大学模式识别考试题及答案详解

合集下载

模式识别期末考试题及答案

模式识别期末考试题及答案

模式识别期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪一项不是模式识别的主要任务?A. 分类B. 回归C. 聚类D. 预测答案:B2. 以下哪一种方法不属于统计模式识别方法?A. 最小二乘法B. 感知机C. 支持向量机D. 决策树答案:A3. 在模式识别中,以下哪种技术用于降低特征维度?A. 主成分分析(PCA)B. 线性判别分析(LDA)C. 神经网络D. K-均值聚类答案:A4. 以下哪一种模式识别方法适用于非线性问题?A. 线性判别分析(LDA)B. 支持向量机(SVM)C. 主成分分析(PCA)D. K-最近邻(K-NN)答案:B5. 以下哪一项不是模式识别的评价指标?A. 准确率B. 精确率C. 召回率D. 信息熵答案:D二、填空题(每题2分,共20分)6. 模式识别的主要任务包括分类、回归、聚类和________。

答案:预测7. 统计模式识别方法包括最小二乘法、感知机、________和决策树。

答案:支持向量机8. 主成分分析(PCA)的主要目的是________特征。

答案:降低维度9. 在模式识别中,________用于将样本分为不同的类别。

答案:分类器10. 支持向量机(SVM)的基本思想是找到一个________,使得不同类别的样本之间的间隔最大化。

答案:最优分割超平面三、简答题(每题10分,共30分)11. 请简述模式识别的主要步骤。

答案:(1)数据预处理:对原始数据进行清洗、标准化和降维等处理。

(2)特征提取:从原始数据中提取有助于分类的特征。

(3)模型训练:使用训练集对分类器进行训练。

(4)模型评估:使用测试集对分类器的性能进行评估。

(5)模型优化:根据评估结果对模型进行调整和优化。

12. 请简述支持向量机(SVM)的基本原理。

支持向量机是一种二分类模型,其基本思想是找到一个最优分割超平面,使得不同类别的样本之间的间隔最大化。

SVM通过求解一个凸二次规划问题来寻找最优分割超平面,从而实现分类任务。

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解Document number:PBGCG-0857-BTDO-0089-PTT1998一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A?01, A? 0A1 , A? 1A0 , B?BA , B? 0}, A)(2)({A}, {0, 1}, {A?0, A? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A? 0A1, A? 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

模式识别期末试题及答案

模式识别期末试题及答案

模式识别期末试题及答案正文:模式识别期末试题及答案1. 选择题1.1 下列关于机器学习的说法中,正确的是:A. 机器学习是一种人工智能的应用领域B. 机器学习只能应用于结构化数据C. 机器学习不需要预先定义规则D. 机器学习只能处理监督学习问题答案:A1.2 在监督学习中,以下哪个选项描述了正确的训练过程?A. 通过输入特征和预期输出,训练一个模型来进行预测B. 通过输入特征和可能的输出,训练一个模型来进行预测C. 通过输入特征和无标签的数据,训练一个模型来进行预测D. 通过输入特征和已有标签的数据,训练一个模型来进行分类答案:D2. 简答题2.1 请解释什么是模式识别?模式识别是指在给定一组输入数据的情况下,通过学习和建模,识别和分类输入数据中的模式或规律。

通过模式识别算法,我们可以从数据中提取重要的特征,并根据这些特征进行分类、聚类或预测等任务。

2.2 请解释监督学习和无监督学习的区别。

监督学习是一种机器学习方法,其中训练数据包含了输入特征和对应的标签或输出。

通过给算法提供已知输入和输出的训练样本,监督学习的目标是学习一个函数,将新的输入映射到正确的输出。

而无监督学习则没有标签或输出信息。

无监督学习的目标是从未标记的数据中找到模式和结构。

这种学习方法通常用于聚类、降维和异常检测等任务。

3. 计算题3.1 请计算以下数据集的平均值:[2, 4, 6, 8, 10]答案:63.2 请计算以下数据集的标准差:[1, 3, 5, 7, 9]答案:2.834. 综合题4.1 对于一个二分类问题,我们可以使用逻辑回归模型进行预测。

请简要解释逻辑回归模型的原理,并说明它适用的场景。

逻辑回归模型是一种用于解决二分类问题的监督学习算法。

其基本原理是通过将特征的线性组合传递给一个非线性函数(称为sigmoid函数),将实数值映射到[0,1]之间的概率。

这个映射的概率可以被解释为某个样本属于正类的概率。

逻辑回归适用于需要估计二分类问题的概率的场景,例如垃圾邮件分类、欺诈检测等。

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解Last revision on 21 December 2020一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

模式识别题目及答案

模式识别题目及答案

一、(15分)设有两类正态分布的样本集,第一类均值为T1μ=(2,0),方差11⎡⎤∑=⎢⎥⎣⎦11/21/2,第二类均值为T2μ=(2,2),方差21⎡⎤∑=⎢⎥⎣⎦1-1/2-1/2,先验概率12()()p p ωω=,试求基于最小错误率的贝叶斯决策分界面。

解 根据后验概率公式()()()()i i i p x p p x p x ωωω=, (2’)及正态密度函数11/21()exp[()()/2]2T i i i i nip x x x ωμμπ-=--∑-∑ ,1,2i =。

(2’) 基于最小错误率的分界面为1122()()()()p x p p x p ωωωω=, (2’) 两边去对数,并代入密度函数,得1111112222()()/2ln ()()/2ln T T x x x x μμμμ----∑--∑=--∑--∑ (1) (2’)由已知条件可得12∑=∑,114/3-⎡⎤∑=⎢⎥⎣⎦4/3-2/3-2/3,214/3-⎡⎤∑=⎢⎥⎣⎦4/32/32/3,(2’)设12(,)Tx x x =,把已知条件代入式(1),经整理得1221440x x x x --+=, (5’)二、(15分)设两类样本的类内离散矩阵分别为11S ⎡⎤=⎢⎥⎣⎦11/21/2, 21S ⎡⎤=⎢⎥⎣⎦1-1/2-1/2,各类样本均值分别为T 1μ=(1,0),T2μ=(3,2),试用fisher 准则求其决策面方程,并判断样本Tx =(2,2)的类别。

解:122S S S ⎡⎤=+=⎢⎥⎣⎦200 (2’) 投影方向为*112-2-1()211/2w S μμ-⎡⎤⎡⎤⎡⎤=-==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦1/200 (6’)阈值为[]*0122()/2-1-131T y w μμ⎡⎤=+==-⎢⎥⎣⎦(4’)给定样本的投影为[]*0-12241T y w x y ⎡⎤===-<⎢⎥-⎣⎦, 属于第二类 (3’)三、 (15分)给定如下的训练样例实例 x0 x1 x2 t(真实输出) 1 1 1 1 1 2 1 2 0 1 3 1 0 1 -1 4 1 1 2 -1用感知器训练法则求感知器的权值,设初始化权值为0120w w w ===;1 第1次迭代(4’)2 第2次迭代(2’)3 第3和4次迭代四、 (15分)i. 推导正态分布下的最大似然估计;ii. 根据上步的结论,假设给出如下正态分布下的样本{}1,1.1,1.01,0.9,0.99,估计该部分的均值和方差两个参数。

模式识别期末考试题及答案

模式识别期末考试题及答案

模式识别期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪项不属于模式识别的主要任务?A. 分类B. 回归C. 聚类D. 降维答案:B2. 以下哪种方法不属于模式识别的监督学习方法?A. 支持向量机B. 决策树C. 神经网络D. K-均值聚类答案:D3. 在模式识别中,特征选择和特征提取的主要目的是什么?A. 提高模型的泛化能力B. 减少模型的计算复杂度C. 提高模型的准确率D. 所有以上选项答案:D4. 以下哪种距离度量方法不适用于模式识别?A. 欧几里得距离B. 曼哈顿距离C. 余弦相似度D. 切比雪夫距离答案:C5. 以下哪种算法不属于模式识别中的分类算法?A. K-最近邻B. 支持向量机C. 线性回归D. 决策树答案:C二、填空题(每题2分,共20分)1. 模式识别的主要任务包括分类、回归、聚类和__________。

答案:降维2. 监督学习算法包括线性判别分析、__________、神经网络等。

答案:支持向量机3. 无监督学习算法包括K-均值聚类、层次聚类、__________等。

答案:DBSCAN4. 特征选择和特征提取的主要目的是降低数据的__________和__________。

答案:维度、计算复杂度5. 模式识别中常用的距离度量方法有欧几里得距离、曼哈顿距离、余弦相似度和__________。

答案:切比雪夫距离三、判断题(每题2分,共20分)1. 模式识别是人工智能领域中一个重要的分支,主要研究如何使计算机能够自动识别和处理模式。

()答案:√2. 监督学习算法和无监督学习算法在模式识别中具有相同的作用。

()答案:×3. 支持向量机是一种基于最大间隔的分类算法。

()答案:√4. K-均值聚类算法是一种基于距离度量的聚类算法。

()答案:√5. 特征选择和特征提取的主要目的是提高模型的泛化能力。

()答案:√四、简答题(每题10分,共30分)1. 简述模式识别的基本流程。

【模式识别】期末考试试卷01

【模式识别】期末考试试卷01

《模式识别》期末考试试题(B )一、填空题(15个空,每空2分,共30分)1.基于机器学习的模式识别系统通常由两个过程组成, 即分类器设计和( )。

2.统计模式识别把( )表达为一个随机向量(即特征向量), 将模式类表达为由有穷或无穷个具有相似数值特性的模式组成的集合。

3.特征一般有两种表达方法:(1)将特征表达为数值;(2)将特征表达为( )。

4.特征提取是指采用( )实现由模式测量空间向特征空间的转变。

5.同一类模式类样本的分布比较集中,没有或临界样本很少,这样的模式类称为( )。

6.加权空间的所有分界面都通过( )。

7.线性多类判别: 若每两个模式类间可用判别平面分开, 在这种情况下,M 类有( )个判别函数,存在有不确定区域。

8.当取0-1损失函数时, 最小风险贝叶斯判决准则等价于( )判决准则。

9.Neyman-Pearson 决策的基本思想是( )某一错误率,同时追求另一错误率最小。

10.聚类/集群:用事先不知样本的类别,而利用样本的先验知识来构造分类器属于( )学习。

11.相似性测度、聚类准则和( )称为聚类分析的三要素。

12.K/C 均值算法使用的聚类准则函数是误差平方和准则,通过反复迭代优化聚类结果,使所有样本到各自所属类别的中心的( )达到最小。

13.根据神经元的不同连接方式,可将神经网络分为分层网络和相互连接型网络两大类。

其中分层网络可细分为前向网络、( )和层内互连前向网络三种互连方式。

14.神经网络的特性及能力主要取决于网络拓扑结构及( )。

15.BP 神经网络是采用误差反向传播算法的多层前向网络,其中,神经元的传输函数为S 型函数,网络的输入和输出是一种( )映射关系。

二、简答题(2题,每小题10分,共20分)1.两类问题的最小风险Bayes 决策的主要思想是什么? 2.已知一组数据的协方差矩阵为11/21/21⎡⎤⎢⎥⎣⎦,试问: (1)协方差矩阵中各元素的含义是什么? (2)K-L 变换的最佳准则是什么?(3)为什么说经K-L 变换后消除了各分量之间的相关性?三、 计算题(2题,每小题13分,共26分)1.已知有两类样本集,分别为ω1={x 1, x 2}={(1,2)T , (-1,0)T }; ω2={x 3, x 4} ={(-1,-2)T , (1,-1)T } 设初始权值w 1=(1,1,1)T , ρk =1,试用感知器固定增量法求判别函数,画出决策面。

(完整word版)模式识别试题及总结

(完整word版)模式识别试题及总结

一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)(2)({A}, {0, 1}, {A→0, A→ 0A}, A)(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。

10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。

(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。

大学模式识别考试题及答案详解完整版

大学模式识别考试题及答案详解完整版

大学模式识别考试题及答案详解HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

模式识别期末考试试题

模式识别期末考试试题

模式识别期末考试试题# 模式识别期末考试试题## 一、选择题(每题2分,共20分)1. 模式识别中,特征提取的目的是什么?A. 降低数据维度B. 提高计算效率C. 增强数据的可解释性D. 以上都是2. 在K-近邻算法中,K值的选择对结果的影响是什么?A. 无影响B. 影响分类的准确性C. 影响算法的运行时间D. 影响数据的可读性3. 决策树算法中,信息增益的计算是基于以下哪个概念?A. 熵B. 互信息C. 条件熵D. 联合熵4. 支持向量机(SVM)的主要思想是?A. 寻找数据点之间的最大间隔B. 寻找数据点之间的最小间隔C. 寻找数据点的平均间隔D. 寻找数据点的中心点5. 以下哪个算法属于聚类算法?A. K-近邻B. 决策树C. K-均值D. 支持向量机## 二、简答题(每题10分,共30分)1. 描述主成分分析(PCA)的基本原理及其在模式识别中的应用。

2. 解释什么是过拟合(Overfitting)现象,并给出避免过拟合的几种常用方法。

3. 给出神经网络在模式识别中的基本工作原理,并说明其优缺点。

## 三、计算题(每题25分,共50分)1. 给定以下数据点,使用K-均值算法将它们分为两个簇,并说明算法的步骤:- 数据点:(1, 2), (2, 3), (5, 6), (8, 7), (9, 8)2. 假设有一个二维数据集,其中包含两类数据点,分别用圆形和三角形表示。

数据点的特征如下表所示:| 特征1 | 特征2 | 类别 || | | - || 1.5 | 2.5 | 圆形 || 2.0 | 3.0 | 圆形 || 3.5 | 4.5 | 三角形 || 4.0 | 5.0 | 三角形 |使用线性判别分析(LDA)方法,找出最佳线性边界,并将数据点分为两类。

## 四、论述题(共30分)1. 论述深度学习在图像识别领域的应用,并讨论其与传统机器学习方法相比的优势和局限性。

## 五、案例分析题(共30分)1. 假设你是一名数据科学家,你的团队正在开发一个用于识别手写数字的系统。

模式识别期末考试题及答案

模式识别期末考试题及答案

模式识别期末考试题及答案一、填空题1. 模式识别是研究通过_________从观测数据中自动识别和分类模式的一种学科。

答案:计算机算法2. 在模式识别中,特征选择的主要目的是_________。

答案:降低数据的维度3. 支持向量机(SVM)的基本思想是找到一个最优的超平面,使得两类数据的_________最大化。

答案:间隔4. 主成分分析(PCA)是一种_________方法,用于降低数据的维度。

答案:线性降维5. 隐马尔可夫模型(HMM)是一种用于处理_________数据的统计模型。

答案:时序二、选择题6. 以下哪种方法不属于模式识别的监督学习方法?()A. 线性判别分析B. 支持向量机C. 神经网络D. K-means聚类答案:D7. 在以下哪种情况下,可以使用主成分分析(PCA)进行特征降维?()A. 数据维度较高,且特征之间存在线性关系B. 数据维度较高,且特征之间存在非线性关系C. 数据维度较低,且特征之间存在线性关系D. 数据维度较低,且特征之间存在非线性关系答案:A8. 以下哪个算法不属于聚类算法?()A. K-meansB. 层次聚类C. 判别分析D. 密度聚类答案:C三、判断题9. 模式识别的目的是将输入数据映射到事先定义的类别中。

()答案:正确10. 在模式识别中,特征提取和特征选择是两个不同的概念,其中特征提取是将原始特征转换为新的特征,而特征选择是从原始特征中筛选出有用的特征。

()答案:正确四、简答题11. 简述模式识别的主要任务。

答案:模式识别的主要任务包括:分类、回归、聚类、异常检测等。

其中,分类和回归任务属于监督学习,聚类和异常检测任务属于无监督学习。

12. 简述支持向量机(SVM)的基本原理。

答案:支持向量机的基本原理是找到一个最优的超平面,使得两类数据的间隔最大化。

具体来说,SVM通过求解一个凸二次规划问题来确定最优超平面,使得训练数据中的正类和负类数据点尽可能远离这个超平面。

模式识别试题

模式识别试题

一、试问“模式”与“模式类”的含义。

如果一位姓王的先生是位老年人,试问“王先生”和“老头”谁是模式,谁是模式类?二、试说明Mahalanobis距离平方的定义,到某点的Mahalanobis距离平方为常数的轨迹的几何意义,它与欧氏距离的区别与联系。

三、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以说明这两种学习方法的定义与它们间的区别。

四、试述动态聚类与分级聚类这两种方法的原理与不同。

五、如果观察一个时序信号时在离散时刻序列得到的观察量序列表示为,而该时序信号的内在状态序列表示成。

如果计算在给定O条件下出现S的概率,试问此概率是何种概率。

如果从观察序列来估计状态序列的最大似然估计,这与Bayes决策中基于最小错误率的决策有什么关系。

六、已知一组数据的协方差矩阵为,试问1.协方差矩阵中各元素的含义。

2.求该数组的两个主分量。

3.主分量分析或称K-L变换,它的最佳准则是什么?4.为什么说经主分量分析后,消除了各分量之间的相关性。

七、试说明以下问题求解是基于监督学习或是非监督学习:1. 求数据集的主分量非2. 汉字识别有3. 自组织特征映射非4. CT图像的分割非八、试列举线性分类器中最著名的三种最佳准则以及它们各自的原理。

九、在一两维特征空间,两类决策域由两条直线H1和H2分界,其中而包含H1与H2的锐角部分为第一类,其余为第二类。

试求:1.用一双层感知器构造该分类器2.用凹函数的并构造该分类器十、设有两类正态分布的样本基于最小错误率的贝叶斯决策分界面,分别为X2=0,以及X1=3,其中两类的协方差矩阵,先验概率相等,并且有,。

试求:以及。

(九题图)模式识别试题二答案1、答:在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代表,概念或典型,而“模式”则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模式”,是“老头”的具体化。

2、答:Mahalanobis距离的平方定义为:其中x,u为两个数据,是一个正定对称矩阵(一般为协方差矩阵)。

(完整版)大学模式识别考试题及答案详解,推荐文档

(完整版)大学模式识别考试题及答案详解,推荐文档
出发点是使期望泛化风险尽可能小。
第 5 页 共 5页




At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!
(1)无监督分类 (2)有监督分类 (3)统计模式识别方法(4)句法模式识别方法 4、若描述模式的特征量为 0-1 二值特征量,则一般采用 (4) 进行相似性度量。

机器学习与模式识别专升本试题详解

机器学习与模式识别专升本试题详解

机器学习与模式识别专升本试题详解机器学习和模式识别是计算机科学领域的两个重要研究方向,也是当今人工智能发展的核心内容之一。

随着大数据时代的到来,机器学习与模式识别的技术应用呈现出爆发式增长的态势。

为了满足专升本考试的要求,下面将对机器学习与模式识别相关试题进行详细解析。

一、选择题1. 机器学习是实现人工智能的重要途径之一,其核心目标是:A. 数据加密B. 数据融合C. 数据挖掘D. 数据分析答案:D解析:机器学习是通过让计算机从大量数据中学习到规律和模式,从而实现自动分析、预测和决策的过程。

数据分析是机器学习的核心目标,通过对数据的分析,可以发现其中隐藏的规律和知识。

2. 模式识别是一种将输入的数据与一组已知模式进行匹配的过程,其主要应用领域包括:A. 人脸识别B. 机器翻译C. 语音识别D. 全球定位系统答案:A、C解析:模式识别技术主要应用于人脸识别、语音识别、手写识别等领域。

通过将输入的数据与已知的模式进行匹配,可以实现对不同类别的数据进行自动分类和识别。

二、填空题1. 机器学习中常用的监督学习算法有________和________。

答案:决策树、支持向量机解析:监督学习是指通过给定的训练数据集,让计算机学习出一个从输入到输出的映射关系。

决策树和支持向量机是常用的监督学习算法,可以用来解决分类和回归问题。

2. 模式识别中常用的特征提取方法有________和________。

答案:主成分分析、小波变换解析:特征提取是将原始数据转化为更具有区分性的特征表示的过程。

主成分分析和小波变换是常用的特征提取方法,可以降低数据维度、提取出关键特征。

三、简答题1. 请简要说明机器学习算法中的训练集、验证集和测试集分别的作用。

答案:在机器学习中,训练集是用来训练模型的数据集,通过对训练集的学习,模型可以学到数据的规律和模式。

验证集是用来调整模型参数和评估模型性能的数据集,通过在验证集上验证不同参数组合的模型性能,可以选择最优的模型。

模式识别_青岛大学中国大学mooc课后章节答案期末考试题库2023年

模式识别_青岛大学中国大学mooc课后章节答案期末考试题库2023年

模式识别_青岛大学中国大学mooc课后章节答案期末考试题库2023年1.贝叶斯决策是通过计算样本后验概率的大小来进行决策的,下面表达式中wi代表类别,x代表样本,能够表示后验概率的是答案:P(wi|x)2.下列表达中不能影响贝叶斯估计结果的是答案:数据的线性变换3.下列关于感知器算法的说法中错误的是答案:感知器算法也适用于线性不可分的样本4.下面关于BP神经网络的说法错误的是答案:BP算法由误差的正向传播和数据的反向传播两个过程构成。

5.在利用神经网络进行分类时,神经网络的输入节点的个数______输入的特征数量。

答案:等于6.下面不能用来度量概率距离的参数是答案:欧式距离7.下面关于错误率的说法中错误的是答案:在实际当中,人们主要采用理论分析的方法来评价监督模式识别系统中分类器的错误率。

8.下面关于BP神经网络的说法错误的是答案:BP算法由误差的正向传播和数据的反向传播两个过程构成。

9.下面关于熵的说法中,错误的是答案:熵表示不确定性,熵越小不确定性越大。

10.下面关于PCA算法的说法中错误的是答案:PCA算法是通过变换矩阵得到原有特征的线性组合,新特征之间是线性相关的。

11.下列属于监督模式识别的是答案:字符识别人脸识别车牌识别12.基于最小错误率的贝叶斯决策规则可以采用不同的形式,下列能表达其决策规则的是答案:似然比后验概率类条件概率13.下面关于最大似然估计的说法中正确的是答案:最大似然估计是在已知概率密度函数的形式,但是参数未知的情况下,利用训练样本来估计未知参数。

在最大似然函数估计中,要估计的参数是一个确定的量。

在最大似然估计中要求各个样本必须是独立抽取的。

14.在基于样本直接设计分类器时,属于分类器设计三要素的是答案:准则函数的形式寻优算法判别函数的类型15.下面关于最小平方误差判别的说法中正确的是答案:在最小平方误差判别中可以使用梯度下降法来求解最小平方误差判别方法中的准则函数是误差长度的平方和。

模式识别习题及答案

模式识别习题及答案

第一章 绪论1.什么是模式?具体事物所具有的信息。

模式所指的不是事物本身,而是我们从事物中获得的___信息__。

2.模式识别的定义?让计算机来判断事物。

3.模式识别系统主要由哪些部分组成?数据获取—预处理—特征提取与选择—分类器设计/ 分类决策。

第二章 贝叶斯决策理论1.最小错误率贝叶斯决策过程? 答:已知先验概率,类条件概率。

利用贝叶斯公式得到后验概率。

根据后验概率大小进行决策分析。

2.最小错误率贝叶斯分类器设计过程?答:根据训练数据求出先验概率类条件概率分布 利用贝叶斯公式得到后验概率如果输入待测样本X ,计算X 的后验概率根据后验概率大小进行分类决策分析。

3.最小错误率贝叶斯决策规则有哪几种常用的表示形式? 答:4.贝叶斯决策为什么称为最小错误率贝叶斯决策?答:最小错误率Bayes 决策使得每个观测值下的条件错误率最小因而保证了(平均)错误率 最小。

Bayes 决策是最优决策:即,能使决策错误率最小。

5.贝叶斯决策是由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利用这个概率进行决策。

6.利用乘法法则和全概率公式证明贝叶斯公式答:∑====mj Aj p Aj B p B p A p A B p B p B A p AB p 1)()|()()()|()()|()(所以推出贝叶斯公式7.朴素贝叶斯方法的条件独立假设是(P(x| ωi) =P(x1, x2, …, xn | ωi)⎩⎨⎧∈>=<211221_,)(/)(_)|()|()(w w x w p w p w x p w x p x l 则如果∑==21)()|()()|()|(j j j i i i w P w x P w P w x P x w P 2,1),(=i w P i 2,1),|(=i w x p i ∑==21)()|()()|()|(j j j i i i w P w x P w P w x P x w P ∑===Mj j j i i i i i A P A B P A P A B P B P A P A B P B A P 1)()|()()|()()()|()|(= P(x1| ωi) P(x2| ωi)… P(xn| ωi))8.怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布?答:假设各属性独立,P(x| ωi) =P(x1, x2, …, xn | ωi) = P(x1| ωi) P(x2| ωi)… P(xn| ωi) 后验概率:P(ωi|x) = P(ωi) P(x1| ωi) P(x2| ωi)… P(xn| ωi)类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值方差,最后得到类条件概率分布。

模式识别样卷参考解答 (2)

模式识别样卷参考解答 (2)

1、 提纲:第1、2、3、4、5、7、8章所学内容 2、 题型: 一、填空题1. 模式识别系统主要由四个部分组成,即:1数据获取 2预处理 3特征提取和选择4分类决策。

2. 贝叶斯决策最常用的准则 (1)最小错误率准则 (2)最小风险准则3. 请写出样本x 和均值u 之间的欧式距离 ,以及马式距离为开根号3. 名词解释(先英文全拼,后中文解释,6分):PCA :Principal Component Analysis,主成分分析. NN :Neural Networks, 神经网络. PR :Pattern Recognition ,模式识别 4. 根据平方误差准则函数2221()()NT s i i i J Y b ===-=-∑a ea b a y ,其最小二乘近似解(MSE 解)为5. 估计量的评价标准 1 无偏性 , 2___有效性__3__一致性__。

二、简述题1. 试结合K-L 变换简述人脸识别的过程。

书223 答:1.从给定样本集中选取训练集,训练集的大小可选,但直接影响识别的正确率。

2.根据生产矩阵E[(x-μ) (x-μ)T ]计算出特征脸。

为了简化计算,这里用到奇异 值分解,其基本原理是通过计算较低矩阵的特征值和特征向量而间接求出较高 维矩阵的特征向量(特征脸)。

3.求出训练集中各图像在特征脸空间中的坐标。

4.通过将待识别样本f 投影到特征脸子空间求出其系数向量然重建图像最后考 虑图像的信噪比,若小于阈值则可判断f 不是人脸图像。

2. 单层感知器和多层感知器神经网络的主要缺陷分别是什么?BP 算法的基本思想是什么,存在哪些不足?书254答:单层感知器缺陷:无法解决异或问题,不具备非线性分类能力。

多层感知器缺陷:对于一些识别中需要有可靠的拒绝的情况(如身份确定),多 层感知器神经网络无法胜任。

BP 算法其主要思想:从后向前(反向)逐层传播输出层的误差,以间接算出 隐层误差。

BP 算法缺陷:1.有可能陷入局部极小值点,不能保证收敛到全局极小值点。

(完整word版)模式识别试题答案

(完整word版)模式识别试题答案

(完整word版)模式识别试题答案模式识别非学位课考试试题考试科目:模式识别考试时间考生姓名:考生学号任课教师考试成绩一、简答题(每题6分,12题共72分):1、监督学习和非监督学习有什么区别?参考答案:当训练样本的类别信息已知时进行的分类器训练称为监督学习,或者由教师示范的学习;否则称为非监督学习或者无教师监督的学习。

2、你如何理解特征空间?表示样本有哪些常见方法?参考答案:由利用某些特征描述的所有样本组成的集合称为特征空间或者样本空间,特征空间的维数是描述样本的特征数量。

描述样本的常见方法:矢量、矩阵、列表等。

3、什么是分类器?有哪些常见的分类器?参考答案:将特征空中的样本以某种方式区分开来的算法、结构等。

例如:贝叶斯分类器、神经网络等。

4、进行模式识别在选择特征时应该注意哪些问题?参考答案:特征要能反映样本的本质;特征不能太少,也不能太多;要注意量纲。

5、聚类分析中,有哪些常见的表示样本相似性的方法?参考答案:距离测度、相似测度和匹配测度。

距离测度例如欧氏距离、绝对值距离、明氏距离、马氏距离等。

相似测度有角度相似系数、相关系数、指数相似系数等。

6、你怎么理解聚类准则?参考答案:包括类内聚类准则、类间距离准则、类内类间距离准则、模式与类核的距离的准则函数等。

准则函数就是衡量聚类效果的一种准则,当这种准则满足一定要求时,就可以说聚类达到了预期目的。

不同的准则函数会有不同的聚类结果。

7、一种类的定义是:集合S 中的元素x i 和x j 间的距离d ij 满足下面公式:∑∑∈∈≤-S x S x ij i jh d k k )1(1,d ij ≤ r ,其中k 是S 中元素的个数,称S 对于阈值h ,r 组成一类。

请说明,该定义适合于解决哪一种样本分布的聚类?参考答案:即类内所有个体之间的平均距离小于h ,单个距离最大不超过r ,显然该定义适合团簇集中分布的样本类别。

8、贝叶斯决策理论中,参数估计和非参数估计有什么区别?参考答案:参数估计就是已知样本分布的概型,通过训练样本确定概型中的一些参数;非参数估计就是未知样本分布概型,利用Parzen 窗等方法确定样本的概率密度分布规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空与选择填空(本题答案写在此试卷上,30分)
1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择
和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法
4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度
5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)
(4)
6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间
7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法
8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)
(2)({A}, {0, 1}, {A→0, A→ 0A}, A)
(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)
(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)
二、(15分)简答及证明题
(1)影响聚类结果的主要因素有那些?
(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:
(2分)
(2分)
(1分)
设,有非奇异线性变换:(1分)
(4分)
三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

答:(1)(4分)的绝对值正比于到超平面的距离
平面的方程可以写成
式中。

于是是平面的单位法矢量,上式可写成
设是平面中的任一点,是特征空间中任一点,点到平面的距离为差矢量在上的投影的绝对值,即
(1-1)
上式中利用了在平面中,故满足方程
式(1-1)的分子为判别函数绝对值,上式表明,的值正比于到超平面的距离,一个特征矢量代入判别函数后所得值的绝对值越大表明该特征点距判别界面越远。

(2)(4分)的正(负)反映在超平面的正(负)侧
两矢量和的数积为
(2分)
显然,当和夹角小于时,即在指向的那个半空间中,>0;反之,当
和夹角大于时,即在背向的那个半空间中,<0。

由于,故和同号。

所以,当在指向的半空间中时,;当在背向的半空间中,。

判别函数值的正负表示出特征点位于哪个半空间中,或者换句话说,表示特征点位于界面的哪一侧。

五、(12分,每问4分)在目标识别中,假定有农田和装甲车两种类型,类型ω1和类型ω2分别代表农田和装甲车,它们的先验概率分别为0.8和0.2,损失函数如表1所示。

现在做了三次试验,获得三个样本的类概率密度如下:
:0.3,0.1,0.6
:0.7,0.8,0.3
(1)试用贝叶斯最小误判概率准则判决三个样本各属于哪一个类型;
(2)假定只考虑前两种判决,试用贝叶斯最小风险准则判决三个样本各属于哪一类;
(3)把拒绝判决考虑在内,重新考核三次试验的结果。

表1
5 1
1 1
解:由题可知:,,,

(1)(4分)根据贝叶斯最小误判概率准则知:
,则可以任判;,则判为;,则判为;
(2)(4分)由题可知:
则,判为;
,判为;
,判为;
(3)(4分)对于两类问题,对于样本,假设已知,有
则对于第一个样本,
,则拒判;
,则拒判;
,拒判。

1.监督学习与非监督学习的区别:
监督学习方法用来对数据实现分类,分类规则通过训练获得。

该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。

非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。

(实例:道路图)就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,
进行分类器设计,然后用所设计的分类器对道路图像进行分割。

使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。

2.动态聚类是指对当前聚类通过迭代运算改善聚类;
分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。

3. 线性分类器三种最优准则:
Fisher准则:根据两类样本一般类内密集, 类间分离的特点,寻找线性分类器最佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。

该种度量通过类内离散矩阵Sw和类间离散矩阵Sb实现。

感知准则函数:准则函数以使错分类样本到分界面距离之和最小为原则。

其优点是通过错分类样本提供的信息对分类器函数进行修正,这种准则是人工神经元网络多层感知器的基础。

支持向量机:基本思想是在两类线性可分条件下,所设计的分类器界面使两类之间的间隔为最大, 它的基本出发点是使期望泛化风险尽可能小。

相关文档
最新文档