比例积分微分调节规律
PID_调节比例积分微分作用的特点和规律总结
![PID_调节比例积分微分作用的特点和规律总结](https://img.taocdn.com/s3/m/b496688cdb38376baf1ffc4ffe4733687f21fc66.png)
PID_调节比例积分微分作用的特点和规律总结调节比例积分微分(PID)是一种常见的控制器,广泛应用于电力、电子、化工、交通等领域。
PID控制器通过调节控制信号来自动调整设备的输出,使其接近或维持在预定的目标值。
PID控制器有三个主要的部分:比例(P)控制、积分(I)控制和微分(D)控制。
比例控制(P)是一种与误差成比例的调节手段,它可以根据误差的大小来调整控制信号。
比例控制的特点如下:1.比例控制具有对误差的立即响应能力。
当误差较大时,调节信号将相应增大,以促使系统输出尽快接近目标值。
这使得比例控制器能够快速地减小误差,并使系统首次超调尽量小。
2.比例控制可以根据设定的比例系数来调整控制信号的增益,从而实现不同程度的控制效果。
比例系数是一个常数,它决定了输出与误差之间的关系。
较大的比例系数将导致更快的响应速度,但可能引起系统不稳定;较小的比例系数将导致较慢的响应速度,但更稳定。
3.比例控制存在静差问题,也就是说,在达到目标值之前,系统误差不为零。
这是因为当误差很小时,比例控制器的输出也很小,无法完全消除误差。
对于一些需要达到严格精度要求的系统,比例控制往往不足以满足要求。
积分控制(I)是一种与误差累积成比例的调节手段,它可以根据误差的积累情况来调整控制信号。
积分控制的特点如下:1.积分控制可以消除系统的静差问题。
当误差累积达到一定程度时,积分控制器会发挥作用,将控制信号逐渐增大,以减小误差。
这使得系统可以达到较高的精度要求。
2.积分控制具有稳定的作用。
由于积分控制是根据误差的累积来调整控制信号,因此它可以使系统的输出稳定在目标值附近。
然而,过大的积分系数可能导致系统的超调现象,从而降低系统的响应速度。
微分控制(D)是一种根据误差变化率来调节控制信号的方式,它可以预测系统输出的变化趋势,以快速调整控制信号。
微分控制的特点如下:1.微分控制可以减小系统的超调现象。
当系统输出接近目标值时,微分控制器会根据误差的变化率调整控制信号,以避免系统出现超调现象。
PID_调节比例积分微分作用的特点和规律总结
![PID_调节比例积分微分作用的特点和规律总结](https://img.taocdn.com/s3/m/741030713868011ca300a6c30c2259010202f334.png)
PID_调节比例积分微分作用的特点和规律总结PID控制器是一种广泛应用于工业控制中的自动控制策略。
PID控制器通过调节比例、积分和微分三个参数来实现对系统的控制。
调节比例(Proportional, P)、积分(Integral, I)和微分(Differential, D)是PID控制的三种主要作用,各自具有不同的特点和规律。
下面将详细总结PID调节比例、积分和微分作用的特点和规律,以帮助读者更好地理解和应用PID控制器。
一、调节比例作用特点和规律:1.特点:调节比例用于根据误差信号的大小来确定控制输出。
调节比例的增大会使控制器对误差信号的响应更迅速,但过大的调节比例会引起系统的超调和不稳定。
2.规律:调节比例的增大会提高系统的响应速度,加快系统的动态过程。
调节比例的增大会提高系统的静态精度,减小稳态误差。
调节比例的增大会提高系统的稳定性,但当调节比例过大时,系统容易产生振荡。
调节比例的选择要根据具体应用场景,结合系统的动态特性和稳定性需求进行权衡。
二、积分作用特点和规律:1.特点:积分作用用于根据误差信号的累积量来进行调节,可以消除系统的稳态误差,提高系统的静态精度。
积分作用具有记忆效应,可以积累误差信号,使得控制器能够对系统在过去一段时间内的误差进行补偿。
过大的积分作用会导致系统反应过度,引起振荡或不稳定。
2.规律:积分作用可以消除系统的稳态误差,提高系统的静态精度。
积分作用会延长系统的调整时间,增大系统的超调量。
积分作用的增大会提高系统的响应速度和稳定性。
积分作用的选择要综合考虑系统的响应速度、稳态误差和稳定性需求,避免过度积分导致系统不稳定。
三、微分作用特点和规律:1.特点:微分作用用于根据误差信号的变化率来预测系统的未来发展趋势,从而对控制输出进行调节。
微分作用可以提高系统的稳定性和减小超调量,但过大的微分作用会引起震荡和系统的不稳定。
微分作用对高频噪声敏感,可能会放大噪声信号。
2.规律:微分作用可以提高系统的稳定性和减小超调量,使系统的动态过程更趋于平稳。
比例积分微分控制及其调节过程
![比例积分微分控制及其调节过程](https://img.taocdn.com/s3/m/284b8fceda38376baf1fae28.png)
§2-3 积分调节(I调节) 积分调节(I
一 积分调节动作规律
du 动态方程式: u = S0 ∫0 edt OR dt = S0e
t
s0积分速度
传递函数为: G ( s) =
U (s) E (s)
=
S0 s
积分调节的特点, 二 积分调节的特点,无差调节 (1)控制过程结束时,被调量与其给定值之间没有 控制过程结束时, 稳态偏差, 无差调节; 稳态偏差,是无差调节; 调节阀开度与被调量的数值本身无直接关系, (2)调节阀开度与被调量的数值本身无直接关系, 浮动调节,很少单独使用; 是浮动调节,很少单独使用; 引起相位滞后90 90度 稳定性比P调节差。 (3)引起相位滞后90度,稳定性比P调节差。
e
∆ e0
∆ e0
0
t
PID
I
0
t
PID
KD −1
µ
δ
∆e0
µ
D
∆ e0
P
D
0
I
δ
∆ e0
P
t
t
δ
0
各种调节的特点
与PD相比,PID提高了 系统的无差度; 与PI相比,PID多了一 个零点,为动态性能的 改善提供了可能。 PID兼顾了静态和动态 控制要求。
PID控制原理---算法选择原则 PID控制原理---算法选择原则
PD调节中,微分太强将导致饱和,因此微分只能起辅助作用; 微分调节抗干扰能力差,对纯延迟无效。
比例积分微分(PID)调节规律 积分微分(PID)调节 四 比例积分微分(PID)调节规律
理想PID调节器 调节器 理想 动 1 1 态 u = (e + δ TI 方 程 实际PID调节器 调节器 实际
PID中比例积分微分经验调节要点
![PID中比例积分微分经验调节要点](https://img.taocdn.com/s3/m/7463d737866fb84ae45c8d33.png)
PID中比例积分微分的经验调节PID调节经验Kp: 比例系数 ----- 比例带(比例度)P:输入偏差信号变化的相对值与输出信号变化的相对值之比的百分数表示(比例系数的倒数)T:采样时间Ti: 积分时间Td: 微分时间温度T: P=20~60%,Ti=180~600s,Td=3-180s压力P: P=30~70%,Ti=24~180s,液位L: P=20~80%,Ti=60~300s,流量L: P=40~100%,Ti=6~60s。
(1)一般来说,在整定中,观察到曲线震荡很频繁,需把比例带增大以减少震荡;当曲线最大偏差大且趋于非周期过程时,需把比例带减少(2)当曲线波动较大时,应增大积分时间;曲线偏离给定值后,长时间回不来,则需减小积分时间,以加快消除余差。
(3)如果曲线震荡的厉害,需把微分作用减到最小,或暂时不加微分;曲线最大偏差大而衰减慢,需把微分时间加长而加大作用(4)比例带过小,积分时间过小或微分时间过大,都会产生周期性的激烈震荡。
积分时间过小,震荡周期较长;比例带过小,震荡周期较短;微分时间过大,震荡周期最短(5)比例带过大或积分时间过长,都会使过渡过程变化缓慢。
比例带过大,曲线如不规则的波浪较大的偏离给定值。
积分时间过长,曲线会通过非周期的不正常途径,慢慢回复到给定值。
注意:当积分时间过长或微分时间过大,超出允许的范围时,不管如果改变比例带,都是无法补救的1. PID调试步骤没有一种控制算法比PID调节规律更有效、更方便的了。
现在一些时髦点的调节器基本源自PID。
甚至可以这样说:PID调节器是其它控制调节算法的吗。
为什么PID应用如此广泛、又长久不衰?因为PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。
调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。
PID(比例微分积分)调节口诀
![PID(比例微分积分)调节口诀](https://img.taocdn.com/s3/m/cdc9a3b668dc5022aaea998fcc22bcd126ff4268.png)
1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,2. 一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s,液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。
3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID 控制,又称PID调节。
PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。
PID控制,实际中也有PI和PD控制。
PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
比例(P)控制比例控制是一种最简单的控制方式。
其控制器的输出与输入误差信号成比例关系。
当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
积分控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。
对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。
PID调节比例积分微分作用的特点和规律总结
![PID调节比例积分微分作用的特点和规律总结](https://img.taocdn.com/s3/m/0a5ed12a24c52cc58bd63186bceb19e8b8f6ec36.png)
PID调节比例积分微分作用的特点和规律总结PID(Proportional-Integral-Derivative)控制器是一种经典的反馈控制算法,广泛应用于各种自动控制系统中。
PID控制器由比例(Proportional)、积分(Integral)和微分(Derivative)三个部分组成,它们分别代表了系统对于当前误差的比例响应、积累响应以及变化率响应。
PID调节比例、积分、微分作用各有不同的特点和规律,下面我将详细总结。
一、比例作用(Proportional Action)比例作用是PID控制中最基本的一个部分,它根据当前误差的大小,产生一个与误差成比例的控制输入。
比例增益(Kp)越大,比例作用的响应速度越快。
比例作用的特点如下:1.系统响应速度快:比例作用的增加可以使得控制器对于误差的响应更敏捷,从而加快系统的响应速度。
2.但增益过大会导致系统不稳定:当比例增益过大时,系统会出现超调或震荡现象,导致系统不稳定。
3.与误差成正比:比例作用与误差成正比,误差大则输出大,误差小则输出小。
这种比例关系能够快速减小误差,但无法完全消除误差。
二、积分作用(Integral Action)积分作用是基于误差的积累来产生控制输入,它能够消除系统的稳态误差。
积分增益(Ki)决定了积分作用的大小。
积分作用的特点如下:1.消除稳态误差:积分作用可以积累误差,并将积累的误差作为控制输入,从而消除系统的稳态误差。
2.但会引入超调:在一些情况下,积分作用可能会导致系统的超调现象,使系统的响应速度变慢。
3.不会主动减小误差:积分作用只有在误差存在的时候才会产生,当误差为零时,积分作用不再发生。
三、微分作用(Derivative Action)微分作用是基于误差的变化率来产生控制输入,它可以减小系统的响应速度,并且对于过冲和震荡有抑制作用。
微分增益(Kd)决定了微分作用的大小。
微分作用的特点如下:1.抑制过冲和震荡:微分作用可以减小系统的响应速度,从而抑制过冲和震荡现象的发生。
PID_调节比例积分微分作用的特点和规律总结
![PID_调节比例积分微分作用的特点和规律总结](https://img.taocdn.com/s3/m/051aba61ec630b1c59eef8c75fbfc77da369976f.png)
PID_调节比例积分微分作用的特点和规律总结PID控制器是常用的自动控制算法,由比例(Proportional)、积分(Integral)和微分(Derivative)三个部分组成。
在PID控制器中,比例、积分和微分作用各自具有不同的特点和规律,它们共同作用在一个系统中,以实现对过程变量的精确控制。
下面将分别介绍PID控制器中比例、积分、微分作用的特点和规律。
1. 比例作用 (Proportional):比例作用是通过反馈信号与给定值之间的差值来控制输出。
当比例系数增加时,输出信号对误差的响应速度会增加,但可能会导致系统震荡和过冲。
比例作用的特点包括:(1)响应速度快:比例作用的输出与误差成正比,误差越大,输出变化越快。
(2)稳定性差:当比例系数过大时,系统容易产生震荡,导致系统不稳定。
(3)静差存在:比例控制器通常无法完全消除静态误差,因为它只能在误差发生时才有反应。
(4)适用范围广:比例控制器适用于各种不同的控制系统,并且易于调整。
2. 积分作用 (Integral):积分作用是通过积累误差的历史值来调整输出。
它可以消除系统静态误差,提高系统的稳定性。
积分作用的特点包括:(1)消除静差:积分作用可以积累误差,并在一段时间内逐渐消除静态误差。
(2)稳定性好:积分作用可以提高系统的稳定性,防止系统出现过冲和震荡。
(3)响应速度慢:积分作用对误差的响应较慢,因此可能导致系统的响应速度变慢。
(4)对干扰和噪声敏感:积分作用会积累误差,因此可能对系统的干扰和噪声敏感。
3. 微分作用 (Derivative):微分作用是根据误差变化率的快慢来调整输出,以抑制系统的振荡和过冲。
微分作用的特点包括:(1)抑制振荡和过冲:微分作用可以减缓系统的响应速度,抑制振荡和过冲的产生。
(2)稳定性好:微分作用可以提高系统的稳定性,尤其对那些具有快速变化率的系统更有效。
(3)抗干扰能力弱:微分作用对系统的干扰和噪声具有较弱的抵抗能力,可能会增加系统的抖动。
比例-积分-微分PID控制规律
![比例-积分-微分PID控制规律](https://img.taocdn.com/s3/m/797bec6ba417866fb84a8e70.png)
在串联校正时,采用I 控制器可以提高系统的型别,有利于系统稳态性能 的提高。但积分控制使系统增加了一个位于原点的开环极点,使信号产生 90°的相角迟后,对系统的稳定性不利。 因此,在控制系统的校正设计中,通常不宜采用单一的I控制器。
§6-2 基本控制规律
一、比例(P)控制规律
具有比例控制规律的控制器,称为P 控制器,如图所示。其中KP称为P控制器 增益。
控制规律
u(t) K p e(t )
对于单位反馈系统 0型 ,系 统 响 应 实 际 阶跃信号 R0 1(t )的 稳 态 误 差 与 其 开 环益 增 K近 似 成 反 比 , 即 : R0 lim e(t ) t 1 K 型 系 统 响 应 匀 速 信 R 号 增K v 成 反 比 , 1t的 稳 态 误 差 与 其 开 环益 即: R1 lim e (t ) t Kv
尼程度,从而改善系统的稳定性。 在串联校正时,可使系统增加一个 因而有助于系统的动态性能的改善。
1 的开环零点,使系统的相角裕度提高, τ
斜坡函数作用下PD 控制器的响应
e(t)
t
u(t)
t
例1.设具有 PD控制器的控制系统方框 图如图所示。 试分析 PD控制规律对该系统性能 的影响。
解 : 1.无PD控制器时,系统的闭环 传递函数为: 1 2 C(s) 1 Js 2 R(s) 1 1 Js 1 Js 2 则系统的特征方程为 Js 2 1 0 阻尼比等于零,其输出 信号 C (t )具有不衰减的等幅振荡 形式。 2.加入 PD控制器后,系统的闭环 传递函数为: 1 K P (1 τs) 2 K P (1 τs ) C(s) Js 2 1 R(s) 1 K (1 τs ) Js K P (1 τs ) P Js 2 2 系统的特征方程为: Js K P τs K P 0
第二章 比例积分微分控制及其调节过程
![第二章 比例积分微分控制及其调节过程](https://img.taocdn.com/s3/m/8fab23da7f1922791688e8b1.png)
t
de dt
1 1 1 TD s TI s
1 1 u e TI
de 0 edt TD dt
t
实际PID调节器其传递函数为
1 * TD s * TI s * Gc ( s) K C 1 T 1 D s K I TI s K D 1
图2.11表示控制系统在不同积分时间的响应 过程。
三、积分现象与抗积分饱和的措施
具有积分作用的调节器,只要被调量与 设定值之间有偏差,其输出就会不停 地变化。如果由于某种原因(如阀门 关闭、泵故障等),被调量偏差一时 无法消除,然而调节器还是试图校正 这个偏差,经过一段时间后,调节器 输出将进入深度饱和状态,这种现象 称为积分饱和。
三、比例带对于调节过程的影响
比例调节 的残差随着比例带的增加而增加。希望尽量减少 比例带,减少比例带就等于 加大调接系统的开环增益。 δ 对于比例调节过程的影响
2-3 积分调节(I调节)
一、积分调节动作规律 调节器的输出信号的变化速度du/dt与 偏差信号e成正比,即
du S 0 e 或 u S 0 edt dt 0
u S2 de dt
表明,微分调节动作总是 力图抑制被调量的振荡, 它有提高控制系统稳定性的 作用。适度引入微分动作 可以允许稍许减少比例带, 同时保持衰减率的不变。
• 四、比例积分微分调节规律 PID调节器的动作规律是 或 传递函数为
Gc ( s)
u K C e S0 edt S 2
三、积分速度对于调节过程的影响 系统的开环增益与积分速度S0 成正比,增大积分速度将会降 低控制系统的稳定程度。 对于同一被控对象若分别采用P调 节和I调节, 并调整到相同的衰减率ψ=0.75,则 它们在负荷 扰动下的调节过程如图2.8中曲线P 和I所示。它 们清楚地显示出两种调节规律的不 同特点。
比例、积分、微分调节器
![比例、积分、微分调节器](https://img.taocdn.com/s3/m/447d4e2ceefdc8d376ee3274.png)
R(s)
Kp
M (s)
E (s)
G0 (s)
C (s)
KI
s
PI调节器的传递函数 令 则
ω2 n G 0 (s) s(s 2ζ ω n )
KI G c (s) K p s
G(s) G c (s)G0 (s)
ω2 n (K p s K 1 ) s 2 (s 2ζ ω n )
12
Hale Waihona Puke ω2 n 为了说明调节器的物理意义,以二阶系统为例: G 0 (s) s(s 2ζ ω n )
系统的开环传递函数:
G(s) G c (s)G0 (s)
ω2 n (K p K D s) s(s 2ζ ω n )
以上分析可知: PD调节器的引入,相当于给原系统的开环传递函数增加了一个 s= -Kp / KD 的零 点,
-
-+
出口温度检测值
Gff
烟叶前馈补偿器
= 0.01
K
+ -
香料流量控制器 FC 香料泵 香料
香料流量 XF
香料流量检测
烟叶前馈补偿器
Gff
烟叶流量检测
出口温度设定值 SP 70℃ R1
+
R1
出口温度控制器
G c1
+ -
筒壁温度控制器
D2 蒸汽热值 蒸汽阀 加料 机滚筒 C2
D1 烟叶流量YF 加料机 系统 C1
8
可见:引入PI调节器后,闭环系统由原来的Ⅰ型系统变成了Ⅱ型 系统,对改善系统的稳态特性是有好处的。 另一方面由于系统相角发生滞后,系统的稳定性下降了。如果Kp、KI 选择不当,很可能会造成不稳定。
过程控制第二章比例积分微分控制及其调节过程
![过程控制第二章比例积分微分控制及其调节过程](https://img.taocdn.com/s3/m/159d28b5011ca300a7c39089.png)
正反馈和负反馈
自动化技术的核心思想就是反馈,通过反馈建立起输入(原因)和输出(结果) 的联系. 使控制器可以根据输入与输出的实际情况来决定控制策略,以便达 到预定的系统功能. 根据反馈在系统中的作用与特点不同可以分为正反馈 (positive feedback)和负反馈(passive feedback)两种。
反馈控制系统的组成:
反馈控制系统是由各种结构不同的元部件组成,它包括:
① 给定元件:给出与期望的被控量相对应的系统输入量
② 比较元件:把测量元件检测的被控量实际值与给定元件给出的输入值
进行比较,求出它们之间的偏差.常用的比较元件有:差动放大器,
机械差动装置,电桥电路等.
09.04.2021
过程控制
5
Kc---调节器运算部分的增益 此处的偏差为: e=r-ym, 与仪表制造业中相差一个符号.在上图中, Kv, K, Km都是正数,因此负反馈要求Kc为正。
Kc为负号: 调节器正作用方式
Kc为正号: 调节器反作用方式
09.04.2021
过程控制
12
3) 加热过程
条件: u↑ μ↑Q↑y↑
调节阀 被控过程
PID控制器最先出现在模拟控制系统中.传统的模拟PID控制器是通过硬 件(电子元件,气动和液压元件)来实现它的功能. 在电子电路中就可以通 过将比例电路,积分电路以及微分电路进行求和得到PID控制电路.
09.04.2021
模拟PID过控程制控制系统原理图
3
PID控制的优点: ① 原理简单,使用方便 ② 适应性强,广泛应用于各种生产部门,适用于多种控制方式
09.04.2021
过程控制
24
δ对调节过程的影响:
δ增大,则比例系数减小,由比例调节器输出u=Kc*e,则调节阀的 动作幅度减小. 因此被调量的变化比较平稳, 甚至可以没有超 调,但残差大,调节缓慢,调节时间长.
常规PID控制规律
![常规PID控制规律](https://img.taocdn.com/s3/m/ea033d55ad02de80d4d8404a.png)
一、常规PID控制规律常规PID控制即比例-积分-微分控制规律。
比例调节作用是最基本的调节作用,使“长劲”,比例作用贯彻于整个调节过程之中;积分和微分作用为辅助调节作用。
积分作用则体现在调节过节过程的后期,用以消除静态偏差,使“后劲”;微分作用则体现在调节过程的初期,使“前劲”。
4. PID(比例-积分-微分)控制特点(1) 缺点不适用于有大时间滞后的控制对象,参数变化较大甚至结构也变化的控制对象,以及系统复杂、环境复杂、控制性能要求高的场合。
(2) 优点:●PID算法蕴涵了动态控制过程中过去、现在和将来的主要信息,而且其配置几乎最优。
比例(P)代表了当前的信息,起纠正偏差的作用,使过程反应迅速。
微分(D)在信号变化时有超前控制作用,代表了将来的信息。
在过程开始时强迫过程进行,过程结束时减小超调,克服振荡,提高系统的稳定性,加快系统的过渡过程。
积分(I)代表了过去积累的信息,它能消除静差,改善系统静态特性。
此三作用配合得当,可使动态过程快速、平稳、准确,收到良好的效果。
●PID控制适应性好,有较强鲁棒性。
●PID算法简单明了,形成了完整的设计和参数调整方法,很容易为工程技术人员所掌握。
●许多工业控制回路比较简单,控制的快速性和精度要求不是很高,特别是对于那些l~2阶的系统,PID控制已能得到满意的结果。
●PID控制根据不同的要求,针对自身的缺陷进行了不少改进,形成了一系列改进的PID 算法。
2.调节器的参数整定就是合理地设置调节器的各个参数,在热工生产过程中,通常要求控制系统具有一定的稳定裕量,即要求过程有一定的衰减率ψ;在这一前提下,要求调节过程有一定的快速性和准确性,换言之稳定性是首要的。
所谓准确性就是要求控制过程的动态偏差(以超调量MP表示)和静态偏差(ess)尽量地小,而快速性则是要求控制过程的时间尽可能地短。
控制系统参数整定有理论计算方法、工程整定方法。
热工系统的主要控制方式一.反馈控制反馈控制是根据被调量与给定值的偏差值来控制的。
比例、积分、微分控制策略
![比例、积分、微分控制策略](https://img.taocdn.com/s3/m/ba64020f763231126edb11b4.png)
比例、积分、微分控制策略尽管不同类型的控制器,其结构、原理各不相同,但是基本控制规律只有三个:比例(P)控制、积分(I)控制和微分(D)控制。
这几种控制规律可以单独使用,但是更多场合是组合使用。
如比例(P)控制、比例-积分(PI)控制、比例-积分-微分(PID)控制等。
比例(P)控制单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。
实际应用中,比例度的大小应视具体情况而定,比例度太小,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太大,控制作用太强,容易导致系统的稳定性变差,引发振荡。
对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍小些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选大一些,以提高整个系统的灵敏度,也可以相应减小余差。
单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。
工业生产中比例控制规律使用较为普遍。
比例积分(PI)控制比例控制规律是基本控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。
只要有偏差产生,控制器立即产生控制作用。
但是,不能最终消除余差的缺点限制了它的单独使用。
克服余差的办法是在比例控制的基础上加上积分控制作用。
积分控制器的输出与输入偏差对时间的积分成正比。
这里的“积分”指的是“积累”的意思。
积分控制器的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。
只要偏差存在,输出就会不断累积(输出值越来越大或越来越小),一直到偏差为零,累积才会停止。
所以,积分控制可以消除余差。
积分控制规律又称无差控制规律。
积分时间的大小表征了积分控制作用的强弱。
积分时间越小,控制作用越强;反之,控制作用越弱。
积分控制虽然能消除余差,但它存在着控制不及时的缺点。
因为积分输出的累积是渐进的,其产生的控制作用总是落后于偏差的变化,不能及时有效地克服干扰的影响,难以使控制系统稳定下来。
PID调节比例积分微分作用的特点和规律总结
![PID调节比例积分微分作用的特点和规律总结](https://img.taocdn.com/s3/m/19b25a7a86c24028915f804d2b160b4e767f8129.png)
PID调节比例积分微分作用的特点和规律总结PID(Proportional-Integral-Derivative)调节器是一种常用的自动控制系统技术,广泛应用于工业生产、机械设备、化工过程等领域。
PID调节器通过调节比例、积分和微分三个参数来控制系统的输出,以实现对被控对象的精确控制。
下面将详细介绍PID调节器的特点和规律。
一、比例作用特点和规律比例作用是PID调节器中最基本的调节部分,其作用是根据控制误差与设定值之间的差异来调节控制信号。
具体特点如下:1.作用迅速:比例作用能够快速对控制信号进行调整,使得系统能够快速响应外部信号变化。
2.比例关系明显:控制信号与控制误差之间存在线性关系,当控制误差增大时,控制信号也相应增大,从而实现对被控对象的调节。
3.稳态误差存在:由于比例作用只根据当前控制误差进行调节,不能消除稳态误差,因此在实际应用中需要进行进一步调节。
二、积分作用特点和规律积分作用是PID调节器中实现稳态性能的部分,其作用是通过累积控制误差来调节控制信号。
具体特点如下:1.消除稳态误差:积分作用能够积累连续的控制误差,对于长时间存在的稳态误差能够进行补偿,从而减小系统的稳态误差。
2.增加系统稳定性:积分作用能够增加系统的稳定性,通过对系统的积分作用可以减小系统的超调量,提高系统的稳定性。
3.稳态误差过大可能导致系统不稳定:当积分作用过大时,容易引起系统过冲,甚至趋向于不稳定,因此在设定积分参数时需要注意权衡系统的稳定性和稳态性能。
三、微分作用特点和规律微分作用是PID调节器中实现动态响应的部分,其作用是根据控制误差的变化率来调节控制信号。
具体特点如下:1.抑制超调:微分作用能够通过对控制误差变化率的监测,来抑制系统的过冲现象,从而改善系统的动态响应性能。
2.消除振荡:对于系统存在的振荡现象,微分作用能够通过对控制误差变化率的调节,来消除振荡现象,提高系统的稳定性。
3.对噪声敏感:由于微分作用是根据控制误差的变化率进行调节,因此对于系统噪声敏感,会放大系统噪声的影响,容易导致系统振荡,因此在设定微分参数时需要注意噪声对系统的影响。
比例、积分、微分控制策略
![比例、积分、微分控制策略](https://img.taocdn.com/s3/m/8547ba6302020740be1e9bcd.png)
比例、积分、微分控制策略尽管不同类型的控制器,其结构、原理各不相同,但是基本控制规律只有三个:比例(P)控制、积分(I)控制和微分(D)控制。
这几种控制规律可以单独使用,但是更多场合是组合使用。
如比例(P)控制、比例-积分(PI)控制、比例-积分-微分(PID)控制等。
比例(P)控制单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。
实际应用中,比例度的大小应视具体情况而定,比例度太小,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太大,控制作用太强,容易导致系统的稳定性变差,引发振荡。
对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍小些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选大一些,以提高整个系统的灵敏度,也可以相应减小余差。
单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。
工业生产中比例控制规律使用较为普遍。
比例积分(PI)控制比例控制规律是基本控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。
只要有偏差产生,控制器立即产生控制作用。
但是,不能最终消除余差的缺点限制了它的单独使用。
克服余差的办法是在比例控制的基础上加上积分控制作用。
积分控制器的输出与输入偏差对时间的积分成正比。
这里的“积分”指的是“积累”的意思。
积分控制器的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。
只要偏差存在,输出就会不断累积(输出值越来越大或越来越小),一直到偏差为零,累积才会停止。
所以,积分控制可以消除余差。
积分控制规律又称无差控制规律。
积分时间的大小表征了积分控制作用的强弱。
积分时间越小,控制作用越强;反之,控制作用越弱。
积分控制虽然能消除余差,但它存在着控制不及时的缺点。
因为积分输出的累积是渐进的,其产生的控制作用总是落后于偏差的变化,不能及时有效地克服干扰的影响,难以使控制系统稳定下来。
比例积分微分调节口诀
![比例积分微分调节口诀](https://img.taocdn.com/s3/m/2f56ff122f3f5727a5e9856a561252d380eb20ee.png)
比例积分微分调节口诀哎,今天咱们聊聊“比例积分微分调节口诀”这事儿,真是个妙招呀!想象一下,咱们平常做饭,调味的时候总得抓住个度,不然要么淡得像白水,要么咸得像海。
其实数学上也是这么回事,比例、积分和微分就像咱们厨房里的调料,掌握得好,做出的菜才有滋有味。
要是搞不清楚比例,就像倒盐没个准,结果全家都得喝水!肯定有人要问,什么是比例呀?其实啊,就是在不同的量之间找到个合适的关系。
就像加班的时候,老板说要提效,咱们就得看看是干得太慢还是太懒,要不就是没用对劲的工具,反正这比例要调得好,效率自然就上来了。
说到积分,嘿,这可是个有趣的概念。
就像咱们逛街,买一堆东西,回来发现钱花得七零八落。
这时候就得把这些支出加一加,看看到底花了多少钱。
积分就是这个意思,把一些小的量合起来,形成一个整体。
想象一下,咱们在海边捡贝壳,捡了无数个小贝壳,最后整理的时候,发现这些贝壳加起来,可是个大宝藏呀!积分的魅力就在于把分散的东西集中在一起,让你看清全貌。
就像一张拼图,单独看每一块,没啥意思,可一拼上去,那画面简直太美了。
再说说微分,这可是个让人又爱又恨的概念。
有些同学听到微分,脑海里就闪过“我去,这不是公式堆成山吗?”其实呀,微分就像是一辆车在高速公路上行驶,时速的变化就是微分。
车速忽快忽慢,这才是生活的真实写照。
咱们生活中也是,工作时有高兴,有低谷,这变化的瞬间才让咱们的生活充满了色彩。
微分的意思就是关注那些细微的变化,抓住生活中的每一个小细节,才能把事情做好。
就像炒菜,不是光靠大火,时不时调调火候,才能让菜炒得香喷喷。
这时候,比例、积分和微分三者就成了一种绝妙的平衡,简直就像是一场舞蹈。
比例在引导,积分在汇聚,微分在变化。
咱们平常遇到的问题,处理起来就得用这三招,才能把事情搞得妥妥的。
就像开车,有时候要加速,有时候要减速,最后的目标就是平稳到达目的地。
生活中的每一项选择都需要比例的智慧,做决定的时候多想想这个比例到底合不合适,工作中则得用积分的方法把繁琐的事情理顺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• PID调节规律仍以比例调节规律为主,吸取积
分调节规律能消除余差,微分调节规律能实现超 前控制的特点,是当前最完善的调
• 三、PID调节器的特点:
• 综合了各类调节器的优点,因 此具有较好的控制性能。
• 四、PID调节器的适用范围:
• 适用于对象容量滞后和惯性滞 后较大,负荷变化较快,不允许有 余差的情况。
• 比例度调大, 积分时间长, 微分时间长,
• 放大倍数低。 积累速度低。 下降慢慢的。
• 二、同一对象在各种调节规律作用下的调节过程的比较:
•
• 第4 - 6 自动控制系统的参数整定
•
•
一、理论计算整定法:
•
二、工程整定法:
•
1、经验法:
•
2 、衰减曲线法:
•
3、临界比例带法:
•
4、反应曲线法:
•
总
结
• 一、比例、积分、微分三种基本调节规律:
• [比例]
[积分]
[微分]
• 比例调节器, 积分调节器, 说起微分器,
• 象个放大器。 累积有本事。 胆小有皮气。
• 若有偏差来, 只要偏差在, 偏差变化快,
• 放大送出去。 累积不停止。 输出跳上去。
• 放大是多少, 积累快与慢, 下降快与慢,
• 旋钮看仔细。 旋钮看仔细。 旋钮看仔细。
§4—5比例积分微分调节规律:
• 一、概念:
• 把比例、积分和微分调节规律组合在一起, 可构成比例积分微分调节规律PID。
• 其数学表达式为:
•
P
Kp
e
1 Ti
e
dt
Td
de dt
=Pp + PI + PD • 式中:Kp、Ti、Td分别为PID的比例系数、积
分时间和微分时间。
课堂作业
• 一、如何测定比例积分调节器的积分时 • 间? • 二、为什么微分作用能改善系统的动态 • 特性?何类被控对象不适于加入微 • 分作用。 • 三、闭环系统中比例调节无法消差,而 • 积分作用可消差,但稳定性下降, • 为什么?