《一次函数的图像》第一课时教学课件

合集下载

一次函数图像(第1课时)课件

一次函数图像(第1课时)课件


y的值随着x值的增大而减小的是
.
(1)y=6x-2 (2)y=-6x-2 (3)y=-6x+2
4.一次函数y=kx+b图象如图,准确的是( ) (A)k>0,b >0 (B)k>0,b <0 (C)k<0,b>0 (D)k<0,b <0
5.若直线y=kx+b平行直线y=3x+4,且过点(1,-2),
§4.3 一次函数的图象(二)
复习回顾:
1.作函数图象有几个步骤?
列表、描点、连线
2.正比例函数图象有什么特点?
正比例函数的图象是过原点(0,0)的一条直线.
3.正比例函数的性质
(1)正比例函数的增减性: 当k>0时,图象在第_一__、___三__象限,
y的值随着x值的增大而__增__大__; 当k<0时,图象在第_二__、__四___象限,
作出一次函数y= 2x+3的图象 解:列表:
x
… -2 -1 0 1 2 …
y=2x+3 … -1 1 3 5 7 …
描点:以表中各组对应值作为点的坐 标,在直角坐标系内描出相应的点。
y x
小结1:
一次函数y=kx+b的图像是一条__直__线_______。 因此,画一次函数图像时,只需经过_两__个点 即可。
则k=
.
课堂小结
当堂巩固
1. 函数y=3x+1的图象一定通过点( ). A.(3,5) B.(-2,3) C.(2,7) D.(4,10)
2.一次函数y=kx+6,y随x的增大而减小,则
这个一次函数的图象不经过( )
A.第一象限
B.第二象限

《一次函数的图象》一次函数PPT课件

《一次函数的图象》一次函数PPT课件

观察图象可以发现:①直线y=x,y=3x向右


逐渐
,
上升

即y的值随x的增大而增大;

②直线
,y=-4x向右逐渐

即y的值随yx的 增 1大x而减小. 2
下降
探究新知
在正比例函数y=kx中: 当k>0时,y的值随着x值的增大而增大; 当k<0时,y的值随着x值的增大而减小.
y
y
y=kx(k>0)
解析:因为函数图象经过第一、三象限,所以k-3>0,解得k>3.
(2)若函数图象经过点(2,4),则k_____.
=5
解析:将坐标(2,4)带入函数解析式中,得4=(k-3)·2,解得 k=5.
巩固练习
变式训练
已知正比例函数y=(k+5)x.
(1)若函数图象经过第二、四象限,则k的取值范围是_______.
数 分析:对于函数y=x,当x=-1时,y= ;当x=1时,-1y= ;当x=2时,y= 1;不难发
值 现y的值随x的增大而
.

2
增大

分析:对于函数y=-4x,当x=-1时,y= ;当x=1时,4y= ;当x=2时,y= ;-不4 难
发现y的值随x的增大-而8
.
减小
探究新知
我们还可以借助函数图象分析此问题.
值的增大,y的值都减小了,其中哪一个减小得更快?
你是如何判断的?
解:y=-4x减小得更快.
在自变量的变化情况相
同的条件下y=-4x的函数来自值的减小量大于y= -1 2
x的
函数值的减小量.
故y=-4x减小得更快.
y 4x

人教版八年级下册数学《函数的图象》一次函数PPT教学课件(第1课时)

人教版八年级下册数学《函数的图象》一次函数PPT教学课件(第1课时)

新知探究
例1:一个水库的水位在最近 5h 内持续上涨 . 表中记录了这 5h 内6个时间点的水位高度 , 其中t表示时间 , y表示水位高度 . (1)在平面直角坐标系中描出表中数据对应的点 , 这些点 是否在一条直线上 ? 由此你能发现水位变化有什么规律吗 ?
t/h 0 1 2 3 4
5
y/m 3 3.3 3.6 3.9 4.2 4.5
x … 0.5 1 1.5 2 2.5 3 3.5 4 5
y … 12 6 4 3 2.4 2
1.5
6… 1…
新知探究
例3:下图反映的过程是小明从家去食堂吃早餐 , 接着去图书馆读报 , 然后回家 . 其中x 表示时间 , y 表示小明离家的距离 , 小明家、 食堂、图书馆在同一直线上 .
y/km
500 x/分
O 10 20 30 40 50
500 x/分
O 10 20 30 40 50
A
B
C
D
课堂小测
4.1~6个月的婴儿生长发育得非常快 , 他们的体重y(克)和月龄x(月) 之间的关系可以用y=a+700x表示 , 其中a是婴儿出生时的体重 . 若 一个婴儿出生时的体重是4000克 , 请用表格表示在1~6个月内 , 这 个婴儿的体重y与x之间的关系 :
离家500米的地方吃早餐 , 吃早餐用了20分 ; 再用10分赶到
离家1000米的学校参加考试 . 下列图象中 , 能反映这一过
程的是
(D)
y/米
y/米
y/米
y/米
1500
1500
1500
1500
1000
1000
1000
1000
500
500

一次函数第一课时ppt课件

一次函数第一课时ppt课件

直线y=kx经过 的象限
性质
一、三象限
二、四象限
y随x的增大而增大 y随x的增大而减小
图象必经过的点 图象必经过(0,0)和(1,k)这两个点
某登山队大本营所在地的气温为50C, 海拔每升高1km气温下降6 0C,登山 队员由大本营向上登高 x km时,他 们所在的位置的气温是 y 0 C,试用 解析式表示 y 与 x的关系。
4.如果长方形的周长是30cm,长是xcm,宽是ycm. (1)写出y与x之间的函数解析式,它是一次函数吗? (2)若长是宽的2倍,求长方形的面积.
解:(1)y=15-x (0<x<15),是一次函数. (2)由题意可得x=2(15-x). 解得x=10,所以y=15-x=5. ∴长方形的面积为10×5=50(cm2).
(2)一种计算成年人标准体重G(单位:kg) 的方法是,以cm为单位量出身高值 h ,再减常数 105,所得差是G 的值; G=h-105
(3)某城市的市内电话的月收费额 y(单位: 元)包括月租费22元和拨打电话 x min 的计时费 (按0.1元/min收取);
y=0.1x+22
(4)把一个长10 cm,宽5 cm的矩形的长减少
形式:y=kx+b(k≠0) 特别地,当b=0时, y=kx(k≠0)是正比例函数
一次函数的简单应用
• 感悟:
时间是一个“常量”,但对于勤奋 者来说,却是一个“变量”.
你的收获与平时的付出是成正比 的,一份耕耘、一份收获,相信自 己,只要付出,你一定会有收获!
4
2
2
∴h是x的一次函数,且 k 3 ,b 0.
2
(2)当h= 3 时,求x的值. (3)求△ABC的面积S与x的函数解析式.S

北师大版八年级数学上册《一次函数的图象》第1课时示范公开课教学课件

北师大版八年级数学上册《一次函数的图象》第1课时示范公开课教学课件
在同一直角坐标系内画出正比例函数y=x,y=3x, 和y=-4x的图象.
y=x
y=3x
y=-4x
当k>0时,
x增大时,y的值也增大;
当k<0时,
x增大时,y的值反而减小;
2
4
y = x 12 Nhomakorabea1
2
y随x的增大而增大.
y随x的增大而减小.
-3
-6
在正比例函数y=kx中:
把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象.
例1 画出正比例函数y=2x的图象.
x
y
1
0
0
-1
2
-2




2
4
-2
-4
y=2x
以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.
D
一、三
3.已知y是x的正比例函数,且函数图象经过点(4,-6),则下列各点也在此正比例函数图象上的是 ( )A.(2,3) B.(-4,6) C.(3,-2) D.(-6,4)
B
4.在正比例函数y=-3mx中,y随x的增大而增大,则点P(m,5)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
解:因为正比例函数y=mx的图象经过点(m,9),所以9=m²,解得m=±3.
又因为y的值随着x值的增大而减小,所以m<0,故m=-3.
正比例函数的图象与性质
正比例函数的性质:
画正比例函数图象的一般步骤:
正比例函数的图象:经过原点的直线.
当k>0时,经过第一、三象限;
当k>0时,y的值随x值的增大而增大;

一次函数的图像ppt课件

一次函数的图像ppt课件

取一些点,这些点的坐标分别满足y=-2x或y=-2x+1上
由此可见,一次函数y=kx+b(k、b为常数, k≠0 )可以用直角坐标系
中的一条直线来表示, 这条直线就叫做一次函数y=kx+b的图象.
y=2x
y=-2x
观察图象,它们有什么异同?
你能得出一次函数的图象特点吗?
相同点:两图象都经过原点
不同点:函数y=2x的图象经过第一、三象限,从左向右呈上升状态,
–3
–4
一般地,你能从函数y=k+b的图象上直接看出b
的数值吗?
y = 2x+3
–5
–6
–7
–8
y = -x
5
x
归纳总结
一次函数y=kx+b(k,b是常数,k≠0)的图象与性质
k>0
y随x的增大而增大
k<0
y随x的增大而减小
k相等
图象平行
b相等
图象相交于点(0,b)
例1、在同一坐标系中作出下列函数的图象,并求它们与坐标轴的交点
取x=1,得y=-1,得到点(1,-1)
2
-2 -1
0
1
2
3
x
-1
-2
y=-3x+2
1.设下列两个函数:
当 x =x1时,y = y1; 当x=x2时,y=y2,
用“<”或“>”号填空
①对于函数y=


②对于函数y= -
x,若x2>x1,则y2


x+3,若x2
>
>
y1
x1,则y2<y1
观察一次函数y=kx+b(k≠0)的图象,总结一次函数图象的k,b的

一次函数的图像(第1课时)同步课件

一次函数的图像(第1课时)同步课件
列表法: 把自变量的值和对应的函数值列成表格来表示函数关系的方法叫做列表法.
函数表达式法: 表示两个变量之间函数关系的式子称为函数表达式.
图像法: 在平面直角坐标系中,以函数的自变量的值为横坐标、对应的函数值为纵
坐标的点所组成的图形叫做这个函数的图像.
2.什么是一次函数?
一般地,形如y=kx+b(k、b 是常数,且k≠0)的函数,叫做一次函数,其中x是自变量,
y
y=-2x+3 5
解:
=+,
(2)
=-+ ,




=

=


.
∴交点

坐标为( , )

y=x+2
4
3
2
1
-6 -5 -4 -3 -2 -1 O 1 2 3 4 5
-1
-2
-3
-4
-5
x
新知巩固
2.已知一次函数y=x+2与y=-2x+3 ,
(3)求这两条直线与坐标轴所围成的图形面积.
在平面直角坐标系中描出相应的点;
③连线:顺次连接描出的各点.
5
4
3
2
1
-2 -1 O 1 2 3 4 5
-1
-2
-3
x
尝试与交流
仿照上述方法,在下图中画出y=-x+2的图像.
判断点(0,2)、(2,0)、(3,1)、(-1,3)是否在此函数图像上.
y
①列表:
x
··· -2
-1
0
1
2
···
y
···
3
3
3
平行
6. 直线y=2x+3与直线y=2x-1的位置关系是________.

八年级数学一次函数的图像第1课时优秀课件

八年级数学一次函数的图像第1课时优秀课件
y y yx
x
正确为:
0
x
0
y
y=-2x+3
0
x
正确为:
y y=-2x+3
0
x
y y=kx+b﹙k>0,b<0﹚
正确为:
x
y
0
x
y=kx+b﹙k>0,b<0﹚
0
总结
一次函数的图象的画法
一次函数 一次函数图像的平移
2. 直线y=kx+b向上平移n个单位,得到直线 y=kx+b+n;
直线y=kx+b向下平移n个单位,得到直线 y=kx+b-n;
典例精析
例1 分别在同一直角坐标系中画出以下函数的图象:
⑴y=2x与y=2x+3
⑵y=2x+1与
y
1 2
x
1
y=2x+3 y=2x
y=2x+1
y 1 x 1 2
思考:画一次函数 的图像时,你取的 是哪两个点?怎样 取比较简单?
第17章 函数及其图象
一次函数的图像
第1课时 一次函数图象的画法及其平移
导入新课
复习引入
在上一课的学习中,我们学会了函 数图象的画法,分为三个步骤:
①列表
②描点
③连线
那么你能用同样的方法画出一次函 数的图象吗?
一次函数图象及画法
问题1 在同一个平面直角坐标系中,画出以下函数的图象:
(1)
y1x 2
都是经过 原 点〔 0,0 〕的一条 直 线;
2、一次函数 y 1 x 2 、y=3x+2的图 象都是不,2 〕
3、根据“ 两 点确定一条直线〞,取哪

一次函数的图象(第1课时)课件

一次函数的图象(第1课时)课件
上的点(x,y)都满足关系式y=–2x+5吗?
y
9 8 7 6 5 4 3 2 1
–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8
x
–1
A
–2
–3
B
–4
–5
–6
–7
答:(1)点B坐标(4,-3) 当x=4时,y=-2x4+5=-3
故(4,-3)满足关系式 y=-2x+5
(2)一次函数y=–2x+5的 图象上的点(x,y)满足关系 式y=–2x+5
北师大版 八年级 上册(第四章)
3.一次函数的图象
(第1课时)
引例
已知一次函数y=2x , <1> 当x= 1 时,y = 2
当x= 2 时,y = 4 <2> 当x= –3时,y = – 6
当x= –4时,y = – 8 <3>以x为点的横坐标,相应的y的值为点 的纵坐标,可得点
(1, 2) ;(2,4) ;(-3,-6);(-4,-8) <4>再找一些满足同样要求的点
<4>作函数的一般步骤应怎样?
答: A:一次函数y=-3x的图象应是一条直线
B:作函数的一般步骤:列表,描点,连线
例 作出一次函数y=-3x的图象
解: x … -2 -1 0 1 2 … y
y=2x+1 … 6 3 0 -3 -6 … 5
4
作函数图象的一般步骤: 列表:找到一些满足条件的点。 描点:以表中各组对应值作为点的坐
1 2 34567 8
A
B
答: (1)当x=3, y=–2x3+5=-1 所对应的点(3,–1)在一次函数 y=–2x+5的图象上。

《一次函数的图像》第一课时参考课件1 公开课课件

《一次函数的图像》第一课时参考课件1 公开课课件
(3,-1)
x
经验证,(1,3)和(3,-1)都满足y=-2x+5
想一想
(1)满足关系式y=-2x+5的x,y所对应的点 (x,y)都在一次函数y=-2x+5的图象上吗?
(2)一次函数y=-2x+5的图象上的点(x,y) 都满足关系式y=-2x+5吗?
(3)一次函数y=kx+b的图象有什么特点?
一次函数y=kx+b的图象是一条直线,直线 上的点与y=kx+b对应的x、y的值一一对应。
蔡琰(作者有待考证)的《胡笳十八拍》
郭璞的《游仙诗》
鲍照的《拟行路难》
庾信的《拟咏怀》
都特别喜欢。不过都是组诗,太长了,就不贴了orz。
最后还想推一下萧绎的《幽逼诗》四首:
【南史曰:元帝避建邺则都江陵,外迫强敌,内失人和。魏师至,方征兵四方,未至而城见克。在幽逼求酒,饮之,制诗四绝。后为梁王詧所害。】 南风且绝唱,西陵最可悲。今日还蒿里,终非封禅时。 人世逢百六,天道异贞恒。何言异蝼蚁,一旦损鲲鹏。 松风侵晓哀,霜雰当夜来。寂寥千载后,谁畏轩辕台。 夜长无岁月,安知秋与春。原陵五树杏,空得动耕人。
例1 作出一次函数y=2x+1的图象
解:列表:
x
… -2 -1 0 1 2 …
Y=2x+1 … -3 -1 1 3 5 …
描点:以表中各组对应值作为点的坐 标,在直角坐标系内出相应的点。
连线:把这些点依此连接起来,得到 y=2x+1的图象(如下图)。
它是一条直线。 y 5
4
y=2x+1
3
2
1
作函数图象的一般步骤: 列表、描点、连线
蔡琰(作者有待考证)的《胡笳十八拍》

浙教版数学八年级上册第1课时一次函数的图象课件

浙教版数学八年级上册第1课时一次函数的图象课件

典例精讲
例2 在同一坐标系中画出函数y=-2x 和y=-2x+1的图象.
y
5
这两个函数的图象形状都是_一__条__直__线__,
4
并且倾斜程度__相__同__.
y=-2x 3 2
函数y=-2x的图象经过原点,函数y=-
1
2x+1的图象与y轴交于点_(__0_,__1_)_,它 可以看作由直线y=-2x向___上___平移 ___1___个单位长度得到.
随堂练习
4.画出函数y=x+1的图象,并根据图象回答:
(1)x为何值时,y的值为0? (2)y为何值时,x的值为0?
解:过点(0,1),(-1,0)画出函数 图象如图所示.
(1)当x=-1时,y=0. (2)当y=1时,x=0.
y y=x+1
1 -1 O
1x
-1
课堂小结
一次函数的图象 一次函数y=kx+b的图象是__一__条__直__线__,只要确定两 个点,就可画出一次函数图象.一次函数y=kx+b的图 象也称为_直__线__y_=_k_x_+_b____. 正比例函数y=kx的图象是过__原__点___的一条__直__线___.
(3) 连线:把这些点依次连接起来.
y
5 4 3 2 1
-3
-2
-1 -1
O1
2
3
x
-2
-3
-4 y=-2x+1 -5
思考交流
1.满足表达式y=-2x,y=-2x+1的x,y所对应的点(x,y) 都在所作的函数图象上吗?
满足表达式的x,y所对应的点(x,y)都在所作的函数图 象上. 2.在所作的两个图象上各取几个点,分别找出它们的横坐 标和纵坐标,并验证它们是否满足各自的表达式. 图象上所有的点都满足表达式.

一次函数的图像课件

一次函数的图像课件
02
图像是一条直线,其上每一个点 的坐标 $(x, y)$ 都满足该函数的 解析式。
解析式中参数对图像的影响
$k$ 的影响
当 $k > 0$ 时,图像为上升直线;当 $k < 0$ 时,图像为下降直线。
$b$ 的影响
当 $b > 0$ 时,图像与 $y$ 轴交于 正半轴;当 $b < 0$ 时,图像与 $y$ 轴交于负半轴。
如果将一次函数的x替换 为x+h(h>0),则图 像向左移动h个单位。
如果将一次函数的x替换 为x-h(h>0),则图像
向右移动h个单位。
03 一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本与产量的关 系、价格与需求的关系等。
一次函数在物理学中的应用
截距
一次函数的截距为b,表示函数图像 与y轴的交点。当b>0时,交点在y轴 的正半轴上;当b<0时,交点在y轴的 负半轴上。
一次函数图像的平移
上平移
下平移
左平移
右平移
如果一次函数的b值增加 (即向上平移),则图 像向上移动相应的距离。
如果一次函数的b值减小 (即向下平移),则图 像向下移动相应的距离。
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在统计学中的应用
在统计学中,一次函数可以用来拟合数据,例如线性回归分析等。
一次函数在数学题目中的应用
一次函数在代数题中的应用
在代数题目中,一次函数可以用来解决方程和不等式问题,例如求解一元一次方 程、一元一次不等式等。
描点,最后将这些点连接成一条直线。

一次函数图像第1课时精品课件

一次函数图像第1课时精品课件
y
x o
y = kx+b
y = kx y = kx+b
特性:当k相同时,两直线平行 y
x
o
y=kx+b
y=kx
巩固练习(一):
1. 将直线y=-x+1向下平移2个单位,可得直线

2.直线y=2x-4的图象是由直线y=2x向 单位得到。
平移 个
3.将直线 y 1 x 3向 平移 2
直线 y 1 x 2 2。
0
X
-7
合作探究(一)
问比题较3:上请面大两家个观函察数这的两图个象函的数相图同象点的与形不状同,点倾. 斜程度
你有什么发现?
y
相同点:
1.这两个函数的图象形状都 是 , 并且倾斜程度 .
5 y=-6x+5 y=-6x
不同点: 2.函数y=6x的图象经过原点, 函数y=-6x+5的图象与y轴交 于点 .
(2)过点(0,b)和( b ,0)画直线.
k
2.一次函数y=kx+b图象与坐标轴
围成的三角形面积是
y.
O
x
合作探究(三)
问题7:一次函数解析式y=kx+b(k,b是常数,k≠0)
中,k的正负对函数图象有什么影响?
在同直角一坐标系中,画出函数(1) y=x+1,
y=x-1,(2) y=-2x-1, y=-2x+l 的图象.
3.对于自变量x的任一值,这两个函数相应的y值总
相差

猜想:一次函数y =kx+b的图象是什么形状呢? 它与直线y =kx 有什么关系?
比较这两个函数的解析式,容易得出:
1.一次函数y=kx+b的图象是一条直线, 我们称它为直线y=kx+b;

一次函数的图像(第1课时)课件北师大版数学八年级上册(完整版)

一次函数的图像(第1课时)课件北师大版数学八年级上册(完整版)

(一)探索正比例函数的图像
活动1:画一画 例1 画出正比例函数y=2x的图象.
解:
x
… -2 -1 0 1 2 …
1、列表 y=2x … -4 -2 0 2
4



2、描点

3、连)作出正比例函数y=-3x的图像. (2)在所作的图象上任意取几个点,找出它们的横坐标和纵坐标, 并验证它们是否都满足关系y=-3x. (3)任意选取满足y=-3x的几对x、y的值,验证点(x,y)是否在图像上?
函数y-=1 x和y=-4x呢?
2
2、正比例函数y=x和y=3x中,随着x值的增大y的值都增加了,其中哪一 个增加得更快?你能说明其中的道理吗?
1
正比例函数y= - 2
x和y= -4x中,随着x值的增大y的值都减小了,
其中哪一个减小得更快?你是如何判断的?
↑y
→x
(1)当k>0时,图像经过第一、三象限,图像从左向右是上升的(“上坡 线”),y随x的增大而增大,|k|越大(“坡越陡“),增大的速度越快。 (2)当k<0时,图像经过第二、四象限,图像从左向右是下降的(“下坡 线”),y随x的增大而减小,|k|越大(“坡越陡“),减少的速度越快。
必做题
教材85页习题
11
23
选做题
1、已知:正比例函数 y = (m -1)xm2-3 中,y随x的增大而减小,
求m的值。 2、已知:A(-2,a)是正比例函数y=-3x+2图像上的一点,P在坐标轴 上,且 AOP的面积为6,求P点的坐标。
祝你学业有成
2024年5月3日星期五9时52分55秒
下图是小冬同学绘制的某天气温随时间变化的曲线图:

《一次函数的图像》ppt课件1

《一次函数的图像》ppt课件1

变式一:已知直线y=(3k-5)x+7与直线 y=-2x+9平行,则k= 1 . 解:∵3k-5=-2, ∴3k=3,即k=1
新知拓展
1 x 1 与两坐标轴围成的三角形的 1、直线 y 2
面积是多少? 解: 令x=0, 得y = -1 令y=0, 得 1 x-1=0, 解得x=2 2 ∴直线经过点(0,-1)、(2,0) ∴S = 1 2 × 2× 1 = 1
次函数。 当b=0时,一次函数y=kx(常数k≠0 )叫正比例 函数。
2
2、描点法画函数图象的一般步骤:
列表 描点 连线
3、在平面直角坐标系中用描点法画出 下列函数的图像: (1) (2)
y=3x y 3x 2
华师大版八年级数学下册
17.3.2 一次函数的图像(1)
5
自主探究1:
在平面直角坐标系中用描点法画出下列函 数的图像:
y
5 4 3 2
y=3x
从图中可以看出:
1 y= x+2 2
1.当一次函数的
相同,
k值
1
-4 -3 -2
O -1
-1
-2
· ·
b值不相同时,
直线互相平行.
1 2 3 4 5 X
2.当一次函数的
b

-3
-4
相同,
k值不同时,
直线在y轴交于同一 点.
例题:
在同一直角坐标系中画出下列函数图像, 并说一说你是用什么方法画图的?观察直线 位置关系,你又有什么新发现吗?
y
.
. . . .2
0
y=x 2. . . . y=x-2
.
.
y=x+2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3 一次函数的图像(一)
复习回顾
1.什么叫函数?
在某个变化过程中,有两个变量x 和y,如果给定一个x值,相应地就确 定一个y值,那么我们称y是x的函数, 其中x是自变量,y是因变量.
2.一次函数的定义
若两个变量x ,y间的关系式可以表示成
_y_=__k_x_+_b__(k,b为_常__数__且k __≠_0__)形式,则称 y是x的一次函数(x为_自__变__量__,y为_因__变__量__)
特别地,当b=__0_时, y=kx(k为常数,k ≠0 ) 称
y是x的正比例函数.
3、下列函数中,
(1)y 4x 3(2)y 1 x(3)y 1
2
x
(4)y 3x2(5)y 1 x(6)y 2 x 5 3
一次函数有 (1)(2)(5)(6) ,
正比例函数有 (2)

气温变化折线图
是 ,与y轴k交点坐标是 。
气温/°C
18
16
15.91512
11.2
10.9
10
8
8.1
6
5.5
4
3.2 3.7
2
6.4 3.4
0
时间/t
1 2 3 4 5 6 7 8 9 10 11 12
某汽车加速的图象
速度/km/s
110
0
15
时间/s
函数图像的概念
把一个函数的自变量x与对应的因变量 y的值分别作为点的横坐标和纵坐标,在直 角坐标系内描出它的对应点,所有这些点 组成的图形叫做该函数的图象(graph)
2、它是一条直线。
3、k>0时,直线过一三象限
k﹤0时,直线过二四象限
作出一次函数y=-2x+5的图象。
列表:
x
… 0 2.5 …
y=-2x+5 …
描点、连线:
y
6 5 4 3 2 1
50…
y=-2x+5
0 1234
x
想一想
一次函数y=kx+b的图象有什么特点? 一次函数y=kx+b的图象是一条直线,通常 取过(0,b)( - b ,0) 两点。与x轴交点坐标
作出函数y=2x的图像
5 4
解:列表:
3
2
x … -2 -1 0 1 2 … 1
y=2x …
… -3 -2 -1 0
-1
描点:以表中各组对应值作为点的坐 -2
标,在直角坐标系内出相应的点。 -3
123
连线:把这些点依此连接起来,得到 y=2x的图象(如下图)。
作出y=-3x的图像
总结
1、作函数图象的一般步骤: 列表、描点、连线
相关文档
最新文档