机器人学基础_第3章_机器人运动学
工业机器人运动学

x
P
y
z
w
其中
ax
x w ,by
y w , cz
z w
(3.6)
3.3 机器人运动学的矩阵表示
3.3.2空间向量的表示
x
P
y
z
w
x
y
z
其中 ax w , by w , cz w (3.6)
变量w可以为任意值,w变化,向量的大小也会发生变化,这 与在计算机图形学中缩放一张图片十分类似。如果w大于1, 向量的所有分量都“变大”;如果w小于1,向量的所有分量都 变小。如果w是1,各分量的大小保持不变。
n o a (3.11)
3.3 机器人运动学的矩阵表示
例3.3对于下列坐标系,求解所缺元素的值,并用矩阵来 表示这个坐标系。
? 0 ? 5
F 0.707 ? ? 3 ? ? 0 2
0
0 0 1
3.3 机器人运动学的矩阵表示
解: 显然,表示坐标系原点位置的值5,3,2对约束方程无
《工业机器人基础及应用编程技术》
第3章 工业机器人运动学
总教学目标 1.理解工业机器人的位姿描述和齐次变换 2.掌握齐次坐标和齐次变换矩阵的运算 3.理解连杆参数、连杆变换和运动学方程的求解 4.了解研究动力学的内容及方法,理解速度和力雅可比矩阵
目录页
PAGE OF CONTENT
3.1 引言 3.2 工业机器人机构 3.3 机器人运动学的矩阵表示
1.三个向量 n, o, a 相互垂直
2.每个单位向量的长度必须为1
3.3 机器人运动学的矩阵表示
工业机器人课件第3章运动学3

3.6.1 D-H参数法物体
Denavit和Hartenberg于1955年提出了一种为关节链中的每一个杆 件建立坐标系的矩阵方法,即D-H参数法。
1.连杆坐标系的建立
连杆坐标系规定如下(参见图): zi坐标轴沿i+1关节的轴线方向。 xi坐标轴沿zi和zi-1轴的公垂线,且指向离开zi-1轴的方向。 yi坐标轴的方向构成xiyizi右手直角坐标系。
各连杆坐标系建立后,n-1系与n系间变换关系可用坐标系的平移、旋转 来实现。从n-1系到n系的变换步骤如下:
(1) 令n-1系绕Zn-1轴旋转θn 角, 使Xn-1与Xn平行, 算子为 Rot(z,θn)。
(2) 沿Zn-1轴平移dn, 使Xn-1 与Xn重合, 算子为Trans(0,0,dn)。
(3) 沿Xn轴平移an, 使两个坐 标系原点重合, 算子为 Trans(an,0,0)
cosi
sini
0
0
-sinicosi cosicosi
sini
0
sinisini -cosisini
cosi
0
aicosi
aisini
di 1
第2章 工业机器人运动学
实际中,多数机器人连杆参数取特殊值,如αn=0或dn=0,
可以使计算简单且控制方便。
工业机器人运动学
工业机器人连杆参数及其齐次变换矩阵
一. 连杆参数及连杆坐标系的建立 1、连杆参数 描述该连杆可以通过两个几何参数: 连杆长度an和扭角αn。
图 2-10 连杆的几何参数
第2章 工业机器人运动学
描述相邻杆件n与n-1的关系参数的两个参数: 连杆距离dn和连杆转角θn
机器人学第3章 机器人运动学

(3.46)
如果已知一个表示任意旋转的齐次变换,那么就能够 确定其等价欧拉角。
3.2 机械手运动方程的求解
21
3.2.2 滚、仰、偏变换解
直接从显式方程来求解用滚动、俯仰和偏转表示的变 换方程。 RPY变换各角如下:
atan2(n y , n x ) 180 atan2(n z , cn x sn y ) atan2( sa x ca y , so x co y )
0
T6 0T1 (1 )1T2 (2 )2T3 (3 )3T4 (4 )4T5 (5 )5T6 (6 )
3.1 机器人运动方向的表示
5
3.1.1 运动姿态和方向角
用横滚、俯仰和偏转角表示运动姿态 另一种常用的旋转集合是横滚(roll)、俯仰(pitch) 和偏转(yaw)。
图3.3 用横滚、俯仰和偏转表示机械手运动姿态
3.1 机器人运动方向的表示 6
3.1.1 运动姿态和方向角
对于旋转次序,规定:
1
(3.16)
3.1 机器人运动方向的表示
15
3.1.3 连杆变换矩阵及其乘积
如果机械手与参考坐标系的相对关系是由变换 Z 来 表示的,而且机械手与其端部工具的关系由变换 E 表示,那么此工具端部对参考坐标系的位置和方向 可由变换 X 表示如下:
可求得:
X ZT6 E
T6 Z 1 XE 1
(3.52)
3.2 机械手运动方程的求解
22
3.2.3 球面变换解
把求解滚、仰和偏变换方程的技术用于球面坐标表示 的运动方程。 球面变换的解为:
atan2( p y , p x ), 180 atan2(cp x sp y , p z )
工业机器人运动学

注意:对于旋转关节,绕z 轴的旋转角 ( θ角)是关节变量。对于滑动关节, 沿 z轴的连杆长度d 是关节变量;
3.8 机器人正运动学方程的D-H参数表示法
一.连杆坐标系的建立
本地参考坐标系步骤:
(1)通常关节不一定平行或相交。因此 ,通常z轴是斜线,但总有一条距离最短的 公垂线,它正交于任意两条斜线。通常在 公垂线方向上定义本地参考坐标系的x轴。 所以如果an表示 zn-1与zn之间的公垂线, 则xn的方向将沿an 。同样,在 zn与 zn+1之 间的公垂线为,xn+1的方向将沿an +1。
3T6
S4C5C6
C4 S6
S5C6 0
S4C5S6 C4C6 S5S6 0
S4S5 C5 0
0
0 1
C1 0 S1 0
A1
S1 0
0 1
C1 0
0 0
0
0
0
1
3.8 机器人正运动学方程的D-H参数表示法
nx = C1 [ C2 ( C4C5C6 - S4S6 ) - S2S5C6 ] - S1( S4C5S6 + C4S6 ) ny = S1 [ C2 ( C4C5C6 - S4S6 ) - S2S5C6 ] + C1( S4C5S6+C4S6 ) nz = -S2 ( C4C5C6 - S4S6 ) - C2S5C6 ox = C1 [ -C2 ( C4C5S6 + S4C6 ) + S2S5C6 ] - S1( -S4C5S6 + C4S6 ) oy = S1 [ -C2 ( C4C5C6 + S4C6 ) + S2S5S6 ] + C1( -S4C5S6 + C4S6 ) oz = S2 ( C4C5C6 + S4C6 ) + C2S5S6 ax = C1 ( C2C4S5 + S2C5 ) – S1S4C5 ay = S1 ( C2C4S5 + S2C5 ) + C1S4S5 az = –S2C4S5 + C2C5 px = C1S2d3 – S1d2 py = S1S2d3 + C1d2 pz = C2d3
第三章_机器人运动学

举例(example)
• 一个差动驱动机器人(针对图3.3所示机器人) 将滚动约束和滑动约束方程联合起来可得到式:
J1 ( s ) J C ( ) R( ) I 2 1 s 0
由于小脚轮无动力,并可在任何方向自由运动,因此可忽略第三个接触点。 其余两个轮不可操纵,因此 J1 ( s ) 和 C1 ( s ) 分别简化为
• 瞬时转动中心 ICR (instantaneous center of rotation) 在任何给定时刻,轮子必定沿着半径为 R的某个圆瞬时的运动,使得那个圆的中心 处在零运动直线上,该中心称为瞬时转动 中心。它可以位于沿零运动直线的任何地 方。
•
要使机器人运动存在一个单独的解,必须有 一个单独的ICR,即所有的零运动直线在一个单 独点相交。 • ICR的几何特性显示了机器人的活动性是机 器人运动上的独立约束数目的函数而不是轮子数 目的函数。 • 独立的滑动约束的数目可用 C1 (s ) 的秩来描述
.
.
.
.
(1)
• 其次,计算在YR 方向的贡献
由于没有一个轮子可以提供侧向运动, 所以沿YR 方向的速度总是零。 • 最后,计算旋转角速度分量。可独立的计 算各轮的贡献,且只要简单相加即可。 . .
r 1 r 2 1 2 2l 2l
(2)
ห้องสมุดไป่ตู้
• 联合式(1)和式(2)得到差动驱动机器人的 运动学模型如式(3)所示:
x I y
• 为了根据分量的移动描述机器人的移动, 需要将全局参考架下的移动映射到局部参 考框架下的运动。该运动可由正交旋转矩 阵来完成:
举例(example)
机器人学第三章(机器人的机型与结构)

第三章 机器人的机型与结构3.1 串联机器人机械手的形态与自由度机械手的动作形态是由三种不同的单位动作——旋转、回转、伸缩组合而成的。
如图3-1所示,旋转或回转是指运动机构产生相对转动,两者的不同仅在于转动部件的轴线与转动轴线是否同轴,因而常常把它们笼统地称为转动。
伸缩是指运动机构产生直线运动,这在人臂的动作中是不存在的,但机械手引入了伸缩动作,运动范围就可以得到扩大。
根据单位动作组合方式的不同,机械手的动作形态一般归纳为以下四种类型:(1)直角坐标型(2)圆柱坐标型(3)极坐标型(4)多关节型。
(1)直角坐标机器人。
如图3-2所示,直角坐标型机器人可以在三个相互正交的方向上作直线伸缩运动,机器人的手爪位于一个笛卡尔坐标系内。
有的机器人还利用旋转关节控制手爪的姿态。
这类机器人手各个方向的运动是独立的,计算比较方便,末端位置和精度也是一定的,但由于占地面积大,往往限于特定的应用场合。
(2)圆柱坐标机器人。
圆柱坐标机器人主要由垂直柱子、水平手臂(或机械手)和底座构成。
水平机械手装在垂直柱子上,能自由伸缩,并可沿垂直柱子上下运动。
垂直柱子安装在底座上,并与水平机械手一起(作为一个部件)能在底座上移动。
这样,这种机器人的工作包迹(区间)就形成一段圆柱面,如图3-3所示。
因此,把这种机器人叫做圆柱坐标机器人。
(3)极坐标机器人。
这种机器人如图3-4所示。
它像坦克的炮塔一样。
机械手能够作里外伸缩运动、在垂直平面上摆动以及绕底座在水平面上转动。
因此,这种机器人的工作包迹形成球面的一部分,并被称为球面坐标机器人。
(4)多关节型机器人。
这种机器人主要由底座(或躯干)、上臂和前臂构成。
上臂和前臂可在通过底座的垂直(c)伸缩(a)旋转(b)回转图3-3 圆柱坐标机器人 图3-4 极坐标机器人 图3-2 直角坐标机器人平面上运动,如图3-5所示。
在前臂和上臂间,机械手有个肘关节;而在上臂和底座之间,有个肩关节。
在水平平面上的旋转运动,既可由肩关节进行,也可以绕底座旋转来实现。
第3章工业机器人运动学和动力学概要

第3章工业机器人运动学和动力学机器人操作臂可看成一个开式运动链,它是由一系列连杆通过转动或移动关节串联而成。
开链的一端固定在基座上,另一端是自由的,安装着工具,用以操作物体,完成各种作业。
关节由驱动器驱动,关节的相对运动导致连杆的运动,使手爪到达所需的位姿。
在轨迹规划时,最感兴趣的是末端执行器相对于固定参考系的空间描述。
为了研究机器人各连杆之间的位移关系,可在每个连杆上固接一个坐标系,然后描述这些坐标系之间的关系。
Denavit和Hartenberg提出一种通用方法,用一个4*4的齐次变换矩阵描述相邻两连杆的空间关系,从而推导出“手爪坐标系”相对于“参考系”的等价齐次变换矩阵,建立出操作臂的运动方程。
称之为D-H矩阵法。
3.1 工业机器人的运动学教学时数:4学时教学目标:理解工业机器人的位姿描述和齐次变换;掌握齐次坐标和齐次变换矩阵的运算;理解连杆参数、连杆变换和运动学方程的求解;教学重点:掌握齐次变换及运动学方程的求解教学难点:齐次变换及运算教学方法:讲授教学步骤:齐次变换有较直观的几何意义,而且可描述各杆件之间的关系,所以常用于解决运动学问题。
已知关节运动学参数,求出末端执行器运动学参数是工业机器人正向运动学问题的求解;反之,是工业机器人逆向运动学问题的求解。
3.1.1 工业机器人位姿描述1.点的位置描述在选定的指教坐标系{A}中,空间任一点P的位置可用3*1的位置矢量表示,其左上标代表选定的参考坐标系。
2.点的齐次坐标如果用四个数组成4*1列阵表示三维空间直角坐标系{A}中点P,则该列阵称为三维空间点P的齐次坐标,如下:必须注意,齐次坐标的表示不是惟一的。
我们将其各元素同乘一个非零因子后,仍然代表同一点P,即其中:,,。
该列阵也表示P点,齐次坐标的表示不是惟一的。
3.坐标轴方向的描述用i、j、k分别表示直角坐标系中X、Y、Z坐标轴的单位向量,用齐次坐标来描述X、Y、Z轴的方向,则有,,从上可知,我们规定:4*1列阵中第四个元素为零,且,则表示某轴(某矢量)的方向。
第03章 机器人的运动学和动力学

教案首页课程名称农业机器人任课教师李玉柱第3章机器人运动学和动力学计划学时 3教学目的和要求:1.概述,齐次坐标与动系位姿矩阵,了解平移和旋转的齐次变换;2.机器人的运动学方程的建立与求解*;3.机器人的动力学*重点:1.机器人操作机运动学方程的建立及求解;2.工业机器人运动学方程3.机器人动力学难点:1. 机器人动力学方程及雅可比矩阵基本原理思考题:1.简述齐次坐标与动系位姿矩阵基本原理。
2.连杆参数及连杆坐标系如何建立?3.机器人动力学方程及雅可比矩阵基本原理是什么?第3章机器人运动学和动力学教学主要内容:3.2 齐次坐标与动系位姿矩阵3.3 齐次变换3.4 机器操作机运动学方程的建立与求解3.5 机器人运动学方程3.6 机器人动力学本章将主要讨论机器人运动学和动力学基本问题。
先后引入了齐次坐标与动系位姿矩阵、齐次变换,通过对机器人的位姿分析,介绍了机器人运动学方程;在此基础上有对机器人运动学方程进行了较为深入的探讨。
3.1 概述机器人,尤其是关节型机器人最有代表性。
关节型机器人实质上是由一系列关节连接而成的空间连杆开式链机构,要研究关节型机器人,必须对运动学和动力学知识有一个基本的了解。
分析机器人连杆的位置和姿态与关节角之间的关系,理论称为运动学,而研究机器人运动和受力之间的关系的理论则是动力学。
3.2 齐次坐标与动系位姿矩阵3.2.1 点的位置描述在关节型机器人的位姿控制中,首先要精确描述各连杆的位置。
为此,先定义一个固定的坐标系,其原点为机器人处于初始状态的正下方地面上的那个点,如图3-1(a)所示。
记该坐标系为世界坐标系。
在选定的直角坐标系{A}中,空间任一点P的位置可以用3×1的位置向量A P表示,其左上标表示选定的坐标系{A},此时有A P=XYZ P P P ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦式中:P X、P Y、P Z—点P在坐标系{A}中的三个位置坐标分量,如图3-1(b)。
3.2.2 齐次坐标将一个n维空间的点用n+1维坐标表示,则该n+1维坐标即为n维坐标的齐次坐标....。
机器人学基础第3章

3.1 坐标系的建立方法
机器人的连杆均可以用以上四个参数ai-1、αi-1、di 、θi 来进行描述。对于一个确定的机器人关节来说, 运动时 只有关节变量的值发生变化, 其他三个连杆参数均为保 持不变。用ai-1、αi-1、di 、θi 来描述连杆之间运动关系 的规则称为Denavit-Hartenberg 参数, 简称D-H 参 数。
3. 3 典型机器人的正运动举例
机器人的D - H 参数表
3. 3 典型机器人的正运动举例
由机械臂的坐标系可以计算得到相邻两坐标系之间
的变换矩阵
, 其中
3. 3 典型机器人的正运动举例
则可以计算出机械臂末端相对于基坐标系的位姿矩 阵为:
3. 3 典型机器人的正运动举例
其中:
3. 3 典型机器人的正运动举例
3. 3 典型机器人的正运动举例
作出该机器人的机构简图并建立连杆坐标系。
3. 3 典型机器人的正运动举例
写出D - H 参数表
3. 3 典型机器人的正运动举例
可以计算出各相邻两坐标系之间的齐次变换矩阵:
3. 3 典型机器人的正运动举例
由于关节2 是移动关节, 其关节变量为d2。由 可计算出该机器人的正运动学方程为:
3. 3 典型机器人的正运动举例
例3. 3 如图所示为日本川崎公司制
造的RS10N 型工业机器人, 它具有典型的工业机器人构 型, 共有6 个自由度, 其中 前3 个关节决定机器人末端 的位置, 后3 个关节轴相交 于一点,决定机器人末端的 姿态。
3. 3 典型机器人的正运动举例
机器人的连杆坐标系建立, 由于坐标系{6} 的原点位 于腕部, 在实际应用中为了 直观地描述机器人末端执行 器的位置, 通常在机器人末 端点处建立一个与坐标系 {6} 姿态完全相同的工具 坐标系, 即坐标系{7}。
机器人学导论,第三章第四章

0 l3 0 l4 1 0 0 1
0 1 1 0 3 HT 0 0 0 0
0 0 1 0
0 0 0 1
四、写出运动方程(求出
0 H
0 H
T
)
T T T T T
0 1 1 2 2 3 3 H
0 1 0 0 1 0 0 0
中间连杆 分两种情况: 首、末连杆
3.4、连杆参数和连杆坐标系(续)
首、末连杆
与基座0固接的坐标系为 {0};
基座固定不动 {0}作为机器人操作的绝对 坐标系。 原则上坐标系 {0}可以任意规定(不受连 杆参数、关节变量影响 )。
为方便起见,对 {0}规定如下: 当第一个关节变量为零 时, {0}、 {1}重合({0}为{1}的原位状态)。
3.4、连杆参数和连杆坐标系(续)
三、连杆坐标系
连杆的描述 连杆连接的描述 连杆之间位姿的描述
采用方法: 在每个连杆固接一个坐 标系,用坐标系之间的 描述表示。 例如:
与基座固接的坐标系为 {0}; 与连杆1固接的坐标系为 {1}; 与连杆i固接的坐标系为 {i};
下一步讨论:坐标系 {i}的原点、轴的方向的确 定方法。
因此,有:
i 1 i
相对于动 坐标系而 言,遵循 “从左到 右”的原 则。
T RX ( i 1 ) DX ( ai 1 ) RZ ( i ) DZ ( di )
3.5 连杆变换和运动学方程(续) i 1 iT RX ( i 1 ) DX ( ai 1 ) RZ ( i ) DZ ( di )
求
0 H
T
一、建立D-H坐标系
Z3
Z2 X3 Z1 X2
机器人技术基础课件第三章 机器人运动学

30
3.2.1 机器人正运动学方程
如图所示是个三自由度的机器人, 三个关节皆为旋 转关节,第3关节轴线垂直于1、2关节轴线所在的平 面,各个关节的旋转方向如图所示,用D-H方法建立 各连杆坐标系,求出该机器人的运动学方程。
刚体的姿态可由动坐标系的坐
标的轴刚 位方置体向可Q在来用固表齐定示次坐。坐标令标系n形、O式oX、的YZa一中分
别为X′、y ′、z ′坐标轴的 个(4×1)列阵表示为: 单位方向矢量,每个单位方向 矢量在固定坐标系上的分量为 动坐标系各坐标轴的方向余弦, 用齐次坐标形式的(4×1)列阵 分别表示为:
y L1 sin1 L2 sin(1 2 )
通常的矢量形式:
r f ( )
29
3.2.1 机器人正运动学方程
机器人正运动学将关节变量作为自变量,研究机器人末 端执行器位姿与基座之间的函数关系。总体思想是:
(1)给每个连杆指定坐标系; (2)确定从一个连杆到下一连杆变换(即相邻参考系 之间的变化); (3)结合所有变换,确定末端连杆与基座间的总变换 ; (4)建立运动学方程求解。 机器人运动学的一般模型为:
03T 01T12T 23T
如此类推,对于六连杆机器人,有下列矩阵:
06T 01T12T 23T 34T 45T 56T
3.2 3.2 机械手运动学方程
26
0 6
T
3.1.4 连杆变换矩阵及其乘积
06T 01T12T23T34T 45T56T
机器人运动学方程
此式右边表示了从固定参考系到手部坐标系的各连杆
机器人学基础_第3章机器人运动学

移动连杆坐标系的建立
移动连杆坐标系的规定:
• 坐标轴Zi:与i+1关节的轴线重合; • 坐标轴Xi:沿移动关节i轴线与关节i+1轴线的公垂线,指向i+1关节; • 坐标轴Yi:按右手直角坐标系法则确定; • 坐标原点Oi: (1)当关节i轴线和关节i+1轴线相交时,取交点; (2)当关节i轴线和关节i+1轴线异面时,取两轴线的公垂线与关节i轴
动到使其原点与连杆i坐标系原点重合的地方。 • (4) 绕Xi旋转αi角,使Zi–1转到与Zi同一直线上。 • 连杆i–1的坐标系经过上述变换与连杆i的坐标系
重合。如果把表示相邻连杆相对空间关系的矩阵 称为A矩阵,那么根据上述变换步骤,从连杆i到 连杆i–1的坐标变换矩阵Ai为
•
(3.13)
• 同理,对联轴器的齐次坐标变换矩阵有 •
• 手部的位置矢量为固定参考系原点指向手 部坐标系{B}原点的矢量P,手部的方向矢 量为n、o、a。于是手部的位姿可用4 4 矩阵表示为
•
•
nX oX a X PX
T
nY
oY
aY
PY
nZ 0
oz 0
aZ 0
PZ 1
• 思考:
• ①说明位姿矩阵的左上角3×3矩阵的几何 意义。
• ②分别说明n, o, a, P的几何意义。
a1 = l 1 =100
a2 = l 2 =100
旧课复习与总结
转动连杆坐标系的建立
• 坐标轴Zi:与i+1关节的轴线重合; • 坐标轴Xi:沿连杆i两关节轴线的公垂线,指向i+1关节; • 坐标轴Yi:按右手直角坐标系法则确定; • 坐标原点Oi: (1)当关节i轴线和关节i+1轴线相交时,取交点; (2)当关节i轴线和关节i+1轴线异面时,取两轴线的公垂
机器人学基础_第3章_机器人运动学_蔡自兴

杆件坐标系间的变换过程 -相邻关节坐标系的齐次变换 将xi-1轴绕zi-1轴转i 角度,将其与xi轴平行; 沿zi-1轴平移距离di ,使zi-1轴与zi轴重合; 沿xi轴平移距离Li,使两坐标系原点及x轴重合; 绕xi 轴转i角度,两坐标系完全重合.
这种关系可由表示连杆相对位置的四个齐次变 换来描述,并叫做 Ai 矩阵。此关系式为:
机器人学基础
第三章 机器人运动学
中南大学 蔡自兴,谢 斌 zxcai, xiebin@ 2010
Fundamentals of Robotics
1
引言
机器人位置和姿态的描述
机器人可以用一个开环关节链来建模 由数个驱动器驱动的转动或移动关节串联而成 一端固定在基座上,另一端是自由的,安装工具,用以 操纵物体 n • 人们感兴趣的是操作机末端执行 器相对于固定参考坐标数的空间 o a 几何描述,也就是机器人的运动 学问题 • 机器人的运动学即是研究机器人 手臂末端执行器位置和姿态与关 节变量空间之间的关系
3.1.1 Kinetic Pose and Oriented Angle 运动姿态和方向角 Motion Direction
原点由矢量p表示。 approach vector a:z向矢量 orientation vector o:y向矢量 normal vector n:x向矢量,
Forming a right-hand frame: n = o a or a = n o
y L1 sin 1 L2 sin(1 2 )
The general vector form
r f ( )
3.0 Introduction to Robot Kinematics
3
Example of Inverse Kinematics
机器人学-第3章_机器人运动学

1, di)表示。
空间机械臂坐标系选择
为了获得机械臂末端执行器在3维空间的位置和姿态,需要在每个连杆上 定义与连杆固连的坐标系来描述相邻连杆之间的位置关系。
根据固连坐标系所在连杆的编号对固连坐标系命名,如在固连在连杆i上 的固连坐标系称为坐标系{i}。
若ai =0,两Z轴相交,则选Xi垂于Zi和Zi+1 ,坐标系{i}的选择不是唯一的。
9
轴i θi
轴 i-1
连杆坐标系中连杆参数确定
θi-1
连杆 i-1
DH参数按以下方法确定:
Zi
ai =沿Xi轴,从Zi移动到Zi+1的距离;
Yi
i =绕Xi轴,从Zi旋转到Zi+1的角度;
di =沿Zi轴,从Xi-1移动到Xi的距离;
系{1}与坐标系{0}重合。
对于坐标系{n},原点位置可以在关节轴
上任意选取, Xn的方向也是任意的。但在选 择时应尽量使更多的连杆参数为1=0 1=-90o d1=0
Y2
a2=L2 2=0 q2=-90o d2=L1
(b)
Z1
X2
Y2
Y1
X1
a1=0 1=90o d1=0
相邻连杆间坐标变换公式
建立 {P}、{Q}和{R}3个中间坐标系, 其中{i}和{i-1}是固定在连杆 i 和 i-1 上的固 连坐标系,如图3-13所示。
连杆 i-1 Zi
ZP
Xi ai
di ZQ XQ
ZR
qi
Zi-1
Xi-1XR ai-1
XP
i-1
1. 绕 Xi-1 轴旋转 i-1角
工业机器人运动学

(2)圆柱坐标
由于这些变换都是相对于全局参考坐标系的坐标轴
的,因此由这三个变换所产生的总变换可以通过依
次左乘每一个矩阵而求得:
RTP Tcyl (r, ,l) Trans(0, 0,l)Rot(z, )Trans(r, 0, 0)
1 0 0 0 C S 0 0 1 0 0 r
动组成,运动顺序为:先沿z轴平移r ,再y轴旋转 β并 绕z轴旋转γ。这三个变换建立了手坐标系与参考坐标
系之间的联系。由于这些变换都是相对于全局参考坐
标系的坐标轴的,因此有这三个变换所产生的总变换
可以通过一次左乘每一个矩阵而求得:
RTP Tsph r, , Rotz, Roty, Trans0,0, r
解: 设定正运动学方程用式(3.31)中的RTP 矩阵表示,根据期望的位置可得知 如下结果:
1 0 0 Px 1 0 0 3
RTP
0 0
0
1 0 0
0 1 0
Py
0
Pz 1
0 0
1 0 0
0 1 0
4 7
或Px
3, Py
4, Pz
7
1
RTP
Tsph
C S S
C
0
S S
rS
S
C
rC
0
0
0
1
3.7 机器人的正逆运动学
例3-15假设要将球坐标机器人手坐标系原点放在3 4,7T 计算机器人的关节变量。
解: 设定正运动学方程用式(3.35)中的Txph 矩阵表示,根据期望的位置可得知 如下结果:
《机器人技术基础》课程大纲

《机器人技术基础》课程教学大纲一、课程名称(中英文)中文名称:机器人技术基础英文名称:Robotic Technology Foundation二、课程编码及性质课程编码:0801051课程性质:选修课三、学时与学分总学时:32学分:2.0四、先修课程机械原理、机械设计、材料加工工程、工业控制五、授课对象本课程面向材料成型及控制工程专业学生开设,也可以供机械科学与工程专业和机电一体化专业学生选修。
六、课程教学目的(对学生知识、能力、素质培养的贡献和作用)本课程是本专业的核心选修课程之一,其教学目的主要包括:1. 系统全面掌握机器人技术专业知识,具备应用这些知识分析、解决机器人应用中的系统集成及其自动化控制等复杂问题的能力;2. 掌握机器人概况、机器人学的数学基础、机器人运动学、机器人动力学、机器人控制原则与方法、机器人在材料成型加工中的应用以及人工智能,具备针对不同需求设计机器人集成制造/加工系统的能力;3. 理解不同机器人系统架构的特点与共性问题,掌握机器人路径规划与离线仿真分析方法,具备机器人集成系统的性能分析与评价能力;4. 了解机器人技术的发展前沿,掌握其在机械制造、材料成型、医疗、电子、航空航天与资源开发等行业的发展特点与动向,具备研发机器人制造/加工的基础与能力。
表1 课程目标对毕业要求的支撑关系七、教学重点与难点:教学重点:1)机器人应用范围非常广泛,其形式与结构等也多种多样,本课程以介绍机器人系统结构、设计与控制为主体,以讲述机器人集成制造/加工系统为重点;2)在全面了解与掌握机器人系统种类及结构特点的基础上,重点学习机器人系统设计与控制技术、机器人路径规划、离线仿真以及集成系统设计与实现;3)课程将重点或详细介绍机器人在机械制造、材料加工工程、先进制造中的典型应用,而对较普遍应用的系统仅作简要介绍或自学。
4)重点学习的章节内容包括:第3章“机器人运动学与动力学”(4学时)、第4章“机器人的驱动与控制”(4学时)、第5章“机器人轨迹规划及离线仿真”(4学时)第6章“工业机器人应用”(8学时)第7章“机器人系统集成技术”(4学时)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 Representation of Kinematics Equation of Manipulator
8
3.1 Representation of Kinematics Equation of Robot Manipulator
T矩阵:A矩阵的乘积 。 对于六连杆机械手,有下列T矩阵 :
Kinematics treats motion without regard to the forces that cause it. Within the science of kinematics one studies the position, velocity, acceleration, and all higher order derivatives of the position variables (with respect to time or any other variable). 从几何学 几何学的观点来处 几何学 理手指位置 手指位置P与关节变量 关节变量 手指位置 L1, L2, θ1 和 θ 2的关系称为 运动学(Kinematics)。 运动学
3.0 Introduction to Robot Kinematics
2
3.0 Introduction to Robot Kinematics In manipulator robotics, there are two kinematics tasks: Direct (also forward) kinematics – Given are joint relations (rotations, translations) for the robot arm. Task: What is the orientation and position of the end effector? Inverse kinematics – Given is desired end effector position and orientation. Task: What are the joint rotations and orientations to achieve this?
Cyl ( z , α , r ) = Trans (0,0, z ) Rot ( z , α )Trans ( r ,0,0)
图3.4 用柱面坐标和球面坐标表示位置
3.1 Representation of Kinematics Equation of ManipKinetic Position and Coordinate
3.1 Representation of Kinematics Equation of Manipulator
12
3.1.1 Kinetic Pose and Oriented Angle Roll, Pitch, Yaw to represent motion pose
另一种常用的旋转集合是横滚(roll)、俯仰(pitch) 和偏转(yaw)。
Description in Spherical Coordinates 用球面坐标表示手臂运动位置矢量的方法,对应于 沿 z 轴平移 r,再绕 y 轴旋转β角,最后绕 z 轴旋 转 α 角,如图3.4(b)所示,即为:
Sph(α , β , r ) = Rot ( z , α ) Rot ( y , β )Trans (0,0, r )
3.1 Representation of Kinematics Equation of Manipulator
7
3.1 Representation of Kinematics Equation of Robot Manipulator
机械手是一系列由关节连接起来的连杆构成的。为 机械手的每一连杆建立一个坐标系,并用齐次变换来 描述这些坐标系间的相对位置和姿态。 A矩阵:一个描述两连杆间坐标系相对关系的齐次变 换 ,如;各 A 矩阵的乘积称为 T 矩阵 。 例如: A1,A2,A3 T1=A1 T2=A1A2 T3=A1A2A3
(3.9)
3.1 Representation of Kinematics Equation of Manipulator
17
3.1 Representation of Kinetic Equation of Robot Manipulator
4
Example of Inverse Kinematics
θ2 = π − α
y L2 sinθ2 θ1 = arctan( ) − arctan( ) x L1 + L2 cosθ2
式中
2 −(x2 + y2 ) + L1 + L2 2 α = arccos 2L1L2
T6 = A1 A2 A3 A4 A5 A6
(3.1)
一个六连杆机械手可具有六个自由度,每个连 杆含有一个自由度,并能在其运动范围内任意 定位与定向。
3.1 Representation of Kinematics Equation of Manipulator
9
3.1 Representation of Kinematics Equation of Robot Manipulator
图3.3 用横滚、俯仰和偏转表示机械手运动姿态
3.1 Representation of Kinematics Equation of Manipulator
13
3.1.1 Kinetic Pose and Oriented Angle
对于旋转次序,规定:
RPY (ϕ ,θ ,ψ ) = Rot ( z ,ϕ ) Rot ( y,θ ) Rot ( x,ψ )
图3.1 矢量n,o,a和p
10
3.1 Representation of Kinematics Equation of Manipulator
3.1.1 Kinetic Pose and Oriented Angle
因此,变换T6具有下列元素(同式2.35)。
nx n T6 = y nz 0 ox oy oz 0 ax ay az 0 px py pz 1
机器人学基础
第三章 机器人运动学
Fundamentals of Robotics
Ch.3 Kinematics of Robots
中南大学 蔡自兴, 蔡自兴,谢 斌 zxcai, xiebin@ 2010
Fundamentals of Robotics
1
3.0 Introduction to Robot Kinematics
同样,如果用向量表示上述关系式,其一般可表示为
θ = f (r )
−1
3.0 Introduction to Robot Kinematics
5
Example of Inverse Kinematics 机器人到达给定的手爪位置 P 有两个姿态满足要求,即图中 的 α ′ = −α 也是其解。此时 θ1 和 θ 2 变成为另外的值,即逆运 逆运 动学的解不是惟一的。 动学的解不是惟一的 将运动学公式 r = f (θ ) 两边微分即可得到机器 人手爪的速度和关节速度的关系,再进一步进行微 分将得到加速度之间的关系,处理这些关系也是机 器人的运动学问题。
3.0 Introduction to Robot Kinematics
6
3.1 Representation of Kinematics Equation of Robot Manipulator
Mechanics of a manipulator can be represented as a kinematics chain of rigid bodies (links) connected by revolute or prismatic joints. One end of the chain is constrained to a base, while an end effector is mounted to the other end of the chain. The resulting motion is obtained by composition of the elementary motions of each link with respect to the previous one.
3.1.1 Kinetic Pose and Oriented Angle 运动姿态和方向角 Motion Direction
原点由矢量p表示。 approach vector a:z向矢量 orientation vector o:y向矢量 normal vector n:x向矢量, Forming a right-hand frame: n = o × a or a = n × o
3.0 Introduction to Robot Kinematics
3
Example of Direct Kinematics
Define position of end effector and the joint variable,
x r= y
θ1 θ = θ2
(3.2)
六连杆机械手的T 矩阵( T6 )可由指定其16个元素的数值 来决定。在这16个元素中,只有12个元素具有实际含义。
3.1 Representation of Kinematics Equation of Manipulator
11
3.1.1 Kinetic Pose and Oriented Angle Euler angle to represent motion pose
(3.6)
3.1 Representation of Kinematics Equation of Manipulator