺陷一般无法修正。 而欠缺,这种缺陷一般无法修正。 金属工艺学
图8-25 胎模示意图
金属工艺学
8.3.2胎模锻 胎模锻
胎模锻造成型是在自由锻设备上, 胎模锻造成型是在自由锻设备上,使用可移动 是在自由锻设备上 的胎模具生产锻件的锻造方法。 的胎模具生产锻件的锻造方法。 胎模成型与自由成型相比,具有较高的生产率, 胎模成型与自由成型相比,具有较高的生产率, 锻件质量好,节省金属材料,降低锻件成本。 锻件质量好,节省金属材料,降低锻件成本。 与固定模膛成型相比,不需要专用锻造设备, 与固定模膛成型相比,不需要专用锻造设备,模具 简单,容易制造。 简单,容易制造。 锻件质量不如固定模膛成型的锻件高, 锻件质量不如固定模膛成型的锻件高,工人劳 动强度大,胎模寿命短,生产率低。 动强度大,胎模寿命短,生产率低。 胎模成型只适用于小批量生产, 胎模成型只适用于小批量生产,多用在没有模 锻设备的中小型工厂中。 锻设备的中小型工厂中。 金属工艺学
标注模锻圆角半径
锻件上所有转角处都应做成圆角(图8-10)。一般内圆角半径(R) 锻件上所有转角处都应做成圆角 图 。一般内圆角半径( ) 应大于其外圆半径( )。 应大于其外圆半径(r)。
留出冲孔连皮
锻件上直径小于25mm的孔,一般不锻出,或只压出球形凹穴。大 的孔,一般不锻出,或只压出球形凹穴。 锻件上直径小于 的孔 的通孔, 于25mm的通孔,也不能直接模锻出通孔,而必须在孔内保留一层连皮。 的通孔 也不能直接模锻出通孔,而必须在孔内保留一层连皮。 冲孔连皮的厚度s与孔径 有关, 与孔径d有关 冲孔连皮的厚度 与孔径 有关,当d =30~80mm时,s =4~8mm。 ~ 时 ~ 。

模具设计与制造——第8章 锤上模锻工艺及模具设计

模具设计与制造——第8章  锤上模锻工艺及模具设计

第八章 锤上模锻工艺及模具设计
第二节 模锻件图的制订
模锻图是确定模锻工艺和设计锻模的依据,又是指导模锻工进 行生产和检验人员验收锻件的主要技术文件。 模锻图分为冷锻件图和热锻件图。 冷锻件图用于对锻件的检验。 热锻件图用于锻模设计与加工。 在设计冷锻件图时,需要考虑下列因素: 分模面的位置 加工余量和公差 模锻斜度和圆角半径 冲孔连皮的形式和技术条件等
第八章 锤上模锻工艺及模具设计
•锤上模锻
是在自由锻、胎模锻基础上最早发展起来的模型锻造,它 是将上下模块分别固紧在锤头与砧座上,将加热透的金属坯料 放入下模型腔中,借助于上模向下的冲击作用,迫使金属在锻 模型腔中塑性流动和充填,从而获得与型腔形状一致的锻件。 是批量和大批量锻件生产的主要方法。
第八章 锤上模锻工艺及模具设计
第八章 锤上模锻工艺及模具设计
第二节 模锻件图的制订
六、锻件图的技术条件
技术条件应包含以下内容 未注明的模锻斜度和圆角半径 锻件沿中心线的错移量 允许残留的飞边和毛刺的大小 锻件壁厚差的规定 热处理硬度值 锻件的清理方法 印记的项目和位置 其他特殊要求
I级涡轮盘锻件图
第八章 锤上模锻工艺及模具设计
第八章 锤上模锻工艺及模具设计
第四节 预锻型腔的设计
预锻型腔的宽与高 当预锻后的坯料在终锻型腔中是以镦粗方式成形时,预 锻型腔的高度尺寸应比终锻型腔大2~5mm,宽度则比终 锻型腔小1~2mm,横断面面积应比终锻型腔相应处截面 积大1%~3%。
第八章 锤上模锻工艺及模具设计
第四节 预锻型腔的设计
第八章 锤上模锻工艺及模具设计
第三节 终锻型腔的设计
二、飞边槽的确定
开式模锻的终锻型腔周边必需有飞边槽,其形式及尺寸大 小对锻件成形影响很大。 1.金属变形分析 锻锤模锻时,金属流动过程大致分为四个阶段: 第一阶段:镦粗变形过程 第二阶段:飞边形成阶段 第三阶段:型腔充满过程 第四阶段:打靠或锻足阶段

锻造工艺与模具设计ppt课件

锻造工艺与模具设计ppt课件

[例] 有一质量为0·8kg的锤上模锻件,作出计算毛坯图 后,经计算工艺繁重系数 =1.37 =3.2 k=0.05
精品课件
31
六、坯料尺寸的确定 七、模锻锤吨位计算
精品课件
32
第八章 锻模设计
一 模锻工步型槽设计 (一)终锻型槽设计
终锻型槽是各种型槽中最重要的型槽,用 来完成锻件最终成形。终锻型槽按热锻件图 加工制造和检验,所以设计终锻型槽,须先 设计热锻件图。 1、热锻件图设计 热锻件图与冷锻件图差异 2、毛边槽设计 3、钳口 (二)、预锻型槽设计
精品课件
6
三、 金属锻造温度范围的确定 四、 金属的加热规范 五、金属的少无氧化加热
精品课件
7
精品课件
8
第四章 自由锻主要工序分析
自由锻的优点:
所用工具简单,通用性强、灵活性大, 因此适合单件和小批锻件;
特别是特大型锻件的生产,这对于新 产品的试制、非标准的工装夹具和模锻、 模锻件的制坯、
精品课件
11
精品课件
12
精品课件
13
第六章模锻成形工步分析
1、锤上模锻方式与变形特征
分类:
按金属在锻模型槽内变形的特征,以及 变形金属所处应力和塑性状态的不同, 可分为开式模锻与闭式模锻;
如按型槽数分: 有单型槽模锻和多型槽模锻; 如按成形锻件数分: 则分为单件模锻和多件模锻。
精品课件
模锻锻件图及锻件技术条件
精品课件
21
4、模锻变形工步的确定
锤上模锻工序包括三类工步。
(1)模锻工步 包括预锻和终锻工步,其作用是使 经制坯的坯料得到冷锻件图所要求的形状和尺寸。 预锻。
(2)制坯工步 包括镦粗、拔长、滚挤、卡压、成 形、弯曲等工步。制坯工步的作用是改变毛坯的 形状,合理分配坯料体积,以适应锻件横截面形 状和尺寸的要求,使金属较好地充满型槽。

摇臂”锤模锻工艺及模具设计课程设计报告

摇臂”锤模锻工艺及模具设计课程设计报告

摇臂”锤模锻工艺及模具设计课程设计报告前言本文主要介绍了锤上模锻锻件设计及工艺设计的相关内容。

通过零件分析、材料特性分析、尺寸精度及表面粗糙度分析等,确定了基本工艺方案。

在锤上模锻锻件设计中,确定了分模位置、锻件公差及加工余量等参数,并计算了锻件的主要参数。

最后,通过模锻件的技术条件确定了锤上模锻锻件的工艺设计。

1 零件分析及基本工艺方案确定1.1 零件分析首先对锤上模锻锻件进行了分析,确定了其结构特点、零件形状和尺寸等信息,为后续的工艺设计提供了基础。

1.2 零件材料特性分析在零件分析的基础上,对锻件所用的材料进行了特性分析,包括其化学成分、物理性质、力学性能等方面的特点,以便在后续的工艺设计中能够更好地选择合适的工艺参数。

1.3 零件尺寸精度及表面粗糙度分析为了确保锤上模锻锻件的质量,对其尺寸精度和表面粗糙度进行了分析,以便在后续的工艺设计中能够更好地控制这些参数。

1.4 零件基本工艺方案确定通过对零件的分析和材料特性分析,确定了锤上模锻锻件的基本工艺方案,包括锻造工艺、热处理工艺等方面的内容。

2 锤上模锻锻件设计2.1 确定分模位置在锤上模锻锻件设计中,首先需要确定分模位置,以便在后续的工艺设计中能够更好地控制锻件的形状和尺寸。

2.2 确定锻件公差及加工余量2.2.1 确定材质系数、复杂系数、零件的机械加工精度在确定锻件公差及加工余量时,需要考虑材质系数、复杂系数和零件的机械加工精度等因素,以便在后续的工艺设计中能够更好地控制这些参数。

2.2.2 确定锻件公差和余量通过对锻件的分析和材料特性分析,确定了锻件的公差和余量,以便在后续的工艺设计中能够更好地控制这些参数。

2.2.3 确定模锻斜度在锤上模锻锻件设计中,还需要考虑模锻斜度的问题,以便在后续的工艺设计中能够更好地控制锻件的形状和尺寸。

2.2.4 确定圆角半径在锤上模锻锻件设计中,还需要考虑圆角半径的问题,以便在后续的工艺设计中能够更好地控制锻件的形状和尺寸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 锤上模锻工艺及模具设计
第二节 模锻件图的制订
五、冲孔连皮
锤上模锻件不能直接锻出透孔,必须在孔内保留一层连皮, 然后在切边压力机上除掉。 其目的在于使锻件更接近零件形状减少金属消耗,同时也可 减轻锻模的刚性接触,起缓冲作用,避免锻模损坏;一般情况 下,当锻件内孔直径大于30mm时要考虑冲孔连皮。 连皮厚度s要适当,过薄锻件容易发生锻不足和要求较大的打 击力,从而导致型槽凸出部分加速磨损和打塌。 若连皮太厚,虽可克服上述问题,但冲除连皮困难,容易使 锻件形状走样,而且浪费金属。 冲孔连皮的尺寸确定方法p291。
第八章 锤上模锻工艺及模具设计
第二节 模锻件图的制订
二、加工余量和公差的确定
加工余量 在不影响产品零件加工的前提下,应尽量选用小加工余量。 加工余量的大小取决于零件的轮廓尺寸、重量大小、精度和 表面粗糙度等。 尺寸公差 的锻件的实际尺寸与锻件图规定的公称尺寸之间的偏差。 在模锻过程中,由于欠压、错模、锻模磨损、锻件表面氧化 及锻件冷却收缩不均等,使锻件尺寸在一定的范围内上下波动 其大小取决于锻件外形尺寸、精度、表面粗糙度等级等。
第八章 锤上模锻工艺及模具设计
内容简介:
本章对模锻件的分类进行介绍,了解模锻件图的制订 方法,以及终锻和预锻型腔的设计,了解毛坯体积计算与 尺寸确定、锻锤吨位的确定,认识简单锻模的结构设计与 锻模材料。
学习目的与要求:
1、对锤上模锻工艺有所了解; 2、掌握预锻、终锻型腔的设计方法; 3、认1)金属在型腔中的变形是在锤头的多次打击下逐步完成的,锤 头的冲击力使金属变形,可以利用金属的流动惯性,有利于金属填 充型腔。 (2)在锤上可以实现多种工步成形,锤头打击速度快,效率高。
(3)由于模锻锤的导向精度不高,锤头行程不固定,模锻件的尺 寸精度不高。
(4)由于无顶出装置,锻件出模困难,模锻斜度可适当大些。
第八章 锤上模锻工艺及模具设计
第二节 模锻件图的制订
三、模锻斜度的选择
为便于模锻件从型腔中取出,锻模侧壁必须做成一定的斜度 外斜度与内斜度、自然斜度与匹配斜度 原则:内斜度比外斜度大一级;尽量选小的模锻斜度;自然 斜度不小于模锻斜度 常用斜度确定:P289
确定模锻斜度
第八章 锤上模锻工艺及模具设计
模锻图分为冷锻件图和热锻件图。 冷锻件图用于对锻件的检验。 热锻件图用于锻模设计与加工。 在设计冷锻件图时,需要考虑下列因素: 分模面的位置 加工余量和公差 模锻斜度和圆角半径 冲孔连皮的形式和技术条件等
第八章 锤上模锻工艺及模具设计
第二节 模锻件图的制订
一、分模面位置的选择
分模面位置的选择原则: 要保证锻件能从型腔中取出来,因此锻件的侧表面上不得有 内凹的形状。 分模的位置要尽量使型腔的深度最小和宽度最大,这样金属 容易充满型腔,因为宽而浅的型腔是以镦粗的方式充满的。 为了容易发现模锻时锻件错移,分模面应尽量使上、下两部 分对称,而且尽量避免使分模面选择在过渡面上。 为了使模具制造方便,尽量采用平面分模,凸出部分也尽量 不要高出分模面。 金属容易充满上模型腔,锻件较复杂部分应尽量安排在上模
第一节 模锻件分类
分类方法:按照锻件分模线和主轴线的形状,以及锻件在平面 图上轮廓尺寸的比例,将模锻件分为下面三类。
I类-短轴类锻件:锻件在平面图上两个相互垂直方向的尺寸相 等或相近,在水平面上的投影为圆形或方形;主要变形工步 的锤击方向与主轴线平行,模锻时金属沿高度、宽度、长度 方向同时流动,属于体积变形。如齿轮、法兰盘等。
第八章 锤上模锻工艺及模具设计
•锤上模锻
是在自由锻、胎模锻基础上最早发展起来的模型锻造,它 是将上下模块分别固紧在锤头与砧座上,将加热透的金属坯料 放入下模型腔中,借助于上模向下的冲击作用,迫使金属在锻 模型腔中塑性流动和充填,从而获得与型腔形状一致的锻件。
是批量和大批量锻件生产的主要方法。
第八章 锤上模锻工艺及模具设计
(5)生产操作方便,劳动强度比自由锻小。
第八章 锤上模锻工艺及模具设计
第一节 模锻件的分类
分类的意义
模锻工艺和模锻方法与锻件外形密切相关。 形状相似的锻件,其模锻工艺流程、锻模结构和模锻设备 基本相同。 为了便于拟定工艺流程,加速锻件与锻模的设计,应将各 种形状的模锻件进行分类。
第八章 锤上模锻工艺及模具设计
第八章 锤上模锻工艺及模具设计
第二节 模锻件图的制订
六、锻件图的技术条件
技术条件应包含以下内容 未注明的模锻斜度和圆角半径 锻件沿中心线的错移量 允许残留的飞边和毛刺的大小 锻件壁厚差的规定 热处理硬度值 锻件的清理方法 印记的项目和位置 其他特殊要求
第八章 锤上模锻工艺及模具设计
第二节 模锻件图的制订
四、圆角半径的确定(续)
较大的圆角半径对金属充满型腔、提高锻件质量和模具寿命 是有利的。 外圆角半径过大使锻件在圆角处的余量减小。 内圆角半径过大会增加金属的消耗。 外圆角半径的确定 r=余量+c(零件相应处的倒角或圆角) 锻件内圆角半径应比外圆角半径大,一般 R=(2~3)r。 为便于选用标准刀具,对同一锻件上不采取过多不同的圆角 半径;对于以压入法和金属流动特别剧烈的部位,应适当加大 圆角半径。
第二节 模锻件图的制订
四、圆角半径的确定
为便于金属在型腔内流动,避免锻件产生折伤并保护金属流线 的连续性,提高锻模使用寿命,锻件上尖锐棱角要做成圆弧。 向外凸出的圆角半径称为外圆角半径,用r表示; 向内凹进的圆角半径称为内圆角半径,用R表示。 锻件r对应模具型腔的内圆角,作用是避免锻模在热处理和模 锻过程中因应力集中而导致模具开裂,并保证金属充满型腔; 锻件R对应模具型槽上的凸圆角,作用是使金属易于流动充满 型槽,防止产生折叠和型槽过早被压塌。
II类-长轴类锻件:轴线的长度大于其他两个方向的尺寸,锤击 方向与轴线垂直,在模锻型腔中,变形的金属沿主轴线方向的 变形流动很小,主要沿高度和宽度方向流动。如连杆和直轴。
III类-复杂类锻件:I类和II类锻件特征的组合。
第八章 锤上模锻工艺及模具设计
第二节 模锻件图的制订
模锻图是确定模锻工艺和设计锻模的依据,又是指导模锻工进 行生产和检验人员验收锻件的主要技术文件。
相关文档
最新文档