循环伏安法介绍

合集下载

循环伏安法

循环伏安法
并作循环伏安图,得 到三组峰,如图所示。 这表明该金属有机物 在电极上有氧化—还 图3. 原过程、而且其产物 均是稳定的
❖ 循环伏安法不仅可鉴定
电化学反应产物,还可鉴 定电化学—化学偶联反应 过程的产物。
❖ 例如,对—氨基苯酚的 电极反应过程,其循环伏
安图如图。开始由较负的 电位(图中起始点)沿箭头 方向作阳极扫描,得到一 个阳极峰1,而后作反向 阴极扫描,出现两个阴极 峰2和3,再作阳极扫描时 出现两个阳极峰4和5(图 中虚线表示)。其中峰5与 峰1的位置相同。
图3.1 循环伏安法中电位与时间的关系
❖ 其电流—电压曲线如图
图3.2 循环伏安图
❖ 阳、阴极峰电流之比值(设
)
❖ 严格地说,只有当电极反应产物可溶于溶液时, 上式的比值才为1。如电极产物形成汞齐,则由于 悬汞电极的体积很小,汞中还原形的浓度比溶液 中氧化形的浓度大得多,因而阳极峰电流比阴极 峰电流大。
极反应为
❖ 扫速越慢,阳极峰电流比阴极峰电流降低得更快,峰电流之 比ip,a/ip,c与v的关系如前图, ip,a/ip,c随v增加而增加,最后趋 于 发1生。水这化是反由应于电极还原产物Co(en)32+不稳定,在电极附近
❖ Co(en)32+可在阳极上氧化,而水化产物Co(en)2(OH)22+则不 能,因此,扫速越快,水化反应越来不及进行,生成的水化 物越少, ip,a/ip,c值越接近于1。反之,v越小,水化反应作用 越大,电流比值越小。
❖ 三种不同R1和R 2基的烯类比合物的反应是二聚化 反应的另一例子。其反应通式为
❖ 不同取代基的反应物的伏安图,如下图所示。
烯类化含物循环伏安图
c为
的循环伏安图,无阳极峰,表明二聚化反应很快,

电分析化学循环伏安法

电分析化学循环伏安法

电分析化学循环伏安法电分析化学循环伏安法(cyclic voltammetry, CV)是一种常用的电化学测量方法,主要用于研究电催化反应、电极传感器和电化学反应机理等方面。

本文将对循环伏安法的原理、实验步骤和应用进行详细阐述。

一、原理循环伏安法是利用外加电压的正反向扫描,通过测量电流与电势之间的关系来研究溶液中的电化学反应。

在扫描过程中,电势以一个循环进行周期性变化,通常为从较负的起始电势线性扫描至较正的最大电势,然后再线性扫描回到起始电势。

电流与电势之间的关系可绘制出伏安图。

根据循环伏安曲线上出现的峰电流和峰电势,可以获取溶液中的电极反应的动力学和热力学信息。

峰电流的大小与反应速率成正比,而峰电势则反映了此反应的标准电势。

通过分析伏安图中的特征峰电流和峰电势,可以确定反应是否在电极表面发生,电化学反应的机理以及电极表面的反应活性等信息。

二、实验步骤1.准备实验样品和电化学池:将待测物溶解于合适的溶剂中,配制成一定浓度的电解液。

将工作电极(常用玻碳电极)、参比电极和计时电极放入电化学池中,确保其充分浸泡于电解液中。

2.建立电位扫描程序:选择适当的起始电位、终止电位和扫描速率。

起始电位为一般为较负值,终止电位为较正值。

扫描速率根据实验需求选择,通常为3-100mV/s。

3.进行循环伏安实验:在实验过程中,通常需要稳定电极电势一段时间,直到电流达到平衡。

然后开始正向扫描,直至到达终止电位。

接着进行反向扫描,回到起始电位。

整个循环过程称为一个循环。

4.记录电流-电势数据:记录正反向扫描过程中的电流与电势数据,通常以图形的形式记录,即伏安图。

按照实验需要的精度和时间,可以选择多次重复扫描,以提高实验结果的准确性。

三、应用1.电催化反应研究:循环伏安法可用于研究电催化剂的活性和稳定性,提供电催化反应的动力学和热力学参数。

通过优化电催化剂的结构和组成,可以提高电极催化剂的效能。

2.电极材料评估:通过对循环伏安曲线的分析,可以确定电极材料的氧化还原能力和稳定性。

循环伏安法原理及结果分析

循环伏安法原理及结果分析

循环伏安法原理及结果分析循环伏安法(cyclic voltammetry)是电化学分析技术中常用的手段之一,它通过对电极表面施加一定的电位范围,并观察电流随时间的变化,来研究电极的电化学反应动力学过程及物质的电化学性质。

本文将介绍循环伏安法的原理和结果分析。

一、循环伏安法原理循环伏安法是利用三电极体系或两电极体系,在电解液中施加一系列连续的电位变化,从而观察被测物质的电极过程和电分析过程。

其原理可以概括如下:1. 电位扫描循环伏安法通过对电极施加一定电位的扫描,看电流随着电位变化的趋势,了解电极上电化学反应的特性。

该扫描通常为正弦形状的波形,可以从一个起始电位逐渐扫描到反向电位,然后再返回起始电位。

2. 反应过程在电位扫描过程中,当电极达到某一特定电位时,电极上的溶液中的物质会发生氧化还原反应。

在电位的正向扫描中,电极吸附或生成物质发生氧化反应;在电位的反向扫描中,电极吸附或生成物质发生还原反应。

3. 极化曲线根据电流与电位之间的关系绘制出的曲线被称为循环伏安曲线(cyclic voltammogram)。

循环伏安曲线可以提供丰富的电化学信息,如峰电位、峰电流、反应速率等,通过分析这些参数可以了解被测物质的电化学性质。

二、循环伏安法结果分析循环伏安法作为一种定量分析技术,可以提供丰富的信息用于研究和分析。

下面是对循环伏安法结果的常见分析方法:1. 峰电位循环伏安曲线中的峰电位是指氧化还原反应发生的特定电位,它可以提供物质的氧化还原能力和反应速率信息。

通过比较不同物质的峰电位可以实现物质的定性分析。

2. 峰电流峰电流是循环伏安曲线中峰值对应的电流值,它可以反映物质的浓度和反应速率。

通过比较不同物质的峰电流可以实现物质的定量分析。

3. 氧化还原峰循环伏安曲线中的氧化峰和还原峰是氧化还原反应的关键指标。

通过对氧化峰和还原峰的面积进行定量分析,可以得到物质的电化学反应速率以及反应机理。

4. 电化学反应动力学循环伏安法还可通过对不同扫描速率下的曲线进行分析,得到电化学反应的动力学参数,比如转移系数、速率常数等。

(完整版)循环伏安法

(完整版)循环伏安法
解释对氨基苯酚的循环伏安图 又出现两个阴极峰2和3。
(1) 从起点S开始图,8-电19位往正方 向进行阳极扫描,得到阳极峰1。
(3) 再进行一次阳极扫描, 则又出现两个阳极峰4和5, 且峰5的电位值与峰1相同。
对-亚氨基苯 O
OH 苯醌在较负的 O
OH
醌又还原成 对-氨基苯酚
解释: + 2H++ 2e-
? c为不可逆,因为它只有一个还原峰,反方向扫描时虽 然有连续的电流衰减但是没有得到氧化峰, ipc与电压 扫描速度√ v成正比。当电压扫描速度明显增加时, φpc明显变负 。
(二)电极反应机理的研究
? 循环伏安法可用于电化学 -化学 偶联过程的研究,即在电极反应过 程中还伴随着化学反应的产生。
(2) 然后反向向阴极扫描,
一、循环伏安法
?
以快速线性扫描的形式施加三角波电压 ,一
次三角波扫描完成一个还原过程和氧化过程的循环,
然后根据 i—φ曲线进行分析的方法称为循环伏安
法。
二、工作原理
(一) 基本装置
?同普通极谱法。
1. 三角波电压
将线性扫描电压施加到电极上,
从起始电压Ui开始沿某一方向扫描到 终止电压Us后,再以同样的速度反方
向扫至起始电压,加压线路成等腰 三角形,完成一次循环。根据实际 需要,可以进行连续循环扫描。
图8-17
(二)工作原理
? 1. 当三角波电压增加时,(即电位从正向负 扫描时)溶液中氧化态电活性物质会在电极上 得到电子发生还原反应,产生还原峰。 O + ne- ? R
? 2. 当逆向扫描时,在电极表面生成的还原性 物质R又发生氧化反应,产生氧化峰。 R ? O + ne-

循环伏安法介绍

循环伏安法介绍

循环伏安法原理

当工作电极被施加的扫描电压 激发时,其上将产生响应电流。 以该电流(纵坐标)对电位 (横坐标)作图,称为循环伏 安图。典型的循环伏安图如 (Fig.1b)所示。
Fig.1(b) 循环伏安谱
循环伏安法原理

循环伏安图中的重要参数
阳极峰电流(ipa); 阴极峰电流(ipc) 阳极峰电位(φpa); 阴极峰电位(φpc);





确定 i p 的方法是:沿基线 做切线外推至峰下,从峰 顶做垂直线至切线,其间 高度即为ip ,φp可直接从 横轴与封顶对应处读取。
Fig.2
循环伏安法原理

峰电流方程式:
i p 2.6910 n AD v c
5 32 12 12

( 1 )
峰电势方程式:
RT φ p φ1 2 1.1 nF

而苯醌在较负的电位上被 还原为对苯二酚形成峰 3 。
循环伏安法的应用

再一次阳极扫描时,对苯二酚被氧化为苯醌,形成峰 4; 而峰5与峰1的过程相同,即对-氨基苯酚被氧化为对-亚氨 基苯醌。

为证明峰 3和峰 4是苯醌和对苯二酚的还原和氧化过程, 可制备对苯二酚的溶液作循环伏安图加以证实。
循环伏安法的应用
循环伏安法原理

Fig.1(a) 循环电位扫描
循环伏安法是以线性扫描 伏安法的电位扫描到头后,再 回过头来扫描到原来的起始电 位值,所得的电流-电压曲线为 基础的分析方法。其电位与扫 描时间的关系,如 (Fig.1a) 所 示,由图可知,扫描电压呈等 腰三角形。如果前半部扫描 (电压上升部分)为电活性组 分在电极上被还原的阴极过程, 则后半部扫描(电压下降部分) 为还原产物重新被氧化的阳极 过程。因此,一次三角波扫描 完成一个还原过程和氧化过程 的循环,故称为循环伏安法。

1-循环伏安法

1-循环伏安法

数据处理
• 1.从K3 [Fe(CN)6]溶液的循环伏安图,读出ipa、ipc、Epa、 Epc的值。 • 2.分别以ipa、ipc对K3 [Fe(CN)6]溶液的浓度作图,说明峰电 流与浓度的关系。 • • 3.分别以ipa、ipc对v1/2作图,说明峰电流与扫描速率间的关 系。 • 4.计算ipa/ipc的值,Eo′值和ΔE值;说明K3 [Fe(CN)6]在KNO3 溶液中电极过程的可逆性。
1.判断电极过程的可逆性
(1)可逆电极过程
峰电流为:
(通过循环伏安图) 上下两条曲线是对称的
ip 2.69 105 n3/ 2 ACD1/ 2v1/ 2
ipa ipc
ip为峰电流(A,安培);n为电子转移数;D为扩散系数(cm2· s-1);v为电压扫描速 度(V· s-1);A为电极面积(cm2);c为被测物质浓度(mol· L-1)
• 4.不同浓度 K3 [Fe(CN)6] 溶液的循环伏安图
• 以0.1 V/s作为扫描速率,分别作上述配置的不同浓度的[Fe(CN)6]3-溶液循环 伏安图。
• 5.不同扫描速率 K3 [Fe(CN)6]溶液的循环伏安图
• 在2.0×10-2 mol· L-1 K3 [Fe(CN)6]溶液中,以0.05、0.10、0.15、0.20、0.25 、 0.30 V/s V/s在-0.2至+0.6 V电位范围内扫描,分别记录循环伏安图。
28.25
峰电位与半波电位关系为:
Ep E1/ 2 1.1
RT 29 E1/ 2 mV(25C ) nF n
RT 56.5 mV(25C ) nF n
Ep Epa Epc 2.2
(2)不可逆电极过程 峰电流为:

循环伏安法概念-简

循环伏安法概念-简

1.循环伏安法是指在电极上施加一个线性扫描电压,以恒定的变化速度扫描,当达到某设定的终止电位时,再反向回归至某一设定的起始电位,循环伏安法电位与时间的关系为(见图a ),其中ϕr -ϕi 为扫描范围(电势窗口,通常水体系为-1V~+1V ),其正斜率为扫描速率,简称扫速,单位mV/s ,常用50mV/s 。

若电极反应为O +e R ,反应前溶液中只含有反应粒子O 、且O 、R 在溶液均可溶,控制扫描起始电势从比体系标准平衡电势正得多的起始电势处开始势作正向电扫描,电流响应曲线则如图b 所示。

当电极电势逐渐负移到附近时,O 开始在电极上还原,并有电流通过。

由于电势越来越负,电极表面反应物O 的浓度逐渐下降,因此向电极表面的流量和电流就增加。

当O 的表面浓度下降到近于零,电流也增加到最大值Ipc(还原峰电流),对应的电压为还原峰电压E pc ,然后电流逐渐下降。

当电势达到ϕr 后,又改为反向扫描。

随着电极电势逐渐变正,电极附近可氧化的R 粒子的浓度较大,在电势接近并通过时,表面上的电化学平衡应当向着越来越有利于生成R 的方向发展。

于是R 开始被氧化,并且电流增大到峰值氧化电流Ipa(氧化峰电流) ,对应的电压为氧化峰电压E pa (一般作为it 实验的工作电压),随后又由于R的显著消耗而0平ϕ0平ϕ引起电流衰降。

整个曲线称为“循环伏安曲线”。

图3、电极在0.05 mol饱和的PBS 中不同扫速的循环伏安图,扫速由内到外依次为0.02、0.05、0.1、0.15、和0.2 V/s,插图为峰电流和扫速的校正曲线,扫描速率与电流呈线性,表明电极过程受表面控制(或称反应控制)(若扫描速率的方根与电流呈线性,表明电极过程受扩散控制)。

循环伏安法原理

循环伏安法原理

循环伏安法原理
循环伏安法(Cyclic voltammetry,CV)是一种常用于电化学
研究的实验技术,用于研究电化学反应动力学、电极表面的电化学性质以及电极材料的电化学特性。

该方法的原理基于对电极上施加一系列线性变化的电位,通过测量所施加电位下的电流响应来获取样品的电化学信息。

CV
实验通常在三电极电极池中进行,包含工作电极、参比电极和计量电极。

首先,通过施加一个起始电位,使得工作电极与参比电极之间建立起一个起始电位差。

然后,通过改变电位来引发电化学反应,这导致在电极表面上发生氧化和还原反应。

这些反应会引起从工作电极到计量电极的电流流动。

随后的实验过程中,电位逐渐改变,使得电化学反应在每个电位值上进行。

电位的变化速率称为扫描速率,可用于控制反应速率。

在每个电位上,会测量到一个对应的电流响应,并绘制成循环伏安曲线。

通过分析循环伏安曲线,可以获取有关电化学反应的许多信息,例如反应的峰电位(峰电位代表了氧化还原反应的电位值)、峰电流(峰电流与反应速率有关)、氧化还原峰之间的电位差(反映反应的可逆性质)、氧化还原峰的峰形等。

此外,CV
还可以用于确定电极表面的有效面积、测量电极表面上的电荷转移速率等参数。

总之,循环伏安法通过改变电位来引发电化学反应,并通过测量电流响应来获取电化学信息。

它是一种简单有效的电化学检测方法,被广泛应用于材料科学、化学分析、电池研究等领域。

循环伏安法原理及结果分析

循环伏安法原理及结果分析

循环伏安法原理及结果分析在电化学研究领域,循环伏安法是一种极其重要的研究手段。

它不仅能提供有关电极反应的丰富信息,还在材料科学、生物化学、环境监测等众多领域发挥着关键作用。

接下来,让我们深入了解一下循环伏安法的原理以及如何对其结果进行分析。

循环伏安法的基本原理基于控制电极电位的线性扫描。

在实验中,工作电极的电位以一定的速率在一个特定的电位范围内进行周期性的线性扫描。

通常,电位从起始电位开始,向一个方向扫描到终止电位,然后反向扫描回到起始电位,如此反复,形成一个循环。

在这个过程中,电极表面会发生氧化还原反应。

当电极电位达到某种物质的氧化电位时,该物质会在电极表面被氧化,产生氧化电流;当电极电位反向扫描到该物质的还原电位时,之前被氧化的物质会被还原,产生还原电流。

通过测量这些电流随电位的变化关系,我们就能够获得有关电极反应的信息。

为了更好地理解循环伏安法的原理,我们可以以一个简单的氧化还原反应为例。

假设在溶液中存在一种可氧化还原的物质 A,其氧化态为 A+,还原态为 A。

当工作电极的电位逐渐升高时,当达到 A 的氧化电位时,A 会被氧化为A+,同时产生氧化电流。

随着电位的继续升高,氧化电流可能会先增大,然后由于扩散控制等因素逐渐减小。

当电位反向扫描时,A+会在电极表面被还原为 A,产生还原电流。

那么,循环伏安法得到的结果通常以电流电位曲线的形式呈现。

在分析这些曲线时,有几个关键的参数和特征需要关注。

首先是峰电位。

氧化峰电位和还原峰电位分别对应着物质的氧化和还原过程中电流达到最大值时的电位。

峰电位的位置可以提供有关反应的难易程度和可逆性的信息。

一般来说,对于可逆反应,氧化峰电位和还原峰电位之间的差值较小;而对于不可逆反应,这个差值较大。

其次是峰电流。

峰电流的大小与参与反应的物质的浓度、扩散系数以及扫描速率等因素有关。

根据 RandlesSevcik 方程,在一定条件下,峰电流与扫描速率的平方根成正比,与物质的浓度成正比。

循环伏安法

循环伏安法
富集时间短,富集时间较短时, 峰电流iPc与v1/2呈线性关系,而与 v则成偏离直线向下弯曲,表白电 极过程主要受扩散速率控制;
富集时间较长时,氧化峰和还原 峰峰电流ip与v呈线性关系,峰电 流iPc与v 呈线性关系,而与v1/2则 成偏离直线向上弯曲,表白电极 过程主要受动力学反应速率控制。
一种常用旳电化学研究措施。该法控制电极电势 以不同旳速率,随时间以三角波形一次或屡次反复扫 描,电势范围是使电极上能交替发生不同旳还原和氧 化反应,并统计电流-电势曲线。属于线性扫描伏安 法一种,循环伏安法旳原理与线性扫描伏安法相同, 只是比线性扫描伏安法多了一种回扫。
关键词:电势(鼓励信号);线性变化;三角波扫描; 电流(响应信号);电流-电势曲线
判断其控制环节
顺铂氧化峰还原峰峰电流与扫描速率旳1/2方成线性 关系,阐明电极过程主要受扩散控制。
一般低扫描 速度下,电 极受到动力 学反应控制 影响,高扫 描速度下电 极受到扩散 控制旳影响。
不同浓度控制环节不同,一般高浓度下,电 极受到动力学反应控制影响,低浓度下电极 受到扩散控制旳影响。
高斯法:合用于差示脉冲等具有高斯分布特征旳 曲线。措施:从起峰前一点向峰后一点拉直线,得 到峰电位Ep、峰电流ip和峰面积Ap数据。起峰前后 旳点一样能够调整。
CV图形解析
CV图形解析
1.3 循环伏安法研究电极旳可逆性
电极反应可逆指某个电极反应旳正向速度和逆向速度相等
Zn2 2e
Zn
对于Zn‫׀‬Zn2+电极,平衡指该状态下Zn2+还原速度与 n氧化速度相等,两个方向旳电子和物质互换速度相等。 意味着此时经过电极旳电流接近零。即所谓旳平衡状态,
两个连续过程那一种慢就是受那个控制 扩散控制:扩散过程速度较慢,为整个反应旳控制过

循环伏安法简介及数据分析1

循环伏安法简介及数据分析1
(1)Ipc=2.69×105n3/2D01/2υ1/2 (A·cm-2) [1]
实验原理
即Ipc与反应物O的本体浓度成正比,与 υ1/2成正比。其中:DO为O的扩散系数 (cm2•s-1),C为O的本体浓度(mol•dm-3), υ为扫描速率(V•s-1)。 (2)│Ipc│=│Ipa│,即│Ipc / Ipa│=1,并 与电势扫描速度υ无关。
实验原理
(3)Δp=59/n(mV),并pc, pa与扫描 速度υ和无关,为一定值。 其中(2)与(3)是扩散传质步骤控制的 可逆体系循环伏安曲线的重要特征,是检测可 逆电极反应的最有用的判据。
仪器和药品
CHI660A电化学工作站1台;电解池1个; Pt盘电极(研究电极)、Pt片电极(辅助 电极)、饱和甘汞电极(参比电极)各1支。 不同浓度的K3Fe(CN)6溶液。
循环伏安法
实验目的
1.掌握循环伏安法的基本原理和测量技术。 2.通过对体系的循环伏安测量,了解如何
根据峰电流、峰电势及峰电势差和扫描速度 之间的函数关系来判断电极反应可逆性,以 及求算有关的热力学参数和动力学参数 。
实验原理
循环伏安法是指在电极
上施加一个线性扫描电
压,以恒定的变化速度
扫描,当达到某设定的
数据处理
从循环伏安图上读出Ipc、Ipa、Δp, 作Ipc和Ipc~CO图。
注意事项
(1)测定前仔细了解仪器的使用方法。 (2)每一次循环伏安实验前,必须严格
按照步骤1中所述,处理电极。
思考题
1.在三电极体系中,工作电极、辅助电 极和参比电极各起什么作用。
2.按1式,当υ→0时,Ip→0,据此可以 认为采用很慢的扫描速度时不出现氧化 还原电流吗?
终止电位时,再反向回

循环伏安法

循环伏安法

循环伏安法介绍循环伏安法(Cyclic Voltammetry,简称CV)是一种电化学测试方法,广泛应用于表征电化学反应的动力学、电化学过程的机理和电极材料的性质等方面。

该方法通过不断改变电极电位,并测量对应的电流,来获得电化学反应过程中的电化学信息。

原理循环伏安法基于电化学基础理论和法拉第定律,利用电极材料与电解质溶液之间的电化学反应,在电位范围内,通过施加正向和负向扫描电压,观察电流的变化,得到伏安图。

伏安图表示了电流与电极电位之间的关系,反映了电化学反应的动力学与热力学信息。

实验步骤1.准备工作:清洗电极并将其与计量电位仪连接好。

2.准备电解质溶液:根据实验需求,配置适当浓度的电解质溶液,并使用磁力搅拌器搅拌均匀。

3.实验设置:将电解质溶液注入电解池中,并使电极浸入其中。

根据需要,设置施加电压的扫描范围和扫描速率。

4.实验操作:打开计量电位仪,设置初始电位,并开始扫描。

仪器会逐渐改变电极电位,并记录对应的电流值。

5.数据处理:根据实验结果,绘制伏安图,并分析图形特征。

根据法拉第定律,可以计算电极反应的电荷转移系数、反应速率常数等参数。

应用循环伏安法在电化学和材料科学领域有着广泛的应用。

1.电化学催化研究:循环伏安法可以用于表征电化学催化剂的活性和稳定性,评估催化剂对某种电化学反应的催化效率。

2.电极材料研究:通过循环伏安法可以评估电极材料的电活性表面积、电荷传递速率以及与电解质溶液之间的界面反应。

3.电化学反应动力学研究:利用循环伏安法可以确定电极反应的控制步骤和反应机理,并研究电化学反应速率与温度、扫描速率等因素的关系。

优点和局限循环伏安法具有以下优点:•实验步骤简单,容易操作。

•可以快速获取材料的电活性表面积等信息。

•可以在不同电位下观察电化学反应的动力学与热力学变化。

然而,循环伏安法也存在一些局限性:•无法直接获得电化学反应的反应速率常数等定量信息。

•实验数据分析较为复杂,需要依赖理论模型和数学计算。

循环伏安法介绍

循环伏安法介绍

循环伏安法介绍基本定义循环伏安法是指在电极上施加一个线性扫描电压,从起始电位以一定的速率扫描到一个顶点电位,再从该顶点电位扫描到另一个顶点电位的两阶段,此扫描可以在两个顶点电位之间多次重复。

循环伏安方法应用极为广泛。

根据曲线形状可以判断电极反应的可逆程度,中间体、相界面吸附或新相形成的可能性,以及偶联化学反应的性质等。

对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为〃电化学的谱图〃。

激励信号(A)-UBOdTιme(s)循环伏安法的激励信号图该法控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。

2、关键参数、参数的可设置范围及通常的设置范围最初电位(V):扫描起始点。

可设置范围10~∙10;依据体系的差异,水相体系T殳设置在±2.0V,有机相可以扩展到±5.0V,电池或串联电池体系还会更大。

最终电位(V):扫描最终点。

参数设置同上。

顶点电位I(V):电位扫描的最高限制。

参数设置同上。

顶点电位2(V):电位扫描的最低限制。

参数设置同上。

静置时间(S):电位扫描开始前的静置时间。

可设置范围1~100000。

通常设置为几秒或几十秒内。

扫描速率(V∕s):电位变化率,可设置范围IXIO-4~10000;稳态测量T殳数mV∕s,一般电极过程研究和测量可由数mV/s到数V∕s,快速表面反应电极过程动力学研究或超微电极快速扫描最高可以设置到数kV∕s o高扫描会有大电流,应注意考虑溶液电阻影响。

循环次数:1~500000次;全部点数:每个扫描周期的默认数据采集量为2000个点。

全部点数为2000X循环次数。

研究体系及实验曲线31、玻碳电极,1mMK3[Fe(CN)6]+1MKCI三电极体系:WE-GCE;RE-SCE;CE-Pt丝。

参数设置:o针对该体系,在扫速为0.001V/S以下时,避免实验时间过长,扫描范围选择为0.4~0.05V;选择在扫速为0.001〜0.01V/s时,扫描范围选择为0.5~-0.05V,避免扫描电位过负出现析氢现象;当扫速较高时,可以通过溶液电阻校正获得比较理想的实验曲线。

循环伏安法定义+原理+参数设置

循环伏安法定义+原理+参数设置

一、循环伏安法(Cyclic Voltammetry)一种常用的电化学研究方法。

该法控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。

根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。

常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。

对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。

本法除了使用汞电极外,还可以用铂、金、玻璃碳、碳纤维微电极以及化学修饰电极等。

1.基本原理如以等腰三角形的脉冲电压加在工作电极上,得到的电流电压曲线包括两个分支,如果前半部分电位向阴极方向扫描,电活性物质在电极上还原,产生还原波,那么后半部分电位向阳极方向扫描时,还原产物又会重新在电极上氧化,产生氧化波。

因此一次三角波扫描,完成一个还原和氧化过程的循环,故该法称为循环伏安法,其电流—电压曲线称为循环伏安图。

如果电活性物质可逆性差,则氧化波与还原波的高度就不同,对称性也较差。

循环伏安法中电压扫描速度可从每秒种数毫伏到1伏。

工作电极可用悬汞电极,或铂、玻碳、石墨等固体电极。

2.循环伏安法的应用循环伏安法是一种很有用的电化学研究方法,可用于电极反应的性质、机理和电极过程动力学参数的研究。

但该法很少用于定量分析。

(1)电极可逆性的判断循环伏安法中电压的扫描过程包括阴极与阳极两个方向,因此从所得的循环伏安法图的氧化波和还原波的峰高和对称性中可判断电活性物质在电极表面反应的可逆程度。

若反应是可逆的,则曲线上下对称,若反应不可逆,则曲线上下不对称。

(2)电极反应机理的判断循环伏安法还可研究电极吸附现象、电化学反应产物、电化学—化学耦联反应等,对于有机物、金属有机化合物及生物物质的氧化还原机理研究很有用。

3、循环伏安法的用途(1)、判断电极表面微观反应过程(2)、判断电极反应的可逆性(3)、作为无机制备反应“摸条件”的手段(4)、为有机合成“摸条件”(5)、前置化学反应(CE)的循环伏安特征(6)、后置化学反应(EC)的循环伏安特征(7)、催化反应的循环伏安特征二、循环伏安法相关问题:1、利用循环伏安确定反应是否为可逆反应(一般这两个条件即可)①.氧化峰电流与还原峰电流之比的绝对值等于1.[有时对同一体系,扫描速率不同也会在一定程度上影响其可逆性的一般而言,扫描速度对峰电位没有影响,但扫描速率越大其电化学反应电流也就越大.]②.氧化峰与还原峰电位差约为59/n mV, n为电子转移量(温度一般是293K).[但是一般我们实验时候不是在这个温度下,因此用这个算是有误差的,一般保证其值在100mv以下都算合理的误差.]2、判断扩散反应或者是吸附反应:改变扫描速率,看峰电流是与扫描速率还是它的二次方根成正比。

燃料电池循环伏安法

燃料电池循环伏安法

燃料电池循环伏安法
摘要:
1.燃料电池循环伏安法简介
2.燃料电池循环伏安法的原理
3.燃料电池循环伏安法的应用
4.燃料电池循环伏安法的优缺点
正文:
燃料电池循环伏安法是一种电化学测试方法,主要应用于燃料电池的性能测试和研究。

燃料电池是一种将化学能直接转化为电能的设备,通过氧化还原反应产生电流。

循环伏安法是一种测量电化学反应的方法,通过测量电压和电流的变化,可以获取反应的详细信息。

燃料电池循环伏安法的原理是,在电化学反应过程中,通过改变电极的电势,观察电流的变化,从而得到反应的信息。

具体来说,就是将一个电极浸泡在电解质溶液中,另一个电极作为参比电极,然后改变电极的电势,测量电流的变化。

通过分析电流和电势的关系,可以获取反应的动力学信息。

燃料电池循环伏安法广泛应用于燃料电池的性能测试和研究。

通过测量燃料电池的电压和电流,可以获取电池的输出功率和效率,从而评估电池的性能。

此外,循环伏安法还可以用于研究燃料电池的电化学反应机理,为电池的设计和优化提供理论依据。

燃料电池循环伏安法的优缺点如下。

优点:测量精度高,可以获取反应的详细信息;适用范围广,可以应用于各种燃料电池;操作简单,方便进行。


点:需要专门的测试设备,成本较高;测试过程需要严格控制实验条件,否则可能影响测量结果。

循环伏安法定义+原理+参数设置

循环伏安法定义+原理+参数设置

一、循环伏安法(Cyclic Voltammetry)一种常用的电化学研究方法。

该法控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。

根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。

常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。

对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。

本法除了使用汞电极外,还可以用铂、金、玻璃碳、碳纤维微电极以及化学修饰电极等。

1.基本原理如以等腰三角形的脉冲电压加在工作电极上,得到的电流电压曲线包括两个分支,如果前半部分电位向阴极方向扫描,电活性物质在电极上还原,产生还原波,那么后半部分电位向阳极方向扫描时,还原产物又会重新在电极上氧化,产生氧化波。

因此一次三角波扫描,完成一个还原和氧化过程的循环,故该法称为循环伏安法,其电流—电压曲线称为循环伏安图。

如果电活性物质可逆性差,则氧化波与还原波的高度就不同,对称性也较差。

循环伏安法中电压扫描速度可从每秒种数毫伏到1伏。

工作电极可用悬汞电极,或铂、玻碳、石墨等固体电极。

2.循环伏安法的应用循环伏安法是一种很有用的电化学研究方法,可用于电极反应的性质、机理和电极过程动力学参数的研究。

但该法很少用于定量分析。

(1)电极可逆性的判断循环伏安法中电压的扫描过程包括阴极与阳极两个方向,因此从所得的循环伏安法图的氧化波和还原波的峰高和对称性中可判断电活性物质在电极表面反应的可逆程度。

若反应是可逆的,则曲线上下对称,若反应不可逆,则曲线上下不对称。

(2)电极反应机理的判断循环伏安法还可研究电极吸附现象、电化学反应产物、电化学—化学耦联反应等,对于有机物、金属有机化合物及生物物质的氧化还原机理研究很有用。

3、循环伏安法的用途(1)、判断电极表面微观反应过程(2)、判断电极反应的可逆性(3)、作为无机制备反应“摸条件”的手段(4)、为有机合成“摸条件”(5)、前置化学反应(CE)的循环伏安特征(6)、后置化学反应(EC)的循环伏安特征(7)、催化反应的循环伏安特征二、循环伏安法相关问题:1、利用循环伏安确定反应是否为可逆反应(一般这两个条件即可)①.氧化峰电流与还原峰电流之比的绝对值等于1.[有时对同一体系,扫描速率不同也会在一定程度上影响其可逆性的一般而言,扫描速度对峰电位没有影响,但扫描速率越大其电化学反应电流也就越大.]②.氧化峰与还原峰电位差约为59/n mV, n为电子转移量(温度一般是293K).[但是一般我们实验时候不是在这个温度下,因此用这个算是有误差的,一般保证其值在100mv以下都算合理的误差.]2、判断扩散反应或者是吸附反应:改变扫描速率,看峰电流是与扫描速率还是它的二次方根成正比。

燃料电池循环伏安法

燃料电池循环伏安法

燃料电池循环伏安法燃料电池循环伏安法是一种测试燃料电池性能的方法,通过对燃料电池进行循环伏安测试,可以评估其电化学性能和稳定性。

本文将介绍燃料电池循环伏安法的原理、实验步骤、应用领域及发展前景。

一、燃料电池循环伏安法概述燃料电池循环伏安法(Cycle Voltammetry of Fuel Cells,CVFC)是一种广泛应用于燃料电池研究领域的电化学测试方法。

它通过在一定的温度和压力条件下,对燃料电池进行循环伏安测试,从而了解燃料电池的性能、反应机理及电极材料等方面的信息。

二、燃料电池循环伏安法原理燃料电池循环伏安法是基于电化学原理的一种测试方法。

在测试过程中,通过改变燃料电池的电压和电流,观察其电化学反应特性。

循环伏安法可以在一个周期内实现从充电到放电的整个过程,从而反映燃料电池在不同的电位下的反应情况。

三、燃料电池循环伏安法实验步骤1.准备燃料电池,包括电极、电解质、催化剂等;2.搭建循环伏安测试系统,包括电压表、电流表、恒电位仪等;3.将燃料电池接入测试系统,进行循环伏安测试;4.记录测试数据,包括电压、电流、电位等;5.分析数据,评估燃料电池性能。

四、燃料电池循环伏安法应用领域燃料电池循环伏安法在燃料电池研究领域具有广泛的应用,如评估新型电极材料、催化剂、电解质等方面的性能。

此外,它还可以用于研究燃料电池的反应机理、动力学特性等。

五、燃料电池循环伏安法的发展前景随着燃料电池技术的发展,燃料电池循环伏安法也在不断改进。

未来的发展方向包括:提高测试精度,实现快速、高效的循环伏安测试;发展在线监测技术,实时了解燃料电池的运行状态;将循环伏安法与其他测试方法相结合,全面评估燃料电池性能。

总之,燃料电池循环伏安法是一种重要的电化学测试方法,其在燃料电池研究领域具有广泛的应用。

循环伏安法介绍

循环伏安法介绍

E E RT ln cO (0, t) nF cR (0, t)
(1)
• 可逆反应的线性扫描图谱的峰电位服从下面方程:
Ep

E1/2
/ 1.109
RT nF
(2)
式中,E1/2为极谱的半波电位,半波电位值很接近标准电极电位E°。 式(2)中的正号(+)适用于阳极反应峰(Epa),负号适用于阴极峰(Epc)。
⊙电极过程可逆性的判断----对
于可逆电极过程来说,循环伏 安法阴极支和阳极支的峰电位 Epa 和Epc分别为
Epa=E ½+1.1RT / nF
Epc=E ½-1.1RT / nF
△ Ep= Epa- Epc = 2.2RT / nF =56.5/n (mV)
△Ep与循环电压扫描中换向时的电位有 关,也与实验条件有一定的关系,其值 会在一定范围内变化。一般认为当△Ep 为55/nmV至65/nmV 时,该电极反应是可 逆过程。应该注意:可逆峰电流与电压
扫描速率ν 有关,且
可逆电极过程的循环伏安法曲线图
对于部分可逆(也称准可逆)电极过程来 说,极化曲线与可逆程度有关,一般来
说, △Ep >59/n mV,且峰电位随电压扫
描速度ν的增大而变大,阴极峰变负,阳 极峰边正 。
ipc/ipa可能大于1,也可能小于或等于1,
仍正比于 。准可逆电极电程的循环伏 安法曲线如4.17B图所示
7电流的计算从循环伏安图上读取以下数据计算作图并验证以下公式循环伏安曲线中提供的信息循环伏安法的应用循环伏安法除了作为定量分析方法外更主要的是作为电化学研究的方法可用于研究电极反应的性质机理及电极过程动力学参数等电极过程可逆性的判断对于可逆电极过程来说循环伏安法阴极支和阳极支的峰电位epa和epc分别为epae11rtnfepce11rtnfepepaepc22rtnf565nmvep与循环电压扫描中换向时的电位有关也与实验条件有一定的关系其值会在一定范围内变化

循环伏安法原理及结果分析

循环伏安法原理及结果分析

循环伏安法原理及结果分析在化学和材料科学领域,循环伏安法是一种极为重要的电化学分析技术。

它能够提供有关电化学反应的丰富信息,对于研究物质的氧化还原性质、电极过程动力学以及检测分析物等方面都具有重要意义。

循环伏安法的基本原理并不复杂。

简单来说,它是通过控制工作电极的电位,使其在一个特定的电位范围内以一定的扫描速率进行线性扫描,同时测量电流随电位的变化。

在实验中,通常会设置一个三电极体系,包括工作电极、对电极(辅助电极)和参比电极。

工作电极是发生电化学反应的场所,对电极用于传导电流,而参比电极则提供一个稳定的电位参考。

当电位从起始电位向一个方向扫描时,溶液中的电活性物质会在工作电极表面发生氧化反应,产生氧化电流。

随着电位的继续扫描,当达到一定电位时,氧化反应停止,还原反应开始,此时电流方向反转,产生还原电流。

然后电位反向扫描,电活性物质在工作电极表面发生还原反应,产生还原电流。

当电位再次回到起始电位时,完成一个循环。

循环伏安法的结果通常以电流电位曲线(即循环伏安曲线)的形式呈现。

在这个曲线中,包含了许多重要的信息。

首先,峰电位是一个关键的参数。

氧化峰电位和还原峰电位分别对应着电活性物质的氧化和还原过程所发生的电位。

它们可以反映电活性物质的氧化还原能力。

一般来说,峰电位越正,表明该物质越难被氧化;峰电位越负,表明该物质越难被还原。

其次,峰电流也是非常重要的指标。

峰电流的大小与电活性物质的浓度、扩散系数以及电极反应的速率常数等因素有关。

根据RandlesSevcik方程,在一定条件下,峰电流与电活性物质的浓度成正比。

因此,可以通过测量峰电流来定量分析电活性物质的浓度。

此外,峰形也能提供有关电极反应过程的信息。

理想情况下,对称的峰形表明电极反应是可逆的,即氧化和还原过程都非常迅速,电子转移过程没有明显的阻力。

而如果峰形不对称,可能意味着电极反应是不可逆的,存在较大的能垒或者反应动力学较为复杂。

通过对循环伏安曲线的分析,还可以计算一些重要的电化学参数,如电子转移数、扩散系数等。

第十章循环伏安法

第十章循环伏安法

i
-E
催化反应的判据实验:
1、电流函数ip,c/v1/2 随V增加而减小 2、在低扫速时,ip,c可达一个极限值 3、ip,c大于由Randlers- Sevcik方程式所计算出的值
书P237给出一个Fe(Ⅲ)-三乙醇胺-羟胺催化体系。自学
五、吸附过程
循环伏安法也是研究电极表面吸附现象的重要方法 1、反应物为吸附态的可逆过程 只有吸附态的Ox和Red有电 活性,溶液态的没有电活性 与扩散控制的循环伏安图不 一样,上下左右完全对称。 Epa=Epc,峰后电流降至基 线。 因为不需要传质过程,扩散 因素可忽略不计。
ø
fOx DRe2d RT E1 E ln 1 2 nF f Re d DOx2
f Ox f Re d
E p , a E p ,c 2 E
DOx DRe d
ø

E
ø
E p , a E p ,c 2
只要电极过程可逆,反应产物稳定,用循环伏安法测定EØ是 很方便的。
二、电极过程产物的鉴别 以对氨基苯酚为例: 在较负的电位下做阳极 扫描(从S开始),得 到氧化峰1,然后再往 回扫得到两个阴极峰2、 3;再做阳极扫描时得 到两个阳极峰4和5 (虚线部分)
4、峰电位随扫速增加而正移 书P105已证明
ip,c实/ ip,c理 1.0
v
Randles- Sevcik方程式
i pc理论 2.69 10 n D Av 2 c
5 2 2
3
1
1
c指Ox平衡浓度
例: Cd-H3X(氨三乙酸)的循环伏安图
峰2不可逆波 峰1动力波 2 1
3 扫速快,峰1降低,可证明它是前行动力波
峰3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极化现象
浓差极化: 浓差极化: 由于电解过程中电极表面离子浓度与溶液本体浓度不同而使电极电位 偏离平衡电位的现象。
电化学极化: 电化学极化: 因电化学反应本身的迟缓而造成电极电位偏离可逆平衡电位的现象 称为电化学极化。
注意: 注意:由于电解过程中电极表面的浓差极化是不可避免的现象,外加电压要严格控 制工作电极上的电位大小就要求另一支电极为稳定电位的参比电极,实际上由于电 解池的电流很大,一般不易找到这种参比电极,故只能再加一支辅助电极组成三电 极系统来进行伏安分析。
Fig.1 循环伏安法原理:(a) 循环电位扫描 (b) 循环伏安谱
Fig.2 电解过程的伏安曲线
电极表面的传质过程
电极表面存在三种传质过程, 电极表面存在三种传质过程, 分别是: 分别是: 1) 扩散 ) 2.)电迁移 ) 3) 对流 ) 若电解采用微铂电极为工作电极、 且溶液不充分搅拌时,会促使耗 竭区提前出现。这种现象称极化 现象。

5.电极过程可逆性判断
电极反应机理研究
首先阳极扫描, 首先阳极扫描,对-胺基苯酚被氧化产 生了峰1的阳极波 的阳极波。 生了峰 的阳极波。
反向阴极扫描,得到峰 、 的阴极波 的阴极波, 反向阴极扫描,得到峰2、3的阴极波, 是由于前面阳极扫描的氧化产物对 是由于前面阳极扫描的氧化产物对-亚 胺基苯醌在电极表面上发生化学反应 在电极表面上发生化学反应, 胺基苯醌在电极表面上发生化学反应, 部分对-亚胺基苯酚转化为苯醌: 部分对-亚胺基苯酚转化为苯醌:
循环伏安法原理
在一个典型的循环伏安实验中,工作电极一般为浸在溶液中的固定电极。 为了尽可能降低欧姆电阻,最好采用三电极系统。在三电极系统中,电 流通过工作电极和对电极。工作电极电位是以一个分开的参比电极(如 饱和甘汞电极,SCE)为基准的相对电位。在循环伏安测试实验中,工 作电极的电位以10 mV/s 到 200 mV/s 的扫描速度随时间线性变化 (Fig.1a),在此同时记录在不同电位下的电流(Fig.1b)。.
对-亚胺基苯醌及苯醌均在电极上还原 , 分别产生对- 分别产生对-胺基苯酚和对苯二酚
形成峰2 形成峰
形成峰3 形成峰
• 再次阳极扫描时,对苯二酚又被氧 再次阳极扫描时, 形成峰4 而对- 化为苯醌 ,形成峰 ,而对-胺基 苯酚又被氧化为对-亚胺基苯醌, 苯酚又被氧化为对-亚胺基苯醌, 形成与峰1完全相同的峰 形成与峰 完全相同的峰5。 完全相同的峰
主要内容: 主要内容:
• 循环伏安法的原理 • • • • 循环伏安技术的应用 (1)可逆反应 ) 2) (2)峰电位的确定 (3)峰电流的计算 )
• 循环伏安测试中的注意事项
1922 年 捷克科学家 海洛夫斯基 J.Heyrovsky 创立极谱法,1959年获Nobel奖 1934 年 尤考维奇 Ilkovic, 提出扩散电流理 论,从理论上定量解释了伏安曲线。 20世纪40年代以来 提出了各种特殊的伏安技 术。主要有:交流极谱法(1944年)、方波极 谱法(1952年)、脉冲极谱法(1958年)、卷 积伏安法(1970年) 20世纪40年代以来 主要采用特殊材料制备的 固体电极进行伏安分析。包括微电极、超微阵列 电极、化学修饰电极、纳米电极、金刚石电极、 生物酶电极、旋转圆盘电极等,结合各种伏安技 术进行微量分析、生化物质分析、活体分析。
Fig.3 典型可逆体系的循环伏安图。 典型可逆体系的循环伏安图。
Fig.4典型准可逆体系和不可逆体系的循环伏安图。 典型准可逆体系和不可逆体系的循环伏安图。 典型准可逆体系和不可逆体系的循环伏安图
Fig.5 线性扫描曲线
反应可逆性的判断
对一个可逆反应,峰电位与扫描速度和浓度无关。 Epa与Epc 之差
∆E p = E pa − E pc
也可用来判断电极反应的可逆程度。
∆E p = E pa − E pc
2.3RT 59 = = mV nF n
(at 25°C) (3)
对于不可逆体系, ∆ Ep > 59/n(mV), ipa / ipc < 1。 ∆Ep越大, 阴阳峰电流比值越小,则该电极体系越不可逆。对于不可逆电 。 极电程来说,反向电压扫描时不出现阳极波。
循环伏安曲线中提供的信息
从循环伏安图上读取以下数据
ipc
计算
ipa ϕpc
ϕ pa
ϕ =
0'
(ϕ pc + ϕpa ) 2
ipa ipc
≈1
0.059 ∆ϕ = ϕ pc − ϕ pa = n 作图并验证以下公式
ip ~ C
ip ~ v1/ 2
ip = 2.69 × 10 5 n 3 / 2 ACD 1 / 2 v 1 / 2
以待测物质溶液、工作电极、参比电极构成一个电解池 电解池, 电解池 通过测定电解过程中电压-电流 电压电压 电流参量的变化来进行定量、 定性分析的电化学分析方法称为伏安法。
极谱法:使用滴汞电极 滴汞电极或其它表面能够周期性 极谱法: 滴汞电极 更新的液体电极 液体电极为工作电极,称为极谱法。 液体电极 伏安法: 表面静止的液体或固体电极 伏安法:使用表面静止的液体 固体电极 表面静止的液体 固体电极为工作电极,称 为伏安法。
循环伏安法的应用
循环伏安法除了作为定量分析方 法外,更主要的是作为电化学研究 法外,更主要的是作为电化学研究 的方法, 的方法,可用于研究电极反应的性 质、机理及电极过程动力学参数等。 机理及电极过程动力学参数等。
电极过程可逆性的判断-------对 ⊙电极过程可逆性的判断----对 于可逆电极过程来说, 于可逆电极过程来说,循环伏 安法阴极支和阳极支的峰电位 Epa 和Epc分别为
峰电位的确定
• 一般情况下,伏安图谱上的峰比较宽,因而难以确定峰电位。所以,有时以 0.5 ip的电位(称为半峰电位EP/2)来对电极反应进行表征更方便。理论上, 半峰电位与半波电位的关系为

RT + 1 .09 nF
(4)
E p/2 = E 1/2
• Ep 和 Ep/2的差别为
Ep − Ep/2
二、电解池的伏安行为
当外加电压达到镉离子的电解 还原电压时,电解池内会发生 如下的氧化还原反应。 阴极还原反应:
Cd2+ + 2e
阳极氧化反应:
Cd
H2O + 1/2 O2 U外- Ud= iR
(Cd2+)
2OH- -2e U外 ∝ i
U外代表外加电压、R代表电路 代表外加电压、 代表电路 阻抗、 阻抗、 Ud代表分解电压
2.2 RT 56.5 = = mV nF n
(5)
峰电流的计算
可逆反应的线性扫描的峰电流ip可有以下Randles-Sevcik方程给出:
i p = kn AD cv
3/2 1/ 2
Байду номын сангаас
1/ 2
(6)
A- 电极面积 D - 扩散系数 c- 浓度 n- 交换电子数 v - 扫描速率 k - Randles-Sevcik 常数(2.69*105 As/V m mol)
RT cO (0, t ) E = E° + ln nF c R (0, t )
• 可逆反应的线性扫描图谱的峰电位服从下面方程:
(1)
E p = E 1/2
RT + / − 1.109 nF
(2)
式中,E1/2为极谱的半波电位,半波电位值很接近标准电极电位E°。 式(2)中的正号(+)适用于阳极反应峰(Epa),负号适用于阴极峰(Epc)。
Hg
(iii) Easy to remove diffusion microelectrodeson mercury drop surface layer when the drop falls
(螺线管)
(活塞)
(聚氨酯) (金属垫圈))
0.05~ 0.5mm diameter
可逆体系
• 如果电极表面上的电子转移过程的速率很快,电极表面上氧化态和还原态试 样的浓度的比率服从Nernstian方程。在这种条件下,电极反应式为可逆的反 应。:
分类:
直流极谱法 方波极谱法 脉冲极谱法 单扫描示波极谱法 交流示波极谱法 计时电流极谱法
控制电位极谱法 极谱法 控制电流极谱法 伏安法 滴定伏安法 电流滴定伏安法 永停滴定伏安法 阳极溶出伏安法 阴极溶出伏安法 计时电位溶出伏安法
溶出伏安法 循环伏安法
2011-12-12
伏安分析法的基本原理: 伏安分析法的基本原理:
仍正比于 。准可逆电极电程的循环伏 安法曲线如4.17B 4.17B图所示 安法曲线如4.17B图所示
对于不可逆电极电程来说, 对于不可逆电极电程来说, 反向电压扫描时不出现阳极波, 反向电压扫描时不出现阳极波, 变大时E 仍正比于 ,v 变大时Epc 明显变负。 Ep与 的关系, 明显变负。根据 Ep与v的关系, 还可以计算准可逆和不可逆电 极反应的速率常数。 极反应的速率常数。不可逆过 程的循环伏安法曲线如图4.17 程的循环伏安法曲线如图4.17 所示。 C所示。
可逆电极过程的循环伏安法曲线图
对于部分可逆(也称准可逆) 对于部分可逆(也称准可逆)电极过程来 极化曲线与可逆程度有关, 说,极化曲线与可逆程度有关,一般来 说, △Ep >59/n mV,且峰电位随电压扫 描速度ν的增大而变大,阴极峰变负, 描速度ν的增大而变大,阴极峰变负,阳 极峰边正 。
ipc/ipa可能大于1,也可能小于或等于1, 可能大于1 也可能小于或等于1
Epa=E ½+1.1RT / nF Epc=E ½-1.1RT / nF △ Ep= Epa- Epc = 2.2RT / nF =56.5/n (mV)
△Ep与循环电压扫描中换向时的电位有 E 关,也与实验条件有一定的关系,其值 也与实验条件有一定的关系, 会在一定范围内变化。一般认为当△ 会在一定范围内变化。一般认为当△Ep 55/nmV至 为55/nmV至65/nmV 时,该电极反应是可 逆过程。应该注意: 逆过程。应该注意:可逆峰电流与电压 扫描速率ν有关, 扫描速率ν有关,且
相关文档
最新文档