生产运筹学--线性规划及单纯形法

合集下载

线性规划与单纯形法PPT课件

线性规划与单纯形法PPT课件
Max Z = 50 x1 + 30 x2
第3步 --表示约束条件
4x1+3x2 120(木工工时限制) 2x1+x2 50 (油漆工工时限制)
x1,x2≥0 (变量取非负值限制)
该计划的数学模型
max Z=50x1+30x2 4x1+3x2 120
s.t.
2x1+ x2 50 x1, x2 0
问如何组织生产才能使每月的销售收入最大?
• 第1步 -确定决策变量
是问题中要确定的未知量
xx •设
1 ——桌子的产量 2 ——椅子的产量
,表明规划中的用数量表 示的方案、措施,可由决 策者决定和控制。
z ——利润
x1
x2
第2步 --定义目标函数
Max Z = 50 x1 + 30 x2
第2步 --定义目标函数
线性规模解决的问题
• 给定一定数量的人力、物力、财力等资源, 研究如何充分利用,以发挥其最大效果
• 已给定计划任务,研究如何统筹安排,用最 少的人力、物力、财力去完成
2、线性规划问题的数学模型
线性规划数学模型三要素:
决策变量、目标函数、约束条件
➢ 每一个线性规划问题都有一组决策变量 (x1, x2, ……, xn) , 这组决策变量的值就代表 一个具体方案。
1、问题的提出
例1.1 生产计划问题(资源利用问题) 某家具厂生产桌子和椅子两种家具。 桌子售价50元/个,椅子销售价格30元/个。 需要木工和油漆工两种工种。 生产一个桌子需要木工4小时,油漆工2小时。 生产一个椅子需要木工3小时,油漆工1小时。 该厂每个月可用木工工时为120小时, 油漆工工时为50小时。
第1工厂投污水的水质要求 :(2 x1) 2 500 1000

运筹学

运筹学

11
目录
(三)LP问题的标准型
1.为了讨论LP问题解的概念和解的性质以及对LP问题求 解方便,必须把LP问题的一般形式化为统一的标准型:
minz=c1x1+c2x2+…+cnxn
j =1 a11 x2 + a12 x2 + + a1n xn = b1 a x + a x + + a x = b n 2n n 2 21 2 22 2 简 aij x j = bi (i = 1,2, L , m) s.t 化 j =1 x j ≥ 0( j = 1,2,L , n) am1 x2 + am 2 x2 + + amn xn = bm x1 , x2 , , xn ≥ 0
A ( 0 ,3 ) 10 15 , ) B( 7 7 5 C ( ,0 ) 2
max
Z = 5 x1 + 4 x 2
3 x 1 + 5 x 2 ≤ 15 2 x1 + x 2 ≤ 5 2 x 1 + 2 x 2 ≤ 11 x1 , x 2 ≥ 0
Z=
110 7
2x1+2x2=11
C 2.5
5x1+4x2=0 红线为目标函数的等值线 等值线. 红线为目标函数的等值线
j i= 1
j
(1.4) (1.5) (1.6)
ì n a ij x j = s .t . j = 1 í 1.从代数的角度看: x j 0 1.
b
i
可行解(Feasible Solution): 满足约束条件(1.5)和(1.6)的 解X=(x1,x2,…,xn)T称为可行解。所有可行解构成可行解集, 即可行域。 最优解(Optimal Solution): 而使目标函数达到最大值的可 行解称为最优解,对应的目标函数值称为最优值。 求解LP问题就是求其最优解和最优值,但从代数的角 17 度去求是困难的。 目录

第1章-线性规划及单纯形法-课件(1)

第1章-线性规划及单纯形法-课件(1)

✓ x1、 x2 0
IБайду номын сангаас
设备
1
原材料 A 4
原材料 B 0
利润
2
II 资源限量
2 8 台时
0
16kg
4
12kg
3
第一章 线性规划及单纯形法 运筹学
该计划的数学模型
✓ 目标函数 ✓ 约束条件
Max Z = 2x1 + 3x2
x1 + 2x2 8 4x1 16 4x2 12 x1、 x2 0
x1
✓ 美国航空公司关于哪架飞机用于哪一航班和哪些 机组人员被安排于哪架飞机的决策。
✓ 美国国防部关于如何从现有的一些基地向海湾运 送海湾战争所需要的人员和物资的决策。
✓ ……
第一章 线性规划及单纯形法 运筹学
二、线性规划问题的数学模型
✓ 1、一般形式 ✓ 2、简写形式 ✓ 3、表格形式 ✓ 4、向量形式 ✓ 5、矩阵形式
1、唯一最优解
max Z 2 x 1 3 x 2
2 x 1 2 x 2 12 ⑴
x1 4 x1
2 x2
8 16
⑵ ⑶
4 x 2 12 ⑷
x 1 0 , x 2 0
1 234 56
x2
⑶ ⑷
(4,2)
0 1 234 5678
x1


✓最优解:x1 = 4,x2 = 2,有唯一最优解Z=14。
第一章 线性规划及单纯形法 运筹学
三、线性规划模型的标准形式
✓ 1、标准形式 ✓ 2、转换方式
第一章 线性规划及单纯形法 运筹学
1、标准形式
maZx cjxj
xj
aijxj 0
bi

运筹学线性规划与单纯形法

运筹学线性规划与单纯形法

整理课件
16
Max Z= x1-2x2+3x3' -3x3" + 0x4 +0x5 s.t. x1+x2+ x3' - x3" +x4 =7
x1-x2+ x3' - x3" -x5=2
-3x1+x2+2x3' -2x3" =5 x1, x2,x3',x3", x4,x5 0
第一节小结:建立模型;三个组成要素;四种形式; 化为标准形(4个条件5点)
.
9x1+4x2 ≤ 360
90 80 60 40 20
4x1+5x2 ≤200
B C
HI G
Z=70x1+120x2 3x1+10x2 ≤300
0
20 D40 E 60
80 1F00 x1
整理课件
30
二、解的几种可能情况
1.唯一最优解。目标函数直线与凸多边形只有 一个切点; 2.无穷多最优解,目标函数图形与某个约束条 件平行。 3.无界解(无最优解)----可行域无界。一般是 漏了一些约束条件。 4.无可行解----可行域为空。

Ⅱ 计划期可用能力
2
2
12
1
2
8
4
0
16
0
4
12
2
3
问:应如何安排生产计划,才能使总利润最大?
整理课件
3
解:用数学的语言进行描述:
1.决策变量:设产品I、II的产量分别为 x1、x2 2.目标函数:问题要求获取利润最大,该公司获取
利润为2 x1 + 3 x2,令z = 2 x1 + 3 x2,则max z = 2 x1 + 3 x2, max z 是该公司获取利润的目标 值,它是变量x1、 x2的函数,称为目标函数。

运筹学第1章:线性规划问题及单纯型解法

运筹学第1章:线性规划问题及单纯型解法

原料甲 原料乙 最低含量 VA 0.5 0.5 2 VB1 1.0 0.3 3 VB2 0.2 0.6 1.2 VD 0.5 0.2 2 0.3 0.5 单价
分别代表每粒胶丸中甲, 设 x1, x2分别代表每粒胶丸中甲, 乙两种原料的用量
5
例3,合理下料问题 , 分别代表采用切割方案1~8的套数, 的套数, 设 xj 分别代表采用切割方案 的套数
19
( f(x
)= 3
6
1.2.2 单纯型法的基本思路
确定初试基础可行解
检查是否为 最优解? 最优解?

求最优解的目标函数值
否 确定改善方向
求新的基础可行解
20
1.2.3 单纯型表及其格式
IV CB III XB II x1 b c1 a11 a21 c1′′= cn+1 xn+1 b1 c2′′= cn+2 xn+2 b2 x2 … xn c2 … cn a12 … a1n a22 … a2n I xn+1 cn+1 1 0 0 zn+1 xn+2 cn+2 0 1 0 zn+2 … … … … … … xn+m cn+m 0 0 1 zn+m
OBJ : max f ( x) = 6x1 + 4x2 2x1 + x2 ≤ 10 铜资源约束 x1 + x2 ≤ 8 铅资源约束 s.t. x2 ≤ 7 产量约束 x1, x2 ≥ 0 产量不允许为负值 最优解: x1 = 2, x2 = 6, max f ( x) = 36.
4
例2,配料问题(min, ≥) ,配料问题(
2 max 1 O 1 2 3 4 D 5 6 7 H 8

运筹学 第一章 线性规划 清华

运筹学 第一章 线性规划 清华
x2 2 1 = x1 + z 3 3
① ② ③
x2

Q3 Q2
Q4

3

o
4 Q1
x1
*
6
首先取z = 0,然后,使z逐 渐增大,直至找到最优解所对 应的点。
x2

Q3
Q4

Q2(4,2)
3

*
4 Q1
x1
可见,在Q2点z取到最大值。 因此, Q2点所对应的解为最优解。 Q2点坐标为(4,2)。 即: x1 = 4,x2 = 2
5
1.2 图解法 eg. eg. [eg.3]用图解法求eg.1。 max z = 2x1 + 3x2 1x1 + 2x2 ≤ 8 4x1 ≤ 16 4x2 ≤ 12 x1 ,x2 ≥ 0 解: (1)建立x1 - x2坐标; x (2)约束条件的几何表示; (3)目标函数的几何表示; z = 2x1 + 3x2
15
1.4 线性规划解的概念 设线性规划为 max z = CX ① AX = b ② X≥0 ③ 矩阵, (A为行满秩矩阵) A为m × n矩阵, n > m, Rank A = m (A为行满秩矩阵) 为行满秩矩阵 1、可行解:满足条件②、③的X; 可行解:满足条件② 2、最优解:满足条件①的可行解; 最优解:满足条件①的可行解; 条件 子矩阵, 则称B 3、基:取B为A中的m × m子矩阵,Rank B = m,则称B为线性 中的m 规划问题的一个基。 规划问题的一个基。 取B = (P1,P2,,Pm) ,P Pj = (a1j,a2j,,amj)T ,a 则称x1,x2,,xm为基变量,其它为非基变量。 则称x ,x 为基变量,其它为非基变量。

运筹学第一章

运筹学第一章
OR1
30
1.1.3解的概念
概念: 1、可行解:满足所有约束条件的解。 2、可行域:即可行解的集合。所有约束条件的交 集,也就是各半平面的公共部分。满足所有约 束条件的解的集合,称为可行域。 3、凸集:集合内任意两点的连线上的点均属于这 个集合。如:实心球、三角形。线性规划的可 行域是凸集。
OR1
OR1
27
线性规划图解法例题
(无界解)
max z x 2 y x y 1 2 x 4 y 3 x 0, y 0
OR1
28
线性规划图解法例题
(无解)
min z x 2 y x y 2 2 x 4 y 3 x 0, y 0
请问该 医院至 少需要 多少名 护士?
5
例题2建模
目标函数:min Z=x1+x2+x3+x4+x5+x6 约束条件: x1+x2 ≥70
x2+x3 ≥60 x3+x4 ≥ 50 x4+x5 ≥20 x5+x6 ≥30 非负性约束:xj ≥0,j=1,2,…6
OR1
6
例题3:运输问题
三个加工棉花的加工厂,并且有三个仓库供应棉花,各 供应点到各工厂的单位运费以及各点的供应量与需求量 分别如下表所示:问如何运输才能使总的运费最小?
OR1
14


从以上 5 个例子可以看出,它们都属于优化问题,它们 的共同特征: 1 、每个问题都用一组决策变量表示某一方案;这组决 策变量的值就代表一个具体方案,一般这些变量取值是 非负的。 2 、存在一定的约束条件,这些约束条件可以用一组线 性等式或线性不等式来表示。 3 、都有一个要求达到的目标,它可用决策变量的线性 函数(称为目标函数)来表示。按问题的不同,要求目 标函数实现最大化或最小化。 满足以上三个条件的数学模型称为线性规划的数学模型。

第二章 线性规划及单纯形法

第二章 线性规划及单纯形法

标准形式
目标函数: 目标函数: 约束条件: 约束条件: Max z = c1 x1 + c2 x2 + … + cn xn s.t. a11 x1 + a12 x2 + … + a1n xn = b1 a21 x1 + a22 x2 + … + a2n xn = b2 …… …… am1 x1 + am2 x2 + … + amn xn = bm x1 ,x2 ,… ,xn ≥ 0,bi ≥0 ,
(一)一般式
Max(min)Z=C1X1+ C2X2+…+CnXn a11X1+ a12X2+…+ a1nXn ≥(=, ≤)b1 a21X1+ a22X2+…+ a2nXn ≥(=, ≤)b2 … … … am1X1+ am2X2+…+ amnXn ≥(=, ≤)bm Xj ≥0(j=1,…,n) 0( )
三、线性规划问题的标准形式 线性规划问题的标准形式
2、约束条件不是等式的问题: 约束条件不是等式的问题: 设约束条件为
ai1 x1+ai2 x2+ … +ain xn ≤ bi
可以引进一个新的变量s ,使它等于约束右边与左 边之差
s=bi–(ai1 x1 + ai2 x2 + … + ain xn ) (
一、问题提出
Ⅰ 设备A 设备 设备B 设备 调试工序 利润 0 6 1 2
例1生产计划问题
Ⅱ 5 2 1 1 每天可用能力 15 24 5
两种家电各生产多少, 可获最大利润? 两种家电各生产多少, 可获最大利润

运筹学第四版第二章线性规划及单纯形法

运筹学第四版第二章线性规划及单纯形法

方案的制定受到那些现实条件制约:
确定约束条件
人力资源(劳动力)的限制: 9x1 4x2 360
设备工时的限制:
4x1 5x2 200
原材料资源的限制:
3x1 10x2 300
此外,决策变量的取值不应为负值即 x1 0, x2 0
6
综上所述,我们得到了这个问题的数学模型
目标函数 约束条件
大?
项目

设备A (h)
0
设备B (h)
6
调试工序(h) 1
利润(元) 2
Ⅱ 每天可用能力
5
15
2
24
表1-2
1
5
1
12
其数学模型为:
max Z 2x1 x2
5x2 15
6xx11
2x2 x2
24 5
x1, x2 0
13
例3:捷运公司在下一年度的1~4月份的4个月内拟租用仓库
堆放物资。已知各月份所需仓库面积列于下表1-3。仓库租
借费用随合同期而定,期限越长,折扣越大,具体数字见表
1-4。租借仓库的合同每月初都可办理,每份合同具体规定
租用面积和期限。因此该厂可根据需要,在任何一个月初办
理租借合同。每次办理时可签一份合同,也可签若干份租用
面积和租用期限不同的合同。试确定该公司签订租借合同的
最优决策,目的是使所租借费用最少。
14
max Z 70 x1 120 x2
9x1 s.t. 43xx11
x1,
4x2 5x2 10x2 x2 0
360 200 300
资源约束
非负约束
其中 约束条件可记 s.t (subject to), 意思为“以… 为条件“、”假定“、”满足“之意。

运筹学第1章线性规划及单纯形法复习题

运筹学第1章线性规划及单纯形法复习题

max (min)
Z = CX
AX ≤ ( = , ≥ ) b X ≥ 0
3、线性规划的标准形式 、
ma0
4、线性规划问题的解 、 (一)求解方法
一 般 有 两种方法 图 解 法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
适用于任意多个变量、 适用于任意多个变量、但需将 一般形式变成标准形式
(二)线性规划问题的解
1、解的概念 可行解:满足约束条件② 的解为可行解。 ⑴ 可行解:满足约束条件②、③的解为可行解。 所有解的集合为可行解的集或可行域。 所有解的集合为可行解的集或可行域。 最优解: 达到最大值的可行解。 ⑵ 最优解:使目标函数①达到最大值的可行解。 ⑶ 基:B是矩阵A中m×m阶非奇异子矩阵 是矩阵A ≠0), ),则 是一个基。 (∣B∣≠0),则B是一个基。
§2 图 解 法
例一、 例一、 max
Z = 2 x 2 x 2 x 4 x
2 2 1
+ 3 x
2
2 x1 + x + 1 4 x1 x1 ≥
≤ 12 ≤ 8 ≤ 16 ≤ 12
2
⑴ ⑵ ⑶ ⑷
2
0, x
≥ 0
max
Z = 2 x1 + 3 x 2 x 2 x
2 2
当xj=0时, 必有 j=zj=0, 因此 时 必有y
∑P x = ∑P y = ∑P z
j =1
r
r
r
r
j
j
j =1
j
j
j =1
j
j
=b
∑(y
j =1
j
− z j ) Pj = 0

运筹学第一章

运筹学第一章

第一章、 线性规划和单纯形法1.1 线性规划的概念一、线性规划问题的导出1.(引例) 配比问题——用浓度为45%和92%的硫酸配置100t 浓度为80%的硫酸。

取45%和92%的硫酸分别为x1和x2t,则有: 求解二元一次方程组得解。

目的相同,但有5种不同浓度的硫酸可选(30%,45%,73%,85%,92%)会出现什么情况?设取这5种硫酸分别为 x1、x2、x3、x4、x5 t, 则有: ⎩⎨⎧⨯=++++=++++1008.092.085.073.045.03.01005432154321x x x x x x x x x x 请问有多少种配比方案?为什么?哪一种方案最好?假设5种硫酸价格分别为:400,700,1400,1900,2500元/t ,则有:2.生产计划问题如何制定生产计划,使三种产品总利润最大?考虑问题:⎩⎨⎧⨯=+=+1008.092.045.01002121x x x x ⎪⎩⎪⎨⎧=≥⨯=++++=++++++++=5,,2,1,01008.092.085.073.045.03.0100..250019001400700400543215432154321 j x x x x x x x x x x x t s x x x x x MinZ j(1)何为生产计划?(2)总利润如何描述?(3)还要考虑什么因素?(4)有什么需要注意的地方(技巧)?(5)最终得到的数学模型是什么?二、线性规划的定义和数学描述(模型)1.定义:对于求取一组变量xj (j =1,2,......,n),使之既满足线性约束条件,又使具有线性表达式的目标函数取得极大值或极小值的一类最优化问题称为线性规划问题,简称线性规划。

2.配比问题和生产计划问题的线性规划模型的特点:用一组未知变量表示要求的方案,这组未知变量称为决策变量;存在一定的限制条件,且为线性表达式;有一个目标要求(最大化,当然也可以是最小化),目标表示为未知变量的线性表达式,称之为目标函数; 对决策变量有非负要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

假定在市场上可买到 B1,B2,…Bn n 种食品,第 i 种
食品的单价是 ci , 另外有 m 种营养 A1,A2,…Am。设 Bj
内含有 Ai 种营养数量为 aij (i=1~m,j=1~n),又知人们每
天对 Ai 营养的最少
表2
需要量为 bi。见表2:
食品
最少
试在满足营养要 求的前提下,确定食 品的购买量,使食品 的总价格最低。
则 A = ( B, N )
§3 线性规划问题解的基本性质
A = ( B, N )
xB= (x1,…,xm)T , xN =(xm+1,…,xn)T

x
xB xN
,
代入约束方程(2),得
B
N
xB xNLeabharlann b.BxB Nxn b
xB B1b B1NxN
自由变量 (独立变量)
令 xN 0 xB B1b
c c1, c2, , cn 价值向量 x x1, x2, , xn T 决策向量
什么意思? 为什么?
b b1, b2 , , bm T , bi 0 右端向量
第一章 线性规划及单纯形法
定义 3 在上述 LP 问题中,约束方程组(2)的系数 矩阵 A 的任意一个 m×m 阶的非奇异的子方阵 B (即 |B|≠0),称为 LP 问题的一个基阵或基。
x2
max z = 2x1 + 2x2 s.t. 2x1 – x2 ≥ 2
-x1 + 4x2≤ 4 x1,x2 ≥ 0
(1,0)
O
A
2x1 x2 2
x1 4x2 4
x1
Note: 可行域为无界区域, 目标函数值可无限 增大,即解无界。 称为无最优解。
§2 线性规划问题的图解法
由以上两例分析可得如下重要结论:
线性规划问题的标准形式:
max z = c1x1 + c2x2 + … + cnxn s.t. a11x1 + a12x2 + … + a1nxn = b1
a21x1 + a22x2 + … + a2nxn = b2 …… am1x1 + am2x2 + … + amnxn = bm
xj ≥ 0 (j = 1,2,…,n) bi ≥ 0 (i = 1,2,…,m)
运筹学
Operations Research
第一章 线性规划及单纯形法
第一章 线性规划及单纯形法
线性规划(Linear Programming,简称LP) 运筹学的一个重要分支,是运筹学中研究较早、发展较 快、理论上较成熟和应用上极为广泛的一个分支。
1947年G.B. Dantying提出了一般线性规划问题求解 的方法——单纯形法之后,线性规划的理论与应用都得 到了极大的发展。
1、善于抓住关键因素,忽略对系统影响不大的因素; 2、可以把一个大系统合理地分解成 n 个子系统处理。
三个基本要素:
1、决策变量 xj≥0 2、约束条件 —— 一组决策变量的线性等式或不等式 3、目标函数 —— 决策变量的线性函数
第一章 线性规划及单纯形法
线性规划问题的一般形式:
max(min)z = c1x1 + c2x2 + … + cnxn s.t. a11x1 + a12x2 + … + a1nxn ≤(或=,≥)b1
§2 线性规划问题的图解法
绿色线段上的所有点 都是最优解,即有无穷多 最优解。Zman=34.2
x1 + 1.9 x2 = 11.4
x2
(3.8,4)
max z =3x1 + 5.7x2 s.t. x1 + 1.9x2 ≥ 3.8
x1 - 1.9x2≤ 3.8 x1 + 1.9x2 ≤11.4 x1 - 1.9x2 ≥ -3.8
最多有
Cnm
=
n! m!(n-m)!

定义 4 在LP问题的一个
基可行解中,如果它的所
Rn
非可行解
基 可行解 可 基解
行 解
有的基变量都取正值,则
称它是非退化的解;反之,如果有一个基变量也取

A
1
B
1
单件利润 15
乙 库存量
3
60
1
40
25
x1,x2 ≥ 0 目标函数:
z = 15 x1 +25 x2
Subject to
max z = 15x1 +25x2 s.t. x1 + 3x2 ≤ 60
x1 + x2 ≤ 40 x1,x2 ≥ 0
§1 线性规划问题及其数学模型
e.g. 2 营养问题
x1,x2 ≥0 化为标准形式。
解: 令 x3= x4 - x5 其中x4、x5 ≥0;
对第一个约束条件加上松弛变量 x6 ;
对第二个约束条件减去松弛变量 x7 ;
对第三个约束条件两边乘以“-1” ;
令 z’=-z 把求 min z 改为求 max z’
§1 线性规划问题及其数学模型
LP的几种表示形式:
n
即化为: max z ' c j x j j 1
2、约束条件为不等式,
xn+1 ≥ 0
松弛变量
n
aij x j bi j 1
n
aij x j bi j 1
n
aij x j xn1 bi
j 1
如何处理?
§1 线性规划问题及其数学模型
3、右端项bi < 0时,只需将等式两端同乘(-1)
x1 ,x2 ≥ 0
x1 - 1.9 x2 = -3.8
(0,2)
D可行域
(7.6,2)
max Z
min Z o
(3.8,0)
x1 + 1.9 x2= 3.8 0=3 x1 +5.7 x2
x1 - 1.9 x2 = 3.8 34.2 = 3 x1 +5.7 x2
x1
第一章 线性规划及单纯形法
可行域为无界 区域一定无最 优解吗?
B1b
x
0
(4) 称(4)为相应于基 B 的基本解
第一章 线性规划及单纯形法
B1b x (4)
0
是可行解吗?
max 3x5
z’= x1-2x2+3x4-
s.t. x1+x2+x4-x5+x6=7
x1-x2+x4-x5-x7=2
3x1-x2-2x4+2x5=5
1 1 1 1 1 0
z cx (1)
Ax b (2)
x0
(3)
z cx
n
pjxj b j 1
x0
x x1, x2 ,, xn T 决策向量
b b1 , b2 ,, bm T , bi 0 右端向量
p j a1 j , a2 j ,, amj T 为A的第j列向量
§2 线性规划问题的图解法
max z cx
60年来,随着计算机的发展,线性规划已广泛应用 于工业、农业、商业、交通运输、经济管理和国防等各 个领域,成为现代化管理的有力工具之一。
§1 线性规划问题及其数学模型
e.g. 1 资源的合理利用问题
某工厂在下一个生产周期内生产甲、乙两种产品,
要消耗A、B 两种资源,已知每件产品对这两种资源

消耗,这两种资源的现有数量和每件产品可获得的利 表1
1、LP 问题从解的角度可分为:
⑴ 有可行解
a. 有唯一最优解
b. b. 有无穷多最 优解
⑵ 无可行解 c. C. 无最优解
2、LP 问题若有最优解,必在可行域的某个顶点上取
到;若有两个顶点上同时取到,则这两点的连线上
任一点都是最优解。
§2 线性规划问题的图解法
图解法优点: 直观、易掌握。有助于了解解的结构。
max s.t.
n
z c j x j j 1
n
aij x j bi (i 1,2,, m)
j 1
x j 0 ( j 1,2,, n)
a11
A
a21
a12
a22
a1n
a2n
系数矩阵
am1 am2 amn
c c1, c2, , cn 价值向量
max s.t.
max s.t.
x1 + x2 ≤ 40 x1,x2 ≥ 0
x1 x2 40
A (0,20)
(0,0) O
B (30,10)
x1 3x2 60
C (40,0)
Z=250
L2
最优解:
x1=30 x2 =10
最优值:zmax=700
x1
L1
第一章 线性规划及单纯形法
LP问题图解法的基本步骤:
1、在平面上建立直角坐标系; 2、图示约束条件,确定可行域和顶点坐标; 3、图示目标函数(等值线)和移动方向; 4、寻找最优解。
对任意的x∈D 都有c x*≥c x,则称x*为LP 问题
的最优解,相应的目标函数值称为最优值,
记作 z*=c x*。
§2 线性规划问题的图解法 目标函数变形:
max z = 15x1 +25x2 s.t. x1 + 3x2 ≤ 60
x2=-3/5 x1+z/2B5点是使z达到最
大的唯一可行点
x2
特点:
1、目标函数为极 大化; 2、除决策变量的 非负约束外,所有 的约束条件都是等 式,且右端常数均 为非负;
3、所有决策变量 均非负。
第一章 线性规划及单纯形法
相关文档
最新文档