2020年内蒙古兴安盟中考数学试卷-解析版
内蒙古兴安盟2020年(春秋版)中考数学试卷(II)卷
内蒙古兴安盟2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2017·临海模拟)的倒数是()A .B .C .D .2. (2分) (2019七上·兰州期中) “比a的2倍大l的数”用代数式表示是()A . 2(a+1)B . 2(a﹣1)C . 2a+1D . 2a﹣13. (2分)(2018·凉山) 一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A . 和B . 谐C . 凉D . 山4. (2分)(2016·黔南) 王杰同学在解决问题“已知A、B两点的坐标为A(3,﹣2)、B(6,﹣5)求直线AB关于x轴的对称直线A′B′的解析式”时,解法如下:先是建立平面直角坐标系(如图),标出A、B两点,并利用轴对称性质求出A′、B′的坐标分别为A′(3,2),B′(6,5);然后设直线A′B′的解析式为y=kx+b(k≠0),并将A′(3,2)、B′(6,5)代入y=kx+b中,得方程组,解得,最后求得直线A′B′的解析式为y=x﹣1.则在解题过程中他运用到的数学思想是()A . 分类讨论与转化思想B . 分类讨论与方程思想C . 数形结合与整体思想D . 数形结合与方程思想5. (2分)下列说法中,正确的是().A . 相等的角一定是对顶角B . 四个角都相等的四边形一定是正方形C . 平行四边形的对角线互相平分D . 矩形的对角线一定垂直6. (2分)估算的值()A . 在1到2之间B . 在2到3之间C . 在3到4之间D . 在4到5之间7. (2分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA=()A . 135°B . 125°C . 90°D . 60°8. (2分)在Rt△ABC中,∠C=90°,若sinA=,则cosB的值是()A .B .C .D .二、填空题 (共10题;共12分)9. (1分) (2019七上·泰州月考) 比较大小: ________ .10. (3分)同分母的分式相加减,分母________,把分子________,即:± =________.11. (1分) (2015八上·卢龙期末) 分解因式a3﹣6a2+9a=________.12. (1分) (2018八上·孝感月考) 点M(-5,3)关于x轴对称的点N的坐标是________.13. (1分) (2018七上·江津期末) 南海资源丰富,其面积约为550万平方千米,其中550万用科学记数法表示为________万14. (1分)(2018·洪泽模拟) 如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时(指针落在分界线上时,我们规定算指针落在顺时针临近扇形区域),指针指向区域是5的概率为________.15. (1分) (2019八下·昭通期中) 已知平行四边形ABCD的两条对角线相交于直角坐标系的原点,点A,B 的坐标分别为(﹣2,﹣3),(﹣1,2),则C、D的坐标分别为________.16. (1分)(2019·莆田模拟) 等宽曲线是这样的一种几何图形,它们在任何方向上的直径(或称宽度)都是相等的.如图,分别以等边△ABC的三个顶点为圆心,边长为半径画弧则弧AB ,弧BC弧AC组成的封闭图形就是“莱洛三角形”.莱洛三角形是“等宽曲线”,用莱洛三角形做横断面的滚子,能使载重物水平地移动而不至于上下颠簸.诺AB=3,则此“莱诺三角形”的周长为________.17. (1分) (2019七上·天台期中) 有一组单项式:a2 ,﹣,,﹣,….观察它们构成规律,用你发现的规律写出第n个单项式为________.18. (1分)下列说法:①位似图形都相似;②两个等腰三角形一定相似;③任意两个菱形一定相似;④任意两个含30°角的直角三角形一定相似;⑤两个相似多边形的面积比为4:9,则周长比为16:81;⑥若一个三角形的三边分别比另一个三角形的三边长2cm,则这两个三角形一定相似.其中正确的说法有________(填写序号).三、解答题 (共10题;共98分)19. (10分)(2017·仪征模拟) 计算下面各题(1)计算:2sin60°× ﹣(﹣1)0;(2)化简:﹣÷ .20. (10分)(2018·江苏模拟) 解答题(1)解方程:;(2)解不等式组:21. (10分)(2017·哈尔滨) 如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB= ,连接CD,请直接写出线段CD的长.22. (11分)(2012·湛江) 中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中.共调査了________名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果.请你估计我市城区80000名中学生家长中有多少名家长持反对态度?23. (15分)(2017·河北) 编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分,如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次,这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.24. (6分) (2017八上·金华期中) 如图,已知A(﹣1,0),B(1,1),把线段AB平移,使点B移动到点D(3,4)处,这时点A移动到点C处.(1)写出点C的坐标________;(2)求经过C、D的直线与y轴的交点坐标.25. (5分)(2018·西华模拟) 为了对一棵倾斜的古杉树AB进行保护,需测量其长度,如图,在地面上选取一点C,测得∠ACB=45 ,AC=24 m,∠BAC=66.5 ,求这棵古杉树AB的长度.(结果精确到0.1 m.参考数据:sin66.5 ≈0.92,cos66.5 ≈0.40,tan66.5 ≈2.30)26. (11分) (2018九上·晋江期中) 已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.(1)操作发现:直线l⊥m,分别交m、n于点A、B,当点B与点D重合时(如图1),连结PA,请直接写出线段PA与PB的数量关系:________.(2)猜想证明:在图1的情况下,把直线l向右平移到如图2的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(3)延伸探究:在图2的情况下,把直线l绕点A旋转,使得∠APB=90°(如图3),若两平行线m、n之间的距离为2k,求证:PA•PB=k•AB.27. (10分) (2018八上·江岸期中) 中,,、是的三等分线.(1)如图,平分分别交、于、,求证: .(2)如图,是的高,判断与的数量关系,并说明理由.28. (10分) (2019九上·利辛月考) 已知抛物线y=2x2+8x+6与x轴交于点A,B(点A在点B的左侧),与y 轴交于点C。
2024届内蒙古兴安盟地区两旗一县市级名校中考联考数学试题含解析
2024学年内蒙古兴安盟地区两旗一县市级名校中考联考数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.抛物线经过第一、三、四象限,则抛物线的顶点必在()A.第一象限B.第二象限C.第三象限D.第四象限2.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是()A.30厘米、45厘米;B.40厘米、80厘米;C.80厘米、120厘米;D.90厘米、120厘米3.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于()A.2 B.3 C.4 D.64.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-5.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )A.甲的速度是10km/h B.乙的速度是20km/hC.乙出发13h后与甲相遇D.甲比乙晚到B地2h6.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣57.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.8.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.91032π⎛⎫-⎪⎝⎭米2B.932π⎛⎫-⎪⎝⎭米2C.9632π⎛⎫-⎪⎝⎭米2D.()693π-米29.81的算术平方根是()A.9 B.±9 C.±3 D.310.如图,△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,有如下五个结论①AE⊥AF;②EF:AF=2:1;③AF2=FH•FE;④∠AFE=∠DAE+∠CFE ⑤ FB:FC=HB:EC.则正确的结论有()A.2个B.3个C.4个D.5个11.下列各式正确的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣201812.不等式组325521xx+>⎧⎨-≥⎩的解在数轴上表示为()A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为.14.如图,四边形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,设Q、R分别是AB、AD上的动点,则△CQR 的周长的最小值为_________ .15.在Rt△ABC中,∠C=90°,sinA=12,那么cosA=________.16.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_____.17.分解因式:4x2﹣36=___________.18.点(1,–2)关于坐标原点O 的对称点坐标是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题.(1)本次参与调查的学生共有人,m=,n=;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.20.(6分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.21.(6分)先化简,再求值:2569122x xx x-+⎛⎫-÷⎪++⎝⎭,其中x=-522.(8分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C 在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:2≈1.41,3≈1.73,10≈3.16)23.(8分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少名学生进行了抽样调查?本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?24.(10分)对于平面直角坐标系xOy 中的点()(),0Q x y x ≠,将它的纵坐标y 与横坐标x 的比yx称为点Q 的“理想值”,记作Q L .如()1,2Q -的“理想值”221Q L ==--.(1)①若点()1,Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_______; ②如图,)3,1C,C 的半径为1.若点Q 在C 上,则点Q 的“理想值”Q L 的取值范围是_______.(2)点D 在直线33y x =+上,D 的半径为1,点Q 在D 上运动时都有03Q L ≤≤求点D 的横坐标D x 的取值范围;(3)()()2,0M m m >,Q 是以r 为半径的M 上任意一点,当022Q L ≤≤写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)25.(10分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图(1)中画出一个等腰△ABE ,使其面积为3.5;(2)在图(2)中画出一个直角△CDF ,使其面积为5,并直接写出DF 的长.26.(12分)在平面直角坐标系中,关于x 的一次函数的图象经过点(47)M ,,且平行于直线2y x =. (1)求该一次函数表达式;(2)若点Q (x ,y )是该一次函数图象上的点,且点Q 在直线32y x =+的下方,求x 的取值范围.27.(12分)计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、A 【解题分析】根据二次函数图象所在的象限大致画出图形,由此即可得出结论. 【题目详解】∵二次函数图象只经过第一、三、四象限,∴抛物线的顶点在第一象限. 故选A .【题目点拨】本题考查了二次函数的性质以及二次函数的图象,大致画出函数图象,利用数形结合解决问题是解题的关键.2、C【解题分析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;所以A、B、D选项不符合题意,C选项符合题意,故选C.3、C【解题分析】设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,∴R=4cm.故选C.4、C【解题分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【题目详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【题目点拨】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.5、B【解题分析】由图可知,甲用4小时走完全程40km,可得速度为10km/h;乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h.故选B6、A【解题分析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.7、B【解题分析】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.8、C【解题分析】连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=12OA=12×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴2222CD OD OC6333=-=-=.又∵CD333sin DOCOD62∠===,∴∠DOC=60°.∴2606193336336022DOCAODS S Sππ∆⋅⋅=-=-⨯⨯=-阴影扇形(米2).故选C.9、D【解题分析】根据算术平方根的定义求解.【题目详解】81,又∵(±1)2=9,∴9的平方根是±1,∴9的算术平方根是1.811.故选:D.【题目点拨】考核知识点:算术平方根.理解定义是关键.10、C【解题分析】由旋转性质得到△AFB≌△AED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否. 【题目详解】解:由题意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此选项①正确;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正确;∵△AEF是等腰直角三角形,有:1,故此选项②正确;∵△AEF与△AHF不相似,∴AF2=FH·FE不正确.故此选项③错误,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此选项⑤正确.故选:C【题目点拨】本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.11、A【解题分析】根据去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则依次计算各项即可解答.【题目详解】选项A,﹣(﹣2018)=2018,故选项A正确;选项B,|﹣2018|=2018,故选项B错误;选项C,20180=1,故选项C错误;选项D,2018﹣1=12018,故选项D错误.故选A.【题目点拨】本题去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则,熟知去括号法则、绝对值的性质、零指数幂及负整数指数幂的计算法则是解决问题的关键.12、C【解题分析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【题目详解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C.故选C.【题目点拨】考核知识点:解不等式组.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1 6【解题分析】试题分析:首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.解:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种等可能的结果,两个骰子的点数相同的有6种情况,∴两个骰子的点数相同的概率为:=.故答案为.考点:列表法与树状图法.14、462【解题分析】作C关于AB的对称点G,关于AD的对称点F,可得三角形CQR的周长=CQ+QR+CR=GQ+QR+RF≥GF.根据圆周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD 于H,可求BD的长,从而求出△CQR的周长的最小值.【题目详解】解:作C关于AB的对称点G,关于AD的对称点F,则三角形CQR的周长=CQ+QR+CR=GQ+QR+RF=GF,在Rt△ADC中,∵sin∠DAC=12 CDAC=,∴∠DAC=30°,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCA=45°,∵∠ADC=∠ABC=90°,∴A,B,C,D四点共圆,∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°在三角形CBD中,作CH⊥BD于H,BD=DH+BH=4×cos45°+2×cos30°=2226,∵CD=DF,CB=BG,∴GF=2BD=4246,△CQR的周长的最小值为426.【题目点拨】本题考查了轴对称问题,关键是根据轴对称的性质和两点之间线段最短解答.15、3 2【解题分析】∵Rt △ABC 中,∠C=90°,∴sinA=ac, ∵sinA=12,∴c=2a ,∴b=223c a a -= , ∴cosA=32b c =, 故答案为32.16、25【解题分析】根据随机事件概率大小的求法,找准两点: ①符合条件的情况数目; ②全部情况的总数.二者的比值就是其发生的概率的大小. 【题目详解】解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球, ∴从中任意摸出一个球,则摸出白球的概率是25. 故答案为:25. 【题目点拨】本题考查概率的求法与运用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.mn17、4(x+3)(x ﹣3) 【解题分析】分析:首先提取公因式4,然后再利用平方差公式进行因式分解. 详解:原式=()()()2494x 3x 3x -=+-.点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式.18、(-1,2)【解题分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【题目详解】A(1,-2)关于原点O的对称点的坐标是(-1,2),故答案为:(-1,2).【题目点拨】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、解:(1)400;15%;35%.(2)1.(3)∵D等级的人数为:400×35%=140,∴补全条形统计图如图所示:(4)列树状图得:∵从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,∴小明参加的概率为:P(数字之和为奇数)82 123 ==;小刚参加的概率为:P (数字之和为偶数)41123==. ∵P (数字之和为奇数)≠P (数字之和为偶数), ∴游戏规则不公平. 【解题分析】(1)根据“基本了解”的人数以及所占比例,可求得总人数:180÷45%=400人.在根据频数、百分比之间的关系,可得m ,n 的值:60m 100%15%n 15%15%45%35%400=⨯==---=,. (2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360°的比可得出统计图中D 部分扇形所对应的圆心角:360°×35%=1°.(3)根据D 等级的人数为:400×35%=140,据此补全条形统计图. (4)用树状图或列表列举出所有可能,分别求出小明和小刚参加的概率,若概率相等,游戏规则公平;反之概率不相等,游戏规则不公平. 20、1【解题分析】解:取时,原式.21、13x -,-18【解题分析】分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.详解:2569122x x x x -+⎛⎫-÷⎪++⎝⎭()23223x x x x -+=⨯+- 13x =-. 当5x =-时,原式18=-. 点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点. 22、2.1.据题意得出tanB =13, 即可得出tanA, 在Rt△ADE中, 根据勾股定理可求得DE, 即可得出∠FCE的正切值, 再在Rt△CEF中, 设EF=x,即可求出x, 从而得出CF=1x的长.【题目详解】解:据题意得tanB=,∵MN∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2设EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),∴CF=1x=≈2.1,∴该停车库限高2.1米.点评: 本题考查了解直角三角形的应用, 坡面坡角问题和勾股定理, 解题的关键是坡度等于坡角的正切值.23、(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人. 【解题分析】(1)根据条形统计图,求个部分数量的和即可; (2)根据部分除以总体求得百分比;(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解. 【题目详解】(1)4+8+10+18+10=50(名)答:该校对50名学生进行了抽样调查. (2)最喜欢足球活动的有10人,10=20%50, ∴最喜欢足球活动的人占被调查人数的20%. (3)全校学生人数:400÷(1﹣30%﹣24%﹣26%) =400÷20% =2000(人)则全校学生中最喜欢篮球活动的人数约为2000×1850=720(人). 【题目点拨】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小.24、(1)①﹣3;②0Q L ≤≤(2)4D x ≤≤(3 【解题分析】(1)①把Q (1,a )代入y=x-4,可求出a 值,根据理想值定义即可得答案;②由理想值越大,点与原点连线与x 轴夹角越大,可得直线OQ 与D 相切时理想值最大,C 与x 中相切时,理想值最小,即可得答案;(2)根据题意,讨论D 与x 轴及直线y =相切时,L Q 取最小值和最大值,求出D 点横坐标即可;(3)根据题意将点M 转化为直线2x =,Q 点理想值最大时点Q 在y =上,分析图形即可.(1)①∵点()1,Q a 在直线4y x =-上, ∴143a =-=-, ∴点Q 的“理想值”31Q L -==-3, 故答案为:﹣3. ②当点Q 在D 与x 轴切点时,点Q 的“理想值”最小为0.当点Q 纵坐标与横坐标比值最大时,Q 的“理想值”最大,此时直线OQ 与D 切于点Q ,设点Q (x ,y ),C 与x 轴切于A ,与OQ 切于Q ,∵C (3,1),∴tan ∠COA=CA OA =33, ∴∠COA=30°, ∵OQ 、OA 是C 的切线,∴∠QOA=2∠COA=60°, ∴yx=tan ∠QOA=tan60°=3, ∴点Q 的“理想值”为3,故答案为:03Q L ≤≤(2)设直线与x 轴、y 轴的交点分别为点A ,点B , 当x=0时,y=3, 当y=0时,3-,解得:x=33 ∴()33,0A ,()0,3B .∴33OA =,3OB =,∴tan ∠OAB=33OB OA =, ∴30OAB ∠=. ∵03Q L ≤≤,∴①如图,作直线3y x =. 当D 与x 轴相切时,L Q =0,相应的圆心1D 满足题意,其横坐标取到最大值.作11D E x ⊥轴于点1E , ∴11D E OB ,∴111D E AE BO AO=. ∵D 的半径为1,∴111D E =. ∴13AE =,∴1123OE OA AE =-=. ∴123D x =.②如图 当D 与直线3y x =相切时,L Q 3,相应的圆心2D 满足题意,其横坐标取到最小值.作22D E x ⊥轴于点2E ,则22D E OA ⊥. 设直线3y x =与直线33y x =+的交点为F .∵直线3y x =中,k=3, ∴60AOF ∠=,∴OF AB ⊥,点F 与Q 重合, 则39cos 3322AF OA OAF =⋅∠=⨯=. ∵D 的半径为1,∴21D F =. ∴2272AD AF D F =-=. ∴227373cos 224AE AD OAF =⋅∠=⨯=, ∴22534OE OA AE =-=. ∴2534D x =.由①②可得,D x 的取值范围是5334D x ≤≤ (3)∵M (2,m ), ∴M 点在直线x=2上, ∵022Q L ≤≤ ∴L Q 取最大值时,yx=22 ∴作直线y=22,与x=2交于点N ,当M与ON和x轴同时相切时,半径r最大,根据题意作图如下:M与ON相切于Q,与x轴相切于E,把x=2代入y=22x得:y=42,∴NE=42,OE=2,ON=22NE OE+=6,∴∠MQN=∠NEO=90°,又∵∠ONE=∠MNQ,∴NQM NEO∆∆,∴MQ MN NE MEOE ON ON-==,即4226r r-=,解得:r=2.∴最大半径为2.【题目点拨】本题是一次函数和圆的综合题,主要考查了一次函数和圆的切线的性质,解答时要注意做好数形结合,根据图形进行分类讨论.25、(1)见解析;(2)DF10【解题分析】(1)直接利用等腰三角形的定义结合勾股定理得出答案;(2)利用直角三角的定义结合勾股定理得出符合题意的答案.【题目详解】(1)如图(1)所示:△ABE,即为所求;(2)如图(2)所示:△CDF即为所求,10.【题目点拨】此题主要考查了等腰三角形的定义以及三角形面积求法,正确应用网格分析是解题关键.26、(1)2-1y x =;(2)3x >-.【解题分析】(1)由题意可设该一次函数的解析式为:2y x b =+,将点M (4,7)代入所设解析式求出b 的值即可得到一次函数的解析式;(2)根据直线上的点Q (x ,y )在直线32y x =+的下方可得2x -1<3x +2,解不等式即得结果.【题目详解】解:(1)∵一次函数平行于直线2y x =,∴可设该一次函数的解析式为:2y x b =+,∵直线2y x b =+过点M (4,7),∴8+b =7,解得b =-1,∴一次函数的解析式为:y =2x -1;(2)∵点Q (x ,y )是该一次函数图象上的点,∴y =2x -1,又∵点Q 在直线32y x =+的下方,如图,∴2x -1<3x +2,解得x >-3.【题目点拨】本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.-27、823【解题分析】直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案.【题目详解】-原式=9﹣2+1﹣3=823【题目点拨】本题考查了实数运算,正确化简各数是解题的关键.。
2020届中考复习内蒙古呼伦贝尔市、兴安盟中考数学模拟试题(有配套答案)
内蒙古呼伦贝尔市、兴安盟中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣的倒数为()A.﹣2 B.C.﹣ D.22.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x53.下列调查适合做抽样调查的是()A.对某小区的卫生死角进行调查B.审核书稿中的错别字C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查4.下列几何体中,主视图是矩形的是()A. B.C.D.5.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=3156.将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)7.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40°B.30°C.70°D.50°8.从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是()A.B.C.D.9.若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.210.园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S(m)2与工作时间t(h)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.100m2B.50m2C.80m2D.40m211.在平面直角坐标系中,将抛物线y=﹣x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是()A.y=﹣x2﹣x﹣B.y=﹣x2+x﹣C.y=﹣x2+x﹣D.y=﹣x2﹣x﹣12.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.B.C.4 D.5二、填空题(本题5个小题,每小题3分,共15分)13.因式分解:xy2﹣4xy+4x= .14.一天有8.64×104秒,一年如果按365天计算,用科学记数法表示一年有秒.15.不等式组的解集是.16.小杨用一个半径为36cm、面积为324πcm2的扇形纸板制作一个圆锥形的玩具帽(接缝的重合部分忽略不计),则帽子的底面半径为cm.17.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是.三、解答题(本题4个小题,每小题6分,共24分)18.计算:3tan30°﹣+(2016+π)0+(﹣)﹣2.19.解方程:.20.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.21.有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0个﹣2,;乙袋中有3个完全相同的小球,分别标有数字﹣2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y)(1)写出先Q所有可能的坐标;(2)求点Q在x轴上的概率.四、(本题7分)22.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.五、(本题7分)23.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.六、(本题8分)24.如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线;(2)当OE=10时,求BC的长.七、(本题10分)25.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?八、(本题13分)26.如图,抛物线y=﹣x2+2x+3与x轴相交的于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A,B,C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与C,B两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形.②设△BCF的面积为S,求S与m的函数关系式;当m为何值时,S有最大值.内蒙古呼伦贝尔市、兴安盟中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣的倒数为()A.﹣2 B.C.﹣ D.2【考点】倒数.【分析】直接根据倒数的定义求解.【解答】解:﹣的倒数为﹣2.故选:A.【点评】本题考查了倒数的定义:a的倒数为(a≠0).2.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x5【考点】同底数幂的乘法.【分析】根据同底数幂相乘,底数不变,指数相加计算后选取答案.【解答】解:(﹣x)3(﹣x)2=(﹣x)3+2=﹣x5.故选D.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.3.下列调查适合做抽样调查的是()A.对某小区的卫生死角进行调查B.审核书稿中的错别字C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查【考点】全面调查与抽样调查.【分析】卫生死角、审核书稿中的错别字、八名同学的身高情况应该全面调查,而中学生人数较多,对其睡眠情况的调查应该是抽样调查.【解答】解:A、对某小区的卫生死角适合全面调查,所以此选项错误;B、审核书稿中的错别字应该全面调查,所以此选项错误;C、对八名同学的身高情况应该全面调查,所以此选项错误;D、对中学生目前的睡眠情况应该抽样调查,所以此选项正确;故选D.【点评】本题考查了全面调查和抽样调查,统计调查的方法有全面调查(即普查)和抽样调查两种,一般来讲:通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.4.下列几何体中,主视图是矩形的是()A. B.C.D.【考点】简单几何体的三视图.【分析】根据主视图的概念找出各几何体的主视图.【解答】解:A、圆锥的主视图为等腰三角形;B、圆柱的主视图为矩形;C、三棱柱的主视图为中间有一实线的矩形;D、球体的主视图为圆;故选:B.【点评】本题考查了简单几何体的三视图,主视图为从物体正面看到的视图.5.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=315【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是560(1﹣x),第二次后的价格是560(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.【点评】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.6.将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.【分析】根据题意可以求得点A′的坐标,从而可以求得点A′关于y轴对称的点的坐标,本题得以解决.【解答】解:∵将点A(3,2)向左平移4个单位长度得点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2),故选D.【点评】本题考查关于x轴、y轴对称的点的坐标、坐标与图形的变化﹣平移,解题的关键是明确题意,找出所求点需要的条件.7.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40°B.30°C.70°D.50°【考点】等腰三角形的性质;平行线的性质.【分析】根据AD∥BC可得出∠C=∠1=70°,再根据AB=AC即可得出∠B=∠C=70°,结合三角形的内角和为180°,即可算出∠BAC的大小.【解答】解:∵AD∥BC,∴∠C=∠1=70°,∵AB=AC,∴∠B=∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=40°.故选A.【点评】本题考查了等腰三角形的性质以及平行线的性质,解题的关键是找出∠B=∠C=70°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键.8.从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是()A.B.C.D.【考点】算术平均数.【分析】根据平均数的公式,求解即可.用所有数据的和除以(a+b+c).【解答】解:由题意知,a个x1的和为ax1,b个x2的和为bx2,c个x3的和为cx3,数据总共有a+b+c个,∴这个样本的平均数=,故选:B.【点评】本题考查了加权平均数的概念.平均数等于所有数据的和除以数据的个数.9.若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2【考点】二次根式的性质与化简.【分析】已知1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时, =0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质: =|a|.10.园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S(m)2与工作时间t(h)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.100m2B.50m2C.80m2D.40m2【考点】函数的图象.【分析】根据图象可得,休息后园林队2小时绿化面积为160﹣60=100(m2),然后可得绿化速度.【解答】解:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100(m2).每小时绿化面积为100÷2=50(m2).故选:B.【点评】此题主要考查了函数图象,关键是正确理解题意,从图象中找出正确信息.11.在平面直角坐标系中,将抛物线y=﹣x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是()A.y=﹣x2﹣x﹣B.y=﹣x2+x﹣C.y=﹣x2+x﹣D.y=﹣x2﹣x﹣【考点】二次函数图象与几何变换.【专题】推理填空题.【分析】根据平移的规律:左加右减,上加下减,求出得到的抛物线的解析式是多少即可.【解答】解:将抛物线y=﹣x2向下平移1个单位长度,得到的抛物线的解析式是:y=﹣x2﹣1,再向左平移1个单位长度,得到的抛物线的解析式是:y=﹣(x+1)2﹣1=﹣x2﹣x﹣.故选:A.【点评】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.12.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.B.C.4 D.5【考点】翻折变换(折叠问题).【分析】设BQ=x,则由折叠的性质可得DQ=AQ=9﹣x,根据中点的定义可得BD=3,在Rt△BQD中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BQD中,x2+32=(9﹣x)2,解得:x=4.故线段BQ的长为4.故选:C.【点评】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.二、填空题(本题5个小题,每小题3分,共15分)13.因式分解:xy2﹣4xy+4x= x(y﹣2)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式x,再根据完全平方公式进行二次分解.【解答】解:xy2﹣4xy+4x=x(y2﹣4y+4)=x(y﹣2)2.故答案为:x(y﹣2)2.【点评】本题考查了提公因式法,公式法分解因式.注意提取公因式后利用完全平方公式进行二次分解,分解要彻底.14.一天有8.64×104秒,一年如果按365天计算,用科学记数法表示一年有 3.1536×107秒.【考点】科学记数法—表示较大的数.【分析】先求出365×8.64×104=3153.6×104秒,然后再根据科学记数法的表示方法整理即可.大于10时科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:365×8.64×104=3 153.6×104=3.153 6×107秒.故答案为3.153 6×107秒.【点评】本题考查用科学记数法表示较大的数.科学记数法在实际生活中有着广泛的应用,给我们记数带来方便,考查科学记数法就是考查我们应用数学的能力.15.不等式组的解集是x>3 .【考点】解一元一次不等式组.【专题】规律型;方程思想.【分析】分别解出题中两个不等式组的解,然后根据口诀求出x的交集,就是不等式组的解集.【解答】解:由(1)得,x>2由(2)得,x>3所以解集是:x>3.【点评】此题主要考查了一元一次不等式组的解法,比较简单.16.小杨用一个半径为36cm、面积为324πcm2的扇形纸板制作一个圆锥形的玩具帽(接缝的重合部分忽略不计),则帽子的底面半径为9 cm.【考点】圆锥的计算.【分析】根据扇形的公式结合扇形的半径及扇形的面积可得出扇形的弧长,再利用圆的周长公式即可得出帽子的底面半径.【解答】解:∵扇形的半径为36cm,面积为324πcm2,∴扇形的弧长L===18π,==9cm.∴帽子的底面半径R1故答案为:9.【点评】本题考查了圆锥的计算、扇形的面积以及圆的周长,解题的关键是熟练的运用扇形的弧长以及圆的周长公式.本题属于基础题,难度不大,解决该题型题目时,根据圆锥的制作过程找出圆锥的底面周长等于扇形的弧长是关键.17.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是.【考点】旋转的性质.【分析】在Rt△ABC中,由勾股定理求得AB=5,由旋转的性质可知AD=A′D,设AD=A′D=BE=x,则DE=5﹣2x,根据旋转90°可证△A′DE∽△ACB,利用相似比求x,再求△A′DE的面积.【解答】解:Rt△ABC中,由勾股定理求AB==5,由旋转的性质,设AD=A′D=BE=x,则DE=5﹣2x,∵△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,∴∠A′=∠A,∠A′DE=∠C=90°,∴△A′DE∽△ACB,∴=,即=,解得x=,∴S△A′DE=DE×A′D=×(5﹣2×)×=,故答案为:.【点评】本题考查了相似三角形的判定与性质,勾股定理及旋转的性质.关键是根据旋转的性质得出相似三角形,利用相似比求解.三、解答题(本题4个小题,每小题6分,共24分)18.计算:3tan30°﹣+(2016+π)0+(﹣)﹣2.【考点】分母有理化;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】先计算特殊角的三角函数值、分母有理化、零指数幂以及负整数指数幂,然后计算加减法.【解答】解:原式=3×﹣+1+4,=5.【点评】本题综合考查了分母有理化、零指数幂以及负整数指数幂等知识点,熟记计算法则即可解题,属于基础题.19.解方程:.【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是(x﹣1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣1)(x+1),得3x+3﹣x﹣3=0,解得x=0.检验:把x=0代入(x﹣1)(x+1)=﹣1≠0.∴原方程的解为:x=0.【点评】本题考查了分式方程和不等式组的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)不等式组的解集的四种解法:大大取大,小小取小,大小小大中间找,大大小小找不到.20.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.【考点】解直角三角形.【专题】计算题.【分析】根据tan∠BAD=,求得BD的长,在直角△ACD中由勾股定理得AC,然后利用正弦的定义求解.【解答】解:∵在直角△ABD中,tan∠BAD==,∴BD=AD•tan∠BAD=12×=9,∴CD=BC﹣BD=14﹣9=5,∴AC===13,∴sinC==.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.21.有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0个﹣2,;乙袋中有3个完全相同的小球,分别标有数字﹣2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y)(1)写出先Q所有可能的坐标;(2)求点Q在x轴上的概率.【考点】列表法与树状图法;点的坐标.【专题】计算题.【分析】(1)树状图展示所有6种等可能的结果数,(2)根据点在x轴上的坐标特征确定点Q在x轴上的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:共有6种等可能的结果数,它们为(0,﹣2),(0,0),(0,1),(2,﹣2),(2,0),(2,1);(2)点Q在x轴上的结果数为2,所以点Q在x轴上的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.四、(本题7分)22.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【考点】平行四边形的判定;等边三角形的性质.【分析】(1)首先由Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又由△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后证得△AFE≌△BCA,继而证得结论;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【解答】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.【点评】此题考查了平行四边形的判定、等边三角形的性质以及全等三角形的判定与性质.注意证得Rt△AFE≌Rt△BCA是关键.五、(本题7分)23.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)根据扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,即可得出被抽取的总天数;(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;利用360°乘以优所占的份额即可得优的扇形的圆心角度数;(3)利用样本中优和良的天数所占比例乘以一年(365天)即可求出达到优和良的总天数.【解答】解:(1)扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,∴被抽取的总天数为:12÷20%=60(天);(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;表示优的圆心角度数是360°=72°,如图所示:;(3)样本中优和良的天数分别为:12,36,一年(365天)达到优和良的总天数为:×365=292(天).故估计本市一年达到优和良的总天数为292天.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.六、(本题8分)24.如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线;(2)当OE=10时,求BC的长.【考点】切线的判定.【分析】(1)如图,连接OD.通过证明△AOE≌△DOE得到∠OAE=∠ODE=90°,易证得结论;(2)利用圆周角定理和垂径定理推知OE∥BC,所以根据平行线分线段成比例求得BC的长度即可.【解答】(1)证明:如图,连接OD.∵AC⊥AB,∴∠BAC=90°,即∠OAE=90°.在△AOE与△DOE中,,∴△AOE≌△DOE(SSS),∴∠OAE=∠ODE=90°,即OD⊥ED.又∵OD是⊙O的半径,∴ED是⊙O的切线;(2)解:如图,∵OE=10.∵AB是直径,∴∠ADB=90°,即AD⊥BC.又∵由(1)知,△AOE≌△DOE,∴∠AEO=∠DEO,又∵AE=DE,∴OE⊥AD,∴OE∥BC,∴=,∴BC=2OE=20,即BC的长是20.【点评】本题考查了切线的判定与性质.解答(2)题时,也可以根据三角形中位线定理来求线段BC的长度.七、(本题10分)25.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【考点】反比例函数的应用;一次函数的应用.【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)利用y=4分别得出x的值,进而得出答案.【解答】解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,8)代入得:8=4k,解得:k=2,故直线解析式为:y=2x,当4≤x≤10时,设直反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).(2)当y=4,则4=2x,解得:x=2,当y=4,则4=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.【点评】此题主要考查了反比例函数的应用,根据题意得出函数解析式是解题关键.八、(本题13分)26.如图,抛物线y=﹣x2+2x+3与x轴相交的于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A,B,C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与C,B两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形.②设△BCF的面积为S,求S与m的函数关系式;当m为何值时,S有最大值.【考点】二次函数综合题.【专题】综合题;二次函数图象及其性质.【分析】(1)对于抛物线解析式,令y=0求出x的值,确定出A与B坐标,令x=0求出y的值确定出C的做准备,进而求出对称轴即可;(2)①根据B与C坐标,利用待定系数法确定出直线BC解析式,进而表示出E与P坐标,根据抛物线解析式确定出D与F坐标,表示出PF,利用平行四边形的判定方法确定出m的值即可;②连接BF,设直线PF与x轴交于点M,求出OB的长,三角形BCF面积等于三角形BFP面积加上三角形CFP 面积,列出S关于m的二次函数解析式,利用二次函数性质确定出S取得最大值时m的值即可.【解答】解:(1)对于抛物线y=﹣x2+2x+3,令x=0,得到y=3;令y=0,得到﹣x2+2x+3=0,即(x﹣3)(x+1)=0,解得:x=﹣1或x=3,则A(﹣1,0),B(3,0),C(0,3),抛物线对称轴为直线x=1;(2)①设直线BC的函数解析式为y=kx+b,把B(3,0),C(0,3)分别代入得:,解得:k=﹣1,b=3,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),当x=m时,y=﹣m+3,∴P(m,﹣m+3),令y=﹣x2+2x+3中x=1,得到y=4,∴D(1,4),当x=m时,y=﹣m2+2m+3,∴F(m,﹣m2+2m+3),∴线段DE=4﹣2=2,∵0<m<3,∴yF >yP,∴线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,连接DF,由PF∥DE,得到当PF=DE时,四边形PEDF为平行四边形,由﹣m2+3m=2,得到m=2或m=1(不合题意,舍去),则当m=2时,四边形PEDF为平行四边形;②连接BF,设直线PF与x轴交于点M,由B(3,0),O(0,0),可得OB=OM+MB=3,∵S=S△BPF+S△CPF=PF•BM+PF•OM=PF(BM+OM)=PF•OB,∴S=×3(﹣m2+3m)=﹣m2+m(0<m<3),则当m=时,S取得最大值.【点评】此题属于二次函数综合题,涉及的知识有:抛物线与坐标轴的交点,二次函数的图象与性质,待定系数法确定一次函数解析式,坐标与图形性质,熟练掌握二次函数性质是解本题的关键.。
内蒙古兴安盟2020年(春秋版)中考数学试卷C卷
内蒙古兴安盟2020年(春秋版)中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七下·山西期中) 如图,在下列条件中:①∠1=∠2;②∠BAD+∠ADC=180°;③∠ABC=∠ADC;④∠3=∠4,能判定AB∥CD的有()A . 1个B . 2个C . 3个D . 4个2. (2分)在网络上用“Google”搜索引擎搜索“中国梦”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为A . 451×105B . 45.1×106C . 4.51×107D . 0.451×103. (2分)(2017·盐城) 下列运算中,正确的是()A . 7a+a=7a2B . a2•a3=a6C . a3÷a=a2D . (ab)2=ab24. (2分)在一个晴朗的上午,小强拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A . 线段B . 矩形C . 等腰梯形D . 平行四边形5. (2分)解不等式组的解集在数轴上表示正确的是()A .B .C .D .6. (2分)如图,以A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若s1表示△ADE的面积,s2表示四边形DBCE的面积,则s1:s2=()A . 1:2B . 1:3C . 1:4D . 2:37. (2分)(2017·双桥模拟) 在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是()A .B .C .D .8. (2分)(2017·西安模拟) 已知一函数y=kx+3和y=﹣kx+2.则两个一次函数图象的交点在()A . 第一、二象限B . 第二、三象限C . 三、四象限D . 一、四象限9. (2分)若直角三角形中的两个锐角之差为22°,则较小的一个锐角的度数是()A . 24°B . 34°C . 44°D . 46°10. (2分)(2019·北部湾模拟) 如图,△ABC是⊙O的内接三角形,把沿BC折叠后,与弦AB交于点P,恰好OP⊥AB.若OP=1,AB=4,则BC:AC等于()A .B .C .D .二、填空题 (共11题;共12分)11. (1分) (2018七上·深圳月考) 若a,b为整数,且|a|+|b|=2,则a+b的值为________.12. (1分) (2017八下·海安期中) 已知函数y=,则x的取值范围是________13. (1分) (2017八下·胶州期末) 如图,将边长相等的一个正方形和一个正五边形叠放在一起,则∠1=________.14. (1分)(2012·淮安) 分解因式:a2+2a+1=________.15. (2分)÷ · =________÷ ·________.16. (1分) (2018九上·安定期末) 如图,将长为8 cm的铁丝AB首尾相接围成半径为2 cm的扇形,则S 扇形=________cm2 .17. (1分)(2014·百色) 已知甲、乙两组抽样数据的方差: =95.43, =5.32,可估计总体数据比较稳定的是________组数据.18. (1分)(2013·徐州) 如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2 ,则正八边形的面积为________cm2 .19. (1分) (2019八下·安岳期中) 如图,A、B两点在双曲线y= (x>0)的图象上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=________20. (1分) (2017八上·阿荣旗期末) 如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=8m,∠A=30°,则DE=________m.21. (1分)(2019·陕西) 如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC 边上,且BM=6. P为对角线BD上一点,则PM—PN的最大值为________.三、解答题 (共8题;共101分)22. (10分)(2018·惠阳模拟) 如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.(1)求作∠ABC的平分线,分别交AD,AC于P,Q两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明AP=AQ.23. (15分)(2017·呼和浩特) 为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x(单位:℃)进行调查,并将所得的数据按照12≤x<16,16≤x<20,20≤x<24,24≤x <28,28≤x<32分成五组,得到如图频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.24. (15分)(2018·绍兴) 小敏思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证AP=AQ。
2020年内蒙古兴安盟中考数学试卷(含答案解析)
【解析】解:A.α2∙α3=α5,故选项错误;
B、(x+y)2=x2+y2+2xy,故选项错误;
C、(α5÷α2)2=α6,故选项正确;
D、(—3Xy)2 = 9Xy2,故选项错误;
故选:C.
根据同底数幕的乘法,完全平方公式,同底数幕的除法,幕的乘方与积的乘方法则逐项 判断即可.
本题考査了同底数幕的乘法,完全平方公式,同底数幕的除法,幕的乘方与积的乘方, 掌握运算法则是解题的关键•
图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
4.【答案】B
【解析】解:从上边看第一列是一个小正方形,
第二列是两个小正方形且第一个小正方形位于第一层,
第三列是一个小正方形,且位于第二层,
故B选项符合题意,
故选:B.
根据从上边看得到的图形是俯视图,可得答案.
本题考査了简单组合体的三视图,从上边看得到的图形是俯视图.
事先能肯泄它一立会发生的事件称为必然事件,事先能肯宦它一泄不会发生的事件称为 不可能事件.
本题主要考查了随机事件,在一上条件下,可能发生也可能不发生的事件,称为随机事 件.
6.【答案】C
【解析】解:延长AE,与DC的延长线交于点F,
∙∙∙ AB//CD,
.∙. ∆A + ∆AFC= 180°,
∙∙∙ LEAB= 120°,
本题考査平行线的性质和外角的性质,正确作出辅助线和平行线的性质是解题的关键.
7.【答案】D
【解析】解:由图知:IVa V 2,
・•・ α — 1 > O, α — 2 V O,
原式=a—1+= α — 1 + (α — 2) = 2α — 3.
内蒙古兴安盟2020年(春秋版)中考数学试卷C卷
内蒙古兴安盟2020年(春秋版)中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) |﹣2|等于()A . 2B . -2C . ±2D . ±2. (2分)如图所示,直线a,b被直线c所截,∠1与∠2是()A . 同位角B . 内错角C . 同旁内角D . 邻补角3. (2分)我国现有人口约1 370 000 000人,用科学记数法表示为()A . 1.37×108 人B . 137×108人C . 1.37×109人D . 0.137×1010人4. (2分)(2014·海南) 如图所示的几何体的俯视图是()A .B .C .D .5. (2分)如图,在⊙O中,AB是直径,,则A .B .C .D .6. (2分) (2016九上·平定期末) 学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是()A .B .C .D .7. (2分)关于x的不等式(a+2 014)x-a>2 014的解集为x<1,那么a的取值范围是()A . a>-2 014B . a<-2 014C . a>2 014D . a<2 0148. (2分)(2016·合肥模拟) 如图所示,△ABC是等边三角形,点D为AB上一点,现将△ABC沿EF折叠,使得顶点A与D点重合,且FD⊥BC,则的值等于()A .B .C .D .9. (2分)如图,已知▱ABCD,∠A=45°,AD=4,以AD为直径的半圆O与BC相切于点B,则图中阴影部分的面积为()A . 4B . π+2C . 4D . 210. (2分) (2018九上·丰台期末) 如图,在Rt△ABC中,∠C = 90°,AB = 5,BC = 3,则tanA的值为()A .B .C .D .二、填空题 (共6题;共7分)11. (1分)两个正方形的边长和为20cm,它们的面积的差为40cm2 ,则这两个正方形的边长差为________ cm12. (1分) (2019八上·顺德月考) 某射击运动员在一次射击训练中,共射击了6次,所得成绩(单位:环)为:6、8、7、7、8、9,这组数据的中位数为________。
兴安盟2020版中考数学试卷(II)卷
兴安盟2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·平房模拟) 的倒数是()A .B . 3C . ﹣3D . -2. (2分)(2019·汽开区模拟) 从2019年起,长春市开始了城市轨道交通第三期建设,在建设规划中未来长春市城市轨道交通总长度将达到460000米,460000这个数字用科学记数法表示为()A . 4.6×104B . 46×104C . 4.6×105D . 4.6×1063. (2分) (2020八下·长沙期中) 下列图形中,是轴对称图形的是()A .B . B.C .D .4. (2分)(2020·温州模拟) 下列运算中,正确的是()A . x6÷x2=x3B . (﹣3x)2=6x2C . 3x3﹣2x2=xD . (x3)2•x=x75. (2分) (2017九上·启东开学考) 甲和乙一起练习射击,第一轮10枪打完后两人的成绩如图所示.设他们这10次射击成绩的方差为S甲2、S乙2 ,下列关系正确的是()A . S甲2<S乙2B . S甲2>S乙2C . S甲2=S乙2D . 无法确定6. (2分) (2020九上·奉化期末) 正五边形的每个内角度数为()A . 36°B . 72°C . 108°D . 120°7. (2分) (2019七下·抚州期末) 在一个不透明的口袋中,装有5个红球和3个绿球,这些球除了颜色外都相同,从口袋中随机摸出一个球,它是红球的概率是()A .B .C . 1D .8. (2分)(2018·肇源模拟) 下列说法正确的是()A . 对角线相等且互相垂直的四边形是菱形B . 有一个角是直角的四边形是矩形C . 对角线互相垂直的四边形是平行四边形D . 对角线相等且互相平分的四边形是矩形9. (2分)如图,在△ABC中,∠A=30°,tanB= ,AC=2 ,则AB的长是()A . 4B . 3+C . 5D . 2+210. (2分) (2017七下·射阳期末) 已知不等式组有解,则的取值范围是()A .B .C .D .11. (2分)下列命题中不成立的是()A . 矩形的对角线相等B . 三边对应相等的两个三角形全等C . 两个相似三角形面积的比等于其相似比的平方D . 一组对边平行,另一组对边相等的四边形一定是平行四边形12. (2分)如图,已知等边△ABC以BC为直径作圆交AB于D,交AC于E,若BC=2,则CD为()A .B . 2C .D . 1二、填空题 (共4题;共6分)13. (1分) (2019九下·温州竞赛) 因式分解:4m2n-n=________.14. (3分)二次函数y=﹣(x﹣40)2﹣800,当x=________时,y有最________值,这个值是________.15. (1分)(2019·泰州) 如图,的半径为5,点在上,点在内,且,过点作的垂线交于点、.设,,则与的函数表达式为________.16. (1分)(2018·台州) 如图,在正方形中,,点,分别在,上,,,相交于点 .若图中阴影部分的面积与正方形的面积之比为,则的周长为________.三、解答题: (共7题;共78分)17. (10分) (2019九上·未央期末) 计算:(1) ( -2)0+|2- |+2cos30°;(2)6tan230°- sin60°-2cos45°.18. (5分)(2017·河北模拟) 先化简,再求值:,其中x= +1.19. (10分)小辰家买了一辆小轿车,小辰连续记录了七天中每天行驶的路程:第1天第2天第3天第4天第5天第6天第7天路程(千米)36292740437233请你用学过的统计知识解决下面的问题:(1)小辰家的轿车每月(按30天计算)要行驶多少千米?(2)若每行驶100千米需汽油8升,汽油每升4.74元,请你算出小辰家一年(按12个月计算)的汽油费用大约是多少元?(精确到百元)20. (15分)(2018八上·龙港期中) 如图,和是两个全等的三角形,, .现将和按如图所示的方式叠放在一起,保持不动,运动,且满足:点E在边BC上运动(不与点B,C重合),且边DE始终经过点A,EF与AC交于点M .(1)求证:∠BAE=∠MEC;(2)当E在BC中点时,请求出ME:MF的值;(3)在的运动过程中,能否构成等腰三角形?若能,请直接写出所有符合条件的BE的长;若不能,则请说明理由.21. (10分)李老师每天坚持晨跑.如图反映的是李老师某天6:20从家出发小跑到赵化北门,在北门休息几分钟后又慢跑回家的函数图象.其中x(分钟)表示所用时间,y(千米)表示李欢离家的距离.(1)分别求出线段0≤x≤10和15≤x≤40的函数解析式;(2)李老师在这次晨跑过程中什么时间距离家500米?22. (15分)(2017·眉山) 在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.23. (13分) (2019八下·随县期末) 在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为________;方案二中,当0≤x≤100时,y与x的函数关系式为________,当x>100时,y与x的函数关系式为________;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共6分)13-1、14-1、15-1、16-1、三、解答题: (共7题;共78分)17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。
2020年内蒙古兴安盟乌兰浩特市中考数学一模试卷(附答案详解)
2020年内蒙古兴安盟乌兰浩特市中考数学一模试卷1.下列各数中,最大的数是()A. −12B. 14C. 0D. −22.据统计,乌兰浩特市常住人口33.19万人,则数据33.19万用科学记数法表示正确的是()A. 3.319×103B. 3.319×104C. 3.319×105D. 0.3319×1063.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.4.下列计算正确的是()A. a3+a3=a6B. (x−3)2=x2−9C. a3⋅a3=a6D. √2+√3=√55.下表是某校合唱团成员的年龄分布年龄/岁13141516频数515x10−x对于不同的x,下列关于年龄的统计量不会发生改变的是()A. 平均数、中位数B. 众数、中位数C. 平均数、方差D. 中位数、方差6.若关于x的方程kx2+2x−1=0有两个不相等的实数根,则k的取值范围是()A. k>−1B. k<−1C. k≥−1且k≠0D. k>−1且k≠07.如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是()A. 48°B. 78°C. 92°D. 102°8.阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A. 12B. 15C. 110D. 1259.对于实数a、b,定义一种新运算“⊗”为:a⊗b=1a−b2,这里等式右边是实数运算.例如:1⊗3=11−32=−18.则方程x⊗(−2)=2x−4−1的解是()A. x=4B. x=5C. x=6D. x=710.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A. ∠CAD=40°B. ∠ACD=70°C. 点D为△ABC的外心D. ∠ACB=90°11.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A. 54°B. 64°C. 27°D. 37°12.如图,点A,B为定点,定直线l//AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A. ②③B. ②⑤C. ①③④D. ④⑤13.若x=√2−1,则x2+2x+1=______.14.分解因式:9ax2−ay2=______.+(x−4)0有意义,则x的取值范围为______ .15.要使式子2√3−x16.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为______mm.17.如图,在菱形ABCD中,∠A=60°,AB=3,点M为AB边上一点,AM=2,点N为AD边上的一动点,沿MN将△AMN翻折,点A落在点P处,当点P在菱形的对角线上时,AN的长度为______.)−1+(π−3.14)018.计算:√9−2cos60°+(1819. 先化简(1−3x+2)÷x−1x 2+4x+4,再将x =−1代入求值.20. 如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O . (1)求证:△DBC≌△ECB ; (2)求证:OB =OC .21.如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√3≈1.73)22.某工厂计划购买A,B两种型号的机器人加工零件.已知A型机器人比B型机器人每小时多加工30个零件,且A型机器人加工1000个零件用的时间与B型机器人加工800个零件所用的时间相同.(1)求A,B两种型号的机器人每小时分别加工多少零件;(2)该工厂计划采购A,B两种型号的机器人共20台,要求每小时加工零件不得少于2800个,则至少购进A型机器人多少台?23.一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点.(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.24.为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数是____.(2)图1中,∠α的度数是____,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?(4)调查人员想从5户建档立卡贫困户(分别记为a,b,c,d,e)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户e的概率.25.如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.(1)求证:EF=BF;(2)求证:BC是⊙O的切线.(3)若AB=4,BC=3,求DE的长,26.如图,抛物线y=ax2+bx+c与x轴交于点A(−1,0),点B(3,0),与y轴交于点C,且过点D(2,−3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.答案和解析1.【答案】B【解析】解:−2<−12<0<14,则最大的数是14,故选:B.比较确定出最大的数即可.此题考查了有理数大小比较,熟练掌握运算法则是解本题的关键.2.【答案】C【解析】解:33.19=331900=3.319×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】【分析】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:从左面看所得到的图形是正方形,切去部分的棱能看到,用实线表示,故选C.4.【答案】C【解析】【分析】此题主要考查了合并同类项以及完全平方公式和同底数幂的乘除运算,正确掌握相关运算法则是解题关键.直接利用合并同类项法则以及完全平方公式和同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a3+a3=2a3,故此选项错误;B、(x−3)2=x2−6x+9,故此选项错误;C、a3⋅a3=a6,正确;D、√2+√3无法合并,故此选项错误.故选:C.5.【答案】B【解析】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10−x=10,则总人数为:5+15+10=30,=14岁,故该组数据的众数为14岁,中位数为:14+142即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.6.【答案】D【解析】解:∵x的方程kx2+2x−1=0有两个不相等的实数根,∴k≠0且△=4−4k×(−1)>0,解得k>−1,∴k的取值范围为k>−1且k≠0.故选:D.根据△的意义得到k≠0且△=4−4k×(−1)>0,然后求出两不等式的公共部分即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.7.【答案】D【解析】【分析】此题主要考查了平行线的性质及邻补角,正确得出∠3的度数是解题关键.直接利用已知角的度数结合邻补角、平行线的性质得出答案.【解答】解:如图,∵将一块含有30°的直角三角板的顶点放在直尺的一边上,∠1=48°,∴∠2=∠3=180°−48°−30°=102°.故选:D.8.【答案】B【解析】解:二人上5节车厢的情况数是:5×5=25,两人在不同车厢的情况数是5×4=20,则两人从同一节车厢上车的概率是525=15;故选:B.根据阿信、小怡各有5节车厢可选择,共有25种,两人在不同车厢的情况数是20种,得出在同一节车厢上车的情况数是5种,根据概率公式即可得出答案.此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】B【解析】解:根据题意,得1x−4=2x−4−1,去分母得:1=2−(x−4),解得:x=5,经检验x=5是分式方程的解.故选:B.所求方程利用题中的新定义化简,求出解即可.此题考查了解分式方程,弄清题中的新定义是解本题的关键.10.【答案】A【解析】解:∵由题意可知直线MN是线段BC的垂直平分线,∴BD=CD,∠B=∠BCD,∵∠B=20°,∴∠B=∠BCD=20°,∴∠CDA=20°+20°=40°.∵CD=AD,∴∠ACD=∠CAD=180°−40°2=70°,∴A错误,B正确;∵CD=AD,BD=CD,∴CD=AD=BD,∴点D为△ABC的外心,故C正确;∵∠ACD=70°,∠BCD=20°,∴∠ACB=70°+20°=90°,故D正确.故选:A.由题意可知直线MN是线段BC的垂直平分线,故BD=CD,∠B=∠BCD,故可得出∠CDA 的度数,根据CD=AD可知∠DCA=∠CAD,故可得出∠CAD的度数,进而可得出结论.本题考查的是作图−基本作图,熟知线段垂直平分线的作法是解答此题的关键.11.【答案】C【解析】【分析】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.【解答】解:∵∠AOC=126°,∴∠BOC=180°−∠AOC=54°,∠BOC=27°.∵∠CDB=12故选:C.12.【答案】B【解析】【分析】AB,从而判断出根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=12①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,AB,∴MN=12又AB为定点,AB的长度不变,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P 的移动而变化的是②⑤.故选:B .13.【答案】2【解析】解:原式=(x +1)2,当x =√2−1时,原式=(√2)2=2.首先把所求的式子化成=(x +1)2的形式,然后代入求值.本题考查了二次根式的化简求值,正确对所求式子进行变形是关键.14.【答案】a(3x +y)(3x −y)【解析】【分析】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.【解答】解:原式=a(9x 2−y 2)=a(3x +y)(3x −y),故答案为:a(3x +y)(3x −y).15.【答案】x <3【解析】解:根据题意,得{3−x >0x −4≠0. 解得x <3.故答案是:x <3.根据被开方数大于等于0,分母不等于0,指数幂的底数不等于0列式计算即可得解. 本题考查了二次根式有意义的条件和零指数幂,二次根式的被开方数是非负数,零指数幂的底数不等于0.16.【答案】8【解析】解:连接OA ,过点O 作OD ⊥AB 于点D ,则AB =2AD ,∵钢珠的直径是10mm ,∴钢珠的半径是5mm ,∵钢珠顶端离零件表面的距离为8mm,∴OD=3mm,在Rt△AOD中,∵AD=√OA2−OD2=√52−32=4mm,∴AB=2AD=2×4=8mm.故答案为:8.先求出钢珠的半径及OD的长,连接OA,过点O作OD⊥AB于点D,则AB=2AD,在Rt△AOD中利用勾股定理即可求出AD的长,进而得出AB的长.本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.【答案】2或5−√13【解析】【分析】分两种情况:①当点P在菱形对角线AC上时,由折叠的性质得:AN=PN,AM=PM,证出∠AMN=∠ANM=60°,得出AN=AM=2;②当点P在菱形对角线BD上时,设AN=x,由折叠的性质得:PM=AM=2,PN= AN=x,∠MPN=∠A=60°,求出BM=AB−AM=1,证明△PDN∽△MBP,得出DNBP=PD BM =PNPM,求出PD=12x,由比例式3−x3−12x=x2,求出x的值即可.本题考查了翻折变换的性质、菱形的性质、相似三角形的判定与性质、等腰三角形的判定以及分类讨论等知识;熟练掌握翻折变换的性质,证明三角形相似是关键.【解答】解:分两种情况:①当点P在菱形对角线AC上时,如图1所示::由折叠的性质得:AN=PN,AM=PM,∵四边形ABCD是菱形,∠BAD=60°,∴∠PAM=∠PAN=30°,∴∠AMN=∠ANM=90°−30°=60°,∴AN=AM=2;②当点P在菱形对角线BD上时,如图2所示:设AN=x,由折叠的性质得:PM=AM=2,PN=AN=x,∠MPN=∠A=60°,∵AB=3,∴BM=AB−AM=1,∵四边形ABCD是菱形,∴∠ADC=180°−60°=120°,∠PDN=∠MBP=12∠ADC=60°,∵∠BPN=∠BPM+60°=∠DNP+60°,∴∠BPM=∠DNP,∴△PDN∽△MBP,∴DNBP =PDBM=PNPM,即3−xBP=PD1=x2,∴PD=12x,∴3−x3−12x=12x解得:x=5−√13或x=5+√13(不合题意舍去),∴AN=5−√13,综上所述,AN的长为2或5−√13;故答案为:2或5−√13.18.【答案】解:原式=3−2×12+8+1=3−1+8+1=11.【解析】此题主要考查了实数运算,正确化简各数是解题关键.直接利用二次根式的性质以及零指数幂的性质、负指数幂的性质分别化简得出答案.19.【答案】解:原式=x−1x+2×(x+2)2x−1=x+2,将x=−1代入得:原式=−1+2=1.【解析】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.直接利用分式的混合运算法则化简,进而把x=−1代入得出答案.20.【答案】(1)证明:∵AB=AC,∴∠ECB=∠DBC,在△DBC与△ECB中{BD=CE∠DBC=BC=CB∠ECB,∴△DBC≌△ECB(SAS);(2)证明:由(1)知△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.【解析】本题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.(1)根据等腰三角形的性质得到∠ECB=∠DBC根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到∠DCB=∠EBC根据等腰三角形的判定定理即可得到OB=OC.21.【答案】解:作AE⊥CD于E.则四边形ABCE是矩形.在Rt△BCD中,CD=BC⋅tan60°=50√3≈87(米),在Rt△ADE中,∵DE=AE⋅tan37°≈50×0.75=37.5(米),∴AB=CE=CD−DE≈50√3−37.5≈49(米).答:甲、乙两楼的高度分别为87米,49米.【解析】作AE⊥CD于E.则四边形ABCE是矩形.解直角三角形分别求出CD,DE即可解决问题.本题考查解直角三角形的应用−仰角俯角问题,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【答案】解:(1)设A、B两种型号的机器人每小时分别加工(x+30)个,x个零件,根据题意得:800x =1000x+30,解得x=120,经检验x=120是原方程的解,∴x+30=120+30=150,答:A型号机器人每小时加工150个零件,B型号机器人每小时加工120个零件;(2)设购进A型机器人a台,根据题意可得:150a+120(20−a)≤2800,解得a≥80,答:至少购进A型机器人80台.【解析】(1)设B型机器人每小时搬运x个零件,则A型机器人每小时搬运(x+30)个零件,根据A型机器人搬运1000个零件所用的时间与B型机器人搬运800个零件所用的时间相同建立方程求出其解就可以得出结论.(2)设至少购进A型机器人a台,由每小时加工零件不得少于2800个,列出不等式可求解.本题考查了分式方程的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.23.【答案】解:(1)∵(1,2)在y=kx+4上,有k+4=2,解得k=−2,∴一次函数解析式为y=−2x+4,又∵二次函数顶点为(0,c),∴c=4,把(1,2)代入二次函数表达式得a+c=2,解得a=−2,∴k=−2,a=−2,c=4.(2)由(1)得二次函数解析式为y=−2x2+4,令y=m,得2x2+m−4=0,∴x=±√4−m,2设B,C两点的坐标分别为(x1,m),(x2,m),,则|x1|+|x2|=2√4−m2=m2−2m+8=(m−1)2+∴W=OA2+BC2=m2+(|x1|+|x2|)2=m2+4×4−m27(0<m<4),∴当m=1时,W取得最小值7.【解析】(1)由交点为(1,2),代入y=kx+4,可求得k,由y=ax2+c可知,二次函数的顶点在y轴上,即x=0,则可求得顶点的坐标,从而可求c值,最后可求a的值;(2)由(1)得二次函数解析式为y=−2x2+4,令y=m,得2x2+m−4=0,可求x的值,再根据题意即可求出W关于m的函数解析式.此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,解方程进行解答即可.24.【答案】解:(1)60(户);(2)54°;C级户数为:60−9−21−9=21(户),补全条形统计图如图2所示:(3)估计非常满意的人数约为960×10000=1500(户);(4)由题可列如下树状图:由树状图可以看处,所有可能出现的结果共有20种,选中e的结果有8种∴P(选中e)=820=25.【解析】【分析】本题考查的是条形统计图和扇形统计图以及用列表法或画树形图法求随机事件的概率的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)由B级别户数及其对应百分比可得答案;(2)求出A级对应百分比可得∠α的度数,再求出C级户数即可把图2条形统计图补充完整;(3)利用样本估计总体思想求解可得;(4)画树状图或列表将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)由图表信息可知本次抽样调查测试的建档立卡贫困户的总户数=21÷35%= 60(户)故答案为:60(户)(2)图1中,∠α的度数=960×360°=54°;故答案为:54°;C级户数为:60−9−21−9=21(户),补全条形统计图见答案;(3)见答案;(4)见答案.25.【答案】(1)证明:∵AE=AB,∴△ABE是等腰三角形,∵AB为⊙O的直径,∴AF⊥BE,∴EF=BF;(2)证明:∵AE=AB,∴△ABE是等腰三角形,∴∠ABE=12(180°−∠BAC=)=90°−12∠BAC,∵∠BAC=2∠CBE,∴∠CBE=12∠BAC,∴∠ABC=∠ABE+∠CBE=(90°−12∠BAC)+12∠BAC=90°,即AB⊥BC,∴BC是⊙O的切线;(3)解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABC=90°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABD∽△ACB,∴ADAB =ABAC,∵在Rt△ABC中,AB=4,BC=3,∴AC=√AB2+BC2=5,∴AD4=45,解得:AD=3.2,∵AE=AB=4,∴DE=AE−AD=4−3.2=0.8.【解析】此题考查了切线的判定与性质、相似三角形的判定与性质、等腰三角形的性质以及勾股定理.注意准确作出辅助线,证得△ABD∽△ACB是解此题的关键.(1)根据等腰三角形的性质和圆周角定理即可得到结论;(2)由AE=AB,可得∠ABE=90°−12∠BAC,又由∠BAC=2∠CBE,可求得∠ABC=∠ABE+∠CBE=90°,继而证得结论;(3)首先连接BD,易证得△ABD∽△ACB,然后由相似三角形的对应边成比例,求得答案.26.【答案】解:(1)函数的表达式为:y=a(x+1)(x−3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2−2x−3…①;(2)设直线PD与y轴交于点G,设点P(m,m2−2m−3),将点P 、D 的坐标代入一次函数表达式:y =sx +t 并解得:直线PD 的表达式为:y =mx −3−2m ,则OG =3+2m ,S △POD =12×OG(x D −x P )=12(3+2m)(2−m)=−m 2+12m +3, ∵−1<0,故S △POD 有最大值,当m =14时,其最大值为4916;(3)∵OB =OC =3,∴∠OCB =∠OBC =45°,∵∠ABC =∠OBE ,故△OBE 与△ABC 相似时,分为两种情况:①当∠ACB =∠BOQ 时,AB =4,BC =3√2,AC =√10,过点A 作AH ⊥BC 与点H ,S △ABC =12×AH ×BC =12AB ×OC ,解得:AH =2√2, 则sin∠ACB =AHAC =√5,则tan∠ACB =2,则直线OQ 的表达式为:y =−2x …②,联立①②并解得:x =±√3(舍去负值),故点Q(√3,−2√3)②∠BAC =∠BOQ 时,tan∠BAC=OCOA =31=3=tan∠BOQ,则直线OQ的表达式为:y=−3x…③,联立①③并解得:x=−1+√132,故点Q(−1+√132,1−√132);综上,点Q(√3,−2√3)或(−1+√132,1−√132).【解析】(1)函数的表达式为:y=a(x+1)(x−3),将点D坐标代入上式,即可求解;(2)S△POD=12×OG(x D−x P)=12(3+2m)(2−m)=−m2+12m+3,即可求解;(3)分∠ACB=∠BOQ、∠BAC=∠BOQ,两种情况分别求解,通过角的关系,确定直线OQ倾斜角,进而求解.本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
2019-2020学年内蒙古呼伦贝尔市、兴安盟中考数学模拟试卷(有标准答案)
内蒙古呼伦贝尔市、兴安盟中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣的倒数为()A.﹣2 B.C.﹣ D.22.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x53.下列调查适合做抽样调查的是()A.对某小区的卫生死角进行调查B.审核书稿中的错别字C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查4.下列几何体中,主视图是矩形的是()A. B.C.D.5.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=3156.将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)7.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40° B.30° C.70° D.50°8.从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是()A.B.C.D.9.若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.210.园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S(m)2与工作时间t(h)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.100m2B.50m2C.80m2D.40m211.在平面直角坐标系中,将抛物线y=﹣x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是()A.y=﹣x2﹣x﹣B.y=﹣x2+x﹣C.y=﹣x2+x﹣D.y=﹣x2﹣x﹣12.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.B.C.4 D.5二、填空题(本题5个小题,每小题3分,共15分)13.因式分解:xy2﹣4xy+4x= .14.一天有8.64×104秒,一年如果按365天计算,用科学记数法表示一年有秒.15.不等式组的解集是.16.小杨用一个半径为36cm、面积为324πcm2的扇形纸板制作一个圆锥形的玩具帽(接缝的重合部分忽略不计),则帽子的底面半径为cm.17.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是.三、解答题(本题4个小题,每小题6分,共24分)18.计算:3tan30°﹣+(2016+π)0+(﹣)﹣2.19.解方程:.20.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.21.有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0个﹣2,;乙袋中有3个完全相同的小球,分别标有数字﹣2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y)(1)写出先Q所有可能的坐标;(2)求点Q在x轴上的概率.四、(本题7分)22.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF ⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.五、(本题7分)23.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.六、(本题8分)24.如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线;(2)当OE=10时,求BC的长.七、(本题10分)25.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?八、(本题13分)26.如图,抛物线y=﹣x2+2x+3与x轴相交的于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A,B,C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与C,B两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形.②设△BCF的面积为S,求S与m的函数关系式;当m为何值时,S有最大值.内蒙古呼伦贝尔市、兴安盟中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣的倒数为()A.﹣2 B.C.﹣ D.2【考点】倒数.【分析】直接根据倒数的定义求解.【解答】解:﹣的倒数为﹣2.故选:A.【点评】本题考查了倒数的定义:a的倒数为(a≠0).2.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x5【考点】同底数幂的乘法.【分析】根据同底数幂相乘,底数不变,指数相加计算后选取答案.【解答】解:(﹣x)3(﹣x)2=(﹣x)3+2=﹣x5.故选D.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.3.下列调查适合做抽样调查的是()A.对某小区的卫生死角进行调查B.审核书稿中的错别字C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查【考点】全面调查与抽样调查.【分析】卫生死角、审核书稿中的错别字、八名同学的身高情况应该全面调查,而中学生人数较多,对其睡眠情况的调查应该是抽样调查.【解答】解:A、对某小区的卫生死角适合全面调查,所以此选项错误;B、审核书稿中的错别字应该全面调查,所以此选项错误;C、对八名同学的身高情况应该全面调查,所以此选项错误;D、对中学生目前的睡眠情况应该抽样调查,所以此选项正确;故选D.【点评】本题考查了全面调查和抽样调查,统计调查的方法有全面调查(即普查)和抽样调查两种,一般来讲:通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.4.下列几何体中,主视图是矩形的是()A. B.C.D.【考点】简单几何体的三视图.【分析】根据主视图的概念找出各几何体的主视图.【解答】解:A、圆锥的主视图为等腰三角形;B、圆柱的主视图为矩形;C、三棱柱的主视图为中间有一实线的矩形;D、球体的主视图为圆;故选:B.【点评】本题考查了简单几何体的三视图,主视图为从物体正面看到的视图.5.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=315【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是560(1﹣x),第二次后的价格是560(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.【点评】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.6.将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.【分析】根据题意可以求得点A′的坐标,从而可以求得点A′关于y轴对称的点的坐标,本题得以解决.【解答】解:∵将点A(3,2)向左平移4个单位长度得点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2),故选D.【点评】本题考查关于x轴、y轴对称的点的坐标、坐标与图形的变化﹣平移,解题的关键是明确题意,找出所求点需要的条件.7.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40° B.30° C.70° D.50°【考点】等腰三角形的性质;平行线的性质.【分析】根据AD∥BC可得出∠C=∠1=70°,再根据AB=AC即可得出∠B=∠C=70°,结合三角形的内角和为180°,即可算出∠BAC的大小.【解答】解:∵AD∥BC,∴∠C=∠1=70°,∵AB=AC,∴∠B=∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=40°.故选A.【点评】本题考查了等腰三角形的性质以及平行线的性质,解题的关键是找出∠B=∠C=70°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键.8.从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是()A.B.C.D.【考点】算术平均数.【分析】根据平均数的公式,求解即可.用所有数据的和除以(a+b+c).【解答】解:由题意知,a个x1的和为ax1,b个x2的和为bx2,c个x3的和为cx3,数据总共有a+b+c个,∴这个样本的平均数=,故选:B.【点评】本题考查了加权平均数的概念.平均数等于所有数据的和除以数据的个数.9.若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2【考点】二次根式的性质与化简.【分析】已知1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时, =0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质: =|a|.10.园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S(m)2与工作时间t(h)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.100m2B.50m2C.80m2D.40m2【考点】函数的图象.【分析】根据图象可得,休息后园林队2小时绿化面积为160﹣60=100(m2),然后可得绿化速度.【解答】解:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100(m2).每小时绿化面积为100÷2=50(m2).故选:B.【点评】此题主要考查了函数图象,关键是正确理解题意,从图象中找出正确信息.11.在平面直角坐标系中,将抛物线y=﹣x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是()A.y=﹣x2﹣x﹣B.y=﹣x2+x﹣C.y=﹣x2+x﹣D.y=﹣x2﹣x﹣【考点】二次函数图象与几何变换.【专题】推理填空题.【分析】根据平移的规律:左加右减,上加下减,求出得到的抛物线的解析式是多少即可.【解答】解:将抛物线y=﹣x2向下平移1个单位长度,得到的抛物线的解析式是:y=﹣x2﹣1,再向左平移1个单位长度,得到的抛物线的解析式是:y=﹣(x+1)2﹣1=﹣x2﹣x﹣.故选:A.【点评】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.12.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.B.C.4 D.5【考点】翻折变换(折叠问题).【分析】设BQ=x,则由折叠的性质可得DQ=AQ=9﹣x,根据中点的定义可得BD=3,在Rt△BQD中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BQD中,x2+32=(9﹣x)2,解得:x=4.故线段BQ的长为4.故选:C.【点评】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.二、填空题(本题5个小题,每小题3分,共15分)13.因式分解:xy2﹣4xy+4x= x(y﹣2)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式x,再根据完全平方公式进行二次分解.【解答】解:xy2﹣4xy+4x=x(y2﹣4y+4)=x(y﹣2)2.故答案为:x(y﹣2)2.【点评】本题考查了提公因式法,公式法分解因式.注意提取公因式后利用完全平方公式进行二次分解,分解要彻底.14.一天有8.64×104秒,一年如果按365天计算,用科学记数法表示一年有 3.1536×107秒.【考点】科学记数法—表示较大的数.【分析】先求出365×8.64×104=3153.6×104秒,然后再根据科学记数法的表示方法整理即可.大于10时科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:365×8.64×104=3 153.6×104=3.153 6×107秒.故答案为3.153 6×107秒.【点评】本题考查用科学记数法表示较大的数.科学记数法在实际生活中有着广泛的应用,给我们记数带来方便,考查科学记数法就是考查我们应用数学的能力.15.不等式组的解集是x>3 .【考点】解一元一次不等式组.【专题】规律型;方程思想.【分析】分别解出题中两个不等式组的解,然后根据口诀求出x的交集,就是不等式组的解集.【解答】解:由(1)得,x>2由(2)得,x>3所以解集是:x>3.【点评】此题主要考查了一元一次不等式组的解法,比较简单.16.小杨用一个半径为36cm、面积为324πcm2的扇形纸板制作一个圆锥形的玩具帽(接缝的重合部分忽略不计),则帽子的底面半径为9 cm.【考点】圆锥的计算.【分析】根据扇形的公式结合扇形的半径及扇形的面积可得出扇形的弧长,再利用圆的周长公式即可得出帽子的底面半径.【解答】解:∵扇形的半径为36cm,面积为324πcm2,∴扇形的弧长L===18π,==9cm.∴帽子的底面半径R1故答案为:9.【点评】本题考查了圆锥的计算、扇形的面积以及圆的周长,解题的关键是熟练的运用扇形的弧长以及圆的周长公式.本题属于基础题,难度不大,解决该题型题目时,根据圆锥的制作过程找出圆锥的底面周长等于扇形的弧长是关键.17.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是.【考点】旋转的性质.【分析】在Rt△ABC中,由勾股定理求得AB=5,由旋转的性质可知AD=A′D,设AD=A′D=BE=x,则DE=5﹣2x,根据旋转90°可证△A′DE∽△ACB,利用相似比求x,再求△A′DE的面积.【解答】解:Rt△ABC中,由勾股定理求AB==5,由旋转的性质,设AD=A′D=BE=x,则DE=5﹣2x,∵△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,∴∠A′=∠A,∠A′DE=∠C=90°,∴△A′DE∽△ACB,∴=,即=,解得x=,∴S=DE×A′D=×(5﹣2×)×=,△A′DE故答案为:.【点评】本题考查了相似三角形的判定与性质,勾股定理及旋转的性质.关键是根据旋转的性质得出相似三角形,利用相似比求解.三、解答题(本题4个小题,每小题6分,共24分)18.计算:3tan30°﹣+(2016+π)0+(﹣)﹣2.【考点】分母有理化;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】先计算特殊角的三角函数值、分母有理化、零指数幂以及负整数指数幂,然后计算加减法.【解答】解:原式=3×﹣+1+4,=5.【点评】本题综合考查了分母有理化、零指数幂以及负整数指数幂等知识点,熟记计算法则即可解题,属于基础题.19.解方程:.【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是(x﹣1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣1)(x+1),得3x+3﹣x﹣3=0,解得x=0.检验:把x=0代入(x﹣1)(x+1)=﹣1≠0.∴原方程的解为:x=0.【点评】本题考查了分式方程和不等式组的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)不等式组的解集的四种解法:大大取大,小小取小,大小小大中间找,大大小小找不到.20.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.【考点】解直角三角形.【专题】计算题.【分析】根据tan∠BAD=,求得BD的长,在直角△ACD中由勾股定理得AC,然后利用正弦的定义求解.【解答】解:∵在直角△ABD中,tan∠BAD==,∴BD=AD•tan∠BAD=12×=9,∴CD=BC﹣BD=14﹣9=5,∴AC===13,∴sinC==.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.21.有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0个﹣2,;乙袋中有3个完全相同的小球,分别标有数字﹣2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y)(1)写出先Q所有可能的坐标;(2)求点Q在x轴上的概率.【考点】列表法与树状图法;点的坐标.【专题】计算题.【分析】(1)树状图展示所有6种等可能的结果数,(2)根据点在x轴上的坐标特征确定点Q在x轴上的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:共有6种等可能的结果数,它们为(0,﹣2),(0,0),(0,1),(2,﹣2),(2,0),(2,1);(2)点Q在x轴上的结果数为2,所以点Q在x轴上的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.四、(本题7分)22.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF ⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【考点】平行四边形的判定;等边三角形的性质.【分析】(1)首先由Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又由△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后证得△AFE≌△BCA,继而证得结论;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【解答】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.【点评】此题考查了平行四边形的判定、等边三角形的性质以及全等三角形的判定与性质.注意证得Rt△AFE≌Rt△BCA是关键.五、(本题7分)23.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)根据扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,即可得出被抽取的总天数;(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;利用360°乘以优所占的份额即可得优的扇形的圆心角度数;(3)利用样本中优和良的天数所占比例乘以一年(365天)即可求出达到优和良的总天数.【解答】解:(1)扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,∴被抽取的总天数为:12÷20%=60(天);(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;表示优的圆心角度数是360°=72°,如图所示:;(3)样本中优和良的天数分别为:12,36,一年(365天)达到优和良的总天数为:×365=292(天).故估计本市一年达到优和良的总天数为292天.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.六、(本题8分)24.如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线;(2)当OE=10时,求BC的长.【考点】切线的判定.【分析】(1)如图,连接OD.通过证明△AOE≌△DOE得到∠OAE=∠ODE=90°,易证得结论;(2)利用圆周角定理和垂径定理推知OE∥BC,所以根据平行线分线段成比例求得BC的长度即可.【解答】(1)证明:如图,连接OD.∵AC⊥AB,∴∠BAC=90°,即∠OAE=90°.在△AOE与△DOE中,,∴△AOE≌△DOE(SSS),∴∠OAE=∠ODE=90°,即OD⊥ED.又∵OD是⊙O的半径,∴ED是⊙O的切线;(2)解:如图,∵OE=10.∵AB是直径,∴∠ADB=90°,即AD⊥BC.又∵由(1)知,△AOE≌△DOE,∴∠AEO=∠DEO,又∵AE=DE,∴OE⊥AD,∴OE∥BC,∴=,∴BC=2OE=20,即BC的长是20.【点评】本题考查了切线的判定与性质.解答(2)题时,也可以根据三角形中位线定理来求线段BC的长度.七、(本题10分)25.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【考点】反比例函数的应用;一次函数的应用.【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)利用y=4分别得出x的值,进而得出答案.【解答】解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,8)代入得:8=4k,解得:k=2,故直线解析式为:y=2x,当4≤x≤10时,设直反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).(2)当y=4,则4=2x,解得:x=2,当y=4,则4=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.【点评】此题主要考查了反比例函数的应用,根据题意得出函数解析式是解题关键.八、(本题13分)26.如图,抛物线y=﹣x2+2x+3与x轴相交的于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A,B,C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与C,B两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形.②设△BCF的面积为S,求S与m的函数关系式;当m为何值时,S有最大值.【考点】二次函数综合题.【专题】综合题;二次函数图象及其性质.【分析】(1)对于抛物线解析式,令y=0求出x的值,确定出A与B坐标,令x=0求出y的值确定出C的做准备,进而求出对称轴即可;(2)①根据B与C坐标,利用待定系数法确定出直线BC解析式,进而表示出E与P坐标,根据抛物线解析式确定出D与F坐标,表示出PF,利用平行四边形的判定方法确定出m的值即可;②连接BF,设直线PF与x轴交于点M,求出OB的长,三角形BCF面积等于三角形BFP面积加上三角形CFP 面积,列出S关于m的二次函数解析式,利用二次函数性质确定出S取得最大值时m的值即可.【解答】解:(1)对于抛物线y=﹣x2+2x+3,令x=0,得到y=3;令y=0,得到﹣x2+2x+3=0,即(x﹣3)(x+1)=0,解得:x=﹣1或x=3,则A(﹣1,0),B(3,0),C(0,3),抛物线对称轴为直线x=1;(2)①设直线BC的函数解析式为y=kx+b,把B(3,0),C(0,3)分别代入得:,解得:k=﹣1,b=3,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),当x=m时,y=﹣m+3,∴P(m,﹣m+3),令y=﹣x2+2x+3中x=1,得到y=4,∴D(1,4),当x=m时,y=﹣m2+2m+3,∴F(m,﹣m2+2m+3),∴线段DE=4﹣2=2,∵0<m<3,∴yF >yP,∴线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,连接DF,由PF∥DE,得到当PF=DE时,四边形PEDF为平行四边形,由﹣m2+3m=2,得到m=2或m=1(不合题意,舍去),则当m=2时,四边形PEDF为平行四边形;②连接BF,设直线PF与x轴交于点M,由B(3,0),O(0,0),可得OB=OM+MB=3,∵S=S△BPF +S△CPF=PF•BM+PF•OM=PF(BM+OM)=PF•OB,∴S=×3(﹣m2+3m)=﹣m2+m(0<m<3),则当m=时,S取得最大值.【点评】此题属于二次函数综合题,涉及的知识有:抛物线与坐标轴的交点,二次函数的图象与性质,待定系数法确定一次函数解析式,坐标与图形性质,熟练掌握二次函数性质是解本题的关键.。
内蒙古兴安盟2020版中考数学试卷D卷
内蒙古兴安盟2020版中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017七下·东城期中) 下列语句写成数学式子正确的是()A . 9是81的算术平方根:B . 5是的算术平方根:C . 是36的平方根:D . -2是4的负的平方根:2. (2分) (2019九下·保山期中) 中国倡导的“一带一路”建设将促进世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A . 44×108B . 4.4×108C . 4.4×1010D . 4.4×1093. (2分)三角形两边长分别为3和6,第三边是方程x2-6x+8=0的解,则这个三角形的周长是()A . 11B . 13C . 11或13D . 不能确定4. (2分)(2017·锡山模拟) 现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=﹣x2+4x上的概率为()A .B .C .D .5. (2分) (2020九上·泰兴期末) 如图,⊙O是△ABC的外接圆,已知∠OAB=40°,则∠ACB的度数为()A . 45°B . 40°C . 80°D . 50°6. (2分)(2017·七里河模拟) 如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为()A . 105°B . 115°C . 125°D . 135°7. (2分) (2016九上·婺城期末) 四边形的内角和为()A . 90°B . 180°C . 360°D . 720°8. (2分)(2019·花都模拟) 如图,直线a∥b,则直线a,b之间距离是()A . 线段AB的长度B . 线段CD的长度C . 线段EF的长度D . 线段GH的长度9. (2分)(2017·徐州模拟) 若一次函数y=kx+b与反比例函数y= 的图像如图所示,则关于x的不等式kx+b﹣≤﹣2的解集为()A . 0<x≤2或x≤﹣4B . ﹣4≤x<0或x≥2C . ≤x<0或xD . x 或010. (2分) (2020七下·恩施月考) 如图,a、b 两个数在数轴上的位置如图所示,则下列各式正确的是()A . a+b<0B . ab<0C . b﹣a<0D . >0二、填空题 (共8题;共8分)11. (1分)(2019·淮安) 方程的解是________.12. (1分)(2017·邵阳) 将多项式mn2+2mn+m因式分解的结果是________.13. (1分) (2016九上·长清开学考) 若关于x的不等式组的解集是x>3,则m的取值范围是________.14. (1分)如图,OP平分∠AOB,∠AOP=15°,PC∥OB,PD⊥OB于点D,PD=4,则PC等于________.15. (1分)小明有五位好友,他们的年龄(单位:岁)分别是15,15,16,17,17,其方差是0.8,则三年后这五位好友年龄的方差是________.16. (1分) (2016七上·端州期末) 若2a与1﹣a互为相反数,则a=________.17. (1分)(2020·上海模拟) 一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高BE= m,斜面坡脚为30°,则木箱顶端E距离地面AC的高度EF为________m。
2014-2020年内蒙古兴安盟中考数学试题汇编(含参考答案与解析)
2014—2020年内蒙古兴安盟中考数学试题汇编(含参考答案与解析)1、2014年内蒙古兴安盟中考数学试题及参考答案与解析 (2)2、2015年内蒙古兴安盟中考数学试题及参考答案与解析 (23)3、2016年内蒙古兴安盟中考数学试题及参考答案与解析 (42)4、2017年内蒙古兴安盟中考数学试题及参考答案与解析 (59)5、2018年内蒙古兴安盟中考数学试题及参考答案与解析 (82)6、2019年内蒙古兴安盟中考数学试题及参考答案与解析 (104)7、2020年内蒙古兴安盟中考数学试题及参考答案与解析 (125)2014年内蒙古兴安盟中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分) 1.下列四个数中最小的数是( ) A .3 B .-3 C .13- D .02.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109 B .0.21×109 C .2.1×108 D .21×107312a -,则( )A .a <12 B .a≤12 C .a >12 D .a≥124.若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是( )A .B .C .D .5.一组数据﹣2、0、﹣3、﹣2、﹣3、1、x 的众数是﹣3,则这组数据的中位数是( ) A .﹣3 B .﹣2 C .1 D .06.一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为( )A .2πB .6πC .7πD .8π 7.若方程()23312mm m x +++=-是一元一次方程,则m 的值是( )A .-2或-1B .﹣1C .-2D .无法确定8.如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF=2,则PE 的长为( )A B .2 C . D .39.关于x 的一元二次方程(a+1)x 2﹣4x ﹣1=0有两个不相等的实数根,则a 的取值范围是( ) A .a >﹣5B .a >﹣5且a≠﹣1C .a <﹣5D .a≥﹣5且a≠﹣110.如图,在△OAB 中,C 是AB 的中点,反比例函数ky x=(x >0)在第一象限的图象经过A 、C 两点,若△OAB 面积为6,则k 的值为( )A .2B .4C .8D .16二、填空题(本大题共6小题,每小题3分,共18分) 11.分解因式ab 3-ab= . 12.已知实数x 满足13x x+=,则221x x +=的值为 .13.从2,﹣1,﹣2三个数中任意选取一个作为直线y=kx+1中的k 值,则所得的直线不经过第三象限的概率是 .14.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种三分之一,结果提前4天完成任务,原计划每天种 棵树.15.如图,已知正方形ABCD 的边长为1,以顶点A 、B 为圆心,1为半径的两弧交于点E ,以顶点C 、D 为圆心,1为半径的两弧交于点F ,则EF 的长为 .16.已知如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,BC=DC=5,点P 在BC 上移动,则当PA+PD 取最小值时,△APD 中AP 边上的高为 .三、解答题(本大题共10小题,满分72分)17.(5分)计算:)11tan 6012-⎛⎫-︒-+ ⎪⎝⎭.18.(5分)如图,在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90° (1)画出旋转之后的△AB′C′;(2)求线段AC 旋转过程中扫过的扇形的面积.19.(5分)某时刻海上点P处有一客轮,测得灯塔A位于客轮P的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏西60°方向航行23小时到达B处,那么tan∠ABP的值为多少?20.(5分)17.如图,一次函数y=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数kyx图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)求点B到直线OM的距离.21.(5分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O 的另一个交点为E,连接AC,CE.(1)求证:∠E=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.22.(8分)为增强环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次抽样调查了多少个家庭?(2)将图①中的条形图补充完整,直接写出用车时间的中位数落在哪个时间段内;(3)求用车时间在1~1.5小时的部分对应的扇形圆心角的度数.23.(8分)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.24.(9分)如图,甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上时,重转一次,直到指针都指向一个区域为止).(1)请你用画树状图或列表格的方法求出|m+n|>1的概率;(2)直接写出点(m,n)落在函数1yx=-图象上的概率.25.(10分)已知一次函数y=x+1的图象和二次函数y=x2+bx+c的图象都经过A、B两点,且点A 在y轴上,B点的纵坐标为5.(1)求这个二次函数的解析式;(2)将此二次函数图象的顶点记作点P,求△ABP的面积;(3)已知点C、D在射线AB上,且D点的横坐标比C点的横坐标大2,点E、F在这个二次函数图象上,且CE、DF与y轴平行,当CF∥ED时,求C点坐标.26.(12分)已知点A(3,4),点B为直线x=﹣1上的动点,设B(﹣1,y).(1)如图1,若点C(x,0)且﹣1<x<3,BC⊥AC,求y与x之间的函数关系式;(2)在(1)的条件下,y是否有最大值?若有,请求出最大值;若没有,请说明理由;(3)如图2,当点B的坐标为(﹣1,1)时,在x轴上另取两点E,F,且EF=1.线段EF在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小?求出此时点E的坐标.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列四个数中最小的数是()A.3 B.-3 C.13-D.0【知识考点】有理数大小比较.【思路分析】找出四个数中最小的数即可.【解答过程】解:∵13033--<<<,∴-3是四个数中最小的数.故选:B.【总结归纳】此题考查了有理数大小比较,将各数正确按照从小到大顺序排列是解本题的关键.2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将210000000用科学记数法表示为:2.1×108.故选:C.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.312a-,则()A.a<12B.a≤12C.a>12D.a≥12【知识考点】二次根式的性质与化简.【思路分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.12a=-,∴1﹣2a≥0,解得a≤12.故选:B.【总结归纳】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.4.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【知识考点】一次函数图象与系数的关系.【思路分析】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.【解答过程】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,纵观各选项,只有A选项符合.故选:A.【总结归纳】本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.5.一组数据﹣2、0、﹣3、﹣2、﹣3、1、x的众数是﹣3,则这组数据的中位数是()A .﹣3B .﹣2C .1D .0 【知识考点】中位数;众数.【思路分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个. 【解答过程】解:∵﹣2、0、﹣3、﹣2、﹣3、1、x 的众数是﹣3, ∴x=﹣3,先对这组数据按从小到大的顺序重新排序﹣3、﹣3、﹣3、﹣2、﹣2、0、1位于最中间的数是﹣2, ∴这组数的中位数是﹣2. 故选B .【总结归纳】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为( )A .2πB .6πC .7πD .8π【知识考点】由三视图判断几何体;圆柱的计算.【思路分析】从三视图可以看正视图以及俯视图为矩形,而左视图为圆形,可以得出该立体图形为圆柱,再由三视图可以圆柱的半径,长和高求出体积. 【解答过程】解:∵正视图和俯视图是矩形,左视图为圆形, ∴可得这个立体图形是圆柱, ∴这个立体图形的侧面积是2π×3=6π, 底面积是:π•12=π,∴这个立体图形的表面积为6π+2π=8π; 故选:D .【总结归纳】此题考查了由三视图判断几何体,根据三视图的特点描绘出图形是解题的关键,掌握好圆柱体积公式=底面积×高. 7.若方程()23312mm m x +++=-是一元一次方程,则m 的值是( )A .-2或-1B .﹣1C .-2D .无法确定 【知识考点】一元一次方程的定义;解一元二次方程.【思路分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a≠0). 【解答过程】解:由()23312mm m x +++=-是一元一次方程,得210331m m m +≠⎧⎨++=⎩, 解得m=-2, 故选:C .【总结归纳】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.8.如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF=2,则PE 的长为( )A B .2 C . D .3【知识考点】等边三角形的性质;线段垂直平分线的性质;含30度角的直角三角形;勾股定理. 【思路分析】先根据△ABC 是等边三角形P 是∠ABC 的平分线可知∠EBP=∠QBF=30°,再根据BF=2,FQ ⊥BP 可得出BQ 的长,再由BP=2BQ 可求出BP 的长,在Rt △BEF 中,根据∠EBP=30°即可求出PE 的长.【解答过程】解:∵△ABC 是等边三角形P 是∠ABC 的平分线, ∴∠EBP=∠QBF=30°,∵BF=2,QF 为线段BP 的垂直平分线, ∴∠FQB=90°, ∴BQ=BF•cos30°=2×=,∴BP=2BQ=2,在Rt △BEP 中,∵∠EBP=30°, ∴PE=BP=. 故选:A .【总结归纳】本题考查的是等边三角形的性质、角平分线的性质及直角三角形的性质,熟知等边三角形的三个内角都是60°是解答此题的关键.9.关于x 的一元二次方程(a+1)x 2﹣4x ﹣1=0有两个不相等的实数根,则a 的取值范围是( ) A .a >﹣5B .a >﹣5且a≠﹣1C .a <﹣5D .a≥﹣5且a≠﹣1【知识考点】根的判别式;一元二次方程的定义.【思路分析】在与一元二次方程有关的求值问题中,方程x 2﹣x+a=0有两个不相等的实数根,方程必须满足△=b 2﹣4ac >0,即可求得.【解答过程】解:x 的一元二次方程(a+1)x 2﹣4x ﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=16+4a+4>0,解得a>﹣5∵a+1≠0∴a≠﹣1.故选:B.【总结归纳】本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.如图,在△OAB中,C是AB的中点,反比例函数kyx(x>0)在第一象限的图象经过A、C两点,若△OAB面积为6,则k的值为()A.2 B.4 C.8 D.16【知识考点】反比例函数系数k的几何意义;三角形中位线定理.【思路分析】分别过点A、点C作OB的垂线,垂足分别为点M、点N,根据C是AB的中点得到CN为△AMB的中位线,然后设MN=NB=a,CN=b,AM=2b,根据OM•AM=ON•CN,得到OM=a,最后根据面积=3a•2b÷2=3ab=6求得ab=2从而求得k=a•2b=2ab=4.【解答过程】解:分别过点A、点C作OB的垂线,垂足分别为点M、点N,如图,∵点C为AB的中点,CN∥AM,∴CN为△AMB的中位线,∴MN=NB=a,CN=b,AM=2b,又∵OM•AM=ON•CN∴OM=a∴这样面积=3a•2b÷2=3ab=6,∴ab=2,∴k=a•2b=2ab=4,故选:B.【总结归纳】本题考查了反比例函数的比例系数的几何意义及三角形的中位线定理,解题的关键是正确的作出辅助线.二、填空题(本大题共6小题,每小题3分,共18分)11.分解因式ab3-ab= .【知识考点】提公因式法与公式法的综合运用.【思路分析】先提取公因式ab,再对余下的多项式利用平方差公式继续分解.【解答过程】解:原式=ab(b2-1)=ab(b+1)(b-1),故答案为:ab(b+1)(b-1).【总结归纳】本题主要考查提公因式法分解因式和利用平方差公式分解因式,难点在于需要进行二次分解.12.已知实数x满足13xx+=,则221xx+=的值为.【知识考点】完全平方公式.【思路分析】将x+=3两边平方,然后移项即可得出答案.【解答过程】解:由题意得,x+=3,两边平方得:x2+2+=9,故x2+=7.故答案为:7.【总结归纳】此题考查了完全平方公式的知识,掌握完全平方公式的展开式的形式是解答此题的关键,属于基础题.13.从2,﹣1,﹣2三个数中任意选取一个作为直线y=kx+1中的k值,则所得的直线不经过第三象限的概率是.【知识考点】概率公式;一次函数图象与系数的关系.【思路分析】由于y=kx+1,所以当直线不经过第三象限时k<0,由于一共有3个数,其中小于0的数有2个,容易得出事件A的概率为23.【解答过程】解:∵y=kx+1,当直线不经过第三象限时k<0,其中3个数中小于0的数有2个,因此概率为23.故答案为:23.【总结归纳】本题考查一次函数的性质和等可能事件概率的计算.用到的知识点为:概率=所求情况数与总情况数之比.当一次函数y=kx+b不经过第三象限时k<0.14.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种三分之一,结果提前4天完成任务,原计划每天种棵树.【知识考点】分式方程的应用.【思路分析】根据:原计划完成任务的天数﹣实际完成任务的天数=4,列方程即可.【解答过程】解:设原计划每天种x棵树,据题意得,,解得x=30,经检验得出:x=30是原方程的解.所以原计划每天种30棵树,故答案为:30.【总结归纳】此题主要考查了分式方程的应用,合理地建立等量关系,列出方程是解题关键.15.如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为.【知识考点】正方形的性质;全等三角形的判定与性质;勾股定理.【思路分析】连接AE,BE,DF,CF,可证明三角形AEB是等边三角形,利用等边三角形的性质和勾股定理即可求出边AB上的高线,同理可求出CD边上的高线,进而求出EF的长.【解答过程】解:连接AE,BE,DF,CF.∵以顶点A、B为圆心,1为半径的两弧交于点E,AB=1,∴AB=AE=BE,∴△AEB是等边三角形,∴边AB上的高线为EN=,延长EF交AB于N,并反向延长EF交DC于M,则E、F、M,N共线,则EM=1﹣EN=1﹣,∴NF=EM=1﹣,∴EF=1﹣EM﹣NF=﹣1.故答案为:﹣1.【总结归纳】本题考查了正方形的性质和等边三角形的判定和性质以及勾股定理的运用,解题的关键是添加辅助线构造等边三角形,利用等边三角形的性质解答即可.16.已知如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,△APD中AP边上的高为.【知识考点】轴对称﹣最短路线问题;直角梯形.【思路分析】要求△APD 中边AP 上的高,根据三角形的面积,由勾股定理即可得解. 【解答过程】解:过点D 作DE ⊥BC 于E ,∵AD ∥BC ,AB ⊥BC , ∴四边形ABED 是矩形, ∴BE=AD=2, ∵BC=CD=5, ∴EC=3, ∴AB=DE=4,延长AB 到A′,使得A′B=AB ,连接A′D 交BC 于P ,此时PA+PD 最小, ∴△A′PB ≌△DPE , ∴BP=EP , ∴PA=PD , ∴BP=AD=1, ∴AP=,在△APD 中,由面积公式可得 △APD 中边AP 上的高=2×4÷=.故答案为:.【总结归纳】此题综合性较强,考查了梯形一般辅助线的作法、勾股定理、三角形的面积计算等知识点.三、解答题(本大题共10小题,满分72分)17.(5分)计算:)11tan 6012-⎛⎫-︒-+ ⎪⎝⎭.【知识考点】实数的运算;负整数指数幂;特殊角的锐角三角函数值;零指数幂.【思路分析】首先利用负整数指数幂的定义,特殊角的三角函数值,零指数幂的定义,化简二次根式等知识化简各部分,然后进行实数的运算即可.【解答过程】解:原式21=-+1=【总结归纳】本题主要考查了实数的运算,正确化简各部分是解答本题的关键.18.(5分)如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°(1)画出旋转之后的△AB′C′;(2)求线段AC旋转过程中扫过的扇形的面积.【知识考点】作图﹣旋转变换;扇形面积的计算.【思路分析】(1)根据网格结构找出点B、C旋转后的对应点B′、C′的位置,然后顺次连接即可;(2)先求出AC的长,再根据扇形的面积公式列式进行计算即可得解.【解答过程】解:(1)△AB′C′如图所示;(2)由图可知,AC=2,∴线段AC旋转过程中扫过的扇形的面积==π.【总结归纳】本题考查了利用旋转变换作图,扇形面积的计算,是基础题,熟练掌握网格结构,准确找出对应点的位置是解题的关键.19.(5分)某时刻海上点P处有一客轮,测得灯塔A位于客轮P的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏西60°方向航行23小时到达B处,那么tan∠ABP的值为多少?【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】根据题意作出图形后知道北偏东30°与北偏西60°成直角,利用正切的定义求值即可.【解答过程】解:如图,∵灯塔A位于客轮P的北偏东30°方向,且相距20海里.∴PA=20∵客轮以60海里/小时的速度沿北偏西60°方向航行小时到达B处,∴∠APB=90°BP=60×=40∴tan∠ABP===【总结归纳】本题考查了解直角三角形的应用,解题的关键是根据实际问题整理出直角三角形并利用正切的定义求值.20.(5分)17.如图,一次函数y=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数kyx图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)求点B到直线OM的距离.【知识考点】反比例函数综合题.【思路分析】(1)首先根据一次函数解析式算出M点的坐标,再把M点的坐标代入反比例函数解析式即可;(2)设点B到直线OM的距离为h,过M点作MC⊥y轴,垂足为C,根据一次函数解析式表示出B点坐标,再利用△OMB的面积=×BO×MC算出面积,再利用勾股定理算出MO的长,再次利用三角形的面积公式可得OM•h,根据前面算的三角形面积可算出h的值.【解答过程】解:(1)∵一次函数y=﹣x﹣1过M(﹣2,m),∴m=1,∴M(﹣2,1)把M(﹣2,1)代入y=得:k=﹣2,∴反比列函数为y=﹣;(2)设点B到直线OM的距离为h,过M点作MC⊥y轴,垂足为C.∵一次函数y=﹣x﹣1与y轴交于点B,∴点B的坐标是(0,﹣1).S△OMB=×1×2=1,在Rt△OMC中,OM===,∵S△OMB=OM•h=1,∴h==.即:点B到直线OM的距离为.【总结归纳】此题主要考查了反比例函数与一次函数的综合应用,关键是熟练掌握三角形的面积公式,并能灵活运用.21.(5分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O 的另一个交点为E,连接AC,CE.(1)求证:∠E=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.【知识考点】圆周角定理;等腰三角形的判定与性质;勾股定理.【思路分析】(1)由AB为⊙O的直径,易证得AC⊥BD,又由DC=CB,根据线段垂直平分线的性质,可证得AD=AB,即可得:∠B=∠D;(2)首先设BC=x,则AC=x﹣2,由在Rt△ABC中,AC2+BC2=AB2,可得方程:(x﹣2)2+x2=42,解此方程即可求得CB的长,继而求得CE的长.【解答过程】(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,又∵DC=CB,∴AD=AB,∴∠B=∠D;又∵∠E=∠B,∴∠E=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.【总结归纳】此题考查了圆周角定理、线段垂直平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度适中,注意掌握方程思想与数形结合思想的应用.22.(8分)为增强环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次抽样调查了多少个家庭?(2)将图①中的条形图补充完整,直接写出用车时间的中位数落在哪个时间段内;(3)求用车时间在1~1.5小时的部分对应的扇形圆心角的度数.【知识考点】条形统计图;扇形统计图.【思路分析】(1)用1.5﹣2小时的频数除以其所占的百分比即可求得抽样调查的人数;(2)根据圆心角的度数求出每个小组的频数即可补全统计图;(3)用人数除以总人数乘以周角即可求得圆心角的度数.【解答过程】解:(1)观察统计图知:用车时间在1.5~2小时的有30个,其圆心角为54°,故抽查的总人数为30÷=200个;(2)用车时间在0.5~1小时的有200×=60个;用车时间在2~2.5小时的有200﹣60﹣30﹣90=20个,统计图为:中位数落在1﹣1.5小时这一小组内.(3)用车时间在1~1.5小时的部分对应的扇形圆心角的度数为×360°=162°.【总结归纳】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(8分)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.【知识考点】一元二次方程的应用.【思路分析】(1)设出平均每次下调的百分率,根据从5元下调到3.2列出一元二次方程求解即可;(2)根据优惠方案分别求得两种方案的费用后比较即可得到结果.【解答过程】解(1)设平均每次下调的百分率为x.由题意,得5(1﹣x)2=3.2.解这个方程,得x1=0.2,x2=1.8(不符合题意),符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000﹣200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.【总结归纳】本题考查了一元二次方程的应用,在解决有关增长率的问题时,注意其固定的等量关系.24.(9分)如图,甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上时,重转一次,直到指针都指向一个区域为止).(1)请你用画树状图或列表格的方法求出|m+n|>1的概率;(2)直接写出点(m,n)落在函数1yx=-图象上的概率.【知识考点】列表法与树状图法;绝对值;反比例函数图象上点的坐标特征.【思路分析】(1)根据题意列表,然后根据列表求得所有可能的结果与|m+n|>1的情况,根据概率公式求解即可.(2)根据(1)中的表格,即可求得点(m,n)落在函数y=﹣图象上的情况,由概率公式即可求得答案.【解答过程】解:(1)表格如下:转盘乙转盘甲﹣1 0 1 2﹣1 (﹣1,﹣1)(﹣1,0)(﹣1,1)(﹣1,2)﹣(﹣,﹣1)(﹣,0)(﹣,1)(﹣,2)1 (1,﹣1)(1,0)(1,1)(1,2)由表格可知,所有等可能的结果有12种,其中|m+n|>1的情况有5种,所以|m+n|>1的概率为P1=;(2)点(m,n)在函数y=﹣上的概率为P2==.【总结归纳】此题为反比例函数与概率的综合,考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.反比例函数上的点的横纵坐标的积为反比例函数的比例系数.第二象限点的符号为(﹣,+).25.(10分)已知一次函数y=x+1的图象和二次函数y=x2+bx+c的图象都经过A、B两点,且点A 在y轴上,B点的纵坐标为5.(1)求这个二次函数的解析式;(2)将此二次函数图象的顶点记作点P,求△ABP的面积;(3)已知点C、D在射线AB上,且D点的横坐标比C点的横坐标大2,点E、F在这个二次函数图象上,且CE、DF与y轴平行,当CF∥ED时,求C点坐标.【知识考点】二次函数综合题.【思路分析】(1)利用一次函数结合A、B两点的特点,求出A、B两点的坐标,然后将A、B的坐标代入y=x2+bx+c,即可组成方程组求出b、c的值,从而得到二次函数的解析式;(2)画出二次函数图象,画出一次函数AB的图象,将△APB转化为△APG和△PGB两个三角形的面积的和来解答;(3)设C点横坐标为a,据题意此推知C点坐标为(a,a+1),D点坐标为(a+2,a+3),E点坐标为(a,a2﹣3a+1),F点坐标为(a+2,a2+a﹣1),得到CE=﹣a2+4a,DF=a2﹣4,根据CE∥DF,CF∥ED,得出四边形CEDF是平行四边形,根据平行四边形的性质,求出﹣a2+4a=a2﹣4,或﹣a2+4a=﹣a2+4求出a的值,从而得到C点坐标.【解答过程】解:(1)如图1,A点坐标为(0,1),将y=5代入y=x+1,得x=4,∴B点坐标为(4,5),将A、B两点坐标代入y=x2+bx+c,解得,∴二次函数解析式为y=x2﹣3x+1.(2)y=x2﹣3x+()2﹣()2+1=(x﹣)2﹣,P点坐标为(,),抛物线对称轴与直线AB的交点记作点G,则点G(,),∴PG=,∴.(3)如图2,设C点横坐标为a,则C点坐标为(a,a+1),D点坐标为(a+2,a+3),E点坐标为(a,a2﹣3a+1),F点坐标为(a+2,a2+a﹣1),由题意,得CE=﹣a2+4a,DF=a2﹣4,∵且CE、DF与y轴平行,∴CE∥DF,又∵CF∥ED,。
内蒙古兴安盟中考数学试卷及答案
内蒙古兴安盟中考数学试卷及答案一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列计算结果为负数的是()A.﹣(﹣3)B.﹣|﹣3| C.D.()﹣12.(3分)锐角三角形的三个内角是∠A,∠B,∠C,如果α=∠A+∠B,β=∠B+∠C,γ=∠C+∠A,那么α,β,γ这三个角中()A.没有锐角B.有1个锐角C.有2个锐角D.有3个锐角3.(3分)10月15日9时10分,我国神舟五号载人飞船准确进入预定轨道.16日5时59分,返回舱与推进舱分离,返回地面.其间飞船绕地球共飞行了14圈,飞行的路程约60万千米,则神舟五号飞船绕地球平均每圈约飞行(用科学记数法表示保留三个有效数字)()A.4.28×104千米 B.4.29×104千米 C.4.28×105千米 D.4.29×105千米4.(3分)下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是()A.B.C.D.5.(3分)如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB 与CF相交于N,∠E=∠F=90°,∠EAC=∠FAB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE=CF;④△ACN≌△ABM.其中正确的结论是()A.①③④B.②③④C.①②③D.①②④6.(3分)图中4个正方形的边长都相等,其中阴影部分面积相等的图形个数是()7.A.0B.2C.3D.47.(3分)甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为:9,9,x,7,若这组数据的众数与平均数恰好相等,则这组数据的中位数是()A.10 B.9C.8D.78.(3分)黑色正三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正六边形分上下两行,上面一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满.按第1,2,3个图案(如图)所示规律依次下去,则第n个图案中,黑色正三角形和白色正六边形的个数分别是()A.n2+n+2,2n+1 B.2n+2,2n+1 C.4n,n2﹣n+3 D.4n,2n+19.(3分)如图,已知⊙O的两条弦AB、CD相交于AB的中点E,且AB=4,DE=CE+3,则CD 的长为()A.4B.5C.8D.1010.(3分)如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.(3分)函数y=中,自变量x的取值范围是_________ .12.(3分)把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为_________ .13.(3分)分解因式:a3+a2b﹣ab2﹣b3= _________ .14.(3分)如图,电路图上有四个开关,A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C,都可使小灯泡发光,现任意闭合其中两个开关,则小灯泡发光的概率为_________ .15.(3分)如果半径为2和7的两个圆相切,那么这两圆的圆心距为_________ .16.(3分)如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和点(1,0),且与y轴交于负半轴,给出下面四个结论:①abc<0;②2a+b>0;③a+c=1;④b2﹣4ac>0.其中正确结论的序号是_________ .(请将自己认为正确结论的序号都填上)17.(3分)如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC 的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是_________ m.(结果不取近似值)三、解答题(共9小题,满分69分)18.(6分)计算:(﹣1)﹣2007﹣+2cos30°﹣(﹣1)219.(6分)解方程:+=20.(6分)先化简分式:,然后请你给a选取一个合适的值,再求此时原式的值.21.(6分)某车间有20名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.现要求加工甲种零件的人数不少于加工乙种零件人数的2倍,设每天所获利润为y元,那么多少人加工甲种零件时,每天所获利润最大,每天所获最大利润是多少元?22.(7分)某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图,甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15,结合统计图回答下列问题:(1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?23.(8分)如图,小岛A在港口P的南偏西45°方向,距离港口81海里处.甲船从A出发,沿AP方向以9海里/时的速度驶向港口,乙船从港口P出发,沿南偏东60°方向,以18海里/时的速度驶离港口,现两船同时出发.(1)出发后几小时两船与港口P的距离相等;(2)出发后几小时乙船在甲船的正东方向?(结果精确到0.1小时)(参照数据:≈1.41,≈1.73)24.(8分)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?25.(10分)有两个可以自由转动的均匀转盘A、B,分别被分成4等份、3等份,并在每份内均标有数字,如图所示,丁洋和王倩同学用这两个转盘做游戏,游戏规则如下:①分别转动转盘A和B;②两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止);③如果和为0,丁洋获胜,否则,王倩获胜.(1)用列表法(或树状图)求丁洋获胜的概率;(2)你认为这个游戏对双方公平吗?请说明理由.26.(12分)图1是边长分别为和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD,BE,CE的延长线交AB于F(图2).探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论;(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3).探究:设△PQR移动的时间为x秒,△PQR与△AFC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.参照答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列计算结果为负数的是()D.A.﹣(﹣3)B.﹣|﹣3| C.()﹣1考点:负整数指数幂;相反数;绝对值;算术平方根.专题:计算题.解析:根据绝对值、相反数、负整数指数的运算法则计算即可.解答:解:A、﹣(﹣3)=3;B、﹣|﹣3|=﹣3;C、()﹣1=3;D、=3.故选B.点评:本题主要考查了相反数,绝对值,负整数指数和算术平方根,这些运算法则要牢记.2.(3分)锐角三角形的三个内角是∠A,∠B,∠C,如果α=∠A+∠B,β=∠B+∠C,γ=∠C+∠A,那么α,β,γ这三个角中()A.没有锐角B.有1个锐角C.有2个锐角D.有3个锐角考点:三角形的外角性质.解析:根据三角形的外角性质,及锐角三角形的性质作答.解答:解:由于锐角三角形中三个都是锐角,而α,β,γ分别是其外角,根据三角形外角的性质,可知α,β,γ这三个角都是钝角.故选A.点评:此题主要考查了三角形内角与外角的关系.(1)三角形的任一外角等于和它不相邻的两个内角之和;(2)三角形的任一外角>任何一个和它不相邻的内角.3.(3分)10月15日9时10分,我国神舟五号载人飞船准确进入预定轨道.16日5时59分,返回舱与推进舱分离,返回地面.其间飞船绕地球共飞行了14圈,飞行的路程约60万千米,则神舟五号飞船绕地球平均每圈约飞行(用科学记数法表示保留三个有效数字)()A.4.28×104千米 B.4.29×104千米 C.4.28×105千米 D.4.29×105千米考点:科学记数法与有效数字.专题:应用题.解析:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.而保留三个有效数字,要观察第4个有效数字,四舍五入.解答:解:60万÷14≈4.29×104.故选B.点评:本题考查学生对科学记数法的掌握.科学记数法要求前面的部分是大于或等于1,而小于10,小数点向左移动4位,应该为4.29×104.4.(3分)下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是()A.B.C.D.考点:统计图的选择.专题:图表型.解析:此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.解答:解:根据统计图的特点,知条形统计图能清楚地表示出每个项目的具体数目,也正符合这道题要把不同品种的奶牛的平均产奶量显示清楚的目的;而图B中的奶牛瓶这样一个立体物显示,容易使人们从体积的角度比较这几种不同品种奶牛的平均产奶量,从而扩大了它们的差距,是不合适的.故选D.点评:本题考查的是统计图的选择,注意条形统计图能看出具体产量的多少.此题虽是一道小题,但把三种统计图各自的特点和补足都进行了考查,而且还考查了数据与图形的关系所造成的误导,把各个知识点都融合在一道题中,非常巧妙,又顺理成章,很有新意.5.(3分)如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB 与CF相交于N,∠E=∠F=90°,∠EAC=∠FAB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE=CF;④△ACN≌△ABM.其中正确的结论是()A.①③④B.②③④C.①②③D.①②④考点:全等三角形的判定与性质.解析:根据题目中所给的大部分选项先判断该证明哪两个三角形全等,然后对各选项采取排除法得到正确选项.解答:解:∵∠EAC=∠FAB∴∠EAB=∠CAF又∵∠E=∠F=90°,AE=AF∴△ABE≌△ACF∴∠B=∠C,BE=CF.由△AEB≌△AFC知:∠B=∠C,AC=AB;又∵∠CAB=∠BAC,∴△ACN≌△ABM;(故④正确)由于条件不足,无法证得②CD=DN;故正确的结论有:①③④;故选A.点评:本题考查了全等三角形的判定和性质,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.6.(3分)图中4个正方形的边长都相等,其中阴影部分面积相等的图形个数是()A.0B.2C.3D.4考点:扇形面积的计算.解析:从图中可以看出阴影部分的面积=正方形的面积﹣圆的面积.解答:解:第一个阴影部分的面积=正方形的面积﹣圆的面积,圆的半径为边长的一半;第二个也是;第三个不是;第四个也是;所以有三个图形的阴影部分面积相等.故选C.点评:本题关键是看出阴影部分的面积公式是由哪几部分组成的.7.(3分)甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为:9,9,x,7,若这组数据的众数与平均数恰好相等,则这组数据的中位数是()A.10 B.9C.8D.7考点:中位数;算术平均数.专题:应用题.解析:将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.解答:解:因为这组数据的众数与平均数恰好相等,所以9+9+x+7=9×4,∴x=11;题目中数据共有4个,故中位数是按从小到大排列后第2,第3两个数的平均数作为中位数.故这组数据的中位数是(9+9)=9.故选B.点评:本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.8.(3分)黑色正三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正六边形分上下两行,上面一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满.按第1,2,3个图案(如图)所示规律依次下去,则第n个图案中,黑色正三角形和白色正六边形的个数分别是()A.n2+n+2,2n+1 B.2n+2,2n+1 C.4n,n2﹣n+3 D.4n,2n+1考点:平面镶嵌(密铺).专题:规律型.解析:第n个图案中,黑色正三角形和白色正六边形的个数分别是4n,3+(n﹣1)×2=2n+1.解答:解:第1个图案中,黑色正三角形和白色正六边形的个数分别是4,2×1+1=3;第2个图案中,黑色正三角形和白色正六边形的个数分别是2×4=8,2×2+1=5;第3个图案中,黑色正三角形和白色正六边形的个数分别是3×4=12,2×3+1=7;…第n个图案中,黑色正三角形和白色正六边形的个数分别是4n,3+(n﹣1)×2=2n+1.故选D.点评:找规律的题,应以第一个图象为基准,细心观察,得到第n个图形与第一个图形之间的关系.9.(3分)如图,已知⊙O的两条弦AB、CD相交于AB的中点E,且AB=4,DE=CE+3,则CD 的长为()A.4B.5C.8D.10考点:相交弦定理.专题:压轴题.解析:运用相交弦定理求解.解答:解:设CE=x,则DE=3+x.根据相交弦定理,得x(x+3)=2×2,x=1或x=﹣3(不合题意,应舍去).则CD=3+1+1=5.故选B.点评:此题可以根据相交弦定理列方程求解.10.(3分)如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是()A.B.C.D.考点:翻折变换(折叠问题).专题:压轴题.解析:根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等和勾股定理求解.解答:解:根据折叠的性质知,四边形AFEB与四边形FDCE全等,有EC=AF=AE,由勾股定理得,AB2+BE2=AE2即42+(8﹣AE)2=AE2,解得,AE=AF=5,BE=3,作EG⊥AF于点G,则四边形AGEB是矩形,有AG=3,GF=2,GE=AB=4,由勾股定理得EF=.故选D.点评:本题利用了:1、折叠的性质;2、矩形的性质.二、填空题(共7小题,每小题3分,满分21分)11.(3分)函数y=中,自变量x的取值范围是x>﹣2 .考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.专题:压轴题.解析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.解答:解:根据题意得:x+2>0,解得x>﹣2.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.(3分)把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为±.考点:算术平方根;平方根;展开图折叠成几何体.解析:由于x﹣y的相对面是1,x+y的相对面是3,所以x﹣y=1,x+y=3,由此即可解得x和y的值,然后即可求出x的平方根与y的算术平方根之积.解答:解:依题意得x﹣y的相对面是1,x+y的相对面是3,∴x﹣y=1,x+y=3,∴x=2,y=1,∴x的平方根与y的算术平方根之积为±.故答案为:±.点评:此题主要考查了平方根、算术平方根的定义,解题关键是找出这个正方体的相对面,要求学生自己动手,慢慢体会哪二个面是相对面.13.(3分)分解因式:a3+a2b﹣ab2﹣b3= (a+b)2(a﹣b).考点:因式分解-分组分解法.解析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题前两项、后两项都有公因式,且分解后还能继续分解,故使前两项一组,后两项一组.解答:解:a3+a2b﹣ab2﹣b3,=a2(a+b)﹣b2(a+b),=(a+b)(a2﹣b2),=(a+b)2(a﹣b).点评:本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.此题主要用到了提取公因式法和平方差公式进行因式分解.14.(3分)如图,电路图上有四个开关,A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C,都可使小灯泡发光,现任意闭合其中两个开关,则小灯泡发光的概率为.考点:概率公式.专题:跨学科.解析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:.故本题答案为:.点评:本题考查了概率的公式,用满足条件的个数除以总的个数即可得出概率的值.15.(3分)如果半径为2和7的两个圆相切,那么这两圆的圆心距为9或5 .考点:圆与圆的位置关系.解析:两圆相切,包括两圆外切或两圆内切.当两圆外切时,圆心距等于两圆半径之和;当两圆内切时,圆心距等于两圆半径之差.解答:解:当两圆外切时d=7+2=9;内切时d=7﹣2=5.所以两圆的圆心距为9或5.点评:本题考查了由两圆位置关系来判断半径和圆心距之间数量关系的方法.16.(3分)如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和点(1,0),且与y轴交于负半轴,给出下面四个结论:①abc<0;②2a+b>0;③a+c=1;④b2﹣4ac>0.其中正确结论的序号是②,③,④.(请将自己认为正确结论的序号都填上)考点:二次函数图象与系数的关系.专题:压轴题.解析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①图象开口向上,与y轴交于负半轴,对称轴在y轴右侧,能得到:a>0,c<0,﹣>0,b<0,∴abc>0,错误;②∵对称轴在1的左边,∴﹣<1,又a>0,∴2a+b>0,正确;③图象经过点(﹣1,2)和点(1,0),可得,消去b项可得:a+c=1,正确;④图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,正确.故正确结论的序号是②,③,④.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.17.(3分)如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC 的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是m.(结果不取近似值)考点:平面展开-最短路径问题.专题:压轴题;转化思想.解析:求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只小猫经过的最短距离.解答:解:圆锥的底面周长是6π,则6π=,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.∴在圆锥侧面展开图中BP=m.故小猫经过的最短距离是m.故答案是:3.点评:正确判断小猫经过的路线,把曲面的问题转化为平面的问题是解题的关键.三、解答题(共9小题,满分69分)18.(6分)计算:(﹣1)﹣2007﹣+2cos30°﹣(﹣1)2考点:实数的运算;立方根;负整数指数幂;特殊角的三角函数值.解析:根据负整数指数幂、特殊角的三角函数值、三次根式化简,平方的计算四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1﹣4+﹣3+2﹣1=3﹣9.点评:本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、立方根的运算、平方等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;平方的运算;三次根式的化简.19.(6分)解方程:+=考点:解分式方程.专题:计算题.解析:把各分母进行因式分解,可得到最简公分母是x(x+1)(x﹣1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.解答:解:方程两边都乘x(x+1)(x﹣1),得7(x﹣1)+3(x+1)=6x,解得x=1.经检验:x=1是增根.∴此方程无解.点评:(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.20.(6分)先化简分式:,然后请你给a 选取一个合适的值,再求此时原式的值.21.(6分)某车间有20名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.现要求加工甲种零件的人数不少于加工乙种零件人数的2倍,设每天所获利润为y 元,那么多少人加工甲种零件时,每天所获利润最大,每天所获最大利润是多少元?考点: 二次函数的应用.解析: 人数安排:设安排x 人加工甲种零件,则(20﹣x )人加工乙种零件;每天所获利润=甲每天所获利润+乙每天所获利润,根据基本等量关系列出一次函数,由“要求加工甲种零件的人数不少于加工乙种零件人数的2倍”,得出自变量x 范围,求函数最大值.解答: 解:设安排x 人加工甲种零件,则(20﹣x )人加工乙种零件依题意得:y=5x •16+4(20﹣x )•24=﹣16x+1920考点:分式的化简求值. 专题:开放型. 解析:首先把除法运算转化成乘法运算,然后进行约分,最后进行加减运算. 解答: 解:原式=1﹣× =1﹣=﹣ 当a=2时,原式=﹣.点评: 本题主要考查分式的化简求值这一知识点,把分式化到最简是解答的关键,代值时一定注意分母的值不能为0.又x≥2(20﹣x),x≥13∵y是x的一次函数,且﹣16<0∴当x=14时,y最大=1696即安排14人加工甲种零件时,每天所获利润最大,每天所获最大利润是1696元.点评:本题考查了列一次函数解决实际问题的能力,此题为数学建模题,借助一次函数解决实际问题.22.(7分)某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图,甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15,结合统计图回答下列问题:(1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?考点:频数(率)分布直方图;频数与频率;中位数.专题:常规题型;压轴题.解析:(1)根据题意:结合各小组频数之和等于数据总和,各小组频率之和等于1;易得第二组的频率0.08;再由频率、频数的关系频率=;可得总人数.(2)根据题意:从左至右第二、三、四组的频数比为4:17:15,和(1)的结论;容易求得各组的人数,这样就能求出优秀率.(3)由中位数的意义,作答即可.解答:解:(1)第一组的频率为1﹣0.96=0.04,第二组的频率为0.12﹣0.04=0.08,故总人数为=150(人),即这次共抽调了150人;(2)第一组人数为150×0.04=6(人),第三、四组人数分别为51人、45人,这次测试的优秀率为×100%=24%;(3)前三组的人数为69,而中位数是第75和第76个数的平均数,而120是第四组中最小的数值,因而第75和第76都是120,所以成绩为120次的学生至少有76﹣69=7人.点评:本题考查了中位数的运用和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、解析、研究统计图,才能作出正确的判断和解决问题.同时对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系频率=.23.(8分)如图,小岛A在港口P的南偏西45°方向,距离港口81海里处.甲船从A出发,沿AP方向以9海里/时的速度驶向港口,乙船从港口P出发,沿南偏东60°方向,以18海里/时的速度驶离港口,现两船同时出发.(1)出发后几小时两船与港口P的距离相等;(2)出发后几小时乙船在甲船的正东方向?(结果精确到0.1小时)(参照数据:≈1.41,≈1.73)考点:解直角三角形的应用-方向角问题.专题:应用题;压轴题.解析:(1)求几小时后两船与港口的距离相等,可以转化为方程的问题解决.(2)过点P作PE⊥CD,垂足为E.则点E在点P的正南方向,则得到相等关系,C、D两点到在南北方向上经过的距离相等,因而根据方程就可以解决.解答:解:(1)设出发后x小时两船与港口P的距离相等.根据题意得81﹣9x=18x.解这个方程得x=3.∴出发后3小时两船与港口P的距离相等.(2)设出发后y小时乙船在甲船的正东方向,此时甲、乙两船的位置分别在点C,D处.连接CD,过点P作PE⊥CD,垂足为E.则点E在点P的正南方向.在Rt△CEP中,∠CPE=45°,∴PE=PC•cos45°.在Rt△PED中,∠EPD=60°,∴PE=PD•cos60°.∴PC•cos45°=PD•cos60°.∴(81﹣9y)cos45°=18y•cos60°.解这个方程,得y≈3.7.答:出发后约3.7小时乙船在甲船的正东方向.点评:在船舶运动过程中,构建解直角三角形的问题,考查学生对所学知识的变式认识能力.24.(8分)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?考点:一元二次方程的应用.专题:销售问题;压轴题.解析:设应将每千克小型西瓜的售价降低x元.那么每千克的利润为:(3﹣2﹣x),由于这种小型西瓜每降价O.1元/千克,每天可多售出40千克.所以降价x元,则每天售出数量为:。
内蒙古兴安盟2020版中考数学试卷B卷
内蒙古兴安盟2020版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)当(m+n)2+2004取最小值时,m2﹣n2+2|m|﹣2|n|=()A . 0B . -1C . 0或﹣1D . 以上答案都不对2. (2分)(2016·娄底) 下列几何体中,主视图和俯视图都为矩形的是()A .B .C .D .3. (2分) (2019七下·蜀山期中) 若x2+mxy+ y2是完全平方式,则常数m的值为()A . 5B . ﹣5C . ±5D . ±4. (2分) (2016九上·新疆期中) 如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A . 6B . 7C . 8D . 95. (2分)(2018·毕节模拟) 数学老师给出如下数据1,2,2,3,2,关于这组数据的正确说法是()A . 众数是2B . 极差是3C . 中位数是1D . 平均数是46. (2分) (2019九上·江北期末) 如图,在平面直角坐标系中,直线不经过第四象限,且与轴,轴分别交于两点,点为的中点,点在线段上,其坐标为,连结,,若,那么的值为()A .B . 4C . 5D . 67. (2分)(2016·安徽模拟) 如图,正方形ABCD边长为8cm,FG是等腰直角△EFG的斜边,FG=10cm,点B、F、C、G都在直线l上,△EFG以1cm/s的速度沿直线l向右做匀速运动,当t=0时,点G与B重合,记t(0≤t≤8)秒时,正方形与三角形重合部分的面积是Scm2 ,则S与t之间的函数关系图象大致为()A .B .C .D .8. (2分)(2018·南宁模拟) 一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为P0 , P1 , P2 , P3 ,则P0 , P1 , P2 , P3中最大的是()A . P0B . P1C . P2D . P39. (2分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A . 13B . 14C . 15D . 1610. (2分)若抛物线y=x2-6x+c-2的顶点到x轴的距离是3,则c的值等于()A . 8 或14B . 14C . -8D . -8或-14二、填空题 (共6题;共6分)11. (1分)已知∠α与∠β互补,且∠α=120°,则∠β的正弦值为________12. (1分) (2016八上·东营期中) 如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为________(度).13. (1分)(2018·泰州) 已知,,若,则实数的值为________.14. (1分) (2019九上·南关期末) 如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.15. (1分)(2019·广州模拟) 如图,在平面直角坐标系中有两点A(6,0),B(0,3),如果点C在x轴上(C与A不重合),当点C的坐标为________时,△BOC与△AOB相似.16. (1分) (2017九下·萧山开学考) 如图,在2×2的正方形网格中四个小正方形的顶点叫格点,已经取定格点A和B,在余下的格点中任取一点C,使△ABC为直角三角形的概率是________.三、解答题 (共8题;共87分)17. (10分)(2017·雅安模拟) 计算下列各式:(1) | |+(﹣1)0+2sin45°﹣2cos30°+()﹣1(2)先化简,再求值:÷,其中x的值从不等式的整数解中选取.18. (10分)(2017·揭阳模拟) 对于钝角α,定义它的三角函数数值如下:sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α).(1)求sin135°,cos150°的值;(2)若一个三角形的三个内角的比为1:1:4,A,B是这个三角形的两个顶点,且∠A≤∠B,sinA,cosB 是方程4x2﹣mx﹣1=0的两个不相等的实数根,求m值及∠A,∠B的大小.19. (7分)(2017·丹东模拟) 某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4个完全相同的小球,球上分别标有“0元”、“10元”、“30元”和“50元”的字样.规定:顾客在本商场同一日内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,第一次摸出后不放回).商场根据两个小球所标金额之和返还相应价格的购物券,可以重新在本商场消费.某顾客消费刚好满300元,则在本次消费中:(1)该顾客至少可得________元购物券,至多可得________元购物券;(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.20. (10分)(2018·湘西) 如图,某市郊外景区内一条笔直的公路l经过A、B两个景点,景区管委会又开发了风景优美的景点C.经测量,C位于A的北偏东60°的方向上,C位于B的北偏东30°的方向上,且AB=10km.(1)求景点B与C的距离;(2)为了方便游客到景点C游玩,景区管委会准备由景点C向公路l修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长.(结果保留根号)21. (15分)(2017·青岛模拟) 在菱形ABCD中,对角线AC、BD交于点O,且AC=16cm,BD=12cm;点P从点A出发,沿AD方向匀速运动,速度为2cm/s;点Q从点C出发,沿CO方向匀速运动,速度为1cm/s;若P、Q两点同时出发,当一个点停止运动时,另一个点也停止运动.过点Q作MQ∥BC,交BD于点M,设运动时间为t(s)(0<t<5).解答下列问题:(1)求t为何值时,线段AQ、线段PM互相平分.(2)设四边形APQM的面积为Scm2,求S关于t的函数关系式;设菱形ABCD的面积为SABCD,求是否存在一个时刻t,使S:SABCD=2:5?如果存在,求出t,如果不存在,请说明理由.(3)求时刻t,使得以M、P、Q为顶点的三角形是直角三角形.22. (15分) (2016九上·西湖期末) 如图,一张正方形纸板的边长为2cm,将它剪去4个全等的直角三角形(图中阴影部分).设AE=BF=CG=DH=xcm,四边形EFGH的面积为ycm2 ,(1)求y关于x的函数表达式和自变量x的取值范围;(2)求四边形EFGH的面积为3cm2时的x值;(3)四边形EFGH的面积可以为1.5cm2吗?请说明理由.23. (10分) (2019七上·南岗期末) 某校七年级10个班师生举行文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,七年级统计后发现歌唱类节目比跳舞类节目数的2倍少4个.(1)七年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从开始到结束共用2小时35分钟,问参与的小品类节目有多少个?24. (10分)(2017·东安模拟) 已知:点P为线段AB上的动点(与A、B两点不重合),在同一平面内,把线段AP、BP分别折成等边△CDP和△EFP,且D、P、F三点共线,如图所示.(1)若DF=2,求AB的长;(2)若AB=18时,等边△CDP和△EFP的面积之和是否有最大值,如果有最大值,求最大值及此时P点位置,若没有最大值,说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共87分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、。
内蒙古兴安盟2020年(春秋版)中考数学试卷(I)卷
内蒙古兴安盟2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2019·广元) ﹣8的相反数是()A .B . ﹣8C . 8D .2. (2分)(2020·涪城模拟) 随着经济社会发展,各地机动车保有量持续上升,据统计四川省2019年机动车保有量约有1150万辆,若将该数字用科学记数法表示应是()A .B .C .D .3. (2分)(2020·三门模拟) 将一根直尺和一个含角的直角三角板如图放置,,则的度数为()A .B .C .D .4. (2分)在等式a3•()=a6中,括号里面的代数式应当是()A . 3aB . a2C . a3D . a45. (2分) (2017七下·博兴期末) 不等式1-2x<5-x的负整数解有()A . 1个B . 2个C . 3个D . 4个6. (2分) (2019九下·揭西期中) 2018年某中学举行的春季田径径运动会上,参加男子跳高的15名运动员的成绩如表所示:这些运动员跳高成绩的中位数和众数分别是()A . 1.70 ,1.65B . 1.70 ,1.70C . 1.65 ,1.60D . 3 ,47. (2分)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A . 3B . 4C .D .8. (2分)如图,点B在反比例函数(x>0)的图象上,横坐标为1,过点B分别向x轴,y轴作垂线,垂足分别为A,C,则矩形OABC的面积为A . 1B . 2C . 3D . 49. (2分)(2017·昌乐模拟) 如图,AB是⊙O的直径,弦CD⊥AB于H,若BH=2,CD=8,则⊙O的半径长为()A . 2B . 3C . 4D . 510. (2分) (2017九上·浙江月考) 如图,O是正△ABC内一点,OA=6,OB=8,OC=10,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O 与O′的距离为8;③S四边形AOBO′=24+12;④S△AOC+S△AOB=24+9;⑤S△ABC=36+25;其中正确的结论有()A . 1个B . 2个C . 3个D . 4个11. (2分) (2017九上·钦州期末) 如图,直径AB为3的半圆,绕A点逆时针旋转60°,此时点B到了点B′处,则图中阴影部分的面积是()A . 3πB .C . 6πD . 24π12. (2分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A . 1B . 2C . 3D . 4二、填空题 (共7题;共7分)13. (1分) (2017七下·射阳期末) 二元一次方程组的解为________14. (1分)(2019·宁波模拟) 关于x的方程=3的解为________.15. (1分)如图,在半径为3的⊙O中,Q、B、C是⊙O上的三个点,若∠BQC=36°,则劣弧BC的度数是________ .16. (1分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=________m.17. (1分)将二次函数y=x2+2x+3的图象绕它的顶点顺时针方向旋转180°得到的函数解析式为________.18. (1分) (2019九上·诸暨月考) 已知二次函数(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b),(m≠l的实数).其中正确的结论有________(只填序号).19. (1分)如图所示,正方形ABCD的边长为1,点E为AB的中点,以E为圆心,1为半径作圆,分别交AD,BC于M,N两点,与DC切于点P,则图中阴影部分面积是________.三、解答题 (共9题;共73分)20. (5分) (2019七下·伊通期末) 计算:21. (5分)先化简,再求值:(-4x2+2x-8)-( x-1),其中x= .22. (5分)(2017·惠山模拟) 已知,如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.23. (12分)(2020·阳新模拟) 如图,有四张背面完全相同的纸牌,其正面分别画有四个不同的几何图形,这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌正面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则如下:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌正面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表或画树状图的方法说明. (纸牌用表示)24. (10分)(2019·上海模拟) 在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,MN⊥BC交AC于点N,动点P在线段BA上以每秒 cm的速度由点B向点A运动.同时,动点Q在线段AC上由点N向点C运动,且始终保持MQ⊥MP.一个点到终点时两个点同时停止运动,设运动的时间为t秒(t>0).(1)求证:△PBM∽△QNM.(2)若∠ABC=60°,AB=4 cm,①求动点Q的运动速度;②设△APQ的面积为S(cm2),求S与t的等量关系式(不必写出t的取值范围).25. (5分)已知函数y=(n+1)xm+mx+1﹣n(m,n为实数)(1)当m,n取何值时,此函数是我们学过的哪一类函数?它一定与x轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设n>﹣1,那么:①当x<0时,y随x的增大而减小,请判断这个命题的真假并说明理由;②它一定经过哪个点?请说明理由.26. (6分) (2016七下·辉县期中) 解方程组(1) 2x﹣3(2).27. (10分) (2017九下·江阴期中) 如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF 恰好经过点A(如图2)求FB的长度;(2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红.28. (15分)(2019·金堂模拟) 如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a<0)经过点A(-1,0)、B(4,0)与y轴交于点C,tan∠ABC= .(1)求抛物线的解析式;(2)点M在第一象限的抛物线上,ME平行y轴交直线BC于点E,连接AC、CE,当ME取值最大值时,求△ACE 的面积.(3)在y轴负半轴上取点D(0,-1),连接BD,在抛物线上是否存在点N,使∠BAN=∠ACO-∠OBD?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共7题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共9题;共73分)20-1、21-1、22-1、23-1、23-2、24-1、24-2、25-1、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。
2020年内蒙古兴安盟中考数学试卷
2020年内蒙古兴安盟中考数学试卷一、选择题(下列各题的四个选项中只有一个正确.共12小题,每小题3分,共36分)1.(3分)﹣2020的绝对值是()A.﹣2020 B.2020 C.﹣D.2.(3分)下列计算正确的是()A.a2•a3=a6B.(x+y)2=x2+y2C.(a5÷a2)2=a6D.(﹣3xy)2=9xy23.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)由5个相同的小正方体组成的几何体如图所示,该几何体的俯视图是()A.B.C.D.5.(3分)下列事件是必然事件的是()A.任意一个五边形的外角和为540°B.抛掷一枚均匀的硬币100次,正面朝上的次数为50次C.13个人参加一个集会,他们中至少有两个人的出生月份是相同的D.太阳从西方升起6.(3分)如图,直线AB∥CD,AE⊥CE于点E,若∠EAB=120°,则∠ECD的度数是()A.120°B.100°C.150°D.160°7.(3分)已知实数a在数轴上的对应点位置如图所示,则化简|a﹣1|﹣的结果是()A.3﹣2a B.﹣1 C.1 D.2a﹣38.(3分)不等式组的非负整数解有()A.4个B.5个C.6个D.7个9.(3分)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x个零件,下列方程正确的是()A.=B.=C.+=130 D.﹣130=10.(3分)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC 的度数是()A.25°B.20°C.30°D.15°11.(3分)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A.14 B.20 C.22 D.2812.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则反比例函数y=与一次函数y=﹣cx+b在同一平面直角坐标系内的图象可能是()A.B.C.D.二、填空题(本题5个小题,每小题3分,共15分)13.(3分)中国的领水面积约为370000km2,将370000科学记数法表示为.14.(3分)分解因式:a2b﹣4b3=.15.(3分)若一个扇形的弧长是2πcm,面积是6πcm2,则扇形的圆心角是度.16.(3分)已知关于x的一元二次方程(m﹣1)x2﹣x+1=0有实数根,则m的取值范围是.17.(3分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的正半轴上.直线y=x﹣1分别与边AB,OA相交于D,M 两点,反比例函数y=(x>0)的图象经过点D并与边BC相交于点N,连接MN.点P是直线DM上的动点,当CP=MN时,点P的坐标是.三、解答题(本题4个小题,每小题6分,共24分)18.(6分)计算:(﹣)﹣1++2cos60°﹣(π﹣1)0.19.(6分)先化简,再求值:÷+3,其中x=﹣4.20.(6分)A,B两地间有一段笔直的高速铁路,长度为100km.某时发生的地震对地面上以点C为圆心,30km为半径的圆形区域内的建筑物有影响.分别从A,B两地处测得点C的方位角如图所示,tanα=1.776,tanβ=1.224.高速铁路是否会受到地震的影响?请通过计算说明理由.21.(6分)一个不透明的口袋中装有三个完全相同的小球,上面分别标有数字,,5.(1)从口袋中随机摸出一个小球,求摸出小球上的数字是无理数的概率(直接写出结果);(2)先从口袋中随机摸出一个小球,将小球上的数字记为x,把小球放回口袋中并搅匀,再从口袋中随机摸出一个小球,将小球上的数字记为y.请用列表法或画树状图法求出x 与y的乘积是有理数的概率.四、(本题7分)22.(7分)已知:如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别是边BC,CD上的点,且∠EOF=90°.求证:CE=DF.五、(本题7分)23.(7分)某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如图统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为人,扇形统计图中的m=,条形统计图中的n=;(2)所调查的初中学生每天睡眠时间的众数是,方差是;(3)该校共有1600名初中学生,根据样本数据,估计该校初中学生每天睡眠时间不足8小时的人数.六、(本题8分)24.(8分)如图,⊙O是△ABC的外接圆,直线EG与⊙O相切于点E,EG∥BC,连接AE 交BC于点D.(1)求证:AE平分∠BAC;(2)若∠ABC的平分线BF交AD于点F,且DE=3,DF=2,求AF的长.七、(本题10分)25.(10分)某商店销售一种销售成本为每件40元的玩具,若按每件50元销售,一个月可售出500件,销售价每涨1元,月销量就减少10件.设销售价为每件x元(x≥50),月销量为y件,月销售利润为w元.(1)写出y与x的函数解析式和w与x的函数解析式;(2)商店要在月销售成本不超过10000的情况下,使月销售利润达到8000元,销售价应定为每件多少元?(3)当销售价定为每件多少元时会获得最大利润?求出最大利润.八、(本题13分)26.(13分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(4,0),与y 轴交于点C,连接BC,点P是线段BC上的动点(与点B,C不重合),连接AP并延长AP交抛物线于点Q,连接CQ,BQ,设点Q的横坐标为m.(1)求抛物线的解析式和点C的坐标;(2)当△BCQ的面积等于2时,求m的值;(3)在点P运动过程中,是否存在最大值?若存在,求出最大值;若不存在,请说明理由.2020年内蒙古兴安盟中考数学试卷参考答案一、选择题(下列各题的四个选项中只有一个正确.共12小题,每小题3分,共36分)1.B;2.C;3.C;4.B;5.C;6.C;7.D;8.B;9.A;10.D;11.B;12.C;二、填空题(本题5个小题,每小题3分,共15分)13.3.7×105;14.b(a+2b)(a﹣2b);15.60;16.m≤5且m≠4;17.(1,0)或(3,2);三、解答题(本题4个小题,每小题6分,共24分)18.;19.;20.;21.;四、(本题7分)22.;五、(本题7分)23.40;25;15;7h;1.15;六、(本题8分)24.;七、(本题10分)25.;八、(本题13分)26.;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年内蒙古兴安盟中考数学试卷一、选择题(本大题共12小题,共36.0分) 1. −2020的绝对值是( )A. −2020B. 2020C. −12020D. 120202. 下列计算正确的是( )A. a 2⋅a 3=a 6B. (x +y)2=x 2+y 2C. (a 5÷a 2)2=a 6D. (−3xy)2=9xy 23. 下列图形中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.4. 由5个相同的小正方体组成的几何体如图所示,该几何体的俯视图是( )A.B. C. D.5. 下列事件是必然事件的是( )A. 任意一个五边形的外角和为540°B. 抛掷一枚均匀的硬币100次,正面朝上的次数为50次C. 13个人参加一个集会,他们中至少有两个人的出生月份是相同的D. 太阳从西方升起6. 如图,直线AB//CD ,AE ⊥CE 于点E ,若∠EAB =120°,则∠ECD 的度数是( )A. 120°B. 100°C. 150°D. 160°7. 已知实数a 在数轴上的对应点位置如图所示,则化简|a −1|−√(a −2)2的结果是( ) A. 3−2a B. −1 C. 1D. 2a −38. 不等式组{5x +2>3(x −1)12x −1≤7−32x的非负整数解有( )A. 4个B. 5个C. 6个D. 7个9. 甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( )A. 240x =280130−x B. 240130−x =280xC.240x+280x=130 D.240x−130=280x10.如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A. 25°B. 20°C. 30°D. 15°11.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A. 14B. 20C. 22D. 2812.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则反比例函数y=a与一次函数y=−cx+b在同一平面直角坐标系x内的图象可能是()A. B.C. D.二、填空题(本大题共5小题,共15.0分)13.中国的领水面积约为370000km2,将370000科学记数法表示为______.14.分解因式:a2b−4b3=______.15.若一个扇形的弧长是2πcm,面积是6πcm2,则扇形的圆心角是______度.m−1)x2−x+1=0有实数根,则m的取值范围是16.已知关于x的一元二次方程(14______.17.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的正半轴上.直线y=x−1分别与边AB,OA相交于D,(x>0)的图象经过点D并与M两点,反比例函数y=kx边BC相交于点N,连接MN.点P是直线DM上的动点,当CP=MN时,点P的坐标是______.三、计算题(本大题共1小题,共6.0分) 18. 计算:(−12)−1+√83+2cos60°−(π−1)0.四、解答题(本大题共8小题,共63.0分) 19. 先化简,再求值:x 2−4x+4x 2−4÷x−2x 2+2x+3,其中x =−4.20. A ,B 两地间有一段笔直的高速铁路,长度为100km.某时发生的地震对地面上以点C 为圆心,30km 为半径的圆形区域内的建筑物有影响.分别从A ,B 两地处测得点C 的方位角如图所示,tanα=1.776,tanβ=1.224.高速铁路是否会受到地震的影响?请通过计算说明理由.21. 一个不透明的口袋中装有三个完全相同的小球,上面分别标有数字√2,√3,5.(1)从口袋中随机摸出一个小球,求摸出小球上的数字是无理数的概率(直接写出结果);(2)先从口袋中随机摸出一个小球,将小球上的数字记为x ,把小球放回口袋中并搅匀,再从口袋中随机摸出一个小球,将小球上的数字记为y.请用列表法或画树状图法求出x 与y 的乘积是有理数的概率.22.已知:如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别是边BC,CD上的点,且∠EOF=90°.求证:CE=DF.23.某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如图统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为______人,扇形统计图中的m=______,条形统计图中的n=______;(2)所调查的初中学生每天睡眠时间的众数是______,方差是______;(3)该校共有1600名初中学生,根据样本数据,估计该校初中学生每天睡眠时间不足8小时的人数.24.如图,⊙O是△ABC的外接圆,直线EG与⊙O相切于点E,EG//BC,连接AE交BC于点D.(1)求证:AE平分∠BAC;(2)若∠ABC的平分线BF交AD于点F,且DE=3,DF=2,求AF的长.25.某商店销售一种销售成本为每件40元的玩具,若按每件50元销售,一个月可售出500件,销售价每涨1元,月销量就减少10件.设销售价为每件x元(x≥50),月销量为y件,月销售利润为w元.(1)写出y与x的函数解析式和w与x的函数解析式;(2)商店要在月销售成本不超过10000的情况下,使月销售利润达到8000元,销售价应定为每件多少元?(3)当销售价定为每件多少元时会获得最大利润?求出最大利润.x2+bx+c与x轴交于点26.如图,抛物线y=−12A(−1,0)和点B(4,0),与y轴交于点C,连接BC,点P是线段BC上的动点(与点B,C不重合),连接AP并延长AP交抛物线于点Q,连接CQ,BQ,设点Q的横坐标为m.(1)求抛物线的解析式和点C的坐标;(2)当△BCQ的面积等于2时,求m的值;(3)在点P运动过程中,PQ是否存在最大值?若存在,求出最大值;若不存在,请AP说明理由.答案和解析1.【答案】B【解析】解:根据绝对值的概念可知:|−2020|=2020,故选:B.根据绝对值的定义直接解答.本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】C【解析】解:A、a2⋅a3=a5,故选项错误;B、(x+y)2=x2+y2+2xy,故选项错误;C、(a5÷a2)2=a6,故选项正确;D、(−3xy)2=9xy2,故选项错误;故选:C.根据同底数幂的乘法,完全平方公式,同底数幂的除法,幂的乘方与积的乘方法则逐项判断即可.本题考查了同底数幂的乘法,完全平方公式,同底数幂的除法,幂的乘方与积的乘方,掌握运算法则是解题的关键.3.【答案】C【解析】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】B【解析】解:从上边看第一列是一个小正方形,第二列是两个小正方形且第一个小正方形位于第一层,第三列是一个小正方形,且位于第二层,故B选项符合题意,故选:B.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.5.【答案】C【解析】解:A.任意一个五边形的外角和等于540,属于不可能事件,不合题意;B.投掷一枚均匀的硬币100次,正面朝上的次数为50次是随机事件,不合题意;C.13个人参加一个集会,他们中至少有两个人的出生月份是相同的,属于必然事件,符合题意;D.太阳从西方升起,属于不可能事件,不合题意;故选:C.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件.本题主要考查了随机事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件.6.【答案】C【解析】解:延长AE,与DC的延长线交于点F,∵AB//CD,∴∠A+∠AFC=180°,∵∠EAB=120°,∴∠AFC=60°,∵AE⊥CE,∴∠AEC=90°,而∠AEC=∠AFC+∠ECF,∴∠ECF=∠AEC−∠F=30°,∴∠ECD=180°−30°=150°,故选:C.延长AE,与DC的延长线交于点F,根据平行线的性质,求出∠AFC的度数,再利用外角的性质求出∠ECF,从而求出∠ECD.本题考查平行线的性质和外角的性质,正确作出辅助线和平行线的性质是解题的关键.7.【答案】D【解析】解:由图知:1<a<2,∴a−1>0,a−2<0,原式=a−1+=a−1+(a−2)=2a−3.故选:D.根据数轴上a点的位置,判断出(a−1)和(a−2)的符号,再根据非负数的性质进行化简.此题主要考查了二次根式的性质与化简,正确得出a−1>0,a−2<0是解题关键.8.【答案】B【解析】解:{5x+2>3(x−1)①12x−1≤7−32x②,解不等式①得:x>−2.5,解不等式②得:x≤4,∴不等式组的解集为:−2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,共5个,故选:B.分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键.9.【答案】A【解析】解:设甲每天做x个零件,根据题意得:240 x =280130−x,故选:A.设甲每天做x个零件,根据甲做240个零件与乙做280个零件所用的时间相同,列出方程即可.此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.10.【答案】D【解析】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°−65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC−∠ABD=15°,故选:D.根据等要三角形的性质得到∠ABC,再根据垂直平分线的性质求出∠ABD,从而可得结果.本题考查了等腰三角形的性质和垂直平分线的性质,解题的关键是掌握相应的性质定理.11.【答案】B【解析】解:∵BD和CE分别是△ABC的中线,∴DE=BC,DE//BC,∵M和N分别是OB和OC的中点,OB=8,OC=6,∴MN=12BC,MN//BC,OM=12OB=4,ON=12OC=3,∴四边形MNDE为平行四边形,∵BD⊥CE,∴平行四边形MNDE为菱形,∴OE=ON=3∴BC=√OB2+OC2=10,∴DE=MN=EM=DN=5,∴四边形MNDE的周长为20,故选:B.根据已知条件证明四边形MNDE为菱形,结合OB和OC的长求出MN,OM,OE,计算出EM,可得结果.本题考查了菱形的判定,中位线定理,勾股定理,解题的关键是掌握菱形的判定.12.【答案】C【解析】解:根据二次函数图象与y轴的交点可得c>0,根据抛物线开口向下可得a<0,由对称轴在y轴右边可得a、b异号,故b>0,则反比例函数y=ax的图象在第二、四象限,一次函数y=−cx+b经过第一、二、四象限,故选:C.首先根据二次函数图象与y轴的交点可得c>0,根据抛物线开口向下可得a<0,由对称轴在y轴右边可得a、b异号,故b>0,再根据反比例函数的性质与一次函数图象与系数的关系画出图象可得答案.此题主要考查了二次函数图象,一次函数图象,反比例函数图象,关键是根据二次函数图象确定出a、b、c的符号.13.【答案】3.7×105【解析】解:370000=3.7×105,故答案为:3.7×105.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】b(a+2b)(a−2b)【解析】解:a2b−4b3=b(a2−4b2)=b(a+2b)(a−2b).故答案为b(a+2b)(a−2b).先提取公因式b,再根据平方差公式进行二次分解.平方差公式:a2−b2=(a+b)(a−b).本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.15.【答案】60【解析】解:扇形的面积=12lr=6π,解得:r=6,又∵l=nπ×6180=2π,∴n=60.故答案为:60.根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.此题考查了扇形的面积和弧长公式,解题的关键是掌握运算方法.16.【答案】m≤5且m≠4【解析】解:∵一元二次方程有实数根,∴△=1−4×(14m−1)≥0且14m−1≠0,解得:m≤5且m≠4,故答案为:m≤5且m≠4.根据一元二次方程的定义和根的判别式得到△≥0且二次项系数≠0,然后求出两不等式的公共部分即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.17.【答案】(1,0)或(3,2)【解析】解:∵点C 的坐标为(0,3), ∴B(3,3),A(3,0),∵直线y =x −1分别与边AB ,OA 相交于D ,M 两点, ∴可得:D(3,2),M(1,0), ∵反比例函数y =kx 经过点D , ∴k =3×2=6,∴反比例函数的表达式为y =6x ,令y =3, 解得:x =2,∴点N 的坐标为(2,3),∴MN =√(2−1)2+(3−0)2=√10, ∵点P 在直线DM 上,设点P 的坐标为(m,m −1),∴CP =√(m −0)2+(m −1−3)2=√10, 解得:m =1或3,∴点P 的坐标为(1,0)或(3,2). 故答案为:(1,0)或(3,2).根据正方形的性质以及一次函数表达式求出点D 和点M 坐标,从而求出反比例函数表达式,得到点N 的坐标,求出MN ,设点P 坐标为(m,m −1),根据两点间距离表示出CP ,得到方程,求解即可.本题考查了正方形的性质,一次函数图象上点的坐标特征,两点之间的距离,反比例函数图象上点的坐标特征,解题的关键是根据点的坐标,利用待定系数法求出反比例函数解析式.18.【答案】解:原式=−2+2+2×12−1=0,故答案为:0.【解析】先化简各项,再作加减法,即可计算.此题考查实数的混合运算以及特殊角的三角函数值,关键是掌握运算法则和运算顺序.19.【答案】解:原式=(x−2)2(x+2)(x−2)×x(x+2)x−2+3=x +3,将x =−4代入得:原式=−4+3=−1.【解析】先根据分式混合运算的法则把原式进行化简,再把x =−4代入进行计算即可. 本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 20.【答案】解:如图,过C 作CD ⊥AB 于D , ∴∠ACD =α,∠BCD =β,∴tan∠ACD =tanα=ADCD ,tan∠BCD =tanβ=BDCD , ∴AD =CD ⋅tanα,BD =CD ⋅tanβ,由AD +BD =AB ,得CD ⋅tanα+CD ⋅tanβ=AB =100, 则CD =ABtanα+tanβ=1003>30,∴高速公路不会受到地震影响.【解析】首先过C作CD⊥AB与D,由题意得AD=CD⋅tanα,BD=CD⋅tanβ,继而可得CD⋅tanα+CD⋅tanβ=AB,则可求得CD的长,再进行比较,即可得出高速公路是否穿过地震区.此题考查了三角函数的实际应用,此题难度适中注意能借助于方向角构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.21.【答案】解:(1)摸出小球上的数字是无理数的概率=23;(2)画树状图如下:可知:共有9种等可能的结果,其中两个数字的乘积为有理数的有3种,∴两次摸出的小球所标数字乘积是有理数的概率为39=13.【解析】(1)直接利用概率公式计算可得;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个球上数字乘积是有理数的情况,再利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.【答案】解:∵四边形ABCD为正方形,∴OD=OC,∠ODF=∠OCE=45°,∠COD=90°,∵∠EOF=90°,即∠COE+∠COF=90°,∴∠COE=∠DOF,∴△COE≌△DOF(ASA),∴CE=DF.【解析】由正方形的性质得出OD=OC,∠ODF=∠OCE=45°,再证明∠COE=∠DOF,从而得到△COE≌△DOF,即可证明CE=DF.本题考查了正方形的性质,全等三角形的判定和性质,解题的关键是根据正方形的性质得出条件证明全等.23.【答案】40 25 15 7h 1.15【解析】解:(1)本次接受调查的初中学生有:4÷10%=40(人),m%=10÷40×100%=25%,n=40×37.5%=15,故答案为:40,25,15;(2)由条形统计图可得,众数是7h,×(5×4+6×8+7×15+8×10+9×3)=7,x−=140[(5−7)2×4+(6−7)2×8+(7−7)2×15+(8−7)2×10+(9−7)2×3]= s2=1401.15,故答案为:7h,1.15;(3)1600×4+8+15=1080(人),40即该校初中学生每天睡眠时间不足8小时的有1080人.(1)根据5h的人数和所占的百分比,可以求得本次接受调查的初中学生人数,然后即可计算出m和n的值;(2)根据统计图中的数据,可以得到众数,计算出方差;(3)根据题目中的数据,可以计算出该校初中学生每天睡眠时间不足8小时的人数.本题考查条形统计图、扇形统计图、用样本估计总体、众数、方差,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】解:(1)连接OE.∵直线l与⊙O相切于E,∴OE⊥l,∵l//BC,∴OE⊥BC,∴BE⏜=CE⏜,∴∠BAE=∠CAE.∴AE平分∠BAC;(2)如图,∵AE平分∠BAC,∴∠1=∠4,∵∠1=∠5,∴∠4=∠5,∵BF平分∠ABC,∴∠2=∠3,∵∠6=∠3+∠4=∠2+∠5,即∠6=∠EBF,∴EB=EF,∵DE=3,DF=2,∴BE =EF =DE +DF =5,∵∠5=∠4,∠BED =∠AEB ,∴△EBD∽△EAB , ∴BE EA =DE BE ,即5EA =35, ∴AE =253,∴AF =AE −EF =253−5=103.【解析】(1)连接OE ,利用垂径定理、圆周角、弧、弦的关系证得结论;(2)根据题意证明BE =EF ,得到BE 的长,再证明△EBD∽△EAB 得BE EA =DEBE ,求出AE ,从而得到AF .本题考查了垂径定理,圆周角定理,圆周角、弧、弦的关系,相似三角形的判定和性质,掌握定理并熟练运用是解题必备的能力.25.【答案】解:(1)由题意得:y =500−10(x −50)=1000−10x ,w =(x −40)(1000−10x)=−10x 2+1400x −40000;(2)由题意得:−10x 2+1400x −40000=8000,解得:x 1=60,x 2=80,当x =60时,成本=40×[500−10(60−50)]=16000>10000不符合要求,舍去, 当x =80时,成本=40×[500−10(80−50)]=8000<10000符合要求, ∴销售价应定为每件80元;(3)w =−10x 2+1400x −40000,当x =70时,w 取最大值9000,故销售价定为每件70元时会获得最大利润9000元.【解析】(1)根据题意一个月能售出500件,若销售单价每涨1元,每周销量就减少10件,可得y =500−10(x −50),再利用一个月的销售量×每件销售利润=一个月的销售利润列出一个月的销售利润为w ,写出W 与x 的函数关系式;(2)令w =8000,求出x 的取值即可;(3)根据二次函数最值的求法求解即可.此题主要考查了二次函数的应用,准确分析题意,列出二次函数关系式是解题关键. 26.【答案】解:(1)∵抛物线经过A(−1,0),B(4,0),可得:{0=−12−b +c 0=−12×16+4b +c ,解得:{b =32c =2, ∴抛物线的解析式为:y =−12x 2+32x +2,令x =0,则y =2,∴点C 的坐标为(0,2);(2)连接OQ , ∵点Q 的横坐标为m ,∴Q(m,−12m 2+32m +2),∴S =S △OCQ +S △OBQ −S △OBC=12×2×m +12×4×(−12m 2+32m +2)−12×2×4 =−m 2+4m ,令S =2,解得:m =2+√2或2−√2,(3)如图,过点Q 作QH ⊥BC 于H ,∵AC =√12+22=√5,BC =√42+22=√20,AB =5,满足AC 2+BC 2=AB 2,∴∠ACB =90°,又∠QHP =90°,∠APC =∠QPH ,∴△APC∽△QPH ,∴PQAP =QHAC =√5, ∵S △BCQ =12BC ⋅QH =√5QH ,∴QH =△BCQ √5, ∴PQ AP =√5= S 5=15(−m 2+4m)=−15(m −2)2+45,∴当m =2时,PQ AP 存在最大值45.【解析】(1)将点A和点B的坐标代入抛物线表达式,求解即可;(2)连接OQ,得到点Q的坐标,利用S=S△OCQ+S△OBQ−S△OBC得出△BCQ的面积,再令S=2,即可解出m的值;(3)证明△APC∽△QPH,根据相似三角形的判定与性质,可得PQAP =QHAC,根据三角形的面积,可得QH=△BCQ√5,根据二次函数的性质,可得答案.本题考查了二次函数综合题,涉及到相似三角形的判定与性质,三角形面积求法,待定系数法,勾股定理,综合性强,有一定难度,解题时要注意数形结合.。