层次分析法评价TOP方案的模型
topsis综合评价模型
topsis综合评价模型TOPSIS是一种常用的综合评价模型,通过计算样本相对距离与最优解和最劣解之间的距离来进行评价和排序。
它可以用于各种领域的综合评价,如企业绩效评价、产品质量评价、项目评价等。
该模型一般分为以下步骤:1. 确定评价指标体系评价指标体系应该包括所有与评价对象相关的指标,确保涵盖对象的所有关键方面。
指标选择应该符合实际需要,具有代表性、可测性和可比性。
在确定指标体系时,还需要确定各指标权重。
2. 建立评价矩阵评价矩阵是以评价对象为行、评价指标为列的矩阵,用于描述评价对象各指标的表现情况。
评价矩阵应该被标准化,使其数据值都位于0-1之间。
3. 确定最优解和最劣解最优解和最劣解是整个评价体系的关键基准。
最优解应该是所有指标均达到最好水平的“理想状态”,而最劣解则反之。
通过这两个基准,可以得出评价对象相对距离。
4. 计算距离计算各评价对象与最优解和最劣解之间的距离,以确定它们在评价体系中的相对距离。
常用的距离计算方法包括欧氏距离、曼哈顿距离和切比雪夫距离等。
5. 确定加权系数加权系数用于消除不同指标之间的差异。
权重应该根据各指标的相对重要性,通过专家调查、问卷调查等方法确定。
权重的确定应该是公正、客观和可信的。
6. 计算综合得分将各指标的得分按照其权重加权,然后求和得到综合得分。
综合得分越高,评价对象的综合表现就越好。
评价对象可以按照综合得分排序,从高到低排列。
TOPSIS模型具有以下优点:1. 相对直观该模型通过计算距离和加权得分来评价对象,具有简单直观的特点,易于理解。
2. 具有可操作性该模型通过确定指标体系和权重等关键因素,具有可操作性,使得评价结果更加可靠。
3. 具有灵活性该模型可以用于不同领域的综合评价,如企业、产品、项目等,具有很强的灵活性。
总之,TOPSIS模型是一种简单有效的综合评价方法,适用于各种领域的实际应用。
通过该模型,可以精确地评价和排序一系列评价对象,为实践提供有力支持。
TopSis法
TopSIS法的发展趋势
研究进展
国内外研究现状和趋势 应用领域和实际案例 未来研究方向和挑战
未来发展方向
提高计算效率:通 过优化算法和并行 计算技术,提高 To p S I S 法 的 计 算 效率。
扩展应用领域:将 To p S I S 法 应 用 于 更多领域,如环境 评估、供应链管理 等。
建 立 To p S I S 模 型 : 根 据 评 价 指 标 建 立 To p S I S 模 型
计 算 权 重 : 根 据 To p S I S 模 型 计 算 各 评价指标的权重
综合评价:根据权重和评价指标进 行综合评价
结果分析:对综合评价结果进行分 析,找出最优方案或改进措施
应 用 推 广 : 将 To p S I S 法 应 用 于 实 际 工作中,不断优化和改进
• 3前景展望 • ***SIS法在决策分析中的应用将越来越广泛
• 随着技术的发展,TopSIS法将更加智能化和高效 ***SIS法与其他决策分析方法 的结合将成为一个重要的研究方向 ***SIS法在解决实际问题中的应用案例将 不断增加,为其发展提供更多支持
• ***SIS法与其他决策分析方法的结合将成为一个重要的研究方向 • ***SIS法在解决实际问题中的应用案例将不断增加,为其发展提供更多支持
应用领域
风险评估:用于风险评估, 如自然灾害、事故等
质量管理:用于质量管理, 如产品质量控制、服务质量
评估等
决策分析:用于多属性决策 分析,如投资决策、项目评 估等
环境评估:用于环境评估, 如环境污染、生态保护等
TopSIS法的原理
原理概述
确定评价
计算各指标的得分
改进方向
提高可解释性:通过改进算法, 使 得 To p S I S 法 的 结 果 更 容 易 被 理 解和解释。
《TOPSIS评价方法》课件
TOPSIS评价方法的原理
TOPSIS评价方法的原理基于两个关键概念:理想解和负理想解。理想解是指 在所有评价指标上都达到最佳水平的方案,而负理想解是指在所有评价指标 上都达到最差水平的方案。
TOPSIS方法通过计算每个方案与理想解和负理想解之间的距离,来确定每个 方案的综合评价值,距离越小则越接近理想解。
最佳解。
确定评价指标
首先,确定需要评价的指标,这些指标 应该能够全面反映方案的优劣。
确定权重
根据指标的重要性,确定每个指标的权 重,以体现不同指标在综合评价中的重 要程度。
计算综合评价值
根据距离计算结果,确定每个方案的综 合评价值,距离越小则综合评价值越高。
TOPSIS评价方法的应用领域
工程项目选择
TOPSIS评价方法在计算综合评价值时,需要 确定每个评价指标的权重,权重的确定可能 存在主观性。
2 对标准化的敏感性
TOPSIS评价方法对评价指标的标准化处理非 常敏感,标准化方法的选择可能影响结果。
总结
TOPSIS评价方法是一种多指标决策方法,通过综合考虑各个评价指标,帮助 决策者选择最佳的方案。
它的原理简单易懂,应用领域广泛。然而,权重确定和标准化处理等问题需 要特别注意。
在工程项目选择中,TOPSIS评价方法可以帮助项 目方从多个方案中选择最佳的工程项目。
市场调研
在市场调研中,TOPSIS评价方法可以帮助企业选 择最佳的市场调研方案。
供应链管理
在供应链管理中,T。
投资决策
在投资决策中,TOPSIS评价方法可以帮助投资者 选择最佳的投资方案。
《TOPSIS评价方法》PPT 课件
TOPSIS评价方法是一种多指标决策方法,用于帮助决策者选择最佳的方案。 它综合考虑各个方案与理想方案的距离,并通过比较,选出最接近理想方案 的方案。
评估模型研究_层次分析法
2.评估方法概述2.1 层次分析法(AHP)层次分析法(Analytic Hierarchy Process,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。
它是美国运筹学家T. L. Saaty 教授于20世纪70年代初期提出的一种简便、灵活而又实用的多准则决策方法。
人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。
层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法,其基本思路是评价者通过将复杂问题分解为若干层次和若干要素,并在同一层次的各要素之间简单地进行比较、判断和计算。
这样就可以得出不同替代方案的重要度,从而为选择最优方案提供决策依据。
运用层次分析法建模,大体上可按下面四个步骤进行:(1)建立递阶层次结构模型;(2)构造出各层次中的所有判断矩阵;(3)层次单排序及一致性检验;(4)层次总排序及一致性检验。
下面分别说明这四个步骤的实现过程。
2.1.1 递阶层次结构的建立与特点应用AHP分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。
在这个模型下,复杂问题被分解为元素的组成部分。
这些元素又按其属性及关系形成若干层次。
上一层次的元素作为准则对下一层次有关元素起支配作用。
这些层次可以分为三类:(1)最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。
(2)中间层:这一层次中包图1 AHP评估层次结构示意图含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。
(3)最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。
TOPSIS法(优劣解距离法)
TOPSIS法(优劣解距离法)Technique for Order Preference by Similarity to Ideal Solution⼀、场景分析层次分析法在某些指标数据已知时候不可⽤。
成绩和排名已知的时候,要我们对⼏名同学进⾏合理评分(能够描述其成绩的⾼低,可以理解为前⾯的权重),⽤归⼀法就可以直接根据排名(倒序)计算评分了,但是却有⼀些不合理的地⽅。
我们可以看出这样计算时,我们修改成绩只要保证排名不发⽣变化,我们得到的评分也就不会发⽣改变,⽐如:当最低分特别低或者最⾼分特别⾼的时候,他们的排名是不变的。
这说明我们给出的评分不⾜以反应出原数据的信息。
我们可以构造⼀个计算评分的公式,来避免此类问题发⽣。
当根据多个指标来评分时,我们需要根据多个指标进⾏综合判断评分。
我们增加BMI指数对⼏位同学进⾏综合评分,BMI指数在18.5~23.9之间为正常,评分标准与成绩也不同,就需要我们对每个指标设定⼀个统⼀的标准,然后进⾏各指标评分,最后进⾏综合处理得到最后的评分。
⼆、简单介绍TOPSIS法是⼀种常⽤的综合评价⽅法,根据有限个评价对象与理想化⽬标的接近程度进⾏排序的⽅法,是在现有的对象中进⾏相对优劣的评价。
它能够充分利⽤原始数据的信息,它的结果能精确地反映出各评价⽅案之间的差距。
三、基本步骤1、将原始矩阵正向化常见的四种指标:a、极⼤型(效益型)指标,如:成绩、GDP增速、企业利润,指标特点:越⼤越好 b、极⼩型(成本型)指标,如:费⽤、坏品率、污染程度,指标特点:越⼩越好 c、中间型指标,如:⽔质量评估时的PH值,指标特点:越接近某个值越好 d、区间型指标,如:提问、⽔中植物性营养物量,指标特点:越接近某个值越好。
所有指标转化为极⼤型指标就是原始矩阵正向化。
2、正向化急诊标准化⽬的:为了⼩区不同指标量纲的影响。
标准化处理公式:每个元素除以本列所有元素平⽅和开根号。
3、计算得分并归⼀化只有⼀个指标时构造计算评分的公式:(x−min)(max−min)可以化成:D(x−min)D(max−x)类⽐只要⼀个指标计算得分定义最⼤值向量Z1,最⼩值向量Z2,定义第i个评价对象与最⼤值的距离为D i1,最⼩值距离为D i2,则第i个评价对象未归⼀化的得分为S i=D i2D i1+D i2且0≤Si≤1,S i越⼤D i1越⼤,越接近最⼤值。
层次分析法模型
二、模型的假设1、假设我们所统计与分析的数据,都就是客观真实的;2、在考虑影响毕业生就业的因素时,假设我们所选取的样本为简单随机抽样,具有典型性与普遍性,基本上能够集中反映毕业生就业实际情况;3、在数据计算过程中,假设误差在合理范围之内,对数据结果的影响可以忽略、三、符号说明四、模型的分析与建立1、问题背景的理解随着我国改革开放的不断深入,经济转轨加速,社会转型加剧,受高校毕业生总量的增加,劳动用工管理与社会保障制度,劳动力市场的不尽完善,以及高校的毕业生部分择业期望过高等因素的影响,如今的毕业生就业形势较为严峻、为了更好地解决广大学生就业中的问题,就需要客观地、全面地分析与评价毕业生就业的若干主要因素,并将它们从主到次依秩排序、针对不同专业的毕业生评价其就业情况,并给出某一专业的毕业生具体的就业策略、2、方法模型的建立(1)层次分析法层次分析法介绍:层次分析法就是一种定性与定量相结合的、系统化、层次化的分析方法,它用来帮助我们处理决策问题、特别就是考虑的因素较多的决策问题,而且各个因素的重要性、影响力、或者优先程度难以量化的时候,层次分析法为我们提供了一种科学的决策方法、通过相互比较确定各准则对于目标的权重,及各方案对于每一准则的权重、这些权重在人的思维过程中通常就是定性的,而在层次分析法中则要给出得到权重的定量方法、我们现在主要对各个因素分配合理的权重,而权重的计算一般用美国运筹学家T、L、Saaty教授提出的AHP法、(2)具体计算权重的AHP 法AHP法就是将各要素配对比较,根据各要素的相对重要程度进行判断,再根据W、计算成对比较矩阵的特征值获得权重向量kStep1、 构造成对比较矩阵假设比较某一层k 个因素12,,,k C C C L 对上一层因素ο的影响,每次两个因素i C 与j C ,用ij C 表示i C 与j C 对ο的影响之比,全部比较结果构成成对比较矩阵C ,也叫正互反矩阵、*()k k ij C C =,0ij C >,1ij jiC C=, 1ii C =、若正互反矩阵C 元素成立等式:* ij jk ik C C C = ,则称C 一致性矩阵、标度ij C含义1i C 与j C 的影响相同 3 i C 比j C 的影响稍强 5 i C 比j C 的影响强 7 i C 比j C 的影响明显地强 9i C 比j C 的影响绝对地强2,4,6,8i C 与j C 的影响之比在上述两个相邻等级之间11,,29Li C 与j C 影响之比为上面ij a 的互反数 Step2、 计算该矩阵的权重通过解正互反矩阵的特征值,可求得相应的特征向量,经归一化后即为权重向量12 = [ , ,..., ]T kkkkkQ q qq ,其中的ikq 就就是i C 对ο的相对权重、由特征方程A-I=0λ,利用Mathematica 软件包可以求出最大的特征值max λ与相应的特征向量、Step3、 一致性检验1)为了度量判断的可靠程度,可计算此时的一致性度量指标CI :max1kCI k λ-=-其中maxλ表示矩阵C 的最大特征值,式中k 正互反矩阵的阶数,CI 越小,说明权重的可靠性越高、2)平均随机一致性指标RI ,下表给出了1-14阶正互反矩阵计算1000次得到3)当0.1CR RI=<时,(CR 称为一致性比率,RI 就是通过大量数据测出来的随机一致性指标,可查表找到)可认为判断就是满意的,此时的正互反矩阵称之为一致性矩阵、进入Step4、 否则说明矛盾,应重新修正该正互反矩阵、转入Step2、 Step4、 得到最终权值向量将该一致性矩阵任一列或任一行向量归一化就得到所需的权重向量、计算出来的准则层对目标层的权重即不同因素的最终权重,这样一来,我们就可以按权重大小将进行排序了、 (3)组合权向量的计算成对比较矩阵显然非常好体现了我们研究对象——各个因素之间权重的比较状态,能够有效地全面而深刻地表现出有关的数据信息,显然也就是矩阵数学模型的重要应用价值、 因素往往就是有层次的,我们经常在进行决策分析时,要进行多方面、多角度、多层次的分析与研究,把我们的决策选择建立在深刻而广泛的分析研究基础之上的、一个总的指标下面可以有第一层次的各个方面的指标、因素、成份、特征性质、组成成分等等,而每个这种因素又有新的成份在里面、这就就是决策分析的数学模型的真正的意义之所在、定理1:对于三决策问题,假设第一层只有一个因素,即这就是总的目标,决策总就是最后要集中在一个总目标基础之上的东西,然后才能进行最后的比较、又假设第二层与第三层因素各有n 、m 个,并且记第二层对第一层的权向量(即构成成份的数量大小、成份的比例、影响程度的大小的数量化指标的量化结果、所拥有的这种属性的程度大小等等多方面的事情的量化的结果)为:(2)(2)(2)(2)12(,,,)Tn w w w w =L , 而第3层对第2层的全向量分别就是:(3)(3)(3)(3)12(,,,)Tk k k km w w w w =L ,这表示第3层的权重大小,具体表示的就是第2层中第k 个因素所拥有的面对下一层次的m 个同类因素进行分析对比所产生的数量指标、那么显然,第三层的因素相对于第一层的因素而言,其权重应当就是:先构造矩阵,用 (3)k w 为列向量构造一个方阵 (3)(3)(3)(3)12(,,)nWw w w=L,这个矩阵的第一行就是第3层次的m 个因素中的第1个因素,通过第2层次的n 个因素传递给第1层次因素的权重,故第3层次的m 个因素中的第i 个因素对第1层次的权重为 (2)(3)1nkkik w w=∑,从而可以统一表示为:(1)(3)(2)wWw=,它的每一行表示的就就是三层(一般就是方案层)中每一个因素相对总目标的量化指标、定理2:一般公式如果共有s 层,则第k 层对第一层(设只有一个因素)的组合权向量为()()(1),3,4,k k k k s wWw-==L ,其中矩阵 ()k W的第i 行表示第k 层中的第i 个因素,相对于第1k -层中每个因素的权向量;而列向量 (1)k w-则表示的就是第1k -层中每个因素关于第一层总目标的权重向量、于就是,最下层对最上层的的组合权向量为:()()(1)(3)(2)s s s wWWWw-=L ,实际上这就是一个从左向右的递推形式的向量运算、逐个得出每一层的各个因素关于第一层总目标因素的权重向量、 (4)灰色关联度综合评价法灰色系统的关联分析主要就是对系统动态发展过程的量化分析,它就是根据因素之间发展态势的相似或相异程度,来衡量因素间接近的程度,实质上就就是各评价对象与理想对象的接近程度,评价对象与理想对象越接近,其关联度就越大、关联序则反映了各评价对象对理想对象的接近次序,即评价对象与理想对象接近程度的先后次序,其中关联度最大的评价对象为最优、因此,可利用关联序对所要评价的对象进行排序比较、利用灰色关联度进行综合评价的步骤如下:1)用表格方式列出所有被评价对象的指标、2)由于指标序列间的数据不存在运算关系,因此必须对数据进行无量纲化处理、3)构造理想对象,即把无量纲化处理后评价对象中每一项指标的最佳值作为理想对象的指标值、4)计算指标关联系数、其计算公式为:min max imax()()ik k ρρξ+=+∆∆∆∆其中min()()minminiikk k x x =-∆,max()()maxmaxiikk k x x =-∆,()ik ∆=()()ik k x x -,1,2,i n =L ,1,2,k m =L 、式中n 为评价对象的个数;m 为评价对象指标的个数;()ik ξ为第i 个对象第k 个指标对理想对象同一指标的关联系数;A 表示在各评价对象第k 个指标值与理想对象第k 个指标值的最小绝对差的基础上,再按1,2,,i n =L 找出所有最小绝对差中的最小值;max ∆表示在评价对象第k 个指标值与理想对象第k 个指标值的最大绝对差的基础上,再按1,2,,i n =L 找出所有最大绝对差中的最大值;min ∆为评价对象第k 个指标值与理想对象第k 个指标值的绝对差、ρ为分辨系数,ρ越小分辨力越大,一般ρ的取值区间[0,1],更一般地取ρ=0、5、5)确立层次分析模型、6)确定判断矩阵,计算各层次加权系数及加权关联度,加权关联度的计算公式为:()mk iikk γξω=∑,式中7为第i 个评价对象对理想对象的加权关联度,kω为第k 个指标的权重、7)依加权关联度的大小,对各评价对象进行排序,建立评价对象的关联序,从而可以得出关联度较大的对象,关联度越大其综合评价结果也越好、 (5)线性回归分析法假如对象(因变量)y 与p 个因素(自变量)12,,,p x x x L 的关系就是线性的,为研究她们之间定量关系式,做n 次抽样,每一次抽样可能发生的对象之值为12,,ny y yL它们就是在因素(1,2,,)i i p x =L 数值已经发生的条件下随机发生的、把第j 次观测的因素数值记为:12,,,jjpj x xx L (1,2,j n =L )那么可以假设有如下的结构表达式:1111011212201213011p p p p n np p y x x y x x y x x βββεβββεβββε⎧=++++⎪⎪=++++⎪⎨⎪⎪=++++⎪⎩L L L L L L L L L L L L L L L L L L 其中,01,,,pβββL 就是1p +个待估计参数,12,,,n εεεL 就是n 个相互独立且服从同一正态分布2(0,)N σ的随机变量、这就就是多元线性回归的数学模型、若令12n y y y y ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ,111212122212111p p n n np x xx x xx x xxx ⎛⎫ ⎪ ⎪=⎪ ⎪⎪⎝⎭L L L LLL L L,012p βββββ⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭M ,12n εεεε⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M则上面多元线性回归的数学模型可以写成矩阵形式:y x βε=+在实际问题中,我们得到的就是实测容量为n 的样本,利用这组样本对上述回归模型中的参数进行估计,得到的估计方法称为多元线性回归方程,记为%011p p y b b x b x =+++L式中,012,,,,p b b b b L 分别为01,,,p βββL 的估计值、 (6)主成分分析法1)主成分的定义设有p 个随机变量12,,,p x x x L ,它们可能线性相关,通过某种线性变换,找到p 个线性无关的随机变量12,,,pz z zL ,称为初始向量的主成分、设12(,,,)Tp αααα=L为p 维空间pR 中的单位向量,并记所有单位向量的集合为{}0|1TR ααα==,且记X =12(,,,)Tp X X X L 、2)用相关矩阵确定的主成分令*i E X -=,**(,),ij i j E r X X =1,2,,j p =L 、*X=***12(,,)Tp X X X L ,则1212121211()1pp ij p p R r r r rr r r⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭L LL L LLL 为*X 的协方程、类似地,我们可对R 进行相应的分析、3)主成分分析的一般步骤 第一步、选择主成分设X 的样本数据经过数据预处理后计算出的样本相关矩阵为121*21212111*()11()()pT p p p R ij n r r r rr XX r r⎛⎫ ⎪ ⎪=== ⎪- ⎪ ⎪⎝⎭L LL L LLL %%、 由特征方程0R I λ-=,求出p 个非负实根,并按值从大到小进行排列:120p λλλ≥≥≥≥L 、将iλ带入下列方程组,求出单位特征向量iα()0,1,2,,i i R I i m λα-==L确定m的方法就是使前m个主成分的累计贡献率达到85%左右、第二步、利用主成分进行分析在实际分析时,通常把特征向量的各个分量的取值大小与符号(正负)进行对照比较,往往能对主成分的直观意义作出合理的解释、利用主成分可以进行以下分析:a)对原指标进行分类;b)对原指标进行选择;c)对样品进行分类;d)对样品进行排序;e)预测分析、。
层次分析及综合评价方法
采用适当的方法,将各个指标综合起来,得出一个总体的评价结果。
综合评价
对评价结果进行分析,为决策提供依据。
结果分析
07
综合评价指标体系的建立
构建步骤
明确评价目标、设计初步指标、筛选与确定指标、确定权重、建立完整的指标体系。
导向性原则
指标应具有导向性,能够引导被评价对象向正确的方向发展。
方案层可以包含多个元素,每个元素代表一个具体的方案或措施。
方案层需要具体、可行,能够针对准则层中的各个因素提出相应的解决方案。
方案层
03
构造判断矩阵
判断矩阵的定义与元素确定
判断矩阵定义
判断矩阵是层次分析法中用于表示各因素之间相对重要性的矩阵,通常采用正互反矩阵形式。
元素确定方法
判断矩阵的元素通常采用专家打分、历史数据比较等方法确定,根据实际情况选择合适的方法。
将决策问题分解成不同的组成因素,并根据因素间的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次的分析结构模型。
将决策问题分解成不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次的分析结构模型。
通过较少的定量信息使决策者的思维过程数学化,为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
计算加权评价值
根据加权评价值的大小,确定最优的决策方案。
确定决策方案
将决策方案付诸实施,并根据实际情况进行反馈和调整。
决策实施与反馈
基于层次总排序的决策分析
06
综合评价方法概述
定义
综合评价是一种对多个指标进行综合分析的方法,通过对各个指标进行权重分配,得出一个综合的评价结果。
基于分析层次法的教育质量评价模型
基于分析层次法的教育质量评价模型随着人口结构的变化和社会经济的快速发展,对教育质量的要求越来越高。
教育质量评价是现代教育管理中的重要环节,对于提高教育质量、提升教学水平以及指导政策制定都具有重要意义。
基于分析层次法的教育质量评价模型成为了现代教育质量评价的一种重要方法。
一、分析层次法的基本原理和步骤分析层次法是以层次分析为基础的决策分析方法,它是由美国运筹学家托马斯·L·赛蒂斯于20世纪70年代提出的。
分析层次法是一种定性分析方法,它把层次化的复杂问题,通过逐层分解、层与层之间的比较与判断,得出最终的决策结果。
分析层次法主要包括如下步骤:1.建立层次结构模型:将问题分解为若干个层次,从而得到一个有层次结构的模型。
2.构造判断矩阵:对于每个节点,采用比较判断法来确定两两比较的重要程度。
3.计算判断矩阵的特征值和特征向量:通过计算矩阵的特征值和特征向量来确定各节点的权重,从而得到加权后的判断矩阵。
4.一致性检验:通过计算一致性指标,判断构造判断矩阵时是否存在较大的不一致性。
5.合成各级权重:通过合成各级节点的权重,确定各个层次的全局权重。
6.综合评判:将所研究的对象分别归到各级指标中去,确定各个指标及各级权重的重要性大小,得出最终的评价结果。
二、分析层次法在教育质量评价中的应用分析层次法是一种全面、科学、定量化的教育质量评价方法,同时也是一种较为科学、可以紧密结合实际的评价工具。
在教育管理中,分析层次法可以用来评价教育质量、评估办学水平等。
1.建立教育质量评价模型教育质量评价模型是指评价体系、评价指标和评价方法三个方面的总和,是教育质量评价的核心。
利用分析层次法可以建立一个科学完整的教育质量评价模型,通过对教师、课堂、校园、课程、实践等各个方面进行系统化的评价,精确分析出教育机构的强度和不足,从而有针对性地提高教育质量。
2.确定评价指标评价指标是教育质量评价的重要内容之一,是教育质量评价具体实现的依据。
topsis法模型
topsis法模型
Topsis法(Technique for Order of Preference by Similarity to Ideal Solution)是一种用于多属性决策的方法,通过对各个方案进行评估和排序来选择最佳方案。
该方法基于以下假设:
1. 方案的评估指标是数字型的。
2. 方案的评估指标是正向型的,即数值越大,则方案越好。
3. 每个方案在各个评估指标上的权重是已知的。
Topsis法的步骤如下:
1. 构建决策矩阵:将每个方案在各个评估指标上的具体数值组成一个矩阵。
2. 标准化决策矩阵:对决策矩阵进行标准化处理,使得各个评估指标在同一量级上。
可以使用最大最小标准化或者向量归一化等方法。
3. 确定正理想解和负理想解:根据评估指标的正向性,确定正理想解和负理想解。
正理想解取各个评估指标的最大值,负理想解取各个评估指标的最小值。
4. 计算每个方案到正理想解和负理想解的距离:可以使用欧氏距离、曼哈顿距离或者其他距离度量方法来计算。
5. 计算每个方案的综合得分:根据到正理想解和负理想解的距离,计算每个方案的综合得分。
6. 对方案进行排序:根据综合得分,对方案进行排序,得到最佳方案。
Topsis法是一种简单而有效的多属性决策方法,适用于评估和排序多个方案。
多目标决策模型:层次分析法(AHP)、代数模型、离散模型
层次分析法建模层次分析法〔AHP -Analytic Hierachy process 〕---- 多目标决策方法70 年代由美国运筹学家T ·L ·Satty 提出的,是一种定性与定量分析相结合的多目标决策分析方法论。
吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标〔因素〕结构复杂而且缺乏必要的数据情况下,採用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。
传统的常用的研究自然科学和社会科学的方法有:机理分析方法:利用经典的数学工具分析观察的因果关系;统计分析方法:利用大量观测数据寻求统计规律,用随机数学方法描述〔自然现象、社会现象〕现象的规律。
根本内容:〔1〕多目标决策问题举例AHP 建模方法〔2〕AHP 建模方法根本步骤〔3〕AHP 建模方法根本算法〔3〕AHP 建模方法理论算法应用的假如干问题。
参考书: 1、姜启源,数学模型〔第二版,第9章;第三版,第8章〕,高等教育2、程理民等, 运筹学模型与方法教程,〔第10章〕,清华大学3、?运筹学?编写组,运筹学〔修订版〕,第11章,第7节,清华大学一、问题举例:A .大学毕业生就业选择问题获得大学毕业学位的毕业生,“双向选择〞时,用人单位与毕业生都有各自的选择标准和要求。
就毕业生来说选择单位的标准和要求是多方面的,例如:① 能发挥自己的才干为国家作出较好奉献〔即工作岗位适合发挥专长〕; ② 工作收入较好〔待遇好〕;③ 生活环境好〔大城市、气候等工作条件等〕;④ 单位名声好〔声誉-Reputation 〕;⑤ 工作环境好〔人际关系和谐等〕⑥ 开展晋升〔promote, promotion 〕时机多〔如新单位或单位开展有后劲〕等。
问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择?——或者说他将用什么方法将可供选择的工作单位排序?B.假期旅游地点选择 暑假有3个旅游胜地可供选择。
层次分析法
层次分析法简介层次分析法(Analytic Hierarchy Process,AHP)这是一种定性和定量相结合的、系统的、层次化的分析方法。
这种方法的特点就是在对复杂决策问题的本质、影响因素及其内在关系等进行深入研究的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
是对难以完全定量的复杂系统做出决策的模型和方法。
层次分析法的原理:层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。
层次分析法的步骤,运用层次分析法构造系统模型时,大体可以分为以下四个步骤:(1)建立层次结构模型:将决策的目标、考虑的因素(决策准则)和决策对象按他们之间的相互关系分成最高层、中间层和最低层,绘制层次结构图。
最高层(目标层):决策的目的、要解决的问题;中间层(准则层或指标层):考虑的因素、决策的准则;最低层(方案层):决策时的备选方案;(2)构造判断(成对比较)矩阵;表指标之间比较量化值规定因素i比因素j量化值同等重要 1.00稍微重要 3.00较强重要 5.00强烈重要7.00极端重要9.00稍微不重要0.33较强不重要0.20强烈不重要0.14极端不重要0.11两相邻判断的中间值2、4、6、8(3)层次单排序及其一致性检验;(4)层次总排序及其一致性检验;举例:某市中心有一座商场,由于街道狭窄,人员车流量过大,经常造成交通堵塞。
市政府决定解决这个问题,经过有关专家会商研究,制订三个可行方案:a1:在商场附近修建一座环形天桥;a2:在商场附近修建地下人行通道;a3:搬迁商场决策的总目标是改善市中心交通环境,根据当地具体条件和情况,专家组织拟定五个目标作为对可行方案的评价准则:C1:通车能力;C2:方便群众;C3:基建费用不宜过高;C4:交通安全;C5:市容美观。
层次分析法模型
层次分析法模型层次分析法模型(AHP)是指采用多角度分析综合决策问题的决策模型。
层次分析法模型也常被称为“综合衡量决策法AHP”,它可以清楚地显示决策问题中各个因素和各种决策目标之间的变化关系,从而协助决策者进行决策分析,尤其是在复杂多样的环境下,可以提供较为准确的分析和决策结果。
一、层次分析法模型的原理及概念层次分析法模型是一种有着多样度的决策方法,它可以帮助决策者从多角度的结果进行综合性的分析,从而有助于提升决策的准确性和鲁棒性。
层次分析法模型的核心思想是将决策问题分解为一系列级联的小问题,在组织问题越来越复杂的情况下,层次分析法模型可以更有效地进行管理。
层次分析法模型主要包括三个层次:目标层、指标层和子指标层。
1.目标层:目标层即分析的主题,是实际分析的核心问题,是总体分析的指导原则。
2.指标层:指标层由各种相关指标组成,用以检测目标层的实现状况。
3.子指标层:子指标层是指标层的进一步分解,包括客观指标与主观指标,用以更加准确地衡量目标层在实现过程中的困难程度。
二、层次分析法模型的特征1.简单易操作:层次分析法模型具有很高的计算简便性,操作简洁,只要决策者能够合理地组织数据,就可以运用层次分析法模型得出准确的结果。
2.易于计算:采用层次分析法模型进行综合性分析时,需要计算一系列不同层面之间的相对权重,这一点使得计算成本较低。
3.考虑多项条件:采用层次分析法模型,进行决策分析的同时可以考虑多个条件,从而利用这些条件完成更加准确的决策。
4.表达性强:层次分析法模型擅长表达决策者的思路,通过具体的分析过程可以更清楚地了解决策者的想法,从而使决策者更容易接受最终的决策结果。
三、层次分析法模型的应用1.组织治理:组织治理是组织管理的重要部分,其中重要的指标也是关键因素,层次分析法分析法模型可以帮助组织管理者准确掌握各个指标的变化,从而进行有效的组织治理。
2.市场营销:市场营销是一项复杂的技术活动,需要分析多个指标,如客户偏好、价格影响因素等,考虑这些因素之间的关系,层次分析法模型可以有效帮助企业发掘潜在市场需求,从而更有效地实现市场营销计划。
层次分析法模型
1 aij
,aii 1
某人对选择旅游 地用成对比较法 得到的A
A是正互反阵,要由A确定C1,… , Cn对O的权向量。
成对比较的不一致情况
1 A 2 1/ 2 1 4 7
不一致
a23 7 : 1 (C2 : C3 )
a12 1 : 2 (C1 : C2 ) 一致比较
层次分析法的基本步骤
1.建立层次分析结构模型
深入分析实际问题,将有关因素自上而下分层(目标— 准则或指标—方案或对象),上层受下层影响,而层内 各因素基本上相对独立。
2.构造成对比较阵
用成对比较法和1~9尺度,构造各层对上一层每一因素的 成对比较阵。
3.计算权向量并作一致性检验和组合一致性检验
对每一成对比较阵计算最大特征根和特征向量,作一致性 检验,若通过,则特征向量为权向量。
同理求出P2,P3,则各方案层对目标的组合权向量为 w(3)=(0.300, 0.246, 0.456)T,结果表明P3占的权重近于1/2, 远大于P1,P2,应为第一选择地。
组合权向量
第2层对第1层的权向量
w
( 2)
第1层O
第2层C1,…Cn 第3层P1, …Pm
( w1 , , wn )
4.计算组合权向量(作组合一致性检验*)
组合权向量可作为决策的定量依据。
二、层次分析法的广泛应用
例1 国家实力分析
国家综合实力
国民 收入
军事 力量
科技 水平
社会 稳定
对外 贸易
美、俄、中、日、德等大国
例2 工作选择
工作选择
贡 献
收 入
发 展
声 誉
关 系
位 置
评价模型-TOPSIS法
topsis简介Topsis法,全称为Technique for Order Preference by Similarity to an Ideal Solution中文常翻译为优劣解距离法,该方法能够根据现有的数据,对个体进行评价排序。
Topsis法和之前讲过的AHP方法一样,都可以对一系列的个体进行评价,不过通常来说AHP的应用场景是在没有明确的量化指标的情况下,而topsis是在有量化指标的情况下完成的。
例如,我们之前的例子是说小明想要买饮料,那么如何从可乐,雪碧和汇源果汁中进行选择,这很明显大部分是基于买饮料的人的主观想法进行选择的。
Topsis法应用的场景就比如在医院检查身体,医生最后会给每个人体检报告,上面有你的一些和健康相关的指数,在这种有实实在在数字支持的时候,如何较为客观的评价大家的健康状况就是我们要研究的问题。
1. topsis法基本原理Topsis法的基本原理从他的中文名称中就可以大体知晓——优劣解距离法,那么简单的理解就是一个指标,到该指标的最优解的距离越小说明越好,举个例子,考试满分是100分,那么你考了90分,和100的距离是10分,小明考了80分,和最好的100分距离是20分,比你更远,所以从成绩上看你要比小明更接近最优的分数,所以你更好,就这么简单。
当数据是多个维度的时候,比如说有好多次的成绩,有月考成绩,期中考试成绩,期末考试成绩。
那么为了知道谁的分数最好,我们就可以计算在三维上,成绩到最好成绩之间的距离作为指标,距离越近说明成绩越好。
比如你的成绩是(90,95,90),最好的成绩是(100,100,100)那么你到最好的成绩之间的距离就是:这里这个距离越小,就说明你到最优点的距离越小,也就越好,基本的思想就是这样的,但是实际上还有一些小的改动。
我们以下面的表格为例我们仔细观察上面的表格,发现事情没有想象的那么简单,数据纷繁复杂大小不一,最优的值也不像考试一样有个100分的明确指标,如何综合的考虑这些指标,就是今天要解决的问题。
评价类模型——TOPSIS法(优劣解距离法)
评价类模型——TOPSIS法(优劣解距离法)⼀、TOPSIS⽅法TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution)可翻译为逼近理想解排序法,国内常简称为优劣解距离法TOPSIS 法是⼀种常⽤的综合评价⽅法,其能充分利⽤原始数据的信息,其结果能精确地反映各评价⽅案之间的差距。
基本过程为先将原始数据矩阵统⼀指标类型(⼀般正向化处理)得到正向化的矩阵,再对正向化的矩阵进⾏标准化处理以消除各指标量纲的影响,并找到有限⽅案中的最优⽅案和最劣⽅案,然后分别计算各评价对象与最优⽅案和最劣⽅案间的距离,获得各评价对象与最优⽅案的相对接近程度,以此作为评价优劣的依据。
该⽅法对数据分布及样本含量没有严格限制,数据计算简单易⾏。
例题1:请你为以下四名同学进⾏评分,该评分能合理的描述其⾼数成绩的⾼低。
分析:此评价指标只有⼀项即“成绩”,评价对象为4个。
topsis分析⽅法如下:解:1.取指标成绩中,最⾼成绩max : 99 最低成绩min:60构造计算评分的公式:2.根据评分公式为每⼀评价对象进⾏打分,构建如下评分表格、并归⼀化3.打分完成,接下来可以由评分确定谁的成绩最好,谁的最差。
可见,清风的成绩最好,⼩王的最差例题2:请你为以下四名同学进⾏评分,该评分能合理的描述其综合评价。
分析:例题1考虑的评价指标只有⼀个,例题2转化为两个评价指标,且评价时指标⼀(成绩)应该越⼤越好,指标⼆(与他⼈争吵次数)应该越⼩越好。
这就引发⽭盾,怎么确定评分使得兼顾两种不同取向的指标?注:成绩是越⾼(⼤)越好,这样的指标称为极⼤型指标(效益型指标)。
与他⼈争吵的次数越少(越⼩)越好,这样的指标称为极⼩型指标(成本型指标)。
解:1.将所有的指标转化为极⼤型指标,即指标正向化。
极⼩型指标转换为极⼤型指标的公式:max-x正向化后得到的表格如下:2. 为了消去不同指标量纲的影响,需要对已经正向化的矩阵进⾏标准化处理。
TOPSIS评价模型
TOPSIS评价模型
TOPSIS,全称为Technique for Order Preference by Similarity to Ideal Solution(基于理想解的相似性排序技术),它是一种常用的多准则决策分析方法。
TOPSIS模型的基本思想是将每个候选方案与理想解进行比较,通过计算各个方案与理想解之间的相似性来确定最优方案。
1.确定评价指标和权重:首先需要明确待评价方案的各个指标,如成本、效益、可行性等等。
然后,对这些指标进行权重分配,反映了各个指标在决策中的重要性。
2.建立评估矩阵:以候选方案为行,评价指标为列,构建一个评估矩阵。
评估矩阵中的每个元素代表了每个方案在对应指标上的评价。
3.归一化评估矩阵:通过将评估矩阵中的每个元素除以其所在列的最大值来进行归一化处理,使得所有的指标处于同一量纲。
4.确定理想解和反理想解:对于每个指标,有的指标越大越好,有的指标越小越好。
根据实际需求,确定每个指标的理想解和反理想解。
5.计算与理想解的相似性指标:对于每个候选方案,分别计算其与理想解和反理想解之间的相似性指标,通常使用欧式距离或其他相似性度量指标进行计算。
6.计算综合评价指数:计算每个方案与理想解的综合评价指数,综合评价指数越大,则该方案相对于其他方案更优。
7.排序:按照综合评价指数的大小,对候选方案进行排序,确定最优方案。
总之,TOPSIS评价模型是一种常用、有效的多准则决策分析方法,通过与理想解的比较来确定最优方案。
在实际应用中,可以根据具体情况对评价指标进行选择和权重分配,从而得出合理的决策结果。
层次分析法评价模型
层次分析法评价模型评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。
主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。
其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。
步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。
步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。
例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。
步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。
图1 选择旅游地的层次结构步骤2构造比较矩阵元素之间两两对比,对比采用美国运筹学家A.L.Saaty 教授提出的1~9比率标度法(表1)对不同指标进行两两比较,构造判断矩阵。
层次分析法
层次分析法(AHP )评价模型1.层次分析法简介层次分析法简称AHP (The analytic hierarchy process),由美国的运筹学家T.L.Saaty 提出。
层次分析法要求明确项目的总目标,将其分解为各层子目标、准则层、指标层甚 至指标,构建一种递阶层次结构;构造两两判断矩阵,求解判断矩阵的特征向量,得到 每层的元素相对于上一层次的权重;采用加权的方法确定方案层各指标对总F1标的权 重,反映不同指标的相对重要性。
层次分析法通过制定标准,对难以量化的定性指标标 准化数学运算处理,转化为可以量化的数据,是一个定性和定量结合的方法。
2.层次分析法的一般步骤(1)确定评价目标和范围,构造递阶层次结构。
(2) 构造两两比较矩阵(判断矩阵)对于同一层次的各因素关于上一层中对应准则(目标)的重要性进行两两比较,构造出两两比较的判断矩阵。
用标度法表示比较结果。
如表所示:判断矩阵标注及其含义注:ij C ={2,4,6,8,1/2,1/4,1/6,1/8}表示重要性等级介于 ij C ={l,3,5,7,9,l/3,l/5,l/7,l/9}。
根据此表可以得到对于同一层次指标的判断矩阵mm A ,mm ij m a a a a A )(},...,,{21==A 的性质如下: ①0>ij a ②ijij a a 1=③1==ij a j i 时, (3)由比较矩阵计算被比较因素对上一层对应准则的相对权重(归一化特征向量),并进行判断矩阵的一致性检验。
(4)计算指标层对总目标的组合权重和组合一致性检验,得出各指标对总目标的影响权重。
3.一致性检验由于指标采用的两两比较,有可能出现甲的重要性大于乙、乙的重要性大于两、丙 的重要性却大于甲的情况,因此,确定计算相对权重后要进行組阵一致性判断,矩阵一 致性指标记为CI1max --=n nCI λRICI CR =RI 是平均随机一致性指标,判断矩阵的阶数不同,RI 的取值也不同,RI 的取值见表平均随机一致性指标的取值当时,判断矩阵通过一致性检验,得到的权重具有可信性。
5层次分析评价方法
问题,决策者可以针对衡量交通规划方案的各个影响因素和总目标,
通过对各个方案的重要
性进行两两比较, 构造各个方案之间的相对重要性矩阵, 的特征向量, 则特征向量就是各个方案的优劣排序结果。 目标最优的方案。
计算该矩阵的最大特征值及其对应 因此, 决策者可以选择出对于评价
5.1.2 层次分析法的分析过程
城市 1
城市 2
城市 3
图 5—3 关于城市魅力的层次分析结构模型 由图 5— 3 可知,评价不同城市的魅力是目标,处于层次分析结构的最高层,各个城市 组成层次分析结构的最低层次, 其他层次是由关于评价各个城市的因素或指标组成的评价准 则层,处于层次结构分析的中间。 C 科研课题选择分析模型 对于一个研究单位来说,科研课题的选择是组织管理的首要任务,课题选择合适与否 直接关系到科研单位的贡献大小, 因此是一项关键性的技术决策和管理决策。 对于一个具体 的科研课题的选择,要考虑的选择因素很多,主要有: ( 1)实用价值,即科研课题具有的经济价值和社会价值,或完成后预期的经济效益和 社会效益。 ( 2)科学意义,即科研课题本身的理论价值,以及对某个科学技术领域的推动作用, 关系到科研成果的贡献大小、人才培养和科研单位水平的提高。 ( 3)优势发挥,即选择科研课题要将经济建设的需要同发挥本单位学科及专业人才优 势结合起来考虑。 ( 4)难易程度,即科研课题因自身的科学储备、成熟程度,以及科研单位人力、设备 等条件等限制所决定的成功肯能性及难易程度。 ( 5)研究周期,即科研课题预计所花费的时间。 ( 6)财政支持,即科研课题研究所需要的经费、设备,以及经费来源等情况。仔细分 析后, 以上因素都共同体现了科研贡献大小、 人才培养以及科研课题的可行性等方面, 最终 体现了科研更好地为经济建设服务的根本目标。 因此, 可以构造出关于选择科研课题层次分 析模型,如图 5— 4 所示。
层次分析法综合评价简单介绍
强烈程度
yi相等于yj yi稍好于yj yi明显好于yj yi比yj好的多 yi极端好于yj
注意:
• 相邻等级的两个因素之间的判断值可以用2、4、6、8来表示。 • 这种给定的准则并不是固定不变的,可以不同的目标和不同的主体而
变化
一致性检验
如何判断一致性?
一致性指标CI:
平均随机一致性指标 RI
• 用一致性指标判断不一致的程 度;
综合的思维方式进行决策 。
2.实用型 • 层次分析法把定性和定量方法结合起来,能处理许多用传统
量化技术技术手段无法处理的实际问题。
3.简洁性 • 层次分析法的基本原理和步骤简洁明了,计算也非常简便,
Байду номын сангаас并且所得结果简单明确,容易被决策者了解和掌握。
层次分析法的局限性
1.方案局限性 • 只能从原有的方案中优选一个出来,没有办法得出更好的新
层次分析法的模型
层次分析法的模型
第一类
最高层,又称顶层、目标层
第二类 中间层,又称准则层
第三类 最底层,又称措施层、方案层
图1
投资--层次分析模型
目标: 准则: 风险程度 方案: 家用电器
投资 资金利润率
紧俏产品
转产难易程度 传统产品
层次分析法的判断矩阵
判断矩阵的给定原则:
• 比较n个因数对目标A的影响,从 而确定他们在A中所占的比重;
• 当判断矩阵完全一致时,CI=O;
• 但是,用CI判断一致性,会随 影响问题的因素和规模的增加 而误差增大。
CI max n
4
n 1
• Bij不按照顺序,而是随机抽 取,这样B最不一致;
• 取充分大的子样得到最大特 征值得平均值;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
层次分析法评价TOP方案的模型
一、建立模型
最高层。
最高层也叫目标层,这一层次中只有一个元素,它一般是我们所要分析的预定目标或理想结果。
中间层。
中间层也叫准则层,这一层次中包含了为实现最高层所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的一些准则、子准则。
最低层。
最低层也叫方案层,这一层次包括了为实现最高层而提供了选择的各种措施、决策方案等。
评估互动社区层次结构(如图):
二、构造判断矩阵
针对上一层次某一因素,下一层次中凡与该因素联系的全部因素进行两两比较。
确定各准则对目标的权重,以及各个方案对每个准则的权重。
按标度表赋值后,构成矩阵形式,就是判断矩阵。
表1 第一层判断矩阵
表2 第二层判断矩阵
表3 第二层判断矩阵
表4 第二层判断矩阵
A:选择合适的互动社区产品B1:系统功能B2:系统易用性B4:系统排名
注:bij即为比值,则当i=j时,bij=1。
i不等于j时,bij=1/bij(i,j=1,2,3,4),bij 的确定应在广泛征求专家和诸多群众意见的基础上确定
三、单排序矩阵权数的计算(以第一层为例)
判断矩阵A=(bij)满足特征值问题:AW=nW,其中n为特征根,W为标准化特征向量。
当n=λmax(最大特征值)时,W=(W1,W2……Wn)T(T为矩阵转置的符号),即为接受判断的各因素对所联系因素指标的权数。
求解W按以下步骤:
(1) 计算判断矩阵A各行各个元素幂的和
6
1W =
6
2W =
……..
6
6W =
(2) 将A 的各行元素的和进行归一化 6
1
j Wi
Wi Wj
==
∑ 求出W 的分量Wi ;
(3)最后按以下公式:
6
1
max ()/i BW i nWi λ==
∑ ,求出λmax 。
四、相容性检验
当矩阵完全相容时,即任一bij=bik*bkj ,则λmax =n 。
一般地,主观判断矩阵不可能完全相容,此时λ<n 。
相容比指标:CI=(λ-n)∕(n -1)
当矩阵完全相容时,CI=0,CI 越大,矩阵的相容性越差。
采用相容比指标还应引入平均随机相容性指标RI 值。
对3—9阶判断矩阵来说,RI 值分别对应表5。
表5 平均随机相容性指标
相容比CR=CI∕RI 。
当CR<0.1时,即认为判断矩阵具有满意的相容性,否则要对判断矩阵重新作出调整。
五、多层次综合权数以及总排序((以第一层为例))
当A 层次有K 个元素,其权重分别是aj(j=1,2……k)时,其下一层次C 中各因素对层次A 的综合权数可按表6计算。
表中Ci(i=1….9)是A层次的下一层次C的因素,其对应aj的权数分别是Wij;层C第i因素的综合权数其结果列于表右边作C层次的总排序的依据。
在整个层次分析法结构中,采用此表由上到下逐层计算。
直到求出最低层次全部因素的综合权数为止,并依据权数大小给出总排序结果。
六、打分
邀请专家、使用者、开发者及淘宝技术人员按照模型对排名前20位的互动社区作品打分,并统计积分结果。
每个互动社区作品的最终得分取值为按照上述方法方法打分值的平均分。