高考数学必背公式与知识点
数学高考知识点及公式
数学高考知识点及公式高考数学是学生们备战高考的重中之重,掌握数学知识点以及相关的公式是至关重要的。
本文将围绕数学高考知识点及公式展开,帮助大家系统地理解和掌握这些内容。
一、代数与函数1. 解一元一次方程:形式为ax + b = 0的方程,通常用一次函数的直线来表示。
2. 解一元二次方程:形式为ax^2 + bx + c = 0的方程,一般用抛物线来表示。
3. 四则运算法则:包括加减乘除。
4. 复数:包括复数的定义、运算和应用。
5. 指数与对数:掌握指数运算和对数运算的规律与性质。
二、几何与立体几何1. 数形综合:包括平面几何的一些基本概念、性质和定理,如三角形的三边关系、全等三角形的判定等。
2. 三角函数:了解正弦、余弦、正切等三角函数的定义、性质和基本公式。
3. 平面向量:掌握向量的基本概念和相关运算法则。
4. 空间几何:研究点、线、面在空间中的位置关系、方向问题及相关的计算方法。
5. 立体几何:学习立体几何中各种几何体的基本性质和计算方法。
三、概率与统计1. 排列与组合:了解排列和组合的概念及计算方法。
2. 概率论:学习概率的基本概念、性质和计算方法,如加法原理、乘法原理等。
3. 统计学:掌握一些基本概念和统计方法,如样本的选择与处理、平均数、方差、标准差等。
四、导数与微积分1. 函数基本性质:了解函数的性质,如奇偶性、周期性等。
2. 极限与连续:掌握极限的概念和相关计算方法,了解连续函数的性质与判定方法。
3. 导数与微分:学习导数的定义、基本运算法则和相关的计算方法,了解微分的概念和微分中值定理。
4. 积分学:了解积分的概念、性质和计算方法,如定积分、不定积分等。
以上所列举的知识点及公式只是数学高考中的部分内容,希望能够对大家备考高考有所帮助。
此外,高考数学还需要结合实际题目进行练习和复习,加深对知识点的理解和应用能力的培养。
希望大家在备考过程中保持良好的心态,积极备战,相信自己一定能够取得优异的成绩!。
高考数学知识点总结及公式
高考数学知识点总结及公式高考数学必考知识点第一部分集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;(2)注意:讨论的时候不要遗忘了的情况。
第二部分函数与导数1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
2、函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性;⑨导数法3、复合函数的有关问题(1)复合函数定义域求法:①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 解出。
②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:①首先将原函数分解为基本函数:内函数与外函数;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数的定义域是内函数的值域。
4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5、函数的奇偶性(1)函数的定义域关于原点对称是函数具有奇偶性的必要条件;(2)是奇函数;(3)是偶函数;(4)奇函数在原点有定义,则;(5)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;三角函数。
注意归一公式、诱导公式的正确性。
数列题。
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的`式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
高考必备数学公式知识点知识归纳
高考必备数学公式知识点篇一-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1*x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有两个不相等的个实根b2-4ac<0注:方程有共轭复数根高考必备数学公式知识点篇二圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h高考必备数学公式知识点篇三长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r高考必备数学公式知识点篇四性质:(1)奇函数的图象关于原点对称;(2)奇函数在x>0和x<0上具有相同的单调区间;(3)定义在R上的奇函数,有f(0)=0.偶函数:在前提条件下,若有f(-x)=f(x),则f(x)就是偶函数。
高考数学公式及知识点总结
高考数学公式及知识点总结高考数学是许多同学感到头疼的科目,但只要掌握了重点公式和知识点,就能在考试中取得更好的成绩。
以下是对高考数学中重要公式和知识点的详细总结。
一、函数1、函数的定义:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
2、函数的性质单调性:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间D 上的任意两个自变量的值 x1,x2,当 x1<x2 时,都有 f(x1)<f(x2)(或 f(x1)>f(x2)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
奇偶性:对于函数 f(x)的定义域内任意一个 x,都有 f(x)=f(x),则f(x)为偶函数;对于函数 f(x)的定义域内任意一个 x,都有 f(x)=f(x),则 f(x)为奇函数。
周期性:对于函数 y=f(x),如果存在一个不为零的常数 T,使得当x 取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数 y=f(x)叫做周期函数,不为零的常数 T 叫做这个函数的周期。
3、常见函数的图像和性质一次函数:y = kx + b(k、b 为常数,k≠0),图像是一条直线。
二次函数:y = ax²+ bx + c(a≠0),图像是一条抛物线。
当 a>0 时,开口向上;当 a<0 时,开口向下。
对称轴为 x = b/2a,顶点坐标为(b/2a,(4ac b²)/4a)。
反比例函数:y = k/x(k 为常数,k≠0),图像是双曲线。
当 k>0 时,图像在一、三象限;当 k<0 时,图像在二、四象限。
二、三角函数1、三角函数的定义正弦函数:sinα =对边/斜边余弦函数:cosα =邻边/斜边正切函数:tanα =对边/邻边2、特殊角的三角函数值|角度|0°|30°|45°|60°|90°|||||||||sin|0|1/2|√2/2|√3/2|1||cos|1|√3/2|√2/2|1/2|0||tan|0|√3/3|1|√3|不存在|3、三角函数的基本关系式sin²α +cos²α = 1tanα =sinα/cosα4、三角函数的图像和性质正弦函数y =sin x 的图像,定义域为R,值域为-1,1,周期为2π,对称轴为 x =kπ +π/2(k∈Z),对称中心为(kπ,0)(k∈Z)。
高考数学知识点大全及公式
高考数学知识点大全及公式高考数学作为升学考试的重要科目之一,在学生们的心中一直扮演着重要的角色。
数学的学习需要掌握各种知识点和公式,这些是解题的基础。
在本文中,我们将概述一些常见的高考数学知识点和公式,希望对考生有所帮助。
一、函数与方程在数学中,函数与方程是基础的知识点。
函数是一个将一个集合(称作“定义域”)的元素映射到另一个集合(称作“值域”)的规则。
方程则是表示两个表达式相等的数学语句。
在高考中,函数与方程经常出现在各种题型中。
常见的函数有线性函数、二次函数、指数函数、对数函数等。
线性函数的一般形式是y = kx + b,其中k和b分别表示斜率和截距。
二次函数的一般形式是y = ax^2 + bx + c,其中a、b、c分别为常数。
指数函数的一般形式是y = a^x,其中a为底数。
对数函数则是指数函数的反函数。
方程同样也有许多形式,如一元一次方程、一元二次方程、指数方程、对数方程等。
解方程的方法有代入法、消元法、因式分解法、特殊公式法等。
掌握这些函数与方程的基本知识,对于解题至关重要。
二、三角函数与三角恒等式三角函数是数学中一个重要的分支,它研究角的性质与其它量之间的关系。
常见的三角函数有正弦、余弦、正切、余切等。
它们都与一个角度的对应关系有关。
三角函数与三角恒等式是高考数学中经常涉及的知识点。
三角恒等式是指在三角函数当中的一些等式关系。
例如,正弦函数的一个重要恒等式是sin(x)^2 + cos(x)^2 = 1,这被称作三角恒等式的平方和公式。
解题时,运用三角恒等式能够简化计算过程,提高解题效率。
三、概率与统计概率与统计是数学中的一门重要学科,不仅在日常生活中有广泛应用,也在高考中占有一定的比重。
概率是用来描述事物发生的可能性的数学工具,统计则是从现实数据中获得信息的一种方法。
在概率与统计中,常见的知识点有概率、期望、方差、样本调查等。
计算概率时,需要掌握加法原理、乘法原理、条件概率等基本概念。
高考数学知识点总结及公式大全
高考数学知识点总结及公式大全《高考数学知识点总结及公式大全》一、函数与方程1. 一次函数- 方程:y = ax + b- 直线的斜率公式:a = Δy / Δx- 直线的截距公式:b = y - ax2. 二次函数- 方程:y = ax^2 + bx + c- 抛物线的顶点坐标公式:(h, k) = (-b / (2a), c - b^2 / (4a))3. 三角函数- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)- 正切函数:y = tan(x)- 三角函数间的关系:sin^2(x) + cos^2(x) = 14. 指数函数与对数函数- 指数函数:y = a^x- 对数函数:y = loga(x)- 对数运算法则:loga(m * n) = loga(m) + loga(n)5. 不等式- 线性不等式:ax + b > 0- 二次不等式:ax^2 + bx + c > 0二、解析几何1. 直线与曲线- 一次函数的图像是一条直线- 二次函数的图像是一个抛物线2. 二维坐标系- 直角坐标系:以x轴和y轴为基准构建的坐标系- 极坐标系:以原点O和角度θ为基准构建的坐标系3. 几何图形- 圆:由所有与一个点的距离相等的点所组成的图形- 圆柱体:由一个圆沿着一条平行于其平面的直线旋转一周形成的立体图形三、概率与统计1. 概率- 事件的概率:P(A) = n(A) / n(S)- 互斥事件:P(A ∩ B) = 0- 独立事件:P(A ∩ B) = P(A)P(B)2. 统计- 平均数:A = (x1 + x2 + ... + xn) / n- 方差:Var(X) = (x1^2 + x2^2 + ... + xn^2) / n - (A)^2- 标准差:σ = √[ (x1 - A)^2 + (x2 - A)^2 + ... + (xn - A)^2 / n ]四、解题技巧1. 代入法:将未知数用已知条件中的数进行代入,并求解方程。
高考数学必考知识点归纳全
高考数学必考知识点归纳全高考数学是高中阶段学生面临的一次重要考试,它涵盖了多个数学领域的基础知识点。
以下是高考数学必考知识点的归纳:一、集合与函数- 集合的概念:集合的表示、子集、并集、交集、补集。
- 函数的概念:函数的定义、值域、定义域、单调性、奇偶性。
- 函数的表示:函数的图象、函数的解析式。
二、代数基础- 指数与对数:指数函数、对数函数、对数运算法则。
- 幂运算:幂的运算法则、根式。
- 代数方程:一元一次方程、一元二次方程、高次方程、方程组的解法。
三、不等式与不等式组- 不等式的基本性质:不等式的基本解法、不等式组的解集。
- 绝对值不等式:绝对值的定义、绝对值不等式的解法。
四、数列- 等差数列:等差数列的定义、通项公式、求和公式。
- 等比数列:等比数列的定义、通项公式、求和公式。
- 数列的极限:数列极限的概念、极限的运算。
五、三角函数与解三角形- 三角函数:正弦、余弦、正切等基本三角函数的性质和图像。
- 解三角形:正弦定理、余弦定理、三角形的面积公式。
六、解析几何- 直线:直线的方程、直线的位置关系。
- 圆:圆的方程、圆与直线的位置关系。
- 椭圆、双曲线、抛物线:圆锥曲线的性质和方程。
七、立体几何- 空间直线与平面:空间直线的方程、平面的方程、线面关系。
- 多面体与旋转体:多面体的体积、旋转体的表面积和体积。
八、概率与统计初步- 随机事件的概率:概率的定义、概率的计算方法。
- 统计初步:数据的收集、整理、描述。
九、导数与微分- 导数的概念:导数的定义、几何意义。
- 基本导数公式:常见函数的导数公式。
- 微分的概念:微分的定义、微分的应用。
十、积分与应用- 不定积分:不定积分的概念、基本积分公式。
- 定积分:定积分的概念、定积分的计算方法。
- 积分的应用:面积、体积、物理量等的计算。
十一、复数- 复数的概念:复数的定义、复数的运算。
- 复数的几何表示:复平面、复数的模和辐角。
十二、逻辑推理与证明方法- 逻辑推理:命题逻辑、逻辑运算。
高考数学必备知识点及公式总结
高考数学必备知识点及公式总结高考数学是一门需要掌握一定的数学知识和公式的科目。
下面是高考数学常见的知识点及相关公式的总结。
一、函数与方程1.函数的定义与性质-函数的定义:对应关系、自变量、因变量、定义域、值域等。
-函数的性质:奇偶性、周期性、单调性、极值点、对称轴等。
2.一次函数与二次函数- 一次函数的表达式:y = kx + b。
- 二次函数的表达式:y = ax² + bx + c。
-一次函数与二次函数的性质与图像:斜率、判别式、顶点、对称轴等。
3.指数函数与对数函数-指数函数:y=a^x,其中a>0且a≠1- 对数函数:y = logₐx,其中 a > 0 且a ≠ 1-指数函数与对数函数的性质:指数函数的增减性、对数函数的定义域等。
4.三角函数-基本三角函数:正弦函数、余弦函数、正切函数等。
-三角函数的基本关系:辅助角公式、三角恒等式等。
5.方程与不等式-方程的解的情况:无解、唯一解、无穷多解。
-一元二次方程的求解法:配方法、根的性质、韦达定理等。
-一元二次不等式的解集表示:区间表示、集合表示等。
二、空间几何与向量1.平面几何-平面上点与线的位置关系:点与直线的距离、点到线段的距离等。
-直线的方程:一般式、点斜式、两点式等。
-圆的方程:标准方程、一般方程等。
2.空间几何-空间中点与线的位置关系:点与直线的距离、点到线段的距离等。
-空间中直线的方程:点向式、两点式等。
-空间中平面的方程:一般式、点法式等。
3.向量的运算-向量的定义与性质:向量的模、方向、共线关系等。
-向量的加法与减法:平行四边形法则、三角形法则等。
-向量的数量积与向量积:数量积的定义与性质、向量积的定义与性质等。
4.空间向量的应用-点到直线的距离:点到直线的单位法向量与点的坐标的内积。
-直线与平面的位置关系:直线与平面的夹角等。
三、概率与统计1.随机事件与概率-随机事件的定义与性质:必然事件、不可能事件、事件的互斥与对立等。
高考数学必背公式和知识点
高考数学必背公式和知识点在高中数学学习中,公式和知识点的记忆是非常重要的。
尤其在高考数学中,对于公式的熟悉程度直接决定了解题的效率和准确性。
下面将介绍一些高考数学必备的公式和知识点,希望能对大家备战高考有所帮助。
一、函数1. 一次函数的一般形式: y = kx + b,其中 k 表示斜率,b 表示截距。
2. 二次函数的一般形式: y = ax^2 + bx + c,其中 a 表示抛物线的开口方向,a>0 表示开口向上,a<0 表示开口向下。
二、直线和曲线1. 直线的斜率 k = (y2 - y1) / (x2 - x1)。
2. 直线的截距 b = y - kx,其中 (x, y) 是直线上的一个点。
3. 判定直线与坐标轴的交点: x 轴截距为 b1 = -b / k,y轴截距为 b2 = b。
4. 曲线的极限:当 x 趋近于 a 时,若存在一个常数 L,使得函数值 f(x) 趋近于 L,则称函数 f(x) 在 x=a 处有极限 L。
三、三角函数1. sinA = a / c,cosA = b / c,tanA = a / b,其中 c 表示斜边,a 表示对边,b 表示邻边。
2. 正弦定理:a / sinA = b / sinB = c / sinC。
3. 余弦定理:a^2 = b^2 + c^2 - 2bc*cosA。
四、平面几何1. 相似三角形的比例定理:设两个三角形 ABC 和 A'B'C',若有三个边对应成比例,则可以推出两个三角形对应的角相等。
2. 两条平行线与一条横截线的对应角相等,即内错角和外错角互为补角。
3. 圆的面积公式:S = πr^2。
五、立体几何1. 直线和平面垂直的判定:若直线的方向向量与平面的法向量相互垂直,则两者垂直。
2. 圆柱体的体积公式:V = πr^2h。
3. 球体的表面积公式:S = 4πr^2。
六、概率与统计1. 组合公式:C(n, m) = n! / (m!(n-m)!),表示从 n 个数中取出 m 个数的组合数。
高考数学知识点总结及公式大全(实用)
高考数学知识点总结及公式大全(实用)高考数学必备公式1、函数的单调性(1)设x1、x2[a,b],x1x2那么f(x1)f(x2)0f(x)在[a,b]上是增函数;f(x1)f(x2)0f(x)在[a,b]上是减函数.(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.2、函数的奇偶性对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、判别式b2-4ac=0 注:方程有两个相等的实根b2-4acgt;0 注:方程有两个不等的实根b2-4aclt;0 注:方程没有实根,有共轭复数根4、两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)5、倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a6、抛物线1、抛物线:y=ax__+bx+c就是y等于ax的平方加上bx再加上c。
agt;0时,抛物线开口向上;alt;0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。
2、顶点式y=a(x+h)__+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。
数学高考知识点及公式总结
数学高考知识点及公式总结在高中数学的学习过程中,我们需要掌握各种各样的知识点和公式。
这些知识点和公式是我们高考备考的重要基础,也是我们在数学考试中的得分点。
下面,我们就来总结一下数学高考中常见的知识点和公式,希望对大家备考有所帮助。
一、代数与函数1. 方程与不等式- 一元二次方程:$ax^2 + bx + c = 0$- 二次函数图像的特征:顶点、对称轴、开口方向- 一元二次不等式:$ax^2 + bx + c > 0$ 或 $< 0$ 的解集2. 数列与数列极限- 等差数列通项公式:$a_n = a_1 + (n-1)d$- 等比数列通项公式:$a_n = a_1 \cdot q^{n-1}$- 递推关系与通项公式的转化- 数列极限的概念与计算3. 函数与图像- 一次函数:$y = kx + b$- 二次函数:$y = ax^2 + bx + c$- 指数函数:$y = a^x\ (a > 0,\ a \neq 1)$- 对数函数:$y = \log_a{x}\ (a > 0,\ a \neq 1)$- 三角函数:正弦函数、余弦函数、正切函数等二、平面几何1. 图形的性质- 四边形性质:平行四边形、矩形、正方形、菱形等- 三角形性质:等边三角形、等腰三角形、直角三角形等- 圆的性质:圆的周长、面积、弦长、弧长等2. 相似与全等- 三角形相似的判定条件- 三角形全等的判定条件3. 向量与坐标- 向量的基本运算:加法、减法、数乘- 向量的模、平行、垂直等概念- 平面直角坐标系中的点与向量的关系三、空间几何1. 空间图形的性质- 空间几何体:球、圆柱、圆锥、棱柱、棱锥等- 空间图形的表面积和体积计算2. 空间直角坐标系- 空间直角坐标系的建立与应用- 斜率与二维、三维直线的关系3. 空间平面与直线- 空间平面的方程与性质- 空间直线的方程与性质四、概率与统计1. 随机事件与概率- 随机事件的概念与性质- 概率的基本性质及其计算方法- 排列与组合的概念与计算2. 数据处理与统计- 数据分布的统计指标:平均数、中位数、众数、极差等- 统计图表的绘制与分析以上就是数学高考中常见的知识点和公式的总结。
新高考数学必考知识点归纳
新高考数学必考知识点归纳新高考数学作为高中数学教育的重要组成部分,其必考知识点覆盖了基础数学的多个领域。
以下是对新高考数学必考知识点的归纳:一、函数与导数- 函数的定义、性质、图像- 一次函数、二次函数、幂函数、指数函数、对数函数、三角函数- 函数的单调性、奇偶性、周期性- 导数的定义、几何意义、运算法则- 基本导数公式、复合函数的求导法则- 高阶导数、隐函数求导、参数方程求导二、三角函数与解三角形- 三角函数的定义、图像、性质- 正弦定理、余弦定理、正切定理- 三角恒等变换、和差化积、积化和差- 三角函数的反函数、同角三角函数关系三、不等式与方程- 不等式的基本性质、解法- 一元一次不等式、一元二次不等式- 分式不等式、绝对值不等式- 线性方程组、非线性方程组的解法- 一元高次方程的解法四、数列- 数列的概念、分类- 等差数列、等比数列的定义、通项公式、求和公式- 数列的极限、无穷等比数列的求和- 数列的单调性、有界性五、解析几何- 点、线、面的基本性质- 直线的方程、圆的方程、椭圆、双曲线、抛物线的方程- 直线与圆的位置关系、圆与圆的位置关系- 圆锥曲线的参数方程、极坐标方程六、立体几何- 空间直线、平面的基本性质- 空间向量、向量积- 空间直线与平面的位置关系- 多面体、旋转体的体积、表面积七、概率与统计初步- 随机事件的概率、概率的加法公式、乘法公式- 条件概率、独立事件- 离散型随机变量及其分布列、期望、方差- 统计数据的收集、整理、描述八、复数- 复数的概念、复数的运算- 复数的几何意义、复平面- 复数的共轭、模、辐角九、逻辑推理与证明- 逻辑推理的基本形式、演绎推理- 直接证明、反证法、数学归纳法十、数学思想与方法- 数学建模、数学思维- 解题策略、数学方法论新高考数学的备考需要对这些知识点有深入的理解和熟练的运用能力。
通过不断的练习和总结,考生可以提高解题速度和准确率,为高考取得优异成绩打下坚实的基础。
高考数学知识点总结及公式大全免费
高考数学知识点总结及公式大全免费高考数学重要知识点( 一 ) 导数第一定义设函数 y=f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量△x(x0+△x 也在该邻域内 ) 时,相应地函数取得增量△y=f(x0+△x)-f(x0); 如果△y 与△x 之比当△x→0 时极限存在,则称函数 y=f(x) 在点 x0 处可导,并称这个极限值为函数 y=f(x) 在点 x0 处的导数记为 f'(x0), 即导数第一定义( 二 ) 导数第二定义设函数 y=f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化△x(x-x0 也在该邻域内 ) 时,相应地函数变化△y=f(x)-f(x0); 如果△y 与△x 之比当△x→0 时极限存在,则称函数 y=f(x) 在点 x0 处可导,并称这个极限值为函数 y=f(x) 在点 x0 处的导数记为 f'(x0), 即导数第二定义( 三 ) 导函数与导数如果函数 y=f(x) 在开区间 I 内每一点都可导,就称函数 f(x) 在区间 I 内可导。
这时函数 y=f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y=f(x) 的导函数,记作y',f'(x),dy/dx,df(x)/dx 。
导函数简称导数。
( 四 ) 单调性及其应用1. 利用导数研究多项式函数单调性的一般步骤(1) 求 f ¢ (x)(2) 确定 f ¢ (x) 在 (a , b) 内符号 (3) 若 f ¢ (x)0 在 (a , b) 上恒成立,则 f(x) 在 (a , b) 上是增函数 ; 若 f ¢ (x)0 在 (a , b) 上恒成立,则f(x) 在 (a , b) 上是减函数2. 用导数求多项式函数单调区间的一般步骤(1) 求 f ¢ (x)(2)f ¢ (x)0 的解集与定义域的交集的对应区间为增区间 ;f ¢ (x)0 的解集与定义域的交集的对应区间为减区间全国卷高考数学知识点必修一: 1 、集合与函数的概念 ( 这部分知识抽象,较难理解 )2 、基本的初等函数 ( 指数函数、对数函数 )3 、函数的性质及应用 ( 比较抽象,较难理解 ) 必修二: 1 、立体几何 (1) 、证明:垂直 ( 多考查面面垂直 ) 、平行 (2) 、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
数学高考公式知识点大全
数学高考公式知识点大全数学高考是每位中学生都将面临的重要考试,其中数学科目是很多学生认为最具挑战性的科目之一。
为了帮助大家更好地准备数学高考,本文将提供数学高考公式知识点大全,以帮助学生们复习和掌握重要的数学公式。
一、代数公式1. 两点间距离公式:设两点坐标分别为(x₁, y₁)和(x₂, y₂),则两点间距离d为:d = √((x₂ - x₁)² + (y₂ - y₁)²)2. 一元二次方程求根公式:对于一元二次方程ax² + bx + c = 0,其求根公式为:x = (-b ± √(b² - 4ac)) / 2a3. 因式分解公式:对于二次多项式ax² + bx + c,可以利用因式分解公式将其分解为两个一次多项式的乘积。
4. 二次函数顶点坐标公式:对于二次函数y = ax² + bx + c,其顶点坐标为:(h, k),其中 h = -b / (2a),k = f(h)5. 等差数列通项公式:对于等差数列a₁, a₂, a₃, ...,其通项公式为:aₙ = a₁ + (n - 1)d,其中aₙ表示第n个数,a₁为首项,d为公差。
二、几何公式1. 矩形的周长和面积公式:设矩形的长为l,宽为w,则矩形的周长C为:C = 2(l + w),面积S为:S = lw2. 三角形的周长和面积公式:设三角形的三边长为a、b、c,其中s 为半周长,则三角形的面积A为:A = √(s(s-a)(s-b)(s-c)),周长P为:P = a + b + c3. 圆的周长和面积公式:设圆的半径为r,则圆的周长C为:C =2πr,面积A为:A = πr²4. 直角三角形勾股定理:对于直角三角形,设两直角边长为a和b,斜边长为c,则有a² + b² = c²5. 圆柱体体积公式:设圆柱体的底面半径为r,高度为h,则圆柱体的体积V为:V = πr²h三、概率公式1. 事件的概率公式:对于试验中的某一事件A,其概率P(A)表示事件A发生的可能性,计算公式为P(A) = n(A) / n(S),其中n(A)表示事件A的样本点数,n(S)表示样本空间中的样本点数。
高考必备数学公式知识点
高考必备数学公式知识点数学是高考中不可或缺的一门科目,难度较高但又可以通过熟悉一些必备的数学公式知识点来提高解题的效率。
本文将介绍一些高考必备的数学公式知识点,希望能够对广大考生有所帮助。
一、平面几何公式1. 长方形的面积公式:面积 = 长 ×宽。
2. 正方形的面积公式:面积 = 边长 ×边长。
3. 三角形的面积公式:面积 = 底边 ×高 / 2。
4. 直角三角形勾股定理:a² + b² = c²,其中a、b分别为直角边,c 为斜边。
5. 圆的面积公式:面积= π × 半径²,其中π取3.14或取3.1416。
二、立体几何公式1. 立方体的表面积公式:表面积 = 6 ×边长²。
2. 球的表面积公式:表面积= 4 × π × 半径²。
3. 棱柱的体积公式:体积 = 底面积 ×高。
4. 圆柱的体积公式:体积 = 底面积 ×高。
5. 锥体的体积公式:体积 = 底面积 ×高 / 3。
三、三角函数公式1. 正弦函数的定义:sinθ = 对边 / 斜边。
2. 余弦函数的定义:cosθ = 邻边 / 斜边。
3. 正切函数的定义:tanθ = 对边 / 邻边。
4. 余切函数的定义:cotθ = 邻边 / 对边。
5. 正割函数的定义:secθ = 斜边 / 邻边。
6. 余割函数的定义:cscθ = 斜边 / 对边。
四、排列组合公式1. 阶乘公式:n! = n × (n-1) × (n-2) × ... × 1。
2. 排列公式:A(n, m) = n! / (n-m)!,表示从n个元素中选取m个元素进行排列的方式数。
3. 组合公式:C(n, m) = n! / (m! × (n-m)!),表示从n个元素中选取m 个元素进行组合的方式数。
高考数学必考知识点大全
高考数学必考知识点大全1.代数运算
-同底数幂的乘除法
-倍数关系与比例
-有理数的概念与运算法则
-一元一次方程的解法
-二次函数的三种表示形式
2.平面几何
-圆的基本概念与性质
-圆心角、弧度制与弧长的关系
-相似三角形的性质和判定方法
-平行线的性质和判定方法
-三角形的基本性质与判定方法
3.立体几何
-正方体、长方体、棱柱、棱锥、棱台的计算公式-圆锥的体积、曲面积的计算公式
-球的表面积、体积的计算公式
-空间向量的运算法则
-平面与立体图形的位置关系
4.概率论与数理统计
-随机事件的概念与性质
-事件的关系与运算法则
-事件的概率计算方法
-抽样调查与统计分析的基本方法-随机变量与概率分布的概念与性质5.函数与导数
-函数的概念与性质
-函数的求值与运算法则
-一元函数的最大值与最小值问题-导数的概念与基本性质
-导数的计算方法和应用
6.数列与数学归纳法
-等差数列与等比数列的概念与性质-数列的通项公式与前n项和公式-数列极限的概念与性质
-递推数列与其计算公式
-数学归纳法的基本原理和应用
7.三角函数与解三角形
-三角函数的基本性质与计算方法
-三角函数的图像与性质
-三角函数的运算法则
-解三角形的基本原理和方法
-解三角形的应用问题和求解技巧
8.数与图的关系
-数据的收集和整理方法
-数据的分析和解释方法
-数据的图表表示与分析
-数据统计和概率的计算方法
-利用图表解决实际问题的技巧与方法。
高考数学知识点总结及公式大全 高考数学必考知识点总结
高考数学知识点总结及公式大全高考数学必考知识点总结
一、高中数学40条必备公式
1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2.函数的周期性问题(记忆三个):
(1)若f(x)=-f(x+k),则T=2k;
(2)若f(x)=m/(x+k)(m不为0),则T=2k;
(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,
周期必无限 b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x 相加不是周期函数。
3.关于对称问题(无数人搞不懂的问题)总结如下:
(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为
x=(a+b)/2
(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称
(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。
高考数学知识点总结及公式大全
高考数学知识点总结及公式大全高三数学公式整理1.y=c(c为常数) y=02.y=x^n y=nx^(n-1)3.y=a^x y=a^xlnay=e^x y=e^x4.y=logax y=logae/xy=lnx y=1/x5.y=sinx y=cosx6.y=cosx y=-sinx7.y=tanx y=1/cos^2x8.y=cotx y=-1/sin^2x9.y=arcsinx y=1/√1-x^210.y=arccosx y=-1/√1-x^211.y=arctanx y=1/1+x^212.y=arccotx y=-1/1+x^2三角函数公式锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边 / ∠α的邻边cot α=∠α的邻边 / ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°) /2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)数学圆锥公式知识点正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的`标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F0抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py直棱柱侧面积S=c.h斜棱柱侧面积S=c.h正棱锥侧面积S=1/2c.h正棱台侧面积S=1/2(c+c)h圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi.r2圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l弧长公式l=a.ra是圆心角的弧度数r0扇形面积公式s=1/2.l.r锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h斜棱柱体积V=SL注:其中,S是直截面面积,L是侧棱长柱体体积公式V=s.h圆柱体V=p.r2h乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b=-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1.X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac0注:方程有两个不等的实根b2-4ac0注:方程没有实根,有共轭复数根三倍角公式三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]三倍角公式推导附推导:tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)上下同除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^3(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三倍角公式联想记忆记忆方法:谐音、联想正弦三倍角:3元减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角减 3元(减完之后还有“余”)☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[],a b 上是 函数;
[],a b 上是 函数;
为 函数;
. 前提条件.... )()(x f x f =-.
的单调性,偶函数有 的单调性
1)()
a f x +=-(()0)f x ≠, 的周期为 (2)()f a x f x -=; ()()f a
b x f x +-=; ()b x -
___________. AB OB OA
=-=设(,)
a x y
=,
2
(,)
b x y
=(0
b≠)
;a b
-=a=
a b⋅=(定义公式)坐标公式).
a在b方向上的投影为
a b
⊥⇔(一般表示).
a∥b⇔.
cos
夹角公式:坐标公式).
2.若G为ABC
∆=0;
且G点坐标为)
(1)
OP xOA x OB
=+-
,
n
a为末项.
,
n
a为末项.
.
(2)若{}n a 、{}n b 为等差数列,则{}n n a b ±为等差数列.
(3){}n a 为等差数列,n S 为其前n 项和,则232,,m m m m m S S S S S --也成等差数列. (4),,0p q p q a q a p a +===则 ; ★2.等比数列:
通项公式:(1) ________.n a = ,其中1a 为首项,n 为项数,q 为公比.
(2)推广:_________.n a =
前n 项和:__________________.n S == 常用性质:(1)若m+n=p+q ,则有
_______________________
;
注:若,m n p a a a 是的等比中项,则有 2
m n p a a a =⋅⇔n 、m 、p 成等比. (2)若{}n a 、{}n b 为等比数列,则{}n n a b ⋅为等比数列. 7.常见数列的和:
①1+2+3+……+n= ②12
+22
+32
+……+n 2
= ③13
+23
+33
+……+n 3
= 8.一元二次不等式解的讨论.
0>∆
0=∆
0<∆
二次函数
c bx ax y ++=2
(0>a )的图象
一元二次方程
2=++c bx ax
的解集)0(02>>++a c bx ax
的解集
)0(02><++a c bx ax
9. 重要不等式:
基本不等式: 若0,0a b >>则 ⇔11.极值定理:已知y x ,都是正数,则有:
(1)如果积xy 是定值p ,那么当y x =时和y x +有最小值(2)如果和y x +是定值s ,那么当y x =时积xy 有最大值12.均值不等式链:
如果a ,b 都是正数,那么 即:平方平均≥算术平均≥几何平均≥调和平均(a 、b 特别地,22
2()22
a b a b ab ++≤≤(当a = b 时,2()2a b +=,,,(332
222时取等c b a R c b a c b a c b a ==∈⎪⎭
⎫
⎝⎛+++≥++⇒幂平均不等式:12
22
21(1
...n a a n
a a a +≥+++13.均值定理:已知y x ,都是正数,则有 (1)已知,,,a
b x y R +
∈,若1ax by +=则有
1111()()by ax ax by a b a b x y x y x y
+=++=+++≥++(2)已知,,,a b x y R +
∈,若1a b x y
+=则有
()()2a b ay bx
x y x y a b a b x y x y +=++=+++≥++
第五部分:立体几何与解析几何
1. 三视图与直观图:
原图形与直观图面积之比为
2. 常见几何体表面积公式:
圆柱的表面积S= 圆锥的表面积S=
圆台的表面积S= 球的表面积S=
3.常见几何体体积公式:
柱体的体积V= 锥体的体积V=
台体的体积V= 球体的体积V=
4. 常见空间几何体的有关结论:
⑴棱锥的平行截面的性质:如果棱锥被平行于底面的平面所截,那么所得的截面与底面,
截面面积与底面面积的比等于顶点到截面距离与棱锥高的;相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的.
⑵长方体从一个顶点出发的三条棱长分别为a,b,c,则体对角线长为,全面
积为,体积V=
⑶正方体的棱长为a,则体对角线长为 ,全面积为,体积V=
⑷球与长方体的组合体: 长方体的外接球的直径=长方体的长.
球与正方体的组合体:正方体的内切球的直径=正方体的,
正方体的棱切球的直径=正方体的长, 正方体的外接球的直径=正方体的体长.
⑸正四面体的性质:设棱长为a,则正四面体的:
①高:;②对棱间距离:;③内切球半径:;④外接球半径:
5.立体几何常用的六个定理(三种语言)
(1)直线和平面平行的判定定理
(2)直线和平面平行的性质定理
(3)平面和平面平行的判定定理(4)直线和平面垂直的判定定理
(5)平面和平面垂直的判断定理
(6)平面和平面垂直的性质定理
6.直线的斜率:k= =
(α为直线的倾斜角,
11
(,)
A x y、
22
(,)
B x y为直线上的两点)
7. 直线方程的五种形式:
直线的点斜式方程:(直线l过点
111
(,)
P x y,且斜率为k).
直线的斜截式方程:(b为直线l在y轴上的截距).
直线的两点式方程:(
111
(,)
P x y、
222
(,)
P x y
12
x x
≠,
12
y y
≠).
直线的截距式方程:(a、b分别为直线在x轴、y轴上的截距,且0
,0≠
≠b
a). 直线的一般式方程:0
Ax By C
++= (其中A、B不同时为0).
直线0
Ax By C
++=的法向量:(,)
l A B
'=,方向向量:(,)
l B A
=-
8.两条直线的位置关系:
(1)若
111
:l y k x b
=+,
222
:
l y k x b
=+,则:
①
1
l∥
2
l⇔且;.
(2)若
1111
:0
l A x B y C
++=,
2222
:0
l A x B y C
++=,则:
①
1
l∥
2
l⇔且;②.
12
l l
⊥⇔.
9.距离公式:
(1)点
111
(,)
P x y,
222
(,)
P x y之间的距离:。