2019年湖北省襄阳市中考数学试卷含答案
2019全国中考数学真题分类汇编之29:数学文化(含答案)
2019年全国中考数学真题分类汇编:数学文化一、选择题1. (2019年乐山市)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。
问人数、物价各多少?”根据所学知识,计算出人数、物价分别是( )()A 1,11 ()B 7,53 ()C 7,61 ()D 6,50 【考点】二元一次方程组的解法与应用 【解答】解:设人数人,物价y 钱.⎩⎨⎧=+=-y x yx 4738解得:⎩⎨⎧==537y x ,故选B.2.(2019年重庆市)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为,乙的钱数为y ,则可建立方程组为( )A .B .C .D .【考点】二元一次方程组的解法与应用 【解答】解:设甲的钱数为,乙的钱数为y ,依题意,得:.故选:A .3. (2019年山东省德州市)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长尺,木长y尺,则可列二元一次方程组为()A. B. C D【考点二元一次方程组的解法与应用、数学文化【解答】解:设绳长尺,长木为y尺,依题意得,故选:B.4.(2019年湖北省襄阳市)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为人,所列方程正确的是()A.5﹣45=7﹣3 B.5+45=7+3 C.=D.=【考点】一元一次方程的应用【解答】解:设合伙人数为人,依题意,得:5+45=7+3.故选:B.5. (2019年湖北省宜昌市)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=,那么三角形的面积为S=.如图,在△ABC 中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为()A.6B.6C.18D.【考点】二次根式的应用【解答】解:∵a=7,b=5,c=6.∴p==9,∴△ABC的面积S==6;故选:A.6.(2019年福建省)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读个字,则下面所列方程正确的是( ) A .+2+4=34685 B .+2+3=34685C .+2+2=34685D .+12+14=34685【考点】由实际问题抽象出一元一次方程【解答】解:设他第一天读个字,根据题意可得:+2+4=34685, 故选:A .7.(2019年吉林省长春市)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为,买鸡的钱数为y ,可列方程组为( ) A . B .C D .【考】由实际问题抽象出二元一次方程组【解答】解:设人数为,买鸡的钱数为y ,可列方程组为: . 故:D .8.(2019年甘肃兰州)《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为斤,一只燕的重量为y 斤,则可列方程组为( ) A . B .CD .【考由际问抽出二元一次方程组 【解答】解:由题意可得, , 故:C .9.(019年湖南省长沙市)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为尺,绳子长为y 尺,则所列方程组正确的是()A.B.C.D.考点由实际问题抽象出二元一次方程组【解答】解:由题意可得,,故选A.10.(2019年浙江省舟山市)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹两,牛每头y两,根据题意可列方程组为()A.B.C.D【考】二元一次方程组的应用【解答】解:设马每匹两,牛每头y两,根据题意可列方程组为:.故:D.11.(2019年浙江省宁波市)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【考点】勾股定理【解答】解:设直角三角形的斜边长为c ,较长直角边为b ,较短直角边为a , 由勾股定理得,c 2=a 2+b 2,阴影部分的面积=c 2﹣b 2﹣a (c ﹣b )=a 2﹣ac +ab =a (a +b ﹣c ), 较小两个正方形重叠部分的宽=a ﹣(c ﹣b ),长=a , 则较小两个正方形重叠部分底面积=a (a +b ﹣c ),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积, 故选:C . 二、填空题1. (2019年上海市)《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛 . 斛米.(注:斛是古代一种容量单位) 【考点】二元一次方程组的解法【解答】解:设1个大桶可以盛米斛,1个小桶可以盛米y 斛, 则,故++y +5y =5, 则+y =56.答:1大桶加1小桶共盛56斛米.故答案为:56.2. (2019年辽宁省大连市)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu ,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒斛,1个小桶可以盛酒y 斛,根据题意,可列方程组为 . 【考点】二元一次方程组的应用【解答】解:设1个大桶可以盛酒斛,1个小桶可以盛酒y 斛, 根据题意得:, 故案为.3(2019年江苏省南通市)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有个人共同出钱买鸡,根据题意,可列一元一次方程为.【解答】一元一次方程的应用【考点】解:设有个人共同买鸡,根据题意得:9﹣11=6+16.故答案为:9﹣11=6+16.4.(2019年湖南省株洲市)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.【解答】一元一次方程的应用【考点】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.5.(2019年湖北省咸宁市)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长尺,绳子长y尺,可列方程组为.【解答】二元一次方程组的应用【考点】解:设木条长尺,绳子长y尺,依题意,得:.答案为:..(2019年江苏省泰安市)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重两,每枚白银重y两,根据题意可列方程组为____.【解答】由实际问题抽象出二元一次方程组【考点】解:设每枚黄金重两,每枚白银重y两,由题意得:,故案为:.7(201年宁夏自治)你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程2+5﹣14=0即(+5)=14为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是(++5)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×14+52,据此易得=2.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程2﹣4﹣12=0的正确构图是.(只填序号)【解答】一元二次方程的应用【考点】解:∵2﹣4﹣12=0即(﹣4)=12,∴构造如图②中大正方形的面积是(+﹣4)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×12+42,据此易得=6.故答案为:②.8.(2019年甘肃白银)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数614040401000036000806403109204849791803139699出现“正面朝上”的次数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为0.5(精确到0.1).【解答】利用频率估计概率【考点】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.三、解答题1.(2019年甘肃省)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?【考点】一元一次方程的解法及应用【解答】解:设共有人,根据题意得:+2=,去分母得:2+12=3﹣27,解得:=39,∴=15,则共有39人,15辆车.2.(2019年湖北省黄石市)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?【解答】一元一次方程的应用【考点】解:(1)设当走路慢的人再走600步时,走路快的人的走步,由题意得:600=100:60∴=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+60y100∴y=500答:走路快的人走500步才能追上走路慢的人.。
湖北省襄阳市2019年中考[数学]考试真题和参考答案
湖北省襄阳市2019年中考[数学]考试真题与答案解析一、选择题本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的绝对值是( )A.﹣2 B.2 C.﹣D.【知识考点】绝对值.【思路分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解题过程】解:|﹣2|=2.故选:B.【总结归纳】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是( )A.132° B.128° C.122° D.112°【知识考点】平行线的性质.【思路分析】根据平行线的性质得到∠BEF=180°﹣∠EFG=116°,根据角平分线的定义得到∠BEG=∠BEF=58°,由平行线的性质即可得到结论.【解题过程】解:∵AB∥CD,∠EFG=64°,∴∠BEF=180°﹣∠EFG=116°,∵EG平分∠BEF交CD于点G,∴∠BEG=∠BEF=58°,∵AB∥CD,∴∠EGD=180°﹣∠BEG=122°.故选:C.【总结归纳】此题考查了平行线的性质与角平分线的定义.解题的关键是掌握两直线平行,同旁内角互补与两直线平行,内错角相等的知识点.3.下列运算一定正确的是( )A.a+a=a2B.a2•a3=a6C.(a3)4=a12D.(ab)2=ab2【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.【解题过程】解:A.a+a=2a,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.(a3)4=a12,故本选项符合题意;D.(ab)2=a2b2,故本选项不合题意.故选:C.【总结归纳】本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.4.下列说法正确的是( )A.“买中奖率为的奖券10张,中奖”是必然事件B.“汽车累积行驶10000km,从未出现故障”是不可能事件C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D.若两组数据的平均数相同,则方差小的更稳定【知识考点】算术平均数;方差;随机事件;概率的意义;概率公式.【思路分析】根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.【解题过程】解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,从未出现故障”是随机事件,故本选项错误;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项正确;故选:D.【总结归纳】此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.5.如图所示的三视图表示的几何体是( )A.B.C.D.【知识考点】由三视图判断几何体.【思路分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解题过程】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.故选:A.【总结归纳】考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体.6.不等式组中两个不等式的解集在数轴上表示正确的是( )A.B.C.D.【知识考点】在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】根据不等式组可以得到该不等式组的解集,从而可以在数轴上表示出来,本题得以解决.【解题过程】解:由不等式组得﹣2≤x<1,该不等式组的解集在数轴表示如下:故选:A.【总结归纳】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法.7.如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是( )A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C【知识考点】作图—基本作图.【思路分析】证明△ADE≌△ADB即可判断A,B正确,再根据同角的补角相等,证明∠EDC =∠BAC即可.【解题过程】解:由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴DB=DE,AB=AE,∵∠AED+∠B=180°∴∠BAC+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠EDC=∠BAC,故A,B,C正确,故选:D.【总结归纳】本题考查作图﹣基本作图,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹.若设小马有x匹,大马有y匹,则下列方程组中正确的是( )A.B.C.D.【知识考点】数学常识;由实际问题抽象出二元一次方程组.【思路分析】根据“3匹小马能拉1片瓦,1匹大马能拉3片瓦”,即可得出关于x,y的二元一次方程组,此题得解.【解题过程】解:根据题意可得:,故选:C.【总结归纳】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.已知四边形ABCD是平行四边形,AC,BD相交于点O,下列结论错误的是( )A.OA=OC,OB=ODB.当AB=CD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD且AC⊥BD时,四边形ABCD是正方形【知识考点】平行四边形的判定与性质;菱形的性质;菱形的判定;矩形的判定;正方形的判定.【思路分析】根据正方形的判定,矩形的判定、菱形的判定方法分别判断后即可确定正确的选项.【解题过程】解:A、根据平行四边形的性质得到OA=OC,OB=OD,该结论正确;B、当AB=CD时,四边形ABCD还是平行四边形,该选项错误;C、根据有一个角是直角的平行四边形是矩形可以判断该选项正确;D、当AC=BD且AC⊥BD时,根据对角线相等可判断四边形ABCD是矩形,根据对角线互相垂直可判断四边形ABCD 是菱形,故四边形ABCD是正方形,该结论正确;故选:B.【总结归纳】本题考查了正方形的判定,矩形的判定、平行四边形的性质及菱形的判定方法,牢记判定方法是解答本题的关键.10.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.其中正确的有( )A.4个B.3个C.2个D.1个【知识考点】二次函数图象与系数的关系.【思路分析】二次函数图象与系数的关系以及二次函数的性质,逐一分析判断即可.【解题过程】解:①∵抛物线开口向上,且与y轴交于负半轴,∴a>0,c<0,∴ac<0,结论①正确;②∵抛物线对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∵抛物线经过点(﹣1,0),∴a﹣b+c=0,∴a+2a+c=0,即3a+c=0,结论②正确;③∵抛物线与x轴由两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,结论③正确;④∵抛物线开口向上,且抛物线对称轴为直线x=1,∴当x<1时,y随x的增大而减小,结论④错误;故选:B.【总结归纳】本题主要考查抛物线与x轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.二、填空题本大题共6个小题,每小题3分,共18分.11.函数y=中自变量x的取值范围是 .【知识考点】函数自变量的取值范围.【思路分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解题过程】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【总结归纳】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.12.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C= °.【知识考点】三角形内角和定理;三角形的外角性质.【思路分析】先根据等腰三角形的性质及三角形内角和定理可求出∠B的度数,再根据三角形外角的性质可求出∠ADC的度数,再由三角形内角和定理解答即可.【解题过程】解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C===40°.【总结归纳】本题涉及到三角形的内角和定理、三角形外角的性质及等腰三角形的性质,属较简单题目.13.《易经》是中国传统文化的精髓.如图是易经的一种卦图,图中每一卦由三根线组成(线形为或),如正北方向的卦为,从图中三根线组成的卦中任取一卦,这一卦中恰有2根和1根的概率为 .【知识考点】概率公式.【思路分析】从八卦中任取一卦,基本事件总数n=8,这一卦中恰有2根和1根的基本事件个数m=3,由概率公式即可得出答案.【解题过程】解:从八卦中任取一卦,基本事件总数n=8,这一卦中恰有2根和1根的基本事件个数m=3,∴这一卦中恰有2根和1根的概率为=;故答案为:.【总结归纳】本题考查了概率公式、古典概率;熟练掌握概率公式是解题的关键.14.汽车刹车后行驶的距离s(单位:米)关于行驶时间t(单位:秒)的函数关系式是s=15t ﹣6t2.则汽车从刹车到停止所用时间为 秒.【知识考点】二次函数在给定区间上的最值.【思路分析】利用配方法求二次函数最值的方法解答即可.【解题过程】解:∵s=15t﹣6t2=﹣6(t﹣1.25)2+9.375,∴汽车从刹车到停下来所用时间是1.25秒.故答案为:1.25.【总结归纳】考查了二次函数最值的应用,此题主要利用配方法求最值的问题,根据已知得出顶点式是解题关键.15.在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于 °.【知识考点】线段垂直平分线的性质;垂径定理;圆周角定理.【思路分析】根据弦BC垂直平分半径OA,可得OD:OB=1:2,得∠BOC=120°,根据同弧所对圆周角等于圆心角的一半即可得弦BC所对的圆周角度数.【解题过程】解:如图,∵弦BC垂直平分半径OA,∴OD:OB=1:2,∴∠BOD=60°,∴∠BOC=120°,∴弦BC所对的圆周角等于60°或120°.故答案为:60°或120°.【总结归纳】本题考查了圆周角定理、垂径定理、线段垂直平分线的性质,解决本题的关键是掌握圆周角定理.16.如图,矩形ABCD中,E为边AB上一点,将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN.若BF•AD=15,tan∠BNF=,则矩形ABCD的面积为 .【知识考点】矩形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由折叠的性质得出∠BNF=∠BEF,由条件得出tan∠BEF=,设BF=x,BE =2x,由勾股定理得出EF=3x,得出AB=BF,则可得出答案.【解题过程】解:∵将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,∴AF⊥DE,AE=EF,∵矩形ABCD中,∠ABF=90°,∴B,E,N,F四点共圆,∴∠BNF=∠BEF,∴tan∠BEF=,设BF=x,BE=2x,∴EF==3x,∴AE=3x,∴AB=5x,∴AB=BF.∴S矩形ABCD=AB•AD=BF•AD=×15=15.故答案为:15.【总结归纳】本题考查了折叠的性质,矩形的性质,锐角三角函数,勾股定理等知识,熟练掌握折叠的性质是解题的关键.三、解答题本大题共9个小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(6分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y)﹣2y(3x+5y),其中x=,y=﹣1.【知识考点】整式的混合运算—化简求值.【思路分析】原式利用完全平方公式,平方差公式,以及单项式乘多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解题过程】解:原式=4x2+12xy+9y2﹣4x2+y2﹣6xy﹣10y2=6xy,当x=,y=﹣1时,原式=6××(﹣1)=6﹣6.【总结归纳】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(6分)襄阳东站的建成运营标志着我市正式进入高铁时代,郑万高速铁路襄阳至万州段的建设也正在推进中.如图,工程队拟沿AC方向开山修路,为加快施工进度,需在小山的另一边点E处同时施工.要使A、C、E三点在一条直线上,工程队从AC上的一点B取∠ABD =140°,BD=560米,∠D=50°.那么点E与点D间的距离是多少米?(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【知识考点】解直角三角形的应用.【思路分析】求出∠E的度数,再在Rt△BDE 中,依据三角函数进行计算即可.【解题过程】解:∵A、C、E三点在一条直线上,∠ABD=140°,∠D=50°,∴∠E=140°﹣50°=90°,在Rt△BDE中,DE=BD•cos∠D=560×cos50°≈560×0.64=358.4(米).答:点E与点D间的距离是358.4米.【总结归纳】考查直角三角形的边角关系,构造直角三角形是解决问题的关键.19.(6分)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的,这样120吨水可多用3天,求现在每天用水量是多少吨?【知识考点】分式方程的应用.【思路分析】设原来每天用水量是x吨,则现在每天用水量是x吨,根据现在120吨水比以前可多用3天,即可得出关于x的分式方程,解之经检验后即可得出结论.【解题过程】解:设原来每天用水量是x吨,则现在每天用水量是x吨,依题意,得:﹣=3,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴x=8.答:现在每天用水量是8吨.【总结归纳】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.(6分)3月14日是国际数学日,“数学是打开科学大门的钥匙.”为进一步提高学生学习数学的兴趣,某校开展了一次数学趣味知识竞赛(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩(本次竞赛没有满分),经过整理数据得到以下信息:信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含前端点值,不含后端点值).信息二:第三组的成绩(单位:分)为74 71 73 74 79 76 77 76 76 73 72 75根据信息解答下列问题:(1)补全第二组频数分布直方图(直接在图中补全);(2)第三组竞赛成绩的众数是 分,抽取的50名学生竞赛成绩的中位数是 分;(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的约为 人.【知识考点】用样本估计总体;频数(率)分布直方图;中位数;众数.【思路分析】(1)计算出第2组60~70组的人数,即可补全频数分布直方图;(2)根据中位数、众数的意义,分别求出第3组的众数,样本中位数;(3)样本估计总体,样本中80分以上的占,因此估计总体1500人的是80分以上的人数.【解题过程】解:(1)50﹣4﹣12﹣20﹣4=10(人),补全频数分布直方图如图所示:(2)第3组数据出现次数最多的是76,共出现3次,因此众数是76,抽取的50人的成绩从小到大排列处在第25、26位的两个数的平均数为=78,因此中位数是78,故答案为:76,78;(3)1500×=720(人),故答案为:720.【总结归纳】考查频数分布直方图的意义和制作方法,理解中位数、众数的意义和计算方法是正确解答的前提.21.(7分)如图,反比例函数y1=(x>0)和一次函数y2=kx+b的图象都经过点A(1,4)和点B(n,2).(1)m= ,n= ;(2)求一次函数的解析式,并直接写出y1<y2时x的取值范围;(3)若点P是反比例函数y1=(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,则△POM的面积为 .【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)把A的坐标代入反比例函数的解析式求出m,得出反比例函数的解析式,把B的坐标代入反比例函数的解析式,能求出n,即可得出B的坐标;(2)分别把A、B的坐标代入一次函数的解析式得出方程组,求出方程组的解,即可得出一次函数的解析式;根据图象求得y1<y2时x的取值范围;(3)根据反比例函数系数k的几何意义即可求得.【解题过程】解:(1)∵把A(1,4)代入y1=(x>0)得:m=1×4=4,∴y=,∵把B(n,2)代入y=得:2=,解得n=2;故答案为4,2;(2)把A(1,4)、B(2,2)代入y2=kx+b得:,解得:k=﹣2,b=6,即一次函数的解析式是y=﹣2x+6.由图象可知:y1<y2时x的取值范围是1<x<2;(3)∵点P是反比例函数y1=(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,∴S△POM=|m|==2,故答案为2.【总结归纳】本题考查了用待定系数法求一次函数、反比例函数的解析式,一次函数与反比例函数的交点问题的应用,通过做此题培养了学生的计算能力和观察图形的能力,题目比较典型,是一道比较好的题目.22.(8分)如图,AB是⊙O的直径,E,C是⊙O上两点,且=,连接AE,AC.过点C作CD⊥AE交AE的延长线于点D.(1)判定直线CD与⊙O的位置关系,并说明理由;(2)若AB=4,CD=,求图中阴影部分的面积.【知识考点】勾股定理;垂径定理;圆周角定理;直线与圆的位置关系;扇形面积的计算.【思路分析】(1)连接OC,根据=,求得∠CAD=∠BAC,根据等腰三角形的性质得到∠BAC=∠ACO,推出AD∥OC,根据平行线的性质得到OC⊥CD,于是得到CD是⊙O 的切线;(2)连接OE,连接BE交OC于F,根据垂径定理得到OC⊥BE,BF=EF,由圆周角定理得到∠AEB=90°,根据矩形的性质得到EF=CD=,根据勾股定理得到AE===2,求得∠AOE=60°,连接CE,推出CE∥AB,根据三角形和扇形的面积公式即可得到结论.【解题过程】(1)证明:连接OC,∵=,∴∠CAD=∠BAC,∵OA=OC,∴∠BAC=∠ACO,∴∠CAD=∠ACO,∴AD∥OC,∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连接OE,连接BE交OC于F,∵=,∴OC⊥BE,BF=EF,∵AB是⊙O的直径,∴∠AEB=90°,∴∠FED=∠D=∠EFC=90°,∴四边形DEFC是矩形,∴EF=CD=,∴BE=2,∴AE===2,∴AE=AB,∴∠ABE=30°,∴∠AOE=60°,∴∠BOE=120°,∵=,∴∠COE=∠BOC=60°,连接CE,∵OE=OC,∴△COE是等边三角形,∴∠ECO=∠BOC=60°,∴CE∥AB,∴S△ACE=S△COE,∵∠OCD=90°,∠OCE=60°,∴∠DCE=30°,∴DE=CD=1,∴AD=3,∴图中阴影部分的面积=S△ACD﹣S扇形COE=3﹣=﹣.【总结归纳】本题考查了直线与圆的位置关系,勾股定理,垂径定理,扇形的面积的计算,正确的作出辅助线是解题的关键.23.(10分)受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?(3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.【知识考点】一元一次不等式组的应用;一次函数的应用.【思路分析】(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.(2)设购进甲种水果为a千克,则购进乙种水果(100﹣a)千克,根据实际意义可以确定a 的范围,结合付款总金额(元)与种水果的购进量之间的函数关系可以分类讨论最少费用为多少.(3)根据(2)的结论分情况讨论.【解题过程】解:(1)当0≤x≤50时,设y=kx,根据题意得50k=1500,解得k=30;∴y=30x;当x>50时,设y=k1x+b,根据题意得,,解得,∴y=24x+3000.∴y=,(2)设购进甲种水果为a千克,则购进乙种水果(100﹣a)千克,∴40≤a≤60,当40≤a≤50时,w1=30a+25(100﹣a)=5a+2500.当a=40 时.w min=2700 元,当50<a≤60时,w2=24a+300+25(100﹣a)=﹣a+2800.当a=60时,w min=2740 元,∵2740>2700,∴当a=40时,总费用最少,最少总费用为2700 元.此时乙种水果100﹣40=60(千克).答:购进甲种水果为40千克,购进乙种水果60千克,才能使经销商付款总金额w(元)最少.(3)由题意可设甲种水果为千克,乙种水果为千克当时,即0≤a≤125,则甲种水果的进货价为30元/千克,(40﹣30)×a+(36﹣25)×≥1650,解得a≥,与0≤a≤125矛盾,故舍去;当时,即a>125,则甲种水果的进货价为24元/千克,≥1650,解得x≥150,∴a的最小值为150.【总结归纳】本题主要考查了一次函数的图象以及一元一次不等式组的应用.借助函数图象表达题目中的信息,读懂图象是关键.24.(11分)在△ABC中,∠BAC═90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE.(1)特例发现:如图1,当AD=AF时,①求证:BD=CF;②推断:∠ACE= °;(2)探究证明:如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;(3)拓展运用:如图3,在(2)的条件下,当=时,过点D作AE的垂线,交AE于点P,交AC于点K,若CK=,求DF的长.【知识考点】三角形综合题.【思路分析】(1)①证明△ABD≌△ACF(AAS)可得结论.②利用四点共圆的性质解决问题即可.(2)结论不变.利用四点共圆证明即可.(3)如图3中,连接EK.首先证明AB=AC=3EC,设EC=a,则AB=AC=3a,在Rt△KCE中,利用勾股定理求出a,再求出DP,PF即可解决问题.【解题过程】(1)①证明:如图1中,∵AB=AC,∴∠B=∠ACF,∵AD=AF,∴∠ADF=∠AFD,∴∠ADB=∠AFC,∴△ABD≌△ACF(AAS),∴BD=CF.②结论:∠ACE=90°.理由:如图1中,∵DA=DE,∠ADE=90°,AB=AC,∠BAC=90°,∴∠ACD=∠AED=45°,∴A,D,E,C四点共圆,∴∠ADE+∠ACE=180°,∴∠ACE=90°.故答案为90.(2)结论:∠ACE=90°.理由:如图2中,∵DA=DE,∠ADE=90°,AB=AC,∠BAC=90°,∴∠ACD=∠AED=45°,∴A,D,E,C四点共圆,∴∠ADE+∠ACE=180°,∴∠ACE=90°.(3)如图3中,连接EK.∵∠BAC+∠ACE=180°,∴AB∥CE,∴==,设EC=a,则AB=AC=3a,AK=3a﹣,∵DA=DE,DK⊥AE,∴AP=PE,∴AK=KE=3a﹣,∵EK2=CK2+EC2,∴(3a﹣)2=()2+a2,解得a=4或0(舍弃),∴EC=4,AB=AC=12,∴AE===4,∴DP=PA=PE=AE=2,EF=AE=,∴PF=PE=2,∵∠DPF=90°,∴DF===4.【总结归纳】本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,四点共圆,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.25.(12分)如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣x2+bx+c经过点A,点C,且交x轴于另一点B.(1)直接写出点A,点B,点C的坐标及拋物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,若线段O′A′与抛物线只有一个公共点,请结合函数图象,求m的取值范围.【知识考点】二次函数综合题.【思路分析】(1)令x=0,由y=﹣x+2,得A点坐标,令y=0,由y=﹣x+2,得C点坐标,将A、C的坐标代入抛物线的解析式便可求得抛物线的解析式,进而由二次函数解析式令y=0,便可求得B点坐标;(2)过M点作MN⊥x轴,与AC交于点N,设M(a,),则N(a,),由三角形的面积公式表示出四边形的面积关于a的函数关系式,再根据二次函数的性质求得最大值,并求得a的值,便可得M点的坐标;(3)根据旋转性质,求得O′点和A′点的坐标,令O′点和A′点在抛物线上时,求出m 的最大和最小值便可.【解题过程】解:(1)令x=0,得y=﹣x+2=2,∴A(0,2),令y=0,得y=﹣x+2=0,解得,x=4,∴C(4,0),把A、C两点代入y=﹣x2+bx+c得,,解得,∴抛物线的解析式为,令y=0,得=0,解得,x=4,或x=﹣2,∴B(﹣2,0);(2)过M点作MN⊥x轴,与AC交于点N,如图1,设M(a,),则N(a,),∴=,∵,∴S四边形ABCM=S△ACM+S△ABC=,∴当a=2时,四边形ABCM面积最大,其最大值为8,此时M的坐标为(2,2);(3)∵将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,如图2,∴PO′=PO=m,O′A′=OA=2,∴O′(m,m),A′(m+2,m),当A′(m+2,m)在抛物线上时,有,解得,m=﹣3,当点O′(m,m)在抛物线上时,有,解得,m=﹣4或2,∴当﹣3﹣≤m≤﹣4或﹣3+≤m≤2时,线段O′A′与抛物线只有一个公共点.。
2019年数学中考试卷(含答案)
【参考答案】***试卷处理标记,请不要删除
24.某公司销售两种椅子,普通椅子价格是每把 180 元,实木椅子的价格是每把 400 元. (1)该公司在 2019 年第一月销售了两种椅子共 900 把,销售总金额达到了 272000 元,求两 种椅了各销售了多少把? (2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降 30 元后销售,实 木椅子每把降价 2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上
22.4 月 18 日,一年一度的“风筝节”活动在市政广场举行 ,如图,广场上有一风筝 A,小 江抓着风筝线的一端站在 D 处,他从牵引端 E 测得风筝 A 的仰角为 67°,同一时刻小芸在 附近一座距地面 30 米高(BC=30 米)的居民楼顶 B 处测得风筝 A 的仰角是 45°,已知小江 与居民楼的距离 CD=40 米,牵引端距地面高度 DE=1.5 米,根据以上条件计算风筝距地
7.D
解析:D 【解析】 【分析】 【详解】
解:A 选项中,根据对顶角相等,得 1与 2 一定相等; B、C 项中无法确定 1与 2 是否相等;
D 选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1. 故选:D
8.A
解析:A 【解析】
【分析】
【详解】
该班男生有
x
人,女生有
y
人.根据题意得:
x y 30 3x 2y 78
2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积(含答案)
2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积一、选择题1.(2019年山东省青岛市)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【考点】切线的性质、等腰直角三角形的判定和性质、弧长的计算【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.2.(2019年山东省枣庄市)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A .8﹣πB .16﹣2πC .8﹣2πD .8﹣π【考点】正方形的性质、扇形的面积【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π, 故选:C .3. (2019年云南省)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A.48πB.45πC.36πD.32π【考点】圆锥的全面积【解答】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴ ππ82=r ,∴4=r ,圆锥的全面积等于πππππ4832162=+=+=+r rl S S 底侧, 故选A4. (2019年浙江省温州市)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A .πB .2πC .3πD .6π【考点】弧长公式计算.【解答】解:该扇形的弧长==3π. 故选:C .5. (2019年湖北省荆州市)如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在上的点D 处,且l :l =1:3(l 表示的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【考点】圆锥的侧面积【解答】解:连接OD 交OC 于M .由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.6. (2019年西藏)如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm【考点】圆锥的侧面积【解答】解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=45cm,∴弧CD的长==30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故选:A.二、填空题1.(2019年重庆市)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)【考点】扇形面积公式、菱形的性质【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.2. (2019年山东省滨州市)若正六边形的内切圆半径为2,则其外接圆半径为.【考点】正多边形和圆、等边三角形的判定与性质、三角函数【解答】解:如图,连接OA、OB,作OG⊥AB于G;则OG=2,∵六边形ABCDEF正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OA===,∴正六边形的内切圆半径为2,则其外接圆半径为.故答案为:.3. (2019年山东省青岛市)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.【考点】正多边形和圆、圆周角定理【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.4. (2019年广西贵港市)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.【考点】圆锥面积公式【解答】解:连接AB ,过O 作OM ⊥AB 于M ,∵∠AOB=120°,OA=OB ,∴∠BAO=30°,AM=, ∴OA=2,∵=2πr , ∴r=故答案是:5. (2019年广西贺州市)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.【考点】圆锥面积公式【解答】解:设圆锥的母线为a ,根据勾股定理得,a =4,设圆锥的侧面展开图的圆心角度数为n °,根据题意得2π•1=,解得n =90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.6. (2019年江苏省泰州市)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为 cm .【考点】扇形弧长公式【解答】∵l=180R n π=1806120⨯π=4π, ∴4π×3=12π. 故答案为:12π.7.(2019年江苏省无锡市)已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm .【考点】圆锥侧面积【解答】圆锥底面圆的半径r=15π÷5π=3.8. (2019年江苏省扬州市)如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=__15_。
2019年中考数学试题含答案 (12)
2019年中考数学试卷一、选择题(本大题共10小题,共30分)1.比1小2的数是()A. −1B. −2C. −3D. 1【答案】A【解析】解:1−2=−1.故选:A.求比1小2的数就是求1与2的差.本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.2.下列运算正确的是()A. a3⋅a4=a12B. a6÷a3=a2C. 2a−3a=−aD. (a−2)2=a2−4【答案】C【解析】解:A、应为a3⋅a4=a7,故本选项错误;B、应为a6÷a3=a3,故本选项错误;C、2a−3a=−a,正确;D、应为(a−2)2=a2−4a+4,故本选项错误.故选:C.根据同底数的幂的运算法则、合并同类项法则及完全平方公式计算.本题考查同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,计算时要认真.3.长度单位1纳米=10−9米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是()A. 25.1×10−6米B. 0.251×10−4米C. 2.51×105米D. 2.51×10−5米【答案】D【解析】解:2.51×104×10−9=2.51×10−5米.故选D.先将25100用科学记数法表示为2.51×104,再和10−9相乘.a×10n中,a的整数部分只能取一位整数,1≤|a|<10.此题中的n应为负数.4.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路囗都是绿灯,但实际这样的机会是()A. 12B. 18C. 38D. 12+12+12【答案】B【解析】解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是1,8故选:B.列举出所有情况,看个路口都是绿灯的情况占总情况的多少即可.此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A. 和B. 谐C. 凉D. 山【答案】D【解析】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.注意正方体的空间图形,从相对面入手,分析及解答问题.6.一组数据:3,2,1,2,2的众数,中位数,方差分别是()A. 2,1,0.4B. 2,2,0.4C. 3,1,2D. 2,1,0.2【答案】B【解析】解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,[(3−2)2+2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为153×(2−2)2+(1−2)2]=0.4,即中位数是2,众数是2,方差为0.4.故选:B.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均)数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.利用方差公式计算方差.本题属于基础题,考查了确定一组数据的中位数、方差和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.7.若ab<0,则正比例函数y=ax与反比例函数y=b在同一坐标系中的大致图象可x能是()A. B. C. D.【答案】B【解析】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形.故选:D.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()A. AD=BC′B. ∠EBD=∠EDBC. △ABE∽△CBDD. sin∠ABE=AEED【答案】C【解析】解:A、BC=BC′,AD=BC,∴AD=BC′,所以正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB正确.D、∵sin∠ABE=AE,BE∴∠EBD=∠EDB∴BE=DE∴sin∠ABE=AE.ED故选:C.主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.10.如图,⊙O是△ABC的外接圆,已知∠ABO=50∘,则∠ACB的大小为()A. 40∘B. 30∘C. 45∘D. 50∘【答案】A【解析】解:△AOB中,OA=OB,∠ABO=50∘,∴∠AOB=180∘−2∠ABO=80∘,∠AOB=40∘,∴∠ACB=12故选:A.首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.二、填空题(本大题共6小题,共24分)11.分解因式:9a−a3=______,2x2−12x+18=______.【答案】a(3+a)(3−a);2(x−3)2【解析】解:9a−a3=a(9−a2)=a(3+a)(3−a);2x2−12x+18=2(x2−6x+9)=2(x−3)2.观察原式9a−a3,找到公因式a后,发现9−a2符合平方差公式的形式,直接运用公式可得;观察原式2x2−12x+18,找到公因式2后,发现x2−6x+9符合完全平方差公式的形式,直接运用公式可得.本题考查整式的因式分解.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.12.已知△ABC∽△A′B′C′且S△ABC:S△A′B′C′=1:2,则AB:A′B′=______.【答案】1:√2【解析】解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:√2.根据相似三角形的面积比等于相似比的平方求解即可.本题的关键是理解相似三角形的面积比等于相似比的平方.13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______.【答案】小林【解析】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14. 已知一个正数的平方根是3x −2和5x +6,则这个数是______. 【答案】494【解析】解:根据题意可知:3x −2+5x +6=0,解得x =−12, 所以3x −2=−72,5x +6=72,∴(±72)2=494故答案为:494.由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.本题主要考查了平方根的逆运算,平时注意训练逆向思维.15. 若不等式组{b −2x >0x−a>2的解集是−1<x <1,则(a +b)2009=______. 【答案】−1【解析】解:由不等式得x >a +2,x <12b , ∵−1<x <1, ∴a +2=−1,12b =1∴a =−3,b =2,∴(a +b)2009=(−1)2009=−1. 故答案为−1.解出不等式组的解集,与已知解集−1<x <1比较,可以求出a 、b 的值,然后相加求出2009次方,可得最终答案.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.16. 将△ABC 绕点B 逆时针旋转到△A′BC′,使A 、B 、C′在同一直线上,若∠BCA =90∘,∠BAC =30∘,AB =4cm ,则图中阴影部分面积为______cm 2. 【答案】4π【解析】解:∵∠BCA =90∘,∠BAC =30∘,AB =4cm , ∴BC =2,AC =2√3,∠A′BA =120∘,∠CBC′=120∘, ∴阴影部分面积=(S △A′BC′+S 扇形BAA ′)−S 扇形BCC′−S △ABC =120π360×(42−22)=4πcm 2.故答案为:4π.易得整理后阴影部分面积为圆心角为120∘,两个半径分别为4和2的圆环的面积.本题利用了直角三角形的性质,扇形的面积公式求解.三、计算题(本大题共3小题,共24分)17.先化简,再选择一个你喜欢的数(要合适哦!)代入求值:(1+1x )÷x2−1x.【答案】解:(1+1x )÷x2−1x=x+1x⋅x(x+1)(x−1)=1x−1,当x=2时,原式=12−1=1.【解析】根据分式的加法和除法可以化简题目中的式子,再选取一个使得原分式有意义的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的计算方法.18.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45∘方向上,从A向东走600米到达B处,测得C在点B的北偏西60∘方向上.(1)MN是否穿过原始森林保护区,为什么?(参考数据:√3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?【答案】解:(1)理由如下:如图,过C作CH⊥AB于H.设CH=x,由已知有∠EAC=45∘,∠FBC=60∘,则∠CAH=45∘,∠CBA=30∘.在Rt△ACH中,AH=CH=x,在Rt△HBC中,tan∠HBC=CHHB∴HB=CHtan30∘=x√33=√3x,∵AH+HB=AB,∴x+√3x=600,解得x=6001+√3≈220(米)>200(米).∴MN不会穿过森林保护区.(2)设原计划完成这项工程需要y天,则实际完成工程需要(y−5)天.根据题意得:1y−5=(1+25%)×1y解得:y=25.经检验知:y=25是原方程的根.答:原计划完成这项工程需要25天.【解析】(1)要求MN是否穿过原始森林保护区,也就是求C到MN的距离.要构造直角三角形,再解直角三角形;(2)根据题意列方程求解.考查了构造直角三角形解斜三角形的方法和分式方程的应用.19.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【答案】解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.【解析】利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.四、解答题(本大题共7小题,共72分)20.计算:|3.14−π|+3.14÷(√32+1)0−2cos45∘+(√2−1)−1+(−1)2009.【答案】解:原式=π−3.14+3.14−2×√22+1√2−1−1=π−√2+√2+1−1=π.【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.观察下列多面体,并把如表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a61012棱数b912面数c58观察表中的结果,你能发现、、之间有什么关系吗?请写出关系式.【答案】解:填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a681012棱数b9121518面数c5678根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+2个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:a+c−b=2.【解析】结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.此题主要考查了欧拉公式,熟记常见棱柱的特征,可以总结一般规律:n棱柱有(n+2)个面,2n个顶点和3n条棱是解题关键.22.如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算的面积S.【答案】解:(1)如图所示,即为所求的直角坐标系;B(2,1);(2)如图:即为所求;.【解析】(1)直接利用A,C点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出;(3)直接利用(2)中图形求出三角形面积即可.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.23.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)【答案】解:设涨到每股x元时卖出,根据题意得1000x−(5000+1000x)×0.5%≥5000+1000,(4分)解这个不等式得x≥1205199,即x≥6.06.(6分)答:至少涨到每股6.06元时才能卖出.(7分)【解析】根据关系式:总售价−两次交易费≥总成本+1000列出不等式求解即可.本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价−两次交易费≥总成本+1000”列出不等关系式.24.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是14,求y与x之间的函数关系式.【答案】解:(1)∵一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,∴从中随机抽取出一个黑球的概率是:47;(2)∵往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是14,∴x+37+x+y =14,则y=3x+5.【解析】(1)直接利用概率公式直接得出取出一个黑球的概率;(2)直接利用从口袋中随机取出一个白球的概率是14,进而得出答案函数关系式.此题主要考查了概率公式,正确掌握概率求法是解题关键.25.如图,在平面直角坐标系中,点O1的坐标为(−4,0),以点O1为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成60∘的角,且交y轴于C 点,以点O2(13,5)为圆心的圆与x轴相切于点D.(1)求直线l的解析式;(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,当⊙O2第一次与⊙O1外切时,求⊙O2平移的时间.【答案】解:(1)由题意得OA =|−4|+|8|=12, ∴A 点坐标为(−12,0).∵在Rt △AOC 中,∠OAC =60∘,OC =OAtan∠OAC =12×tan60∘=12√3. ∴C 点的坐标为(0,−12√3).设直线l 的解析式为y =kx +b , 由l 过A 、C 两点,得{−12√3=b 0=−12k +b ,解得{b =−12√3k =−√3∴直线l 的解析式为:y =−√3x −12√3.(2)如图,设⊙O 2平移t 秒后到⊙O 3处与⊙O 1第一次外切于点P ,⊙O 3与x 轴相切于D 1点,连接O 1O 3,O 3D 1.则O 1O 3=O 1P +PO 3=8+5=13. ∵O 3D 1⊥x 轴,∴O 3D 1=5,在Rt △O 1O 3D 1中,O 1D 1=√O 1O 32−O 3D 12=√132−52=12.∵O 1D =O 1O +OD =4+13=17,∴D 1D =O 1D −O 1D 1=17−12=5, ∴t =51=5(秒).∴⊙O 2平移的时间为5秒.【解析】(1)求直线的解析式,可以先求出A 、C 两点的坐标,就可以根据待定系数法求出函数的解析式.(2)设⊙O 2平移t 秒后到⊙O 3处与⊙O 1第一次外切于点P ,⊙O 3与x 轴相切于D 1点,连接O 1O 3,O 3D 1.在直角△O 1O 3D 1中,根据勾股定理,就可以求出O 1D 1,进而求出D 1D 的长,得到平移的时间.本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.26. 如图,已知抛物线y =x 2+bx +c 经过A(1,0),B(0,2)两点,顶点为D .(1)求抛物线的解析式;(2)将△OAB 绕点A 顺时针旋转90∘后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为B 1,顶点为D 1,若点N 在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.【答案】解:(1)已知抛物线y=x2+bx+c经过A(1,0),B(0,2),∴{2=0+0+c0=1+b+c,解得{c=2b=−3,∴所求抛物线的解析式为y=x2−3x+2;(2)∵A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2−3x+2得y=2,可知抛物线y=x2−3x+2过点(3,2),∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2−3x+1;(3)∵点N在y=x2−3x+1上,可设N点坐标为(x0,x02−3x0+1),将y=x2−3x+1配方得y=(x−32)2−54,∴其对称轴为直线x=32.①0≤x0≤32时,如图①,∵S△NBB1=2S△NDD1,∴12×1×x0=2×12×1×(32−x0)∵x0=1,此时x02−3x0+1=−1,∴N点的坐标为(1,−1).②当x0>32时,如图②,同理可得12×1×x0=2×12×(x0−32),∴x0=3,此时x02−3x0+1=1,∴点N的坐标为(3,1).③当x<0时,由图可知,N点不存在,∴舍去.综上,点N的坐标为(1,−1)或(3,1).【解析】(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2−3x+2得y=2,可知抛物线y= x2−3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2−3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.。
2019年中考数学试卷(word版,含答案) (54)
2019年中考数学试卷一、选择题(本大题共12小题,共36.0分)1.若√a=2,则a的值为()A. −4B. 4C. −2D. √22.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A. 0.2×10−3B. 0.2×10−4C. 2×10−3D. 2×10−43.对如图的对称性表述,正确的是()A. 轴对称图形B. 中心对称图形C. 既是轴对称图形又是中心对称图形D. 既不是轴对称图形又不是中心对称图形4.下列几何体中,主视图是三角形的是()A. B. C. D.5.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A. (2,√3)B. (√3,2)C. (√3,3)D. (3,√3)6.已知x是整数,当|x-√30|取最小值时,x的值是()A. 5B. 6C. 7D. 87.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A. 极差是6B. 众数是7C. 中位数是5D. 方差是88.已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A. ab2B. a+b2C. a2b3D. a2+b39.红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A. 3种B. 4种C. 5种D. 6种10.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)2=()A. 15B. √55C. 3√55D. 9511.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a-c>0;③a+2b+4c>0;④4ab +ba<-4,正确的个数是()A. 1B. 2C. 3D. 412. 如图,在四边形ABCD 中,AB ∥DC ,∠ADC =90°,AB =5,CD =AD =3,点E 是线段CD 的三等分点,且靠近点C ,∠FEG 的两边与线段AB 分别交于点F 、G ,连接AC 分别交EF 、EG 于点H 、K .若BG =32,∠FEG =45°,则HK =( )A. 2√23B. 5√26C. 3√22D. 13√26二、填空题(本大题共6小题,共18.0分) 13. 因式分解:m 2n +2mn 2+n 3=______.14. 如图,AB ∥CD ,∠ABD 的平分线与∠BDC 的平分线交于点E ,则∠1+∠2=______.15. 单项式x -|a -1|y 与2x √b−1y 是同类项,则a b =______.16. 一艘轮船在静水中的最大航速为30km /h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行60km 所用时间相同,则江水的流速为______km /h . 17. 在△ABC 中,若∠B =45°,AB =10√2,AC =5√5,则△ABC 的面积是______. 18. 如图,△ABC 、△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =2√2.将△BDE 绕点B 逆时针方向旋转后得△BD ′E ′,当点E ′恰好落在线段AD ′上时,则CE ′=______.三、解答题(本大题共7小题,共66.0分)19. (1)计算:2√23+|(-12)-1|-2√2tan30°-(π-2019)0; (2)先化简,再求值:(a a 2−b 2-1a+b )÷bb−a ,其中a =√2,b =2-√2.20.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.21.辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?22.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=m2−3m(m≠0且m≠3)的图象在第一象限交于点A、xB,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.23.如图,AB是⊙O的直径,点C为BD⏜的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.24.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;PA的最小值.(3)若点P为x轴上任意一点,在(2)的结论下,求PE+3525.如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE 的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.答案和解析1.【答案】B【解析】解:若=2,则a=4,故选:B.根据算术平方根的概念可得.本题主要考查算术平方根,解题的关键是掌握算术平方根的定义.2.【答案】D【解析】解:将数0.0002用科学记数法表示为2×10-4,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:如图所示:是中心对称图形.故选:B.直接利用中心对称图形的性质得出答案.此题主要考查了中心对称图形的性质,正确把握定义是解题关键.4.【答案】C【解析】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.主视图是从找到从正面看所得到的图形,注意要把所看到的棱都表示到图中.此题主要考查了几何体的三视图,关键是掌握主视图所看的位置.5.【答案】D【解析】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO-AF=4-1=3,∴.故选:D.过点E作EF⊥x轴于点F,由直角三角形的性质求出EF长和OF长即可.本题考查了菱形的性质、勾股定理及含30°直角三角形的性质.正确作出辅助线是解题的关键.6.【答案】A【解析】解:∵,∴5<,且与最接近的整数是5,∴当|x-|取最小值时,x的值是5,故选:A.根据绝对值的意义,由与最接近的整数是5,可得结论.本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.7.【答案】D【解析】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9.A.极差=11-3=8,结论错误,故A不符合题意;B.众数为5,7,11,3,9,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C不符合题意;D.平均数是(5+7+11+3+9)÷5=7,方差S2=[(5-7)2+(7-7)2+(11-7)2+(3-7)2+(9-7)2]=8.结论正确,故D符合题意;故选:D.根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.本题考查了折线统计图,主要利用了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.8.【答案】A【解析】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.9.【答案】C【解析】解:设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据“购进甲乙商品不超过4200元的资金、两种商品均售完所获利润大于750元”列出关于x的不等式组,解之求得整数x的值即可得出答案.本题主要考查一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式组.10.【答案】A【解析】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ-5sinθ=5,∴cosθ-sinθ=,∴(sinθ-cosθ)2=.故选:A.根据正方形的面积公式可得大正方形的边长为5,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.本题考查了解直角三角形的应用,勾股定理的证明,正方形的面积,难度适中.11.【答案】D【解析】解:①∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴<-<,∴1<-<,当-<时,b>-3a,∵当x=2时,y=4a+2b+c=0,∴b=-2a-c,∴-2a-c>-3a,∴2a-c>0,故②正确;③∵-,∴2a+b>0,∵c>0,4c>0,∴a+2b+4c>0,故③正确;④∵-,∴2a+b>0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>-4ab,∵a>0,b<0,∴ab<0,dengx∴,即,故④正确.故选:D.二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).本题考查了二次函数图象与系数关系,熟练掌握二次函数图象的性质是解题的关键.12.【答案】B【解析】解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG=,∴AG=,∵AB∥DC,∴△CEK∽△AGK,∴==,∴==,∴==,∵CK+AK=3,∴CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG=,∴EG==,∵=,∴EK=,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴==,∴设HE=3x,HK=x,∵△HEK∽△HCE,∴=,∴=,解得:x=,∴HK=,故选:B.根据等腰直角三角形的性质得到AC=3,根据相似三角形的性质得到==,求得CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,得到EM=AD=3,AM=DE=2,由勾股定理得到EG==,求得EK=,根据相似三角形的性质得到==,设HE=3x,HK= x,再由相似三角形的性质列方程即可得到结论.本题考查了勾股定理,相似三角形的判定和性质,等腰直角三角形的性质,矩形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.13.【答案】n(m+n)2【解析】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.首先提取公因式n,再利用完全平方公式分解因式得出答案.此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.14.【答案】90°【解析】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1=∠ABD,∵BE是∠BDC的平分线,∴∠2=∠CDB,∴∠1+∠2=90°,故答案为:90°.根据平行线的性质可得∠ABD+∠CDB=180°,再根据角平分线的定义可得∠1=∠ABD,∠2=∠CDB,进而可得结论.此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.15.【答案】1【解析】解:由题意知-|a-1|=≥0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,结合二次根式的性质可求出a,b的值,再代入代数式计算即可.此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.16.【答案】10【解析】解:设江水的流速为xkm/h,根据题意可得:=,解得:x=10,经检验得:x=10是原方程的根,答:江水的流速为10km/h.故答案为:10.直接利用顺水速=静水速+水速,逆水速=静水速-水速,进而得出等式求出答案.此题主要考查了分式方程的应用,正确得出等量关系是解题关键.17.【答案】75或25【解析】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sinB=10,BD=AB•cosB=10;在Rt△ACD中,AD=10,AC=5,∴CD==5,∴BC=BD+CD=15或BC=BD-CD=5,∴S△ABC=BC•AD=75或25.故答案为:75或25.过点A作AD⊥BC,垂足为D,通过解直角三角形及勾股定理可求出AD,BD,CD的长,进而可得出BC的长,再利用三角形的面积公式可求出△ABC的面积.本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD,BC的长度是解题的关键.18.【答案】√2+√6【解析】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2,∴AB=BC=2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=BE′=,在Rt△BCH中,CH==,∴CE′=+,故答案为:.如图,连接CE′,根据等腰三角形的性质得到AB=BC=2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.19.【答案】解:(1)2√23+|(-12)-1|-2√2tan30°-(π-2019)0 =2√63+2-2√2×√33-1 =2√63+2-2√63-1=1;(2)原式=a(a+b)(a−b)×b−ab -1a+b ×b−ab =-ab(a+b)-b−ab(a+b) =-b b(a+b) =-1a+b ,当a =√2,b =2-√2时,原式=-√2+2−√2=-12. 【解析】(1)根据二次根式的性质、负整数指数幂、零指数幂的运算法则、特殊角的三角函数值计算;(2)根据分式的混合运算法则把原式化简,代入计算即可.本题考查的是分式的化简求值、实数的运算,掌握分式的混合运算法则、分式的通分、约分法则、实数的混合运算法则是解题的关键. 20.【答案】解:(1)80~90的频数为36×50%=18,则80~85的频数为18-11=7, 95~100的频数为36-(4+18+9)=5, 补全图形如下:扇形统计图中扇形D 对应的圆心角度数为360°×536=50°;(2)画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12, 所以抽取的学生恰好是一名男生和一名女生的概率为1220=35. 【解析】(1)由B 组百分比求得其人数,据此可得80~85的频数,再根据各组频数之和等于总人数可得最后一组频数,从而补全图形,再用360°乘以对应比例可得答案;(2)画树状图展示所有20种等可能的结果数,找出抽取的学生恰好是一名男生和一名女生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.21.【答案】解:设甲、乙两种客房每间现有定价分别是x 元、y 元,根据题意,得:{10x +10y =500015x+20y=8500, 解得{y =200x=300,答:甲、乙两种客房每间现有定价分别是300元、200元;(2)设当每间房间定价为x元,m=x(20-x−20020×2)-80×20=−110(x−200)2+2400,∴当x=200时,m取得最大值,此时m=2400,答:当每间房间定价为200元时,乙种风格客房每天的利润m最大,最大利润是2400元.【解析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到m关于乙种房价的函数关系式,然后根据二次函数的性质即可解答本题.本题考查二次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,利用二次函数的性质解答.22.【答案】解:(1)将点A(4,1)代入y=m2−3mx,得,m2-3m=4,解得,m1=4,m2=-1,∴m的值为4或-1;反比例函数解析式为:y=4x;(2)∵BD⊥y轴,AE⊥y轴,∴∠CDB=∠CEA=90°,∴△CDB∽△CEA,∴CD CE =BDAE,∵CE=4CD,∴AE=4BD,∵A(4,1),∴AE=4,∴BD=1,∴x B=1,∴y B=4x=4,∴B(1,4),将A(4,1),B(1,4)代入y=kx+b,得,{k+b=44k+b=1,解得,k=-1,b=5,∴y AB=-x+5,设直线AB 与x 轴交点为F , 当x =0时,y =5;当y =0时x =5, ∴C (0,5),F (5,0), 则OC =OF =5,∴△OCF 为等腰直角三角形, ∴CF =√2OC =5√2,则当OM 垂直CF 于M 时,由垂线段最知可知,OM 有最小值,即OM =12CF =5√22.【解析】(1)将点A (4,1)代入y=,即可求出m 的值,进一步可求出反比例函数解析式;(2)先证△CDB ∽△CEA ,由CE=4CD 可求出BD 的长度,可进一步求出点B 的坐标,以及直线AC 的解析式,直线AC 与坐标轴交点的坐标,可证直线AC 与坐标轴所围成和三角形为等腰直角三角形,利用垂线段最短可求出OM 长度的最小值.本题考查了反比例函数的性质,相似三角形的性质,垂线段最短等定理,解题关键是能够熟练运用反比例函数的性质及相似三角形的性质.23.【答案】证明:(1)∵C 是BC ⏜的中点, ∴CD⏜=BC ⏜, ∵AB 是⊙O 的直径,且CF ⊥AB , ∴BC⏜=BF ⏜, ∴CD ⏜=BF ⏜, ∴CD =BF ,在△BFG 和△CDG 中, ∵{∠F =∠CDG∠FGB =∠DGC BF =CD, ∴△BFG ≌△CDG (AAS );(2)如图,过C 作CH ⊥AD 于H ,连接AC 、BC ,∵CD⏜=BC⏜,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴BC AB =BEBC,∴BC2=AB•BE=6×2=12,∴BF=BC=2√3.【解析】(1)根据AAS证明:△BFG≌△CDG;(2)如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC (HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE 和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24.【答案】解:(1)将二次函数y =ax 2(a >0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y =a (x -1)2-2,∵OA =1,∴点A 的坐标为(-1,0),代入抛物线的解析式得,4a -2=0,∴a =12, ∴抛物线的解析式为y =12(x −1)2−2,即y =12x 2−x −32. 令y =0,解得x 1=-1,x 2=3, ∴B (3,0),∴AB =OA +OB =4,∵△ABD 的面积为5,∴S △ABD =12AB ⋅y D =5,∴y D =52,代入抛物线解析式得,52=12x 2−x −32,解得x 1=-2,x 2=4,∴D (4,52),设直线AD 的解析式为y =kx +b ,∴{4k +b =52−k +b =0,解得:{k =12b =12, ∴直线AD 的解析式为y =12x +12.(2)过点E 作EM ∥y 轴交AD 于M ,如图,设E (a ,12a 2−a −32),则M (a ,12a +12),∴EM =12a +12−12a 2+a +32=−12a 2+32a +2,∴S △ACE =S △AME -S △CME =12×EM ⋅1=12(−12a 2+32a +2)×1=−14(a 2−3a −4), =−14(a −32)2+2516, ∴当a =32时,△ACE 的面积有最大值,最大值是2516,此时E 点坐标为(32,−158).(3)作E 关于x 轴的对称点F ,连接EF 交x 轴于点G ,过点F 作FH ⊥AE 于点H ,交轴于点P ,∵E (32,−158),OA =1, ∴AG =1+32=52,EG =158,∴AG EG =52158=43, ∵∠AGE =∠AHP =90°∴sin ∠EAG =PH AP =EG AE =35, ∴PH =35AP ,∵E 、F 关于x 轴对称,∴PE =PF ,∴PE +35AP =FP +HP =FH ,此时FH 最小,∵EF =158×2=154,∠AEG =∠HEF ,∴sin∠AEG =sin∠HEF =AG AE =FH EF =45,∴FH =45×154=3. ∴PE +35PA 的最小值是3.【解析】(1)先写出平移后的抛物线解析式,经过点A (-1,0),可求得a 的值,由△ABD 的面积为5可求出点D 的纵坐标,代入抛物线解析式求出横坐标,由A 、D 的坐标可求出一次函数解析式;(2)作EM ∥y 轴交AD 于M ,如图,利用三角形面积公式,由S △ACE =S △AME -S △CME 构建二次函数,利用二次函数的性质即可解决问题;(3)作E关于x轴的对称点F,过点F作FH⊥AE于点H,交轴于点P,则∠BAE=∠HAP=∠HFE,利用锐角三角函数的定义可得出EP+AP=FP+HP,此时FH最小,求出最小值即可.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题.25.【答案】(1)证明:∵四边形ABCD是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,∴∠DEF=90°,∴△DEF是等腰直角三角形;(2)设OE=t,连接OD,∴∠DOE=∠DAF=90°,∵∠OED=∠DFA,∴△DOE∽△DAF,∴OE AF =ODAD=√22,∴AF=√2t,又∵∠AEF=∠ADG,∠EAF=∠DAG,∴△AEF∽△ADG,∴AE AD =AFAG,∴AG⋅AE=AD⋅AF=4√2t,又∵AE=OA+OE=2√2+t,∴AG=√2t22+t,∴EG=AE-AG=22√2+t,当点H恰好落在线段BC上∠DFH=∠DFE+∠HFE=45°+45°=90°,∴△ADF∽△BFH,∴FH FD =FBAD=4−√2t4,∵AF∥CD,∴FG DG =AFCD=√2t4,∴FG DF =√2t4+√2t,∴4−√2t4=√2t4+√2t,解得:t1=√10−√2,t2=√10+√2(舍去),∴EG=EH=22√2+t =√10−√2)22√2+√10−√2=3√10−5√2;(3)过点F作FK⊥AC于点K,由(2)得EG=t 2+82√2+t,∵DE=EF,∠DEF=90°,∴∠DEO=∠EFK,∴△DOE≌△EKF(AAS),∴FK=OE=t,∴S△EFG=12EG⋅FK=32√2+t.【解析】(1)由正方形的性质可得∠DAC=∠CAB=45°,根据圆周角定理得∠FDE=∠DFE=45°,则结论得证;(2)设OE=t,连接OD,证明△DOE∽△DAF可得AF=,证明△AEF∽△ADG 可得AG=,可表示EG的长,由AF∥CD得比例线段,求出t 的值,代入EG的表达式可求EH的值;(3)由(2)知EG=,过点F作FK⊥AC于点K,根据即可求解.本题属于四边形综合题,考查了圆周角定理,相似三角形的判定和性质,等腰直角三角形的性质,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。
2019年湖北省襄阳市中考数学试题及参考答案
参考答案与试题解析
一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.
1.﹣3的相反数是( )
A.3 B.﹣3 C. D.﹣
【解答】解:﹣3的相反数是3,
故选:A.
2.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为( )
13.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球8个.
【解答】解:由题意可得,
摸到黑球和白球的频率之和为:1﹣0.4=0.6,
∴总的球数为:(8+4)÷0.6=20,
2019年湖北省襄阳市中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.
1.﹣3的相反数是( )
A.3 B.﹣3 C. D.﹣
2.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为( )
三、解答题:本大题共9小题,共72分,解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.
17.先化简,再求值:(2x+1)(2x﹣1)﹣(x+1)(3x﹣2),其中x= .
18.襄阳市文化底蕴深厚,旅游资源丰富,古隆中、习家池、鹿门寺三个景区是人们节假日玩的热点景区,张老师对八(1)班学生“五•一”小长假随父母到这三个景区游玩的计划做了全面调查,调查分四个类别:A、游三个景区;B、游两个景区;C、游一个景区;D、不到这三个景区游玩.现根据调查结果绘制了不完整的条形统计图和扇形统计图,请结合图中信息解答下列问题:
2019年湖北省襄阳市宜城市中考数学模拟试卷(5月份)解析版
2019年湖北省襄阳市宜城市中考数学模拟试卷(5月份)一、选择题.(30分)1.(3分)计算|﹣2|﹣2的结果是()A.0B.﹣2C.﹣4D.42.(3分)如图,直线l1∥l2,且分别与直线l交于C、D两点,把一块含30o角的三角尺按如图所示的位置摆放,若∠1=53°,则∠2的度数是()A.93o B.97o C.103o D.107o3.(3分)下列各运算中,计算正确的是()A.a15÷a5=a3B.(2a2)2=4a4C.(a﹣b)2=a2﹣b2D.4a•3a2=12a24.(3分)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×1065.(3分)如图所示的几何体的俯视图是()A.B.C.D.6.(3分)下列事件中,是随机事件的是()A.任意抛一枚图钉,钉尖着地B.任意画一个三角形,其内角和是180oC.通常加热到100℃时,水沸腾D.太阳从东方升起7.(3分)如图,∠AOB=120°,以点O为圆心,以任意长为半径作弧分别交OA、OB于点C、D,分别以C、D为圆心,以大于CD为的长为半径作弧,两弧相交于点P,以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.3B.C.2D.68.(3分)我国古代《易经》一书中记载:远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.515B.346C.1314D.849.(3分)如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣10.(3分)如图,一次函数y=﹣x与二次函数为y=ax2+bx+c的图象相交于点M,N,则关于x的一元二次方程ax2+(b+1)x+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数C.没有实数根D.以上结论都正确二、填空题.(18分)11.(3分)计算:(+)(﹣)的结果等于.12.(3分)已知xy=3x+3y+5,则(x﹣3)(y﹣3)=.13.(3分)分式方程+=1的解为.14.(3分)为了弘扬中华传统文化,营造书香校园文化氛围,某学校举行中华传统文化知识大赛活动,该学校从三名女生和两名男生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是.15.(3分)在△ABC中,AB=6cm,点P在AB上,且∠ACP=∠B,若点P是AB的三等分点,则AC的长是.16.(3分)如图,在Rt△ABC中,∠C=90o,AB=5,AC=4,线段AD由线段AB绕点A 按逆时针方向旋转90o得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D,BD交AE于H,则AH=.三、解答题.(72分)17.(6分)先化简,然后从﹣3<x<2的范围内选取一个合适的整数作为x的值代入求值.18.(6分)如图,为了测量电线杆的高度,在离电线杆20m的D处,用高1.20m的测角仪CD测得电线杆顶端A的仰角α=22o,求电线杆AB的高.(精确到0.1m)(参考数据:sin22°≈0.3746,cso22o≈0.9272,tan22°≈0.4040)19.(6分)某校八(1)班学生为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题:(1)本次调查采用的方式是(填“普查”或“抽样调查”),样本容量是;(2)补全频数分布直方图;(3)若将月均用水量的频数绘成扇形统计图,则月均用水量“15<x≤20”的圆心角度数是;(4)若该小区有5000户家庭,求该小区月均用水量超过15t的家庭大约有多少户?20.(6分)甲商品的进价为每件20元,商场将其售价从原来的每件40元进行两次调价.已知该商品现价为每件32.4元,(1)若该商场两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在现价的基础上还应如何调整?21.(7分)如图,一次函数的图象与y轴交于C(0,8),且与反比例函数y=(x>0)的图象在第一象限内交于A(3,a),B(1,b)两点.(1)求△AOC的面积;(2)若=4,求反比例函数和一次函数的解析式.22.(8分)如图,点O是△ABC的边AB上一点,⊙O与半径AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90o;(2)当BC=2,sin A=时,求AF的长.23.(10分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.24.(10分)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,∠ADB=30°.(1)试探究线段BD与线段MF的数量关系和位置关系,并说明理由;(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数;(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.25.(13分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.2019年湖北省襄阳市宜城市中考数学模拟试卷(5月份)参考答案与试题解析一、选择题.(30分)1.【解答】解:|﹣2|﹣2=2﹣2=0.故选:A.2.【解答】解:如图,∵l1∥l2,∴∠1=∠3=53°,又∵∠4=30°,∴∠2=180°﹣∠3﹣∠4=180°﹣53°﹣30°=97°,故选:B.3.【解答】解:A、原式=a10,不符合题意;B、原式=4a4,符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=12a3,不符合题意,故选:B.4.【解答】解:40万=4×105,故选:B.5.【解答】解:根据俯视图的特征,应选B.故选:B.6.【解答】解:A、任意抛一枚图钉,钉尖着地是随机事件;B、任意画一个三角形,其内角和是180°是必然事件;C、通常加热到100℃时,水沸腾是必然事件;D、太阳从东方升起是必然事件;故选:A.7.【解答】解:由作法得OP平分∠AOB,∴∠AOP=∠BOP=∠AOB=×120°=60°,作MH⊥OB于H,如图,在Rt△OMH中,OH=OM=3,∴MH=OH=3.即M点到OB的距离为3.故选:B.8.【解答】解:4+3×7+3×7×7+1×7×7×7=515.所以孩子自出生后的天数是515.故选:A.9.【解答】解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:CD==,AC=2CD=2,∵sin∠COD==,∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=OB×AC=×2×2=2,S扇形AOC==,则图中阴影部分面积为S扇形AOC﹣S菱形ABCO=π﹣2,故选:C.10.【解答】解:∵一次函数y=﹣x与二次函数为y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=﹣x有两个不相等的实数根,ax2+bx+c=﹣x变形为ax2+(b+1)x+c=0,∴ax2+(b+1)x+c=0有两个不相等的实数根,故选:A.二、填空题.(18分)11.【解答】解:原式=5﹣2=3.故答案为3.12.【解答】解:∵xy=3x+3y+5,∴xy﹣3x﹣3y=5,∴(x﹣3)(y﹣3)=xy﹣3x﹣3y+9=5+9=14.故答案为:14.13.【解答】解:方程两边都乘以x﹣2,得:3﹣2x﹣2=x﹣2,解得:x=1,检验:当x=1时,x﹣2=1﹣2=﹣1≠0,所以分式方程的解为x=1,故答案为:x=1.14.【解答】解:根据题意画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=;故答案为:.15.【解答】解:由∠ACP=∠B,∠A=∠A,可得△ACP∽△ABC.∴,即AC2=AP•AB.分两种情况:(1)当AP=AB=2cm时,AC2=2×6=12,∴AC==cm;(2)当AP=AB=4cm时,AC2=4×6=24,∴AC==;故答案为:.16.【解答】解:如图所示:∵Rt△ABC中,∠C=90o,AB=5,AC=4,∴BC==3,由旋转的性质得:AD=AB=5,由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴==,即==,∴AE=,DE=,∵AB∥EF,∴△DEH∽△BAH,∴=,即=,解得:AH=;故答案为:.三、解答题.(72分)17.【解答】解:原式=÷(﹣)=÷=•=﹣,∵﹣3<x<2,且x+1≠0且x﹣1≠0且x≠0,∴整数x=﹣2,当x=﹣2时,原式=.18.【解答】解:如图,过点C作CE⊥AB于点E,在Rt△BDE中,∴BE=DE•tanα,=AC•tanα,=20×tan22°,≈8.08米,∴AB=AE+EB=AE+CD=8.08+1.20≈9.3(米).答:电线杆AB的高度约为9.3米.19.【解答】解:(1)本次调查采用的调杳方式是抽样调查,样本容量为6÷0.12=50,故答案为:抽样调查,50;(2)m=50×0.32=16,补全直方图如下:(3)∵n=10÷50=0.2,∴月均用水量“15<x≤20”的圆心角度数是360°×0.2=72°,故答案为:72°;(4)该小区月均用水量超过15t的家庭大约有5000×(0.2+0.08+0.04)=1600(户).20.【解答】解:(1)设这种商品平均降价率是x,依题意得:40(1﹣x)2=32.4,解得:x1=0.1=10%,x2=1.9(舍去);故这个降价率为10%;(2)设降价y元,根据题意得(40﹣20﹣y)(500+50y)=10000解得:y=0(舍去)或y=10,∵现价为每件32.4元,∴32.4﹣30=2.4,答:在现价的基础上,再降低,2.4元.21.【解答】解:(1)作AD⊥y轴于D,∵A(3,a),∴AD=3,∵一次函数的图象与y轴交于C(0,8),∴OC=8,∴S△AOC=OC•AD=×8×3=12;(2)∵A(3,a),B(1,b)两点在反比例函数y=(x>0)的图象上,∴3a=b,∵=4,∴a2﹣2ab+b2=16,∴a2﹣2a•3a+(3a)2=16,整理得,a2=4,∵a>0,∴a=2,∴A(3,2),∴k=3×2=6,设直线的解析式为y=mx+n,∴,解得:,∴一次函数的解析式为y=﹣2x+8,∴反比例函数和一次函数的解析式分别为y=和y=﹣2x+8.22.【解答】解:(1)如图,连接OE,BE,∵DE=EF,∴=,∴∠OBE=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OEB=∠DBE,∴OE∥BC,∵⊙O与边AC相切于点E,∴OE⊥AC,∴BC⊥AC,∴∠C=90°;(2)在△ABC,∠C=90°,BC=2,sin A=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,∴r=∴AF=5﹣2×=.23.【解答】解:(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足33≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.24.【解答】解:(1)结论:BD=MF,BD⊥MF.理由:如图1,延长FM交BD于点N,由题意得:△BAD≌△MAF.∴BD=MF,∠ADB=∠AFM.又∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°,∴∠DNM=90°,∴BD⊥MF.(2)如图2,①当AK=FK时,∠KAF=∠F=30°,则∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,即β=60°;②当AF=FK时,∠F AK=(180°﹣∠F)=75°,∴∠BAB1=90°﹣∠F AK=15°,即β=15°;综上所述,β的度数为60°或15°;(3)如图3,由题意得矩形PNA2A.设A2A=x,则PN=x,在Rt△A2M2F2中,∵F2M2=FM=16,∠F=∠ADB=30°,∴A2M2=8,A2F2=8,∴AF2=8﹣x.∵∠P AF2=90°,∠PF2A=30°,∴AP=AF2•tan30°=8﹣x,∴PD=AD﹣AP=8﹣8+x.∵NP∥AB,∴∠DNP=∠B.∵∠D=∠D,∴△DPN∽△DAB,∴=,∴=,解得x=12﹣4,即A2A=12﹣4,∴平移的距离是(12﹣4)cm.25.【解答】解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,∴S△APC=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,∴C△ANM=AM+MN+AN=AC+AN=3+.∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.。
2019年中考数学试题含答案
2019年中考数学试题含答案一、选择题1.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130° 2.下列四个实数中,比1-小的数是( )A .2-B .0C .1D .23.二次函数y =x 2﹣6x +m 满足以下条件:当﹣2<x <﹣1时,它的图象位于x 轴的下方;当8<x <9时,它的图象位于x 轴的上方,则m 的值为( ) A .27B .9C .﹣7D .﹣164.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A .110B .19C .16D .155.定义一种新运算:1an n n bn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .256.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为( ) A .0.7×10﹣3 B .7×10﹣3 C .7×10﹣4 D .7×10﹣5 7.下列命题中,真命题的是( ) A .对角线互相垂直的四边形是菱形 B .对角线互相垂直平分的四边形是正方形 C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形8.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC 5BC =2,则sin ∠ACD 的值为( )A .5 B .25C .5 D .239.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是()A .54k ≤B .54k >C .514k k ≠<且D .514k k ≤≠且 10.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)11.根据以下程序,当输入x =2时,输出结果为( )A .﹣1B .﹣4C .1D .11 12.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为A .2B .3C .4D .5二、填空题13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n 501002004005008001000120015002000色盲患者的频数m3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=43,则CD=_____.15.已知关于x的方程3x n22x1+=+的解是负数,则n的取值范围为.16.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.18.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)20.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.三、解答题21.如图,AB 是⊙O 的直径,点C 是的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.22.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:2 1.414≈,3 1.732≈)23.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?24.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=70625.计算:(1)2(m﹣1)2﹣(2m+1)(m﹣1)(2)(1﹣)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.3.D解析:D【解析】【分析】先确定抛物线的对称轴为直线x=3,根据抛物线的对称性得到x=−2和x=8时,函数值相等,然后根据题意判断抛物线与x轴的交点坐标为(−2,0),(8,0),最后把(−2,0)代入y=x2−6x+m可求得m的值.【详解】解:∵抛物线的对称轴为直线x=,∴x=−2和x=8时,函数值相等,∵当−2<x<−1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,∴抛物线与x轴的交点坐标为(−2,0),(8,0),把(−2,0)代入y=x2−6x+m得4+12+m=0,解得m=−16.故选:D.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.4.A解析:A 【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能), ∴当他忘记了末位数字时,要一次能打开的概率是110. 故选A.5.B解析:B 【解析】 【分析】根据新定义运算得到一个分式方程,求解即可. 【详解】 根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解, 故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.6.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】 解:0.0007=7×10﹣4 故选C . 【点睛】本题考查科学计数法,难度不大.7.D解析:D【分析】根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可. 【详解】对角线互相垂直且平分的四边形是菱形,故A 是假命题; 对角线互相垂直平分且相等的四边形是正方形,故B 是假命题; 对角线相等且平分的四边形是矩形,故C 是假命题; 对角线互相平分的四边形是平行四边形,故D 是真命题. 故选D . 【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.A解析:A 【解析】 【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B . 【详解】在直角△ABC 中,根据勾股定理可得:AB ===3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B AC AB ==. 故选A . 【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.9.D解析:D 【解析】 【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( , 解得:k ≤54且k ≠1. 故选:D .此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键10.D解析:D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。
2019-2021年3年中考真题数学分项汇编-专题20 应用题综合(函数、不等式、方程)-(解析版)
专题20 应用题综合(函数、不等式、方程)一.解答题(共45道)1.(2021·浙江台州市·中考真题)电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R 1, R 1与踏板上人的质量m 之间的函数关系式为R 1=km +b (其中k ,b 为常数,0≤m ≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R 0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U 0 ,该读数可以换算为人的质量m ,温馨提示:①导体两端的电压U ,导体的电阻R ,通过导体的电流I ,满足关系式I =U R; ②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.(1)求k ,b 的值;(2)求R 1关于U 0的函数解析式;(3)用含U 0的代数式表示m ;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.【答案】(1)2402b k =⎧⎨=-⎩;(2)1024030R U =-;I (3)0120135m U =-;(4)该电子体重秤可称的最大质量为115千克.【分析】(1)根据待定系数法,即可求解;(2)根据“串联电路中电流处处相等,各电阻两端的电压之和等于总电压”,列出等式,进而即可求解;(3)由R 1=12-m +240,1024030R U =-,即可得到答案; (4)把06U =时,代入0480540m U =-,进而即可得到答案. 【详解】解:(1)把(0,240),(120,0)代入R 1=km +b ,得2400120b k b =⎧⎨=+⎩,解得:2402b k =⎧⎨=-⎩;(2)∵001830U U R -=,∴1024030R U =-; (3)由(1)可知:2402b k =⎧⎨=-⎩,∴R 1=2-m +240, 又∵1024030R U =-,∴024030U -=2-m +240,即:0120135m U =-; (4)∵电压表量程为0~6伏,∴当06U =时,1201351156m =-= 答:该电子体重秤可称的最大质量为115千克.【点睛】本题主要考查一次函数与反比例函数的实际应用,熟练掌握待定系数法,是解题的关键. 2.(2021·江苏扬州市·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:①汽车数量为整数..; ②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a 元()0a >给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a 的取值范围.【答案】(1)48000,37;(2)33150元;(3)50150a <<【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x 辆,根据月利润相等得到方程,解之即可得到结果;(2)设两公司的月利润分别为y 甲,y 乙,月利润差为y ,同(1)可得y 甲和y 乙的表达式,再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况,列出y 关于x 的表达式,根据二次函数的性质,结合x的范围求出最值,再比较即可;(3)根据题意得到利润差为()25018001850y x a x =-+-+,得到对称轴,再根据两公司租出的汽车均为17辆,结合x 为整数可得关于a 的不等式180016.517.5100a -<<,即可求出a 的范围. 【详解】解:(1)()50105030001020010-⨯+⨯-⨯⎡⎤⎣⎦=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x 辆,由题意可得:()5050300020035001850x x x x -⨯+-=-⎡⎤⎣⎦,解得:x =37或x =-1(舍),∴当每个公司租出的汽车为37辆时,两公司的月利润相等;(2)设两公司的月利润分别为y 甲,y 乙,月利润差为y ,则y 甲=()50503000200x x x -⨯+-⎡⎤⎣⎦,y 乙=35001850x -,当甲公司的利润大于乙公司时,0<x <37,y =y 甲-y 乙=()()5050300020035001850x x x x -⨯+---⎡⎤⎣⎦=25018001850x x -++,当x =1800502--⨯=18时,利润差最大,且为18050元; 当乙公司的利润大于甲公司时,37<x ≤50,y =y 乙-y 甲=()3500185050503000200x x x x ---⨯++⎡⎤⎣⎦=25018001850x x --,∵对称轴为直线x =1800502--⨯=18, 当x =50时,利润差最大,且为33150元;综上:两公司月利润差的最大值为33150元;(3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润,则利润差为25018001850y x x ax =-++-=()25018001850x a x -+-+,对称轴为直线x =1800100a -, ∵x 只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大, ∴180016.517.5100a -<<,解得:50150a <<. 【点睛】本题考查了二次函数的实际应用,二次函数的图像和性质,解题时要读懂题意,列出二次函数关系式,尤其(3)中要根据x 为整数得到a 的不等式.3.(2021·吉林长春市·中考真题)《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水查流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间,某学校STEAM 小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究: (实验观察)实验小组通过观察,每2小时记录次箭尺读数,得到下表:(探索发现)(1)建立平面直角坐标系,如图②,横轴表示供水时间x .纵轴表示箭尺读数y ,描出以表格中数据为坐标的各点.(2)观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.(结论应用)应用上述发现的规律估算:(3)供水时间达到12小时时,箭尺的读数为多少厘米?(4)如果本次实验记录的开始时间是上午8:00,那么当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)【答案】(1)见解析;(2)在同一直线上,解析式为66y x =+;(3)78()cm ;(4)当天晚上的22:00.【分析】(1)将各点在坐标系中直接描出即可;(2)观察发现,供水时间每增加2小时,箭尺读数增加12cm ,由此可判断它们在同以直线上,设直线解析式为y kx b =+,再代入两个点坐标即可求解;(3)当12x =时代入(2)中解析式即可求出箭尺的读数;(4)当90y =时代入(2)中解析式即可求出供水时间,再结合实验开始时间为8:00即可求解.【详解】解:(1)将表格中各点在直角坐标系中描出来如下图所示:(2)分析表格中数据发现,供水时间每增加2小时,箭尺读数增加12cm ,观察(1)中直角坐标系点的特点,发现它们位于同一直线上,设直线解析式为y kx b =+,代入点(0,6)和点(2,18),得到60182b k b =+⎧⎨=+⎩,解得66k b =⎧⎨=⎩,∴直线的表达式为:66y x =+;(3)当供水时间达到12小时时,即12x =时,代入66y x =+中,解得612678y cm ,∴此时箭尺的读数为78cm ;(4)当箭尺读数为90厘米时,即90y =时,代入66y x =+中,解得(906)614x (小时),∴经过14小时后箭尺读数为90厘米,∵实验记录的开始时间是上午8:00,∴箭尺读数为90厘米时对应的时间为8+14=22,即对应当天晚上的22:00.【点睛】本题考查待定系数法求一次函数的解析式、一次函数的实际应用问题,读懂题目,掌握一次函数的图形及性质是解决本题的关键.4.(2021·黑龙江鹤岗市·中考真题)已知A 、B 两地相距240km ,一辆货车从A 地前往B 地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从B 地前往A 地,到达A 地后(在A 地停留时间不计)立即原路原速返回.如图是两车距B 地的距离()km y 与货车行驶时间()h x 之间的函数图象,结合图象回答下列问题:(1)图中m 的值是__________;轿车的速度是________km/h ;(2)求货车从A 地前往B 地的过程中,货车距B 地的距离()km y 与行驶时间()h x 之间的函数关系式; (3)直接写出轿车从B 地到A 地行驶过程中,轿车出发多长时间与货车相距12km ?【答案】(1)5;120;(2)66240(0 2.5)75(2.5 3.5)50250(3.55)x x y x x x -+≤<⎧⎪=≤<⎨⎪-+≤≤⎩;(3)1h 或27h 31. 【分析】(1)由图象可知轿车从B 到A 所用时间为2h ,即可得出从A 到B 的时间,进而可得m 的值,根据速度=距离÷时间即可得轿车速度;(2)由图象可知货车在2.5h~3.5h 时装载货物停留1h ,分1≤x <2.5;2.5≤x <3.5;3.5≤x <5三个时间段,分别利用待定系数法求出y 与x 的关系式即可得答案;(3)分两车相遇前和相遇后相距12km 两种情况,分别列方程求出x 的值即可得答案.【详解】(1)由图象可知轿车从B 到A 所用时间为3-1=2h ,∴轿车从A 到B 的时间为2h ,∴m =3+2=5,∵A 、B 两地相距240km ,∴轿车速度=240÷2=120km/h ,故答案为:5;120(2)由图象可知货车在2.5h~3.5h 时装载货物停留1h ,①设()1110(0 2.5)MN y k x b k x =+≠≤<∵图象过点(0,240)M 和点(2.5,75)N ∴1112402.575b k b =⎧⎨+=⎩解得:1124066b k =⎧⎨=-⎩, ∴66240(0 2.5)MN y x x =-+≤<②∵货车在2.5h~3.5h 时装载货物停留1h ,∴75(2.5 3.5)NG y x =≤<,③设()2220(3.55)GH y k x b k x =+≠≤≤,∵图象过点(3.5,75)G 和点(5,0)H ∴2222503.575k b k b +=⎧⎨+=⎩解得:2225050b k =⎧⎨=-⎩, ∴50250(3.55)GH y x x =-+≤≤,∴66240(0 2.5)75(2.5 3.5)50250(3.55)x x y x x x -+≤<⎧⎪=≤<⎨⎪-+≤≤⎩. (3)设轿车出发xh 与货车相距12km ,则货车出发(x +1)h ,①当两车相遇前相距12km 时:66(1)24012012x x -++-=,解得:2731x =, ②当两车相遇后相距12km 时:[]12066(1)240x x --++=12,解得:x =1,答:轿车出发1h 或27h 31与货车相距12km . 【点睛】本题考查一次函数的应用,待定系数法求一次函数解析式的运用,认真分析函数图象,读懂函数图象表示的意义是解题关键.5.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有,A B 两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【答案】(1)20%;(2)①798万元,②当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,则四月份的游客为()41x +人,五月份的游客为()241x +人,再列方程,解方程可得答案;(2)①分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;②设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,再列出W 与m 的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案.【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,由题意,得24(1) 5.76x += ()21 1.44,x ∴+= 解这个方程,得120.2, 2.2x x ==-(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%.(2)①由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:0.6+0.4=1(万人),购买甲种门票的人数为:20.6 1.4-=(万人),购买乙种门票的人数为:30.4 2.6-=(万人),所以:门票收入问;()()100 1.480 2.61601021⨯+⨯+-⨯+798=(万元)答:景区六月份的门票总收入为798万元.②设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,由题意,得()()()()10020.068030.0416020.060.04W m m m m m =-+-+-++化简,得20.1(24)817.6W m =--+,0.10-<,∴当24m =时,W 取最大值,为817.6万元.答:当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元.【点睛】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键.6.(2021·河北中考真题)下图是某同学正在设计的一动画示意图,x 轴上依次有A ,O ,N 三个点,且2AO =,在ON 上方有五个台阶15~T T (各拐角均为90︒),每个台阶的高、宽分别是1和1.5,台阶1T 到x 轴距离10OK =.从点A 处向右上方沿抛物线L :2412y x x =-++发出一个带光的点P .(1)求点A 的横坐标,且在图中补画出y 轴,并直接..指出点P 会落在哪个台阶上; (2)当点P 落到台阶上后立即弹起,又形成了另一条与L 形状相同的抛物线C ,且最大高度为11,求C 的解析式,并说明其对称轴是否与台阶5T 有交点;(3)在x 轴上从左到右有两点D ,E ,且1DE =,从点E 向上作EB x ⊥轴,且2BE =.在BDE 沿x 轴左右平移时,必须保证(2)中沿抛物线C 下落的点P 能落在边BD (包括端点)上,则点B 横坐标的最大值比最小值大多少?(注:(2)中不必写x 的取值范围)【答案】(1)(2,0)A -,见解析,点P 会落在4T 的台阶上;(2)2(7)11y x =--+,其对称轴与台阶5T 有交点;(32-.【分析】(1)二次函数与坐标轴的交点坐标可以直接算出,根据点A 的坐标可以确定y 轴,利用函数的性质可以判断落在那个台阶上;(2)利用二次函数图象的平移来求解抛物线C ,再根据函数的对称轴的值来判断是否与台阶5T 有交点; (3)抓住二次函数图象不变,是BDE 在左右平移,要求点B 横坐标的最大值比最小值大多少,利用临界点法,可以确定什么时候横坐标最大,什么时候横坐标最小,从而得解.【详解】解:(1)当0y =,24120x x -++=,解得:2,6x x =-=,A 在左侧,(2,0)A ∴-, 2412y x x =-++关于22b x a=-=对称,y ∴轴与OK 重合,如下图:由题意在坐标轴上标出相关信息,当7y =时,24127x x -++=,解得:1,5x x =-=,4.556<<,∴点P 会落在4T 的台阶上,坐标为(5,7)P ,(2)设将抛物线L ,向下平移5个单位,向右平移a 的单位后与抛物线C 重合,则抛物线C 的解析式为:2(2)11y x a =---+,由(1)知,抛物线C 过(5,7)P ,将(5,7)P 代入2(2)11y x a =---+,27(3)11a =--+,解得:5,1a a ==(舍去,因为是对称轴左边的部分过(5,7)P ), 抛物线C :2(7)11y x =--+,2(7)11y x =--+关于72b x a=-=,且677.5<<,∴其对称轴与台阶5T 有交点.(3)由题意知,当BDE 沿x 轴左右平移,恰使抛物线C 下落的点P 过点D 时,此时点B 的横坐标值最大;当0y =,2(7)110x --+=,解得:1277x x ==(取舍),故点B 的横坐标最大值为:8当BDE 沿x 轴左右平移,恰使抛物线C 下落的点P 过点B 时,此时点B 的横坐标值最小;当2y =,2(7)112x --+=,解得:1210,4x x ==(舍去),故点B 的横坐标最小值为:10,则点B 横坐标的最大值比最小值大:81022-.【点睛】本题综合性考查了二次函数的解析式的求法及图象的性质,图象平移,抛物线的对称轴,解题的关键是:熟练掌握二次函数解析式的求法及图象的性质,通过已知的函数求解平移后函数的解析式. 7.(2021·广西来宾市·中考真题)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系.图中的抛物线2117C :1126y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.【答案】(1)213482y x x =-++;(2)12米;(3)3524b ≥. 【分析】(1)根据题意可知:点A (0,4)点B (4,8),利用待定系数法代入抛物线221:8C y x bx c =-++即可求解;(2)高度差为1米可得21=1C C -可得方程,由此即可求解; (3)由抛物线2117C :1126y x x =-++可知坡顶坐标为 61(7,)12,此时即当7x =时,运动员运动到坡顶正上方,若与坡顶距离超过3米,即2161773812y b c =-⨯++≥+,由此即可求出b 的取值范围. 【详解】解:(1)根据题意可知:点A (0,4),点B (4,8)代入抛物线221:8C y x bx c =-++得, 2=4144=88c b c ⎧⎪⎨-⨯++⎪⎩,解得:=43=2c b ⎧⎪⎨⎪⎩, ∴抛物线2C 的函数解析式213482y x x =-++; (2)∵运动员与小山坡的竖直距离为1米, ∴221317(4)(1)182126x x x x -++--++=, 解得:14x =-(不合题意,舍去), 212x =,故当运动员运动水平线的水平距离为12米时,运动员与小山坡的竖直距离为1米;(3)∵点A (0,4),∴抛物线221:48C y x bx =-++, ∵抛物线22117161C :1=(7)1261212y x x x =-++--+,∴坡顶坐标为 61(7,)12, ∵当运动员运动到坡顶正上方,且与坡顶距离超过3米时, ∴21617743812y b =-⨯++≥+,解得:3524b ≥. 【点睛】本题属二次函数应用中的难题.解决函数应用问题的一般步骤为:(1)审题:弄清题意,分清条件和结论,理清数量关系;(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型;(3)求模:求解数学模型,得到数学结论;(4) 还原:将用数学方法得到的结论还原为实际问题.8.(2021·贵州安顺市·中考真题)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽8m OA =,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处.有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线()20y ax bx c a =++≠,该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移()0m m >个单位长度,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.【答案】(1)y =14-x 2+2x (0≤x ≤8);(2)他的头顶不会触碰到桥拱,理由见详解;(3)5≤m ≤8 【分析】(1)设二次函数的解析式为:y =a (x -8)x ,根据待定系数法,即可求解; (2)把:x =1,代入y =14-x 2+2x ,得到对应的y 值,进而即可得到结论; (3)根据题意得到新函数解析式,并画出函数图像,进而即可得到m 的范围.【详解】(1)根据题意得:A (8,0),B (4,4),设二次函数的解析式为:y =a (x -8)x ,把(4,4)代入上式,得:4=a ×(4-8)×4,解得:14a =-, ∴二次函数的解析式为:y =14-(x -8)x =14-x 2+2x (0≤x ≤8); (2)由题意得:x =0.4+1.2÷2=1,代入y =14-x 2+2x ,得y =14-×12+2×1=74>1.68, 答:他的头顶不会触碰到桥拱;(3)由题意得:当0≤x ≤8时,新函数表达式为:y =14x 2-2x , 当x <0或x >8时,新函数表达式为:y =-14x 2+2x , ∴新函数表达式为:2212(08)412(08)4x x x y x x x x ⎧-≤≤⎪⎪=⎨⎪-+⎪⎩或,∵将新函数图象向右平移()0m m >个单位长度,∴O '(m ,0),A '(m +8,0),B '(m +4,-4),如图所示,根据图像可知:当m +4≥9且m ≤8时,即:5≤m ≤8时,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小.【点睛】本题主要考查二次函数的实际应用,掌握二次函数的待定系数法,二次函数的图像和性质,二次函数图像平移和轴对称变换规律,是解题的关键.9.(2021·湖北中考真题)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售.为此当地政府决定给予其销售的这种消毒液按a 元/件进行补贴,设某月销售价为x 元/件,a 与x 之间满足关系式:()20%10a x =-,下表是某4个月的销售记录.每月销售量y (万件)与该月销售价x (元/件)之间成一次函数关系(69)x ≤<.(1)求y 与x 的函数关系式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?(3)当销售价x 定为多少时,该月纯收入最大?(纯收入=销售总金额-成本+政府当月补贴)【答案】(1)1090y x =-+;(2)4万元;(3)当销售价x 定为7元/件时,该月纯收入最大.【分析】(1)利用待定系数法即可得;(2)将8x =代入()20%10a x =-求出a 的值,代入y 与x 的函数关系式求出该月的销售量,再利用a 乘以该月的销售量即可得;(3)设该月纯收入为w 万元,先根据纯收入的计算公式求出w 与x 之间的函数关系式,再利用二次函数的性质求解即可得.【详解】解:(1)设y 与x 的函数关系式为y kx b =+,将点(6,30),(7,20)代入得:630720k b k b +=⎧⎨+=⎩,解得1090k b =-⎧⎨=⎩,则y 与x 的函数关系式为1090y x =-+;(2)当8x =时,()20%1080.4a =⨯-=,1089010y =-⨯+=,则0.4104⨯=(万元), 答:政府该月应付给厂家补贴4万元;(3)设该月纯收入为w 万元,由题意得:(1090)6(1090)(20%1(1090)0)w x x x x x -=-+--++-+,整理得:28(5)(9)8(7)32w x x x =---=--+,由二次函数的性质可知,在69x ≤<内,当7x =时,w 取得最大值,最大值为32,答:当销售价x 定为7元/件时,该月纯收入最大.【点睛】本题考查了一次函数和二次函数的实际应用,正确建立函数关系式是解题关键.10.(2021·辽宁大连市·中考真题)某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤,(1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?【答案】(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【分析】(1)由图象易得()50,100和()80,40,然后设y 关于x 的函数解析式为y kx b =+,进而代入求解即可;(2)设该电商每天所获利润为w 元,由(1)及题意易得222808000w x x =-+-,然后根据二次函数的性质可进行求解.【详解】解:(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得: 501008040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,∴y 关于x 的函数解析式为2200y x =-+; (2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,∴-2<0,开口向下,对称轴为702b x a=-=, ∵5080x ≤≤,∴当70x =时,w 有最大值,即为22702807080001800w =-⨯+⨯-=;答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【点睛】本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.11.(2021·内蒙古鄂尔多斯市·中考真题)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x (元)和游客居住房间数y (间)符合一次函数关系,如图是y 关于x 的函数图象.(1)求y 与x 之间的函数解析式,并写出自变量x 的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?【答案】(1)y 与x 之间的函数解析式为y=-0.1x+68,200x 320≤≤;(2)当房价定为320元时,宾馆利润最大,最大利润是10800元【分析】(1)设y 与x 之间的函数解析式为y=kx+b ,根据待定系数法即可得出答案;(2)设宾馆每天的利润为W 元,利用房间数乘每一间房间的利润即可得到W 关于x 的函数解析式,配方法再结合增减性即可求得最大值.【详解】(1)根据题意,设y 与x 之间的函数解析式为y=kx+b ,图象过(280,40),(290,39),∴2804029039k b k b +=⎧⎨+=⎩,解得:-0.168k b =⎧⎨=⎩ ∴y 与x 之间的函数解析式为y=-0.1x+68,∵每间房价不低于200元且不超过320元 ∴200x 320≤≤(2)设宾馆每天的利润为W 元,()()()2w=x-20y=x-20-0.1x+68=-0.1x +70x-1360, ∴()22w=-0.1x +70x-1360=-0.1x-350+10890 当x <350时,w 随x 的增大而增大,∵200x 320≤≤,∴当x=320时,W 最大=10800∴当房价定为320元时,宾馆利润最大,最大利润是10800元【点睛】本题考查的是二次函数在实际生活中的应用及待定系数法求一次函数的解析式,注意利用配方法和函数的增减性求函数的最值,难度不大.12.(2021·贵州铜仁市·中考真题)某品牌汽车销售店销售某种品牌的汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降价销售.通过市场调查得到了每辆降价的费用1y (万元)与月销售量x (辆)(4x ≥)满足某种函数关系的五组对应数据如下表:(1)请你根据所给材料和初中所学的函数知识写出1y 与x 的关系式1y =________;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y =(每辆原售价-1y -进价)x ,请你根据上述条件,求出月销售量()4x x ≥为多少时,销售利润最大?最大利润是多少?【答案】(1)1122y x =-;(2)月销售量为8辆时,销售利润最大,最大利润是32万元 【分析】(1)观察表格中数据可知,1y 与x 的关系式为一次函数的关系,设解析式为1y kx b =+,再代入数据求解即可;(2)根据已知条件“每月销售利润y =(每辆原售价-1y -进价)x ”,求出y 的表达式,然后再借助二次函数求出其最大利润即可.【详解】解:(1)由表中数据可知,1y 与x 的关系式为一次函数的关系,设解析式为1y kx b =+,代入点(4,0)和点(5,0.5),得到040.55k b k b =+⎧⎨=+⎩,解得122k b ⎧=⎪⎨⎪=-⎩,故1y 与x 的关系式为1122y x =-; (2)由题意可知:降价后每月销售利润y =(每辆原售价-1y -进价)x , 即:211(22216)822y x x x x ,其中4x ≥, ∴y 是x 的二次函数,且开口向下,其对称轴为82b x a=-=, ∴当8x =时,y 有最大值为21888322万元, 答:月销售量为8辆时,销售利润最大,最大利润是32万元.【点睛】本题考查待定系数法求一次函数解析式以及二次函数的应用,读懂题意,根据题中已知条件列出表达式是解决本题的关键.13.(2021·湖北鄂州市·中考真题)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本y (元)与种植面积x (亩)之间满足一次函数关系,且当160x =时,840y =;当190x =时,960y =.(1)求y 与x 之间的函数关系式(不求自变量的取值范围);(2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)【答案】(1)4200y x =+;(2)种植面积为240亩时总利润最大,最大利润268800元.【分析】(1)利用待定系数法求出一次函数解析式即可;(2)根据明年销售该作物每亩的销售额能达到2160元,预计明年每亩种粮成本y (元)与种粮面积x (亩)之间的函数关系为4200y x =+,进而得出W 与x 的函数关系式,再利用二次函数的最值公式求出即可.【详解】解:(1)设y 与x 之间的函数关系式()0y kx b k =+≠,依题意得:160840190960k b k b +=⎧⎨+=⎩,解得:4200k b =⎧⎨=⎩,∴y 与x 之间的函数关系式为4200y x =+. (2)设老张明年种植该作物的总利润为W 元,依题意得:()21604200120W x x ⎡=-+⎤⎣⎦+⋅242080x x =-+()24260270400x =--+. ∵40-<,∴当260x <时,y 随x 的增大而增大.由题意知:240x ≤,∴当240x =时,W 最大,最大值为268800元.即种植面积为240亩时总利润最大,最大利润268800元.【点睛】此题主要考查了一次函数和二次函数的应用,掌握待定系数法求函数解析式并根据已知得出W 与x 的函数关系式是求最值问题的关键.14.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M 元,结合题意,根据二次函数的性质,计算得利润最大值对应的x 的值,从而得到答案.【详解】(1)由题意列方程得:(x +40-30) (300-10x )=3360 解得:x 1=2,x 2=18∵要尽可能减少库存,∴x 2=18不合题意,故舍去 ∴T 恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=()210104000x --+∴当x =10时,M 最大值=4000元 ∴销售单价:40+10=50元∴当服装店将销售单价50元时,得到最大利润是4000元.【点睛】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.15.(2021·湖北随州市·中考真题)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.。
2019全国中考数学真题分类汇编之33:二次函数的实际应用(含解析)
2019年全国中考数学真题分类汇编:二次函数的实际应用一、选择题1. (2019年湖北省襄阳市)如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为h=20t﹣5t2,则小球从飞出到落地所用的时间为s.【考点】二次函数的实际应用【解答】解:依题意,令h=0得0=20t﹣5t2得t(20﹣5t)=0解得t=0(舍去)或t=4即小球从飞出到落地所用的时间为4s故答案为4.二、填空题1. (2019年四川省广安市)在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=﹣x2+x+,由此可知该生此次实心球训练的成绩为米.【考点】二次函数的应用、自变量与函数的实际意义【解答】解:当y=0时,y=﹣x2+x+=0,解得,x=2(舍去),x=10.故答案为:10.三、解答题1. (2019年四川省攀枝花市)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市。
某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/每千克,根据销售情况,发现该芒果在一天内的销售量y (千克)与该天的售价x(元/千克)之间的数量满足如下表所示的一次函数关系。
(1)某天这种芒果售价为28元/千克。
求当天该芒果的销售量(2)设某天销售这种芒果获利m元,写出m与售价x之间的函数关系式。
如果水果店该天获利400元,那么这天芒果的售价为多少元?【考点】一次函数、二次函数、一元二次方程的解法【解答】解:(1)设该一次函数解析式为y kx b =+则25352238k b k b +=⎧⎨+=⎩解得:160k b =-⎧⎨=⎩ ∴60y x =-+(1540x ≤≤)∴当28x =时,32y =∴芒果售价为28元/千克时,当天该芒果的销售量为32千克(2)由题易知(10)m y x =-(60)(10)x x =-+- 270600x x =-+- 当400m =时,则270600400x x -+-=整理得:27010000x x -+= 解得:120x =,250x =∵1540x ≤≤ ∴20x =所以这天芒果的售价为20元2. (2019年山东省青岛市)某商店购进一批成本为每件30元的商品,经调查发现,该商品 每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【考点】一次函数、二次函数、一元二次方程的解法【解答】解:(1)设y 与销售单价x 之间的函数关系式为:y =kx +b ,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y =﹣2x +160;(2)由题意得:w =(x ﹣30)(﹣2x +160)=﹣2(x ﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.3. (2019年湖北省十堰市)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg.设第x天的销售价格为y(元/kg),销售量为m(kg).该超市根据以往的销售经验得出以下的销售规律:①当1≤x≤30时,y=40;当31≤x≤50时,y与x满足一次函数关系,且当x=36时,y=37;x=44时,y=33.②m与x的关系为m=5x+50.(1)当31≤x≤50时,y与x的关系式为;(2)x为多少时,当天的销售利润W(元)最大?最大利润为多少?(3)若超市希望第31天到第35天的日销售利润W(元)随x的增大而增大,则需要在当天销售价格的基础上涨a元/kg,求a的最小值.【考点】待定系数法、一次函数的性质、二次函数的性质【解答】解:(1)依题意,当x=36时,y=37;x=44时,y=33,当31≤x≤50时,设y=kx+b,则有,解得∴y与x的关系式为:y=x+55(2)依题意,∵W=(y﹣18)•m∴整理得,当1≤x≤30时,∵W随x增大而增大∴x=30时,取最大值W=30×110+1100=4400当31≤x≤50时,W=x2+160x+1850=∵<0∴x=32时,W取得最大值,此时W=4410综上所述,x为32时,当天的销售利润W(元)最大,最大利润为4410元(3)依题意,W=(y+a﹣18)•m=∵第31天到第35天的日销售利润W(元)随x的增大而增大∴对称轴x==≥35,得a≥3故a的最小值为3.4. (2019年甘肃省天水市)天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?【考点】待定系数法、二次函数的应用、二次函数的性质【解答】解:(1)设y与x的函数解析式为y=kx+b,将(10,30)、(16,24)代入,得:,解得:,所以y与x的函数解析式为y=﹣x+40(10≤x≤16);(2)根据题意知,W=(x﹣10)y=(x﹣10)(﹣x+40)=﹣x2+50x﹣400=﹣(x﹣25)2+225,∵a=﹣1<0,∴当x<25时,W随x的增大而增大,∵10≤x≤16,∴当x=16时,W取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.5. (2019年湖北省鄂州市)“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?【考点】二次函数的应用【解答】解:(1)由题意可得:y=100+5(80﹣x)整理得y=﹣5x+500;(2)由题意,得:w=(x﹣40)(﹣5x+500)=﹣5x2+700x﹣20000=﹣5(x﹣70)2+4500∵a=﹣5<0∴w有最大值即当x=70时,w最大值=4500∴应降价80﹣70=10(元)答:当降价10元时,每月获得最大利润为4500元;(3)由题意,得:﹣5(x﹣70)2+4500=4220+200解之,得:x1=66,x2 =74,∵抛物线开口向下,对称轴为直线x=70,∴当66≤x≤74时,符合该网店要求而为了让顾客得到最大实惠,故x=66∴当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.6. (2019年湖北省随州市)某食品厂生产一种半成品食材,成本为2元/千克,每天的产量x+8,从市场反馈的信息发现,该p(百千克)与销售价格x(元/千克)满足函数关系式p=12半成品食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克.(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;(2)当每天的产量小于或等于市场需求量时,这种半成品食材能全部售出,而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.①当每天的半成品食材能全部售出时,求x的取值范围;②求厂家每天获得的利润y(百元)与销售价格x的函数关系式;(3)在(2)的条件下,当x为______元/千克时,利润y有最大值;若要使每天的利润不低于24(百元),并尽可能地减少半成品食材的浪费,则x应定为______元/千克.【考点】二次函数的应用【解答】解:(1)由表格的数据,设q 与x 的函数关系式为:q=kx+b根据表格的数据得,解得故q与x的函数关系式为:q=-x+14,其中2≤x≤10(2)①当每天的半成品食材能全部售出时,有p≤q即x+8≤-x+14,解得x≤4又2≤x≤10,所以此时2≤x≤4②由①可知,当2≤x≤4时,y=(x-2)p=(x-2)(x+8)=x2+7x-16当4<x≤10时,y=(x-2)q-2(p-q)=(x-2)(-x+14)-2[x+8-(-x+14)]=-x2+13x-16即有y=(3)当2≤x≤4时,y=x2+7x-16的对称轴为x===-7∴当2≤x≤4时,除x的增大而增大∴x=4时有最大值,y==20当4<x≤10时y=-x2+13x-16=-(x-)2+,∵-1<0,>4∴x=时取最大值即此时y有最大利润要使每天的利润不低于24百元,则当2≤x≤4时,显然不符合故y=-(x-)2+≥24,解得x≤5故当x=5时,能保证不低于24百元故答案为:,57. (2019年辽宁省本溪市)某工厂生产一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.(1)直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?【考点】二次函数的应用、一次函数的应用【解答】解:(1)当0<x≤20且x为整数时,y=40;当20<x≤60且x为整数时,y=﹣x+50;当x>60且x为整数时,y=20;(2)设所获利润w(元),当0<x≤20且x为整数时,y=40,∴w=(40﹣16)×20=480元,当0<x≤20且x为整数时,y=40,∴当20<x≤60且x为整数时,y=﹣x+50,∴w=(y﹣16)x=(﹣x+50﹣16)x,∴w=﹣x2+34x,∴w=﹣(x﹣34)2+578,∵﹣<0,∴当x=34时,w最大,最大值为578元.答:一次批发34件时所获利润最大,最大利润是578元.8. (2019年内蒙古包头市)某出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨.据统计,淡季该公司平均每天有10辆货车未出租,日租金总收入为1500元;旺季所有的货车每天能全部租出,日租金总收入为4000元.(1)该出租公司这批对外出租的货车共有多少辆?淡季每辆货车的日租金多少元?(2)经市场调查发现,在旺季如果每辆货车的日租金每上涨20元,每天租出去的货车就会减少1辆,不考虑其它因素,每辆货车的日租金上涨多少元时,该出租公司的日租金总收入最高?【考点】二次函数的应用、分式方程的应用【解答】解:(1)该出租公司这批对外出租的货车共有x辆,根据题意得,,解得:x=20,经检验:x=20是分式方程的根,∴1500÷(20﹣10)=150(元),答:该出租公司这批对外出租的货车共有20辆,淡季每辆货车的日租金150元;(2)设每辆货车的日租金上涨a元时,该出租公司的日租金总收入为W元,根据题意得,W=[a+150×(1+)]×(20﹣),∴W=﹣a2+10a+4000=﹣(a﹣100)2+4500,∵﹣<0,∴当a=100时,W有最大值,答:每辆货车的日租金上涨100元时,该出租公司的日租金总收入最高.9. (2019年内蒙古通辽市)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.【考点】二次函数的应用【解答】解:(1)根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38);(2)设每天扣除捐赠后可获得利润为w元.w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)对称轴为x=35+a,且0<a≤6,则30a≤38,则当x=35+a时,w取得最大值,∴(35+a﹣20﹣a)[﹣10x(35+a)+500]=1960∴a1=2,a2=58(不合题意舍去),∴a=2.。
2019年中考数学试卷(word版,含答案) (18)
2019年初中毕业升学考试数 学 试 题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内) 1.5的相反数是A .﹣5B .5C .15-D .152.函数y 中的自变量x 的取值范围是 A .x ≠12 B .x ≥1 C .x >12 D .x ≥123.分解因式224x y -的结果是A .(4)(4)x y x y +-B .4()()x y x y +-C .(2)(2)x y x y +-D .2()()x y x y +- 4.已知一组数据:66,66,62,67,63这组数据的众数和中位数分别是 A .66,62 B .66,66 C .67,62 D .67,66 5.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是 A .长方体 B .四棱锥 C .三棱锥 D .圆锥 6.下列图案中,是中心对称图形但不是轴对称图形的是7.下列结论中,矩形具有而菱形不一定具有的性质是A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直 8.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为 A .20° B .25° C .40° D .50° 9.如图,已知A 为反比例函数ky x=(x <0)的图像上一点,过点A 作AB ⊥y 轴,垂足为B .若△OAB 的面积为2,则k 的值为A .2B .﹣2C .4D .﹣4 10.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为 A .10 B .9 C .8 D .7第8题 第9题 第16题二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.49的平方根为 .12.2019年6月29日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约20000000人次,这个年接待客量可以用科学记数法表示为 人次. 13.计算:2(3)a += .14.某个函数具有性质:当x >0时,y 随x 的增大而增大,这个函数的表达式可以是 (只要写出一个符合题意的答案即可).15.已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm . 16.已知一次函数y kx b =+的图像如图所示,则关于x 的不等式30kx b ->的解集为 .第17题 第18题17.如图,在△ABC 中,AC :BC :AB =5:12:13,⊙O 在△ABC 内自由移动,若⊙Oxy O-6OOB CABE Fxy-6OABBCHGB的半径为1,且圆心O 在△ABC 内所能到达的区域的面积为103,则△ABC 的周长为 .18.如图,在△ABC 中,AB =AC =5,BC=D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则△BDE 面积的最大值为 .三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)1013()2--+-; (2)3233)(2a a a -⋅. 20.(本题满分8分)解方程:(1)0522=--x x ; (2)1421+=-x x . 21.(本题满分8分)如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O .(1)求证:△DBC ≌△ECB ; (2)求证:OB =OC .22.(本题满分6分)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为 ; (2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程) 23.(本题满分6分)B《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示.各等级学生人数分布扇形统计图各等级学生平均分统计表(1)扇形统计图中“不及格”所占的百分比是 ; (2)计算所抽取的学生的测试成绩的平均分;(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级. 24.(本题满分8分)一次函数b kx y +=的图像与x 轴的负半轴相交于点A ,与y 轴的正半轴相交于点B ,且sin ∠ABOOAB 的外接圆的圆心M 的横坐标为﹣3. (1)求一次函数的解析式; (2)求图中阴影部分的面积.25.(本题满分8分)不及格“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离y (km)与出发时间之间的函数关系式如图1中线段AB 所示,在小丽出发的同时,小明从乙地沿同一条公路汽骑车匀速前往甲地,两人之间的距离x (km)与出发时间t (h)之间的函数关系式如图2中折线段CD —DE —EF 所示.(1)小丽和小明骑车的速度各是多少? (2)求E 点坐标,并解释点的实际意义.26.(本题满分10分)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A 为圆O 上一点,请用直尺(不带刻度)和圆规作出得内接正方形;(2)我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图.①如图2,在□ABCD 中,E 为CD 的中点,作BC 的中点F ;②图3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作△ABC 的高AH .27.(本题满分10分)CBBAA D已知二次函数42-+=bx ax y (a >0)的图像与x 轴交于A 、B 两点,(A 在B 左侧,且OA <OB ),与y 轴交于点C .D 为顶点,直线AC 交对称轴于点E ,直线BE 交y 轴于点F ,AC :CE =2:1.(1)求C 点坐标,并判断b 的正负性;(2)设这个二次函数的图像的对称轴与直线AC 交于点D ,已知DC :CA =1:2,直线BD 与y 轴交于点E ,连接BC .①若△BCE 的面积为8,求二次函数的解析式;②若△BCD 为锐角三角形,请直接写出OA 的取值范围.28.(本题满分10分)如图1,在矩形ABCD 中,BC =3,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作△PAB 关于直线PA 的对称△PAB′,设点P 的运动时间为t (s).(1)若AB=2,当点B′落在AC 上时,显然△PAB′是直角三角形,求此时t 的值;②是否存在异于图2的时刻,使得△PC B′是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由.(2)当P 点不与C 点重合时,若直线PB′与直线CD 相交于点M ,且当t <3时存在某一时刻有结论∠PAM =45°成立,试探究:对于t >3的任意时刻,结论∠PAM =45°是否总是成立?请说明理由.参考答案1.A 2.D 3.C 4.B 5.A 6.C 7.C 8.B 9.D 10.B 11.23±12.7210´ 13.269a a ++ 14.2y x =(答案不唯一) 15.3 16.x <2 17.25 18.8 19.(1)【解答】解:原式=4 (2)【解答】解:原式=6a 20.(1)【解答】解:61,6121-=+=x x ; (2)【解答】解:3=x ,经检验3=x 是方程的解 21.(1) 证明:∵AB=AC , ∴∠ECB=∠DBC 在中与ECB DBC ∆∆ECB CB BC DBC CE BD ∠⎪⎩⎪⎨⎧==∠=∴ ECB DBC ∆≅∆(2)证明:由(1)知ECB DBC ∆≅∆ ∴∠DCB=∠EBC ∴OB=OC 22. (1)12(2)开始2112121211221221ììïïïïíïïïïîïïìïïïïíïïïïîïíìïïïïïíïïïïîïïìïïïïíïïïïîî红红黑黑红红黑黑红黑红黑红黑红黑 共有等可能事件12种 其中符合题目要求获得2份奖品的事件有2种所以概率P=1623.(1) 4%(2)92.1×52%+85.0×26%+69.2×18%+41.3×4%=84.1(3)设总人数为n 个 , 80.0 ≤ 41.3×n×4%≤89.9 所以 48<n<54 又因为 4%n 为整数 所以n=50即优秀的学生有52%×50÷10%=260 人 24.(1) 作MN BO ,由垂径定理得N 为OB 中点 MN=12OA ∵MN=3∴OA=6,即A (-6,0) ∵sin ∠ABO=2,OA=6 ∴OB= 即B (0,设y kx b =+,将A 、B带入得到3y x =+(2)∵第一问解得∠ABO=60°,∴∠AMO=120°所以阴影部分面积为221=434S =--π((π25.(1)()()=36 2.25=16/=361-16=20/V km h V km h ÷÷小丽小明(2)93620=5914416=)559144,55km E ÷⨯⎛⎫⇒ ⎪⎝⎭(h )(实际意义为小明到达甲地26.(1)连结AE 并延长交圆E 于点C ,作AC 的中垂线交圆于点B ,D ,四边形ABCD 即为所求(2)①法一:连结AC,BD 交于点O,连结EB 交AC 于点G,连结DG 并延长交CB 于点F , F 即为所求法二:连结AC,BD 交于点OEACB连结EO 并延长交AB 于点G 连结GC,BE 交于点M连结OM 并延长交CB 于点F ,F 即为所求②27.(1) 令x=0,则4-=y ,∴C (0,-4) ∵ OA <OB ,∴对称轴在y 轴右侧,即02 ab- ∵a >0,∴b <0 (2)①过点D 作DM ⊥oy ,则21===CO MC OA DM CA DC , ∴AO DM 21=设A (-2m ,0)m >0,则AO=2m,DM=m ∵OC=4,∴CM=2∴D (m ,-6),B (4m ,0) A 型相似可得OBBNOE DN = EDACBCAB∴OE=884421BEF △=⨯⨯=m S∴1=m∴A (-2,0),B (4,0) 设)4)(2(-+=x x a y 即a ax ax y 822--= 令x=0,则y=-8a ∴C (0,-8a ) ∴-8a=-4,a=21 ∴4212--=x x y ②易知:B (4m ,0)C (0,-4)D (m ,-6),通过分析可得∠CBD 一定为锐角 计算可得2222221616,4,936CB m CD m DB m =+=+=+ 1°当∠CDB 为锐角时,222CD DB CB +>22249361616m m m ++++>,解得2m 2-<<2°当∠BCD 为锐角时,222CD CB DB +>22241616936m m m ++++>,解得m m <m 2<,m 42<∴4OA < 28.(1)①勾股求的 易证'CBA CB P △∽△,''4B P =解得②1°如图,当∠PCB ’=90 °时,在△PCB ’中采用勾股得:222(3)t t +-=,解得t=22°如图,当∠PCB ’=90 °时,在△PCB’中采用勾股得:222(3)t t +-=,解得t=63ABP ’为正方形,解得(2)如图3-t tB'B'CBAADPD3B'CA BD∵∠PAM=45°∴∠2+∠3=45°,∠1+∠4=45° 又∵翻折∴∠1=∠2,∠3=∠4又∵∠ADM=∠AB ’M (AAS ) ∴AD=AB ’=AB即四边形ABCD 是正方形 如图,设∠APB=x∴∠PAB=90°-x ∴∠DAP=x易证△MDA ≌△B ’AM (HL ) ∴∠BAM=∠DAM ∵翻折∴∠PAB=∠PAB ’=90°-x∴∠DAB ’=∠PAB ’-∠DAP=90°-2x ∴∠DAM=21∠DAB ’=45°-x ∴∠MAP=∠DAM+∠PAD=45°MA DP4321MB'BCB'A D PP。
2019全国中考数学真题分类汇编之37:尺规作图(含答案)
2019年全国中考数学真题分类汇编:尺规作图一、选择题1. (2019年北京市)已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交弧PQ 于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( ) A.∠COM=∠COD B.若OM=MN ,则∠AOB=20°C.MN ∥CDD.MN=3CD【考点】尺规作图【解答】连接ON ,由作图可知△COM ≌△DON.A. 由△COM ≌△DON.,可得∠COM=∠COD ,故A 正确.B. 若OM=MN ,则△OMN 为等边三角形,由全等可知∠COM=∠COD=∠DON=20°,故B 正确C.由题意,OC=OD ,∴∠OCD=2COD180∠-︒.设OC与OD 与MN 分别交于R ,S ,易证△MOR ≌△NOS ,则OR=OS ,∴∠ORS=2COD180∠-︒,∴∠OCD=∠ORS.∴MN ∥CD ,故C 正确.D.由题意,易证MC=CD=DN ,∴MC+CD+DN=3CD.∵两点之间线段最短.∴MN <MC+CD+DN=3CD ,故选D2. (2019年河南省)如图,在四边形ABCD 中,AD ∥BC ,∠D =90°,AD =4,BC =3.分 别以点A ,C 为圆心,大于AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( ) A .2B .4C .3D .【考点】尺规作图、线段垂直平分线的判定与性质、勾股定理、全等三角形的判定与性质【解答】解:如图,连接FC ,则AF =FC . ∵AD ∥BC , ∴∠F AO =∠BCO . 在△FOA 与△BOC 中,N MD OBCPA,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.3.(2019年湖北省襄阳市)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C,D两点,连接AC,BC,AD,BD,则四边形ADBC一定是()A.正方形B.矩形C.梯形D.菱形【考点】尺规作图、菱形的判定【解答】解:由作图可知:AC=AD=BC=BD,∴四边形ACBD是菱形,故选:D.4.(2019年湖北省宜昌市)通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.【考点】尺规作图【解答】解:作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选:A.5.(2019年内蒙古包头市)如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是()A.1 B.C.2 D.【考点】尺规作图-角的平分线【解答】解:由作法得AG平分∠BAC,∴G点到AC的距离等于BG的长,即G点到AC的距离为1,所以△ACG的面积=×4×1=2.故选:C.6.(2019年新疆)如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N;再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.则下列说法中不正确的是()A.BP是∠ABC的平分线B.AD=BDC.S△CBD:S△ABD=1:3D.CD=BD【考点】尺规作图-角的平分线【解答】解:由作法得BD平分∠ABC,所以A选项的结论正确;∵∠C=90°,∠A=30°,∴∠ABC=60°,∴∠ABD=30°=∠A,∴AD=BD,所以B选项的结论正确;∵∠CBD=∠ABC=30°,∴BD=2CD,所以D选项的结论正确;∴AD=2CD,∴S△ABD=2S△CBD,所以C选项的结论错误.故选:C.二、填空题1.(2019年辽宁省本溪市)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD 内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为.【考点】尺规作图【解答】解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.三、解答题1.(2019年山东省菏泽市)如图,四边形ABCD是矩形.(1)用尺规作线段AC的垂直平分线,交AB于点E,交CD于点F(不写作法,保留作图痕迹);(2)若BC=4,∠BAC=30°,求BE的长.【考点】尺规作图、垂直平分线【解答】解:(1)如图所示:(2)∵四边形ABCD是矩形,EF是线段AC的垂直平分线,∴AE=EC,∠CAB=∠ACE=30°,∴∠ECB=60°,∴∠ECB=30°,∵BC=4,∴BE=.2.(2019年山东省济宁市)如图,点M和点N在∠AOB内部.(1)请你作出点P,使点P到点M和点N的距离相等,且到∠AOB两边的距离也相等(保留作图痕迹,不写作法);(2)请说明作图理由.【考点】作角平分线、作线段垂直平分线【解答】解:(1)如图,点P到点M和点N的距离相等,且到∠AOB两边的距离也相等;(2)理由:角的平分线上的点到角的两边的距离相等、直平分线上的点到线段两端点的距离相等.3.(2019年山东省青岛市)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【考点】尺规作图【解答】解:如图,△ABC为所作.4.(2019年山东省枣庄市)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【考点】尺规作图-线段的垂直平分线、菱形的性质【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.5.(2019年四川省达州市)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.【考点】尺规作图-角的平分线、相似三角形【解答】解:(1)如图,DE为所作;(2)∵CD平分∠ACB,∴∠BCD=∠ACB=45°,∵DE⊥BC,∴△CDE为等腰直角三角形,∴DE =CE , ∵DE ∥AC , ∴△BDE ∽△BAC , ∴=,即=,∴DE =.6. (2019年广西贵港市)尺规作图(只保留作图痕迹,不要求写出作法): 如图,已知△ABC ,请根据“SAS ”基本事实作出△DEF ,使△DEF ≌△ABC .【考点】尺规作图、全等三角形的判定 【解答】解:如图,△DEF 即为所求.7. (2019年江苏省泰州市)如图, △ABC 中,∠C =900, AC=4, BC=8, (1)用直尺和圆规作AB 的垂直平分线;(保留作图痕迹,不要求写作法) (2)若(1)中所作的垂直平分线交BC 于点D,求BD 的长.【考点】尺规作图-线段的垂直平分线、勾股定理 【解答】解:(1)略;(2)由作图可知 AD =BD ,设BD= , ∵∠C =900, AC=4, BC=8, 则CD =(8−), ∴由勾股定理可得:AC 2+CD 2=AD 2; ∴42+2=(8−)2;解得:=5.∴BD=5.8.(2019年陕西省)如图,在△ABC中,AB=AC,AD是BC边上的高,请用尺规作图法,求作△ABC的外接圆.(保留作图痕迹,不写作法)【考点】尺规作图-线段的垂直平分线【解答】9.(2019年甘肃省)如图,在△ABC中,点P是AC上一点,连接BP,求作一点M,使得点M到AB和AC两边的距离相等,并且到点B和点P的距离相等.(不写作法,保留作图痕迹)【考点】尺规作图-角平分线【解答】解:如图,点M即为所求,10.(2019年甘肃省武威市)已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=.【考点】尺规作图-角平分线、等腰三角形的性质、三角形的外接圆与外心【解答】解:(1)如图⊙O即为所求.(2)设线段BC的垂直平分线交BC于点E.由题意OE=4,BE=EC=3,在Rt△OBE中,OB==5,∴S圆O=π•52=25π.故答案为25π.11.(2019年内蒙古赤峰市)已知:AC是▱ABCD的对角线.(1)用直尺和圆规作出线段AC的垂直平分线,与AD相交于点E,连接CE.(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB=3,BC=5,求△DCE的周长.【考点】尺规作图-垂直平分线、平行四边形的性质【解答】解:(1)如图,CE为所作;(2)∵四边形ABCD为平行四边形,∴AD=BC=5,CD=AB=3,∵点E在线段AC的垂直平分线上,∴EA=EC,∴△DCE的周长=CE+DE+CD=EA+DE+CD=AD+CD=5+3=8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019 年湖北省襄阳市中考数学试卷一、选择题:本大题共10 个小题,每小题3 分,共30 分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将其标号在答题卡上涂黑作答1.(3 分)计算|﹣3|的结果是()A.3 C.﹣3 D.±32.(3 分)下列运算正确的是()A.a3﹣a2=a B.a2•a3=a6 C.a6÷a2=a3 D.(a2)﹣3=a﹣6 3.(3 分)如图,直线BC∥AE,CD⊥AB 于点D,若∠BCD=40°,则∠1 的度数是()A.60°B.50°C.40°D.30°4.(3 分)某正方体的平面展开图如图所示,则原正方体中与“春”字所在的面相对的面上的字是()A.青B.来C.斗D.奋5.(3 分)下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.6.(3 分)不等式组的解集在数轴上用阴影表示正确的是()A.B.C.D.7.(3 分)如图,分别以线段AB 的两个端点为圆心,大于AB 的一半的长为半径画弧,两弧分别交于C,D 两点,连接AC,BC,AD,BD,则四边形ADBC 一定是()A.正方形B.矩形C.梯形D.菱形8.(3 分)下列说法错误的是()A.必然事件发生的概率是 1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得9.(3 分)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5 钱,会差45 钱;每人出7 钱,会差3 钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是()A.5x﹣45=7x﹣3 B.5x+45=7x+3 =D.=10.(3 分)如图,AD 是⊙O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OP C.OB⊥AC D.AC 平分OB 二、填空题:本大题共6 个小题,每小题3 分,共18 分.把答案填在答题卡的相应位置上11.(3 分)习总书记指出,善于学习,就是善于进步.“学习强国”平台上线后的某天,全国大约有1.2 亿人在平台上学习.1.2 亿这个数用科学记数法表示为.12.(3 分)定义:a*b=,则方程2*(x+3)=1*(2x)的解为.13.(3 分)从2,3,4,6 中随机选取两个数记作a 和b(a<b),那么点(a,b)在直线y =2x 上的概率是.14.(3 分)如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB=DC,其中不能确定△ABC≌△DCB 的是(只填序号).15.(3 分)如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为h=20t﹣5t2,则小球从飞出到落地所用的时间为s.16.(3 分)如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C,点D 在AB 上,∠BAC=∠DEC=30°,AC 与DE 交于点F,连接AE,若BD=1,AD=5,=.三、解答题:本大题共9 个小题,共72 分,解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内。
17.(6 分)先化简,再求值:(﹣1)÷,其中x=﹣1.18.(6 分)今年是中华人民共和国建国70 周年,襄阳市某学校开展了“我和我的祖国”主题学习竞赛活动.学校3000 名学生全部参加了竞赛,结果所有学生成绩都不低于60 分(满分100 分).为了了解成绩分布情况,学校随机抽取了部分学生的成绩进行统计,得到如下不完整的统计表.根据表中所给信息,解答下列问题:成绩x(分)分组频数频率60≤x<70 15 0.3070≤x<80 a 0.4080≤x<90 10 b90≤x≤100 5 0.10(1)表中a=,b=;(2)这组数据的中位数落在范围内;(3)判断:这组数据的众数一定落在70≤x<80 范围内,这个说法(填“正确”或“错误”);(4)这组数据用扇形统计图表示,成绩在80≤x<90 范围内的扇形圆心角的大小为;(5)若成绩不小于80 分为优秀,则全校大约有名学生获得优秀成绩.19.(6 分)改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m 的矩形场地ABCD 上修建三条同样宽的小路,其中两条与AB 平行,另一条与AD 平行,其余部分种草.要使草坪部分的总面积为112m2,则小路的宽应为多少?20.(6 分)襄阳卧龙大桥横跨汉江,是我市标志性建筑之一.某校数学兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱BC 和塔冠BE)进行了测量.如图所示,最外端的拉索AB 的底端A 到塔柱底端C 的距离为121m,拉索AB 与桥面AC 的夹角为37°,从点A 出发沿AC 方向前进23.5m,在D 处测得塔冠顶端E 的仰角为45°.请你求出塔冠BE 的高度(结果精确到0.1m.参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41).21.(7 分)如图,已知一次函数y1=kx+b 与反比例函数y2=的图象在第一、第三象限分别交于A(3,4),B(a,﹣2)两点,直线AB 与y 轴,x 轴分别交于C,D 两点.(1)求一次函数和反比例函数的解析式;(2)比较大小:AD BC(填“>”或“<”或“=”);(3)直接写出y1<y2 时x 的取值范围.22.(8 分)如图,点E 是△ABC 的内心,AE 的延长线和△ABC 的外接圆⊙O 相交于点D,过D 作直线DG∥BC.(1)求证:DG 是⊙O 的切线;(2)若,求优的长.23.(10 分)襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如下表所示:(1)该超市购进甲种蔬菜10kg 和乙种蔬菜5kg 需要170 元;购进甲种蔬菜6kg 和乙种蔬菜10kg 需要200 元.求m,n 的值;(2)该超市决定每天购进甲、乙两种蔬菜共100kg 进行销售,其中甲种蔬菜的数量不少于20kg,且不大于70kg.实际销售时,由于多种因素的影响,甲种蔬菜超过60kg 的部分,当天需要打5 折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获有机蔬菜种类进价(元/kg)售价(元/kg)甲m 16乙n 18得的利润额y(元)与购进甲种蔬菜的数量x(kg)之间的函数关系式,并写出x 的取值范围;(3)在(2)的条件下,超市在获得的利润额y(元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的盈利率不低于20%,求a 的最大值.24.(10 分)(1)证明推断:如图(1),在正方形ABCD 中,点E,Q 分别在边BC,AB 上,DQ⊥AE 于点O,点G,F 分别在边CD,AB 上,GF⊥AE.①求证:DQ=AE;②推断的值为;(2)类比探究:如图(2),在矩形ABCD 中,=k(k 为常数).将矩形ABCD 沿GF 折叠,使点A 落在BC 边上的点E 处,得到四边形FEPG,EP 交CD 于点H,连接AE 交GF 于点O.试探究GF 与AE 之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当时,若,GF=2,求CP 的长.25.(13 分)如图,在直角坐标系中,直线y=﹣x+3 与x 轴,y 轴分别交于点B,点C,对称轴为x=1 的抛物线过B,C 两点,且交x 轴于另一点A,连接AC.(1)直接写出点A,点B,点 C 的坐标和抛物线的解析式;(2)已知点P 为第一象限内抛物线上一点,当点P 到直线BC 的距离最大时,求点P 的坐标;(3)抛物线上是否存在一点Q(点C 除外),使以点Q,A,B 为顶点的三角形与△ABC 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.2019 年湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10 个小题,每小题3 分,共30 分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将其标号在答题卡上涂黑作答1.(3 分)计算|﹣3|的结果是()A.3 C.﹣3 D.±3【分析】根据绝对值的性质进行计算.【解答】解:|﹣3|=3.故选:A.【点评】本题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.2.(3 分)下列运算正确的是()A.a3﹣a2=a B.a2•a3=a6 C.a6÷a2=a3 D.(a2)﹣3=a﹣6【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、a3﹣a2,无法计算,故此选项错误;B、a2•a3=a5,故此选项错误;C、a6÷a2=a4,故此选项错误;D、(a2)﹣3=a﹣6,正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.(3 分)如图,直线BC∥AE,CD⊥AB 于点D,若∠BCD=40°,则∠1 的度数是()A.60°B.50°C.40°D.30°【分析】先在直角△CBD 中可求得∠DBC 的度数,然后平行线的性质可求得∠1 的度数.【解答】解:∵CD⊥AB 于点D,∠BCD=40°,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+40°=90°.∴∠DBC=50°.∵直线BC∥AE,∴∠1=∠DBC=50°.故选:B.【点评】本题主要考查的是平行线的性质、垂线的定义、直角三角形两锐角互余的性质,掌握相关知识是解题的关键.4.(3 分)某正方体的平面展开图如图所示,则原正方体中与“春”字所在的面相对的面上的字是()A.青B.来C.斗D.奋【分析】正方体展开图的“Z”字型找对面的方法即可求解;【解答】解:由:“Z”字型对面,可知春字对应的面上的字是奋;故选:D.【点评】本题考查正方体的展开图;熟练掌握正方体展开图的特点是解题的关键.5.(3 分)下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180 度后两部分重合.6.(3 分)不等式组的解集在数轴上用阴影表示正确的是()A.B.C.D.【分析】求出不等式组的解集,表示出数轴上即可.【解答】解:不等式组整理得:,∴不等式组的解集为x≤﹣3,故选:C.【点评】此题考查了解一元一次方程组,熟练掌握运算法则是解本题的关键.7.(3 分)如图,分别以线段AB 的两个端点为圆心,大于AB 的一半的长为半径画弧,两弧分别交于C,D 两点,连接AC,BC,AD,BD,则四边形ADBC 一定是()A.正方形B.矩形C.梯形D.菱形【分析】根据四边相等的四边形是菱形即可判断.【解答】解:由作图可知:AC=AD=BC=BD,∴四边形ACBD 是菱形,故选:D.【点评】本题考查基本作图,菱形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.8.(3 分)下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得【分析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0 并且小于1.【解答】解:A、必然事件发生的概率是1,正确;B、通过大量重复试验,可以用频率估计概率,正确;C、概率很小的事件也有可能发生,故错误; D 、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选:C.【点评】本题考查了概率的意义,概率的意义反映的只是这一事件发生的可能性的大小,概率取值范围:0≤p≤1,其中必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0;随机事件,发生的概率大于0 并且小于1.事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.9.(3 分)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5 钱,会差45 钱;每人出7 钱,会差3 钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是()A.5x﹣45=7x﹣3 B.5x+45=7x+3 =D.=【分析】设合伙人数为x 人,根据羊的总价钱不变,即可得出关于x 的一元一次方程,此题得解.【解答】解:设合伙人数为x 人,依题意,得:5x+45=7x+3.故选:B.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.10.(3 分)如图,AD 是⊙O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OP C.OB⊥AC D.AC 平分OB【分析】利用圆周角定理得到∠ACD=90°,再根据平行四边形的性质得到CD∥OB,CD =OB,则可求出∠A=30°,在Rt△AOP 中利用含30 度的直角三角形三边的关系可对A 选项进行判断;利用OP∥CD,CD⊥AC 可对C 选项进行判断;利用垂径可判断OP 为△ACD 的中位线,则CD=2OP,原式可对B 选项进行判断;同时得到OB=2OP,则可对D 选项进行判断.【解答】解:∵AD 为直径,∴∠ACD=90°,∵四边形OBCD 为平行四边形,∴CD∥OB,CD=OB,在Rt△ACD 中=,∴∠A=30°,在Rt△AOP 中OP,所以A 选项的结论错误;∵OP∥CD,CD⊥AC,∴OP⊥AC,所以C 选项的结论正确;∴AP=CP,∴OP 为△ACD 的中位线,∴CD=2OP,所以 B 选项的结论正确;∴OB=2OP,∴AC 平分OB,所以D 选项的结论正确.故选:A.【点评】此题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理和平行四边形的性质.二、填空题:本大题共6 个小题,每小题3 分,共18 分.把答案填在答题卡的相应位置上11.(3 分)习总书记指出,善于学习,就是善于进步.“学习强国”平台上线后的某天,全国大约有1.2 亿人在平台上学习.1.2 亿这个数用科学记数法表示为 1.2×108 .【分析】科学记数法就是将一个数字表示成(a×10 的n 次幂的形式),其中1≤|a|<10,n 表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10 的n 次幂.【解答】解:1.2 亿=1.2×108.故答案为:1.2×108.【点评】此题考查了对科学记数法的理解和运用和单位的换算.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.(3 分)定义:a*b=,则方程2*(x+3)=1*(2x)的解为 x=1 .【分析】根据新定义列分式方程可得结论.【解答】解:2*(x+3)=1*(2x),=,4x=x+3,x=1,经检验:x=1 是原方程的解,故答案为:x=1.【点评】本题考查了解分式方程和新定义的理解,熟练掌握解分式方程的步骤是关键.13.(3 分)从2,3,4,6 中随机选取两个数记作a 和b(a<b),那么点(a,b)在直线y =2x 上的概率是.【分析】画出树状图,找到b=2a 的结果数,再根据概率公式解答【解答】解:画树状图如图所示,一共有6 种情况,b=2a 的有(2,4)和(3,6)两种,所以点(a,b)在直线y=2x 上的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A 或B 的结果数目m,然后根据概率公式求出事件A 或B 的概率.14.(3 分)如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB=DC,其中不能确定△ABC≌△DCB 的是② (只填序号).【分析】一般三角形全等的判定方法有SSS,SAS,AAS,ASA,据此可逐个对比求解.【解答】解:∵已知∠ABC=∠DCB,且BC=CB∴若添加①∠A=∠D,则可由AAS 判定△ABC≌△DCB;若添加②AC=DB,则属于边边角的顺序,不能判定△ABC≌△DCB;若添加③AB=DC,则属于边角边的顺序,可以判定△ABC≌△DCB.故答案为:②.【点评】本题考查全等三角形的几种基本判定方法,只要判定方法掌握得牢固,此题不难判断.15.(3 分)如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为h=20t﹣5t2,则小球从飞出到落地所用的时间为 4 s.【分析】根据关系式,令h=0 即可求得t 的值为飞行的时间【解答】解:依题意,令h=0 得0=20t﹣5t2得t(20﹣5t)=0解得t=0(舍去)或t=4即小球从飞出到落地所用的时间为4s故答案为4.【点评】本题考查了二次函数的性质在实际生活中的应用.此题为数学建模题,关键在于读懂小球从飞出到落地即飞行的高度为0 时的情形,借助二次函数解决实际问题.此题较为简单16.(3 分)如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C,点D 在AB 上,∠BAC=∠DEC=30°,AC 与DE 交于点F,连接AE,若BD=1,AD=5,则=.【分析】过点C 作CM⊥DE 于点M,过点E 作EN⊥AC 于点N,先证△BCD∽△ACE,求出AE 的长及∠CAE=60°,推出∠DAE=90°,在Rt△DAE 中利用勾股定理求出DE 的长,进一步求出CD 的长,分别在Rt△DCM 和Rt△AEN 中,求出MC 和NE 的长,再证△MFC∽△NFE,利用相似三角形对应边的比相等即可求出CF 与EF 的比值.【解答】解:如图,过点C 作CM⊥DE 于点M,过点E 作EN⊥AC 于点N,∵BD=1,AD=5,∴AB=BD+AD=6,∵在Rt△ABC 中,∠BAC=30°,∠B=90°﹣∠BAC=60°,∴BC=AB=3,AC=BC=3 ,在Rt△BCA 与Rt△DCE 中,∵BAC=∠DEC=30°,∴tan∠BAC=tan∠DEC,∴,∵BCA=∠DCE=90°,∴∵BCA﹣∠DCA=∠DCE﹣∠DCA,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴∠CAE=∠B=60°,∴,∴∠DAE=∠DAC+∠CAE=30°+60°=90°,,∴AE=,在Rt△ADE 中,DE===2 ,在Rt△DCE 中,∠DEC=30°,∴∠EDC=60°,DC=DE=,在Rt△DCM 中,MC=DC=,在Rt△AEN 中,NE=AE=,∵∠MFC=∠NFE,∠FMC=∠FNE=90,∴△MFC∽△NFE,∴=,故答案为:.【点评】本题考查了相似三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够通过作适当的辅助线构造相似三角形,求出对应线段的比.三、解答题:本大题共9 个小题,共72 分,解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内。