最新七年级数学·合并同类项专项练习题

合集下载

最新人教版初中七年级上册数学《合并同类项》练习题

最新人教版初中七年级上册数学《合并同类项》练习题

最新人教版初中七年级上册数学《合并同类项》练习题第一章整式的加减2.2 整式的加减第1课时合并同类项1、若 $-4xy+xy=-3xy$,则 $a+b=2$。

2、三角形三边长分别为 $5x$,$12x$,$13x$,则这个三角形的周长为 $30x$。

当 $x=2$ cm 时,周长为 $60$ cm。

3、若单项式 $2x^2ym$ 与 $-\frac{1}{3}x^ny^3$ 是同类项,则 $m+n$ 的值是 $n-2$。

4、下列各组中的两式是同类项的是()A。

$(-2)^3$ 与$(-n)^3$;B。

$-\frac{4}{5}a^2b$ 与 $-\frac{4}{5}a^2c$;C。

$x^{-2}$ 与 $-2$;D。

$.1m^3n$ 与 $-\frac{1}{3}2nm$。

5、下列判断中正确的个数为()① $3a^2$ 与 $3b^2$ 是同类项;② $58$ 与 $85$ 是同类项;③ $-2x$ 与 $-\frac{x^2}{2}$ 是同类项;④ $\frac{1}{x^3y^4}$ 与 $-\frac{7x^4y^3}{2}$ 是同类项。

答案为 $1$ 个。

6、下列各式中,与$x^2y$ 是同类项的是()A。

$xy^2$;B。

$2xy$;C。

$-x^2y$;D。

$3x^2y^2$。

7、下列式子中正确的是()A。

$3a+b=3ab$;B。

$3mn-4mn=-mn$;C。

$7a^2+5a^2=12a^2$;D。

$\frac{5xy^2-y^2x}{9}=-\frac{4xy^2}{9}$。

8、若 $-3x^2my^3$ 与 $2x^4yn$ 是同类项,则 $m-n$ 的值是 $1$。

9、一个单项式减去 $x^2-y^2$ 等于 $x^2+y^2$,则这个单项式是 $y$。

10、求单项式 $7xy$,$-2xy$,$-3xy$,$2xy$ 的和,结果为 $4xy$。

11、合并下列各式中的同类项。

七年级数学合并同类项同步练习(附答案)

七年级数学合并同类项同步练习(附答案)

合并同类项一、选择题1 .计算223a a +的结果是( ) A.23a B.24a C.43a D.44a2 .下面运算正确的是( ).A.ab b a 523=+B.03322=-ba b aC.532523x x x =+ D.12322=-y y 3 .下列计算中,正确的是( )A 、2a +3b =5ab ;B 、a 3-a 2=a ;C 、a 2+2a 2=3a 2;D 、(a -1)0=1.4 .已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A.51x --B.51x +C.131x --D.131x + 5 .下列合并同类项正确的是A.2842x x x =+B.xy y x 523=+C.43722=-x xD.09922=-ba b a 6 .下列计算正确的是( )(A)3a+2b=5ab (B)5y 2-2y 2=3 (C)-p 2-p 2=-2p 2(D)7m-m=77 .加上-2a-7等于3a 2+a 的多项式是 ( )A 、3a 2+3a-7B 、3a 2+3a+7C 、3a 2-a-7D 、-4a 2-3a-7 8 .当1=a 时,a a a a a a 10099432-++-+- 的值为( )A. 5050B. 100C. 50D. -50 二、填空题9 .化简:52a a -=_________. 10.计算:=-x x 53_________。11.一个多项式与2x 2-3xy 的差是x 2+xy,则这个多项式是_______________. 三、解答题12.求多项式:10X 3-6X 2+5X-4与多项式-9X 3+2X 2+4X-2的差。13.化简:2(2a 2+9b)+3(-5a 2-4b)14.化简:2222343423x y xy y xy x -+--+.15.先化简,后求值.(1)化简:()()22222212a b ab ab a b +--+-(2)当()221320b a -++=时,求上式的值.16.先化简,再求值:x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2),其中x=1,y=3.17.计算:(1)()()32223232y xy y x xy y ---+-;(2)5(m-n)+2(m-n)-4(m-n)。18.先化简,再求值:)52338()5333(3122222y xy x y xy x x +++-+-,其中21-=x ,2=y .19.化简求值: )3()3(52222b a ab ab b a +--,其中31,21==b a .20.先化简,后求值:]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m21.化简求值:]4)32(23[522a a a a ----,其中21-=a22.给出三个多项式:212x x + ,2113x +,2132x y +; 请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.23.先化简,再求值:()()2258124xy x xxy ---+,其中1,22x y =-=.24.先化简,再求值。(5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)其中a=-1 b=125.化简求值(-3x 2-4y )-(2x 2-5y +6)+(x 2-5y -1) 其中 x =-3 ,y =-126.先化简再求值:(ab-3a 2)-2b 2-5ab-(a 2-2ab),其中a=1,b=-2。27.有这样一道题:“计算322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值,其中12x =,1y =-。”甲同学把“12x =”错抄成了“12x =-”但他计算的结果也是正确的,请你通过计算说明为什么?28.已知:21(2)||02x y ++-= ,求22222()[23(1)]2xy x y xy x y +----的值。3.4合并同类项参考答案一、选择题1 .B2 .B;3 .C ;4 .A5 .D6 .C7 .B8 .D 二、填空题9 .3a ; 10.-2x 11.3x 2-2xy 三、解答题12.粘贴有误,原因可能为题目为公式编辑器内容,而没有其它字符13.解:原式=4a 2+18b-15a 2-12b =-11a 2+6b14.解:原式=)44()32()33(2222y y xy xy x x -+-+- =-xy15.原式=21a b -=1.16.x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2)= x 2-x 2 +3xy +2y 2-x 2+xy-2y 2 = 4xy-x 2当x=1,y=3时 4xy-x 2=4×1×3-1=11。 17.(1)()()yx xy y xy y x xy y y xy y x xy y 2232223322232232232-=+--+-=---+-(2)5(m-n)-2(m-n)-4(m-n) =(5-2-4)(m-n) =-2(m-n) =-2m+2n 。18.解:原式=2222252338533331y xy x y xy x x ++++--=)5253()33()38331(22222y y xy xy x x x ++-++- =2y 当21-=x ,y =2时,原式=4 .19.解:原式=3220.原式mn =,当2,1-==n m 时,原式2)2(1-=-⨯=;21.原式=692-+a a ;-2;22.(1) (212x x +)+(2132x y +)=23x x y ++ (去括号2分)当1,2x y =-=,原式=2(1)(1)326-+-+⨯=(2)(212x x +)-(2132x y +) =3x y - (去括号2分)当1,2x y =-=,原式=(1)327--⨯=- (212x x +)+(2113x +)=255166x x ++= (212x x +)-(2113x +)=2111166x x +-=- (2132x y +)+(2113x +)=25473166x y ++= (2132x y +)-(2113x +)=21313166x y +-=23.解:原式2258124xy x x xy =-+- ()()2254128xy xy x x =-+- 24xy x =+当1,22x y =-=时,原式=2112422⎛⎫-⨯+⨯- ⎪⎝⎭=024.解:原式=5a 2-3b 2+a 2+b 2-5a 2-3b 2=-5b 2+a 2当a=-1 b=1原式=-5×12+(-1)2=-5+1=-4 25.33. 26. -827.解:∵原式=32232332323223x x y xy x xy y x x y y ---+--+-3223(211)(33)(22)(11)x x y xy y =--+-++-++-- 32y =-∴此题的结果与x 的取值无关。28.解:原式=222222[23]2xy x y xy x y +--+-=222222232xy x y xy x y +-+--=22(22)(21)(32)xy x y -+-+-=21x y + ∵2(2)0x +≥,1||02y -≥又∵21(2)||02x y ++-= ∴2x =-,12y = ∴原式=21(2)12-⨯+=3。

初一合并同类项练习题汇总带答案

初一合并同类项练习题汇总带答案

初一合并同类项练习题汇总带答案在初一数学的学习中,合并同类项是一个重要的知识点。

为了帮助同学们更好地掌握这一内容,下面为大家汇总了一些相关的练习题,并附上详细的答案解析。

一、基础练习题1、 3x + 2x =答案:5x解析:3 个 x 加上 2 个 x 等于 5 个 x。

2、 5y 3y =答案:2y解析:5 个 y 减去 3 个 y 等于 2 个 y。

3、 2a + 3a 5a =答案:0解析:2 个 a 加上 3 个 a 等于 5 个 a,再减去 5 个 a 就等于 0。

4、 4b 2b + 3b =答案:5b解析:4 个 b 减去 2 个 b 等于 2 个 b,再加上 3 个 b 就等于 5 个 b。

5、 6x²+ 3x²=答案:9x²解析:6 个 x²加上 3 个 x²等于 9 个 x²。

6、 8y² 5y²=答案:3y²解析:8 个 y²减去 5 个 y²等于 3 个 y²。

7、 5a²+ 2a 3a²=答案:2a²+ 2a解析:5 个 a²减去 3 个 a²等于 2 个 a²,再加上 2 个 a 不变。

8、 7b² 4b²+ 5b =答案:3b²+ 5b解析:7 个 b²减去 4 个 b²等于 3 个 b²,5 个 b 不变。

二、提高练习题1、 3x²+ 2xy 5x²+ 4xy =答案:-2x²+ 6xy解析:3 个 x²减去 5 个 x²等于-2 个 x²,2 个 xy 加上 4 个 xy 等于 6 个 xy 。

2、 5y² 3y + 2y²+ 5y =答案:7y²+ 2y解析:5 个 y²加上 2 个 y²等于 7 个 y²,-3 个 y 加上 5 个 y 等于 2 个 y 。

七年级数学上册《合并同类项》练习题

七年级数学上册《合并同类项》练习题

《合并同类项》练习一一、选择题1 .下列各组中,不是同类项的是A 、3和0B 、2222R R ππ与C 、xy 与2pxyD 、11113+--+-n n n n x y y x 与 2 .下列各对单项式中,不是同类项的是( )A.0与31 B.23n m x y +-与22m n y x + C.213x y 与225yx D.20.4a b 与20.3ab 3 .如果23321133a b x y x y +--与是同类项,那么a___、b ______4 .下列各组中的两项不属于同类项的是 ( )A.233m n 和23m n -B.5xy 和5xyC.-1和14D.2a 和3x 5 .已知代数式y x 2+的值是3,则代数式142++y x 的值是A.1B.4C. 7D.不能确定6.一个两位数是a ,还有一个三位数是b ,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是 ( )b a +10 B.b a +100 C.b a +1000 D.b a +二、填空题7.写出322x y -的一个同类项_______________________.8.单项式113a b a x y +--与345y x 是同类项,则a b -的值为_________。 9.已知622x y 和313m n x y -是同类项,则29517m mn --的值是_____________. 10.某公司员工,月工资由m 元增长了10%后达到_______元。11.判断下列单项式是同类项的是 .(1) 3x 与5x (2) 3a 与2a 2 (3) 5xy 2与2xy 2(4) -1与6 (5) 3a 与2ab (6) x 与2三、用不同的标识分别标出下列多项式的同类项(1)3x-4y-2x+y (2)5ab -4a ²b ² +3ab ² -3ab -ab ² +6a ²b ²同类项练习二1填空:若 571b a m 与n b a 3109-是同类项,则m= ; n= . 如果23k x y x y -与是同类项,那么k = .如果3423x y a b a b -与是同类项,那么x = . y = .2、判断题:(对的画“√”,错的画“×”)(1)-41ab 与0.25ba 不是同类项;( )(2)y x 232与232xy -是同类项;( )(3)2mn 与2m 不是同类项;( ) (4)n n y y 3121与是同类项;( ) (5)23与32不是同类项;( ) (6)在多项式中,如果两项所含字母相同,并且次数也相同,那么这两项是同类项.( )3.单项式52a 2与5n a n 是同类项,则n 等于 ( )(A )2 (B )3 (C )2或3 (D )不确定4.已知4x 5y 2与-3x 3m y 2是同类项,则代数式12m -24的值是( )(A )-3 (B )-5 (C )-4 (D )-65、如果123237x y a b a b +-与是同类项,那么x = . y = . 如果232634k x y x y -与是同类项,那么k = .如果k y x 23与2x -是同类项,那么k = .如果-3x 2y 3k 与4x 2y 6是同类项,则k = .如果47b a x 和y b a 597-是同类项,则x y 53-的值是__________________. 6.在9)62(22++-+b ab k a 中,不含ab 项,则k=7.若22+k k y x 与n y x 23的和未5n y x 2,则k= ,n=8. 若-3x m-1y 4与2n 2y x 31+是同类项,求m,n.。

完整七年级数学合并同类项练习题

完整七年级数学合并同类项练习题

七年级数学合并同类项练习题填空:一、(一)基础知识部份:1.由与的乘积组成的代数式叫单项式,一个单项式中,所有叫做单项式的次数;单项24y3x3xm??R223?x?7x?335式系数次数2.几个的和叫做多项式,不含字母项叫项,多项式里次数最项的次数,就是这个多项式的次数,如:多项式1,共有项,最高项的系数是,常数项是,这4235??x?5x3x2个多项式是次项式;3.和统称为整式,把下列代数式分别填在相应的括号里:23x?y12xy,,,,,,23?1xmn??x?2?xy4x7单项式{};多项式{};整式{}。

4.把一个多项式按某字母的指数由到的顺序排列叫做按这个字母的降幂排列,反之叫升幂排列;如多项式按降幂排列232x3y?2x5y?x为,按的升幂排列y为;5.所含字母相同,并且相同字母的也分别相同的项叫做同类项。

3;和若是同类项,则5mn3y3x?yx??mn7所得的结果作为系数;,合并同类项的法则:①把同类项的系数6.,;如合并同类项:②字母和字母的指数保持22?xy6x?y? 1页4 共页1 第533?xx?6(二)列代数式部分:________cm;,cm,cm ,则其周长为1.三角形三边分别为cm x y z元;2.某本书原价是元,提价后的价格为x10%别个分其后面两小的一个是,则3.三个连续的奇数,最12n?;为、.设甲数为,用代数式表示乙数:4x;①乙数比甲数的一半大2,则乙数为;5,则乙数为②甲数的倒数比乙数小,则这个两位数可用,个位数字比十位数字少15.一个两位数,十位数字为x;代数式表示为,每份油重油重kg,现将平均分成3份6.一桶油重kg,桶a b;________kg二、判断①的项是,()x?433x4)(②是由和两项组成的一次二项式525a?2a?2))④(与③是同类项(3242223y5x?x?3x?5x2?xy733((⑤)⑥):三、选择题)1.单项式的系220b?ba??acc?)????baa?(?b2727数是(5?a3?.D C.A.B.??3?333?)的次数是(2.单项式732cab5D.5C.6BA.3.).下列单项中,书写最规范的一个是(31 D.C.A.B.mn1xy0.52x1a?2)4.与是同类项的是(2xy.D.C.A B.2222xy)(xyxyaxy?25.下列合并同类项正确的是()2页4 共页2 第A.B.222ab?5ab4a?b2?y?3y5C.D.54x5x20?15x?07ab?7ba?6.下列合并同类项正确的个数是()①,②,③,422221?23xyxy?a??aa1??1?2④,⑤333x5?2x??7x ab?3ab?3ab A.1个B.2个C.3个D.5个7.的相反数是()ca?b?A.B.C.D.c?a?bb?a?cb?aca?b?c?8.不改变代数式的值,把二次项放在前面带有“”的括号里,一2y?xy5x?x??次项放在前面带有“”号的括号里,正确的是()?A.B.22)yx??xy)?((x??xy)(5x?y)?x(5C.D.22)5 x?)?x(?xy)?(y?5x)(?xy?xy?(9.当时,等于()A.B.C.D.4??141410.减去221)?(x??2x(x)?x5?x等于的代数式是()A.B.C.D.22229??66xxx6??95?x69?5x?9xx?四、解答题:29?3xx?6x?2(一)化简:(1)(2)5)??y)?(4x6y)?3(3xx(5?4)x(8?7(3)(4)225)??7?5)?(9xx?(9x?7x)ab?2()?b?a2(2a??(5)22)3a5?6a)4(3a??a2(2?3页4 共页3 第(二)先化简,再求值:11,(1),其中?y?x??)?yx2(?y)?(4x12672(2,其中)222)10(?x?x?4(2x?3x1)?3??x105人可以购买团体票4010(三)某公园的门票价格是:成人20元,学生元,满)用代数式人。

初一合并同类项经典练习题

初一合并同类项经典练习题

秋季周末班是学习的大好时机, 可以在这学期里, 学习新知识, 总结旧知识, 查漏补缺, 巩固提高。

在这个收获的季节, 祝你学习轻松愉快.秋季周末班是学习的大好时机,可以在这学期里,学习新知识,总结旧知识,查漏补缺,巩固提高。

在这个收获的季节,祝你学习轻松愉快.代数式(复习课)一、典型例题代数式求值例1 当时, 求代数式的值。

例2 已知是最大的负整数, 是绝对值最小的有理数, 求代数式的值。

例3已知, 求代数式的值。

合并同类项例1.合并同类项(1)(3x-5y)-(6x+7y)+(9x-2y)(2)2a-[3b-5a-(3a-5b)](3)(6m2n-5mn2)-6(m2n-mn2)解: (1)(3x-5y)-(6x+7y)+(9x-2y)=3x-5y-6x-7y+9x-2y (正确去掉括号)=(3-6+9)x+(-5-7-2)y (合并同类项)=6x-14y(2)2a-[3b-5a-(3a-5b)] (应按小括号, 中括号, 大括号的顺序逐层去括号)=2a-[3b-5a-3a+5b] (先去小括号)=2a-[-8a+8b] (与时合并同类项)=2a+8a-8b (去中括号)=10a-8b(3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6)=6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)=(6-2)m2n+(-5+3)mn2 (合并同类项)=4m2n-2mn2例2. 已知: A=3x2-4xy+2y2, B=x2+2xy-5y2求:(1)A+B (2)A-B (3)若2A-B+C=0, 求C。

解: (1)A+B=(3x2-4xy+2y2)+(x2+2xy-5y2)=3x2-4xy+2y2+x2+2xy-5y2(去括号)=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)=4x2-2xy-3y2(按x的降幂排列)(2)A-B=(3x2-4xy+2y2)-(x2+2xy-5y2)=3x2-4xy+2y2-x2-2xy+5y2 (去括号)=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)=2x2-6xy+7y2 (按x的降幂排列)(3)∵2A-B+C=0∴C=-2A+B=-2(3x2-4xy+2y2)+(x2+2xy-5y2)=-6x2+8xy-4y2+x2+2xy-5y2 (去括号, 注意使用分配律)=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)=-5x2+10xy-9y2 (按x的降幂排列)例3. 计算:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an) (3)化简: (x-y)2-(x-y)2-[(x-y)2-(x-y)2]解: (1)m2+(-mn)-n2+(-m2)-(-0.5n2)=m2-mn-n2-m2+n2 (去括号)=(-)m2-mn+(-+)n2 (合并同类项)=-m2-mn-n2 (按m的降幂排列)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)=8an+2-2an-3an-an+1-8an+2-3an (去括号)=0+(-2-3-3)an-an+1 (合并同类项)=-an+1-8an(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体]=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)=(1--+)(x-y)2 (“合并同类项”)=(x-y)2例4求3x2-2{x-5[x-3(x-2x2)-3(x2-2x)]-(x-1)}的值, 其中x=2。

七上计算:合并同类项50题(含答案)

七上计算:合并同类项50题(含答案)

合并同类项50题(一)1.5279a b a b --++ 2.223462x y y x -++.3.22753268x x x x --+-+4.12523a b a b ++-.5.22221350.7544ab a b a b ab --+6.322383649a a b a b a -+-7.223254xy y xy y --+-8.22676598a a a a +----9.222243224a b ab a b ab ++-+-.10.2223465x x x x -+--11.22223x xy x xy --+ 12.2267946a b a b +-+-+13.722a b a b +--. 14.222233224y x xy x y +---.15.2222324332x xy y xy y x +--+-16.22224335ab a b ab a b -+-17.22223567x y xy xy x y -+-18.2274233a a a a +-++19.3245a a --+.20.3233354229x x x x x x -+--+++-21.22222317326mn n m mn n m --+ 22.2332572x y x x x y -+--+23.2213(24)2(5)2x x x x ---+-+-. 24.2212(2)(612)102x y x y ---+.25.2(53)3(3)a a b a b +---26.23(2)m n --27.13(2)2(4)20092x y x y ---++.28.()(43)(53)a b a b c a b c --+---+-.29.222294(23)4m m mn n n --++.30.222212()(3)2x y x x x y +--.31.22225(3)(3)a b ab ab a b --+ 32.221[7(43)3]2x x x x ----33.22(24)(51)a a a a -+--- 34.22(4)8m mn n n ---.35.2242(231)a b ab a b ab +-+-36.116(1)(21)23x x +--37.[5(2)2]x y x z y --+-38.224(32)(21)x x x x +-+--.39.3(34)x -+40.22(212)(1)a a a a -+--+41.43[3(42)8]x x x ---+ 42.223(2)2(3)a b b a b b +--43.2()2()a a b a b ++-+ 44.22222(3)(5)1a b ab ab a b --++45.32234(3)(25)a b b a --+-+46.3(1)(5)x x ---47.22213(54)62a a a a a -+-+48.22(621)2(342)a a a a +---+49.223(2)2(3)a ab ab b ---+50.已知23A x =-,21312B x x =--,求2A B -的值.合并同类项50题(一)参考答案与试题解析1.计算:5279a b a b --++【解答】解:5279a b a b --++(57)(29)a a b b =-++-+27a b =+.2.化简:223462x y y x -++.【解答】解:原式223462x y y x =-++22(32)(46)x x y y =++-+252x y =+.3.22753268x x x x --+-+【解答】解:原式235x x =-+.4.12523a b a b ++-. 【解答】解:原式12(5)()23a ab b =++- 11123a b =+. 5.22221350.7544ab a b a b ab --+ 【解答】解:原式222213(0.75)(5)44ab ab a b a b =+-+ 22234ab a b =- 6.322383649a ab a b a -+- 【解答】解:322383649a ab a b a -+- 33228(3)(64)9a a ab a b =-+-+ 321929a ab =-. 7.化简:223254xy y xy y --+-【解答】解:223254xy y xy y --+-22(35)(24)xy xy y y =-+-+226xy y =-.8.化简:22676598a a a a +----【解答】解:原式22(65)(79)(68)a a a a =-+--+2214a a =-+-.9.合并同类项:222243224a b ab a b ab ++-+-.【解答】解:222243224a b ab a b ab ++-+-2222(42)(34)(2)a a b b ab ab =-+++-2227a b ab =++.10.合并同类项:2223465x x x x -+--【解答】解:原式22(24)(36)5x x x x =++---2695x x =--.11.化简:22223x xy x xy --+【解答】解:原式22223x x xy xy =--+22(2)(23)x x xy xy =-+-+2x xy =-+.12.2267946a b a b +-+-+【解答】解:原式22(64)(7)(96)a a b b =++-+-+21063a b =+-.13.化简:722a b a b +--.【解答】解:722a b a b +--(72)(12)a b =-+-5a b =-.14.合并同类项:222233224y x xy x y +---.【解答】解:原式22(32)2(34)x xy y =--+-222x xy y =--15.2222324332x xy y xy y x +--+-【解答】解:原式2222(32)(23)(43)x xy y x xy y =-+-+-+=--. 16.22224335ab a b ab a b -+-【解答】解:原式22224335ab ab a b a b =+--2278ab a b =-.17.化简:22223567x y xy xy x y -+-【解答】解:原式2222(37)(65)4x y xy x y xy =-+-=-+.18.2274233a a a a +-++【解答】解:原式22(72)(43)3a a a a =-+++2573a a =++.19.计算;3245a a --+.【解答】解:3245a a --+(34)(25)a a =-+-+3a =-+.20.3233354229x x x x x x -+--+++-【解答】解:3233354229x x x x x x -+--+++-3332(32)5(2)(49)x x x x x x =-++++-+--2513x x =+-.21.22222317326mn n m mn n m --+ 【解答】解:原式22317(1)326mn =--+ 283mn =-. 22.2332572x y x x x y -+--+【解答】解:233223572322x y x x x y x y x -+--+=--.23.去括号,合并同类项:2213(24)2(5)2x x x x ---+-+-.【解答】解:原式2223612210151611x x x x x x =-++-+-=-++.24.先去括号,再合并同类项:2212(2)(612)102x y x y ---+. 【解答】解:2212(2)(612)102x y x y ---+ 22243610x y x y =--++2210x y =-++.25.去括号,合并同类项:2(53)3(3)a a b a b +---【解答】解:2(53)3(3)a a b a b +---10639a a b a b =+--+83a b =+.26.化简:23(2)m n --【解答】解:原式236m n =-+.27.去括号,并合并同类项:13(2)2(4)20092x y x y ---++. 【解答】解:13(2)2(4)2009638200914220092x y x y x y x y x y ---++=-+--+=-++. 28.去括号,合并同类项:()(43)(53)a b a b c a b c --+---+-.【解答】解:原式435325a b a b c a b c a b =-++----+=--.29.计算:222294(23)4m m mn n n --++.【解答】解:原式2222981244m m mn n n =-+-+212m mn =+.30.化简:222212()(3)2x y x x x y +--. 【解答】解:原式222223x y x x x y =+-+2232x y x =-.31.化简:22225(3)(3)a b ab ab a b --+【解答】解:原式22221553a b ab ab a b =---22126a b ab =-.32.计算:221[7(43)3]2x x x x ----【解答】解:原式2217(43)32x x x x =-+-+ 22174332x x x x =-+-+ 27332x x =--. 33.计算:22(24)(51)a a a a -+---【解答】解:原式222451a a a a =-+-++, 2653a a =-++.34.化简:22(4)8m mn n n ---.【解答】解:原式2288m mn n n =-+- 22m mn =-.35.计算:2242(231)a b ab a b ab +-+-.【解答】解:原式224462a b ab a b ab =+--+ 52ab =-+.36.116(1)(21)23x x +-- 【解答】解:原式213633x x =+-+ 71933x =+. 37.[5(2)2]x y x z y --+-【解答】解:原式(1052)x y x z y =----, 1052x y x z y =-+++,115x y z =++.38.化简:224(32)(21)x x x x +-+--.【解答】解:原式2243221x x x x =+-+-+, 2224231x x x x =-+-++,224x x =-++.39.3(34)x -+【解答】解:3(34)912x x -+=--.40.化简:22(212)(1)a a a a -+--+【解答】解:原式222121a a a a =-+-+- 2a a =+.41.43[3(42)8]x x x ---+【解答】解:原式439(42)24x x x =-+-- 43361824x x x =-+--1712x =-+.42.化简:223(2)2(3)a b b a b b +--【解答】解:原式223626a b b a b b =+-+ 212a b b =+.43.化简:2()2()a a b a b ++-+【解答】解:原式222a a b a b =++-- a b =-.44.22222(3)(5)1a b ab ab a b --++【解答】解:原式22226251a b ab ab a b =---+ 22571a b ab =-+45.化简:32234(3)(25)a b b a --+-+【解答】解:原式322341225a b b a =-+-+ 3210a b =+.46.化简:3(1)(5)x x ---【解答】解:原式335x x =--+22x =+.47.计算:22213(54)62a a a a a -+-+ 【解答】解:原式222135462a a a a a =---+ 21112a a =--. 48.化简:22(621)2(342)a a a a +---+【解答】解:原式22621684a a a a =+--+- 22107a a =+-.49.化简:223(2)2(3)a ab ab b ---+【解答】解:原式22(36)(62)a ab ab b =---+ 223662a ab ab b =-+-2232a b =-.50.已知23A x =-,21312B x x =--,求2A B -的值. 【解答】解:221232(31)2A B x x x -=---- 61x =-.。

合并同类项 同步练习 2024--2025学年人教版七年级数学上册_46465798

合并同类项  同步练习   2024--2025学年人教版七年级数学上册_46465798

新人教版(2024版)第四章整式的加减同步作业3 4.2.1合并同类项班级姓名家长签名年月日知识要点:1、所含字母相同,并且相同字母的指数也相同的项叫作同类项.几个常数项也是同类项.2、化简多项式的一般步骤:(1)找出同类项并做标记;(2)运用交换律、结合律将多项式的同类项结合;(3)合并同类项;(4)按同一个字母的降幂(或升幂排列).同步练习一.选择题1.计算4x2﹣x2的结果是()A.4B.3x2C.2x2D.4x22.下列计算正确的是()A.3x+3y=6xy B.ab﹣6ba=﹣5abC.3x2﹣2x=x D.4a2b+2ab2=6a2b3.已知单项式3a m+1b与﹣b n﹣2a3可以合并同类项,则m,n的值分别为()A.2,3B.2,2C.3,2D.3,34.下列运算正确的是()A.2x+3y=5xy B.6x﹣4x=2x2C.﹣a2﹣a2=0D.7a2b﹣3a2b=4a2b5.关于x,y的多项式1+4xy2+nxy2+xy中不含xy2项,则n的值是()A.0B.4C.﹣1D.﹣46.下列计算正确的是()A.2m3+3m2=5m5B.m+n=mnC.2m2n﹣nm2=m2n D.2m3﹣3m2=m7.若单项式3x 3y m 与−14x n+1y 2的和是单项式,则这两个单项式的和为( ) A .−34x 3y 2B .114x 2y 3C .114x 3y 2D .134x 3y 28.下列各项代数式相加能合并成一个单项式的是( ) A .3xy 与2ab B .2a 2b 与﹣0.5ba 2 C .3a 与2abD .13与x9.下列说法:①平方等于本身的数只有1;②若a ,b 互为相反数,且ab ≠0,则a b=−1;③若|a |=a ,则(﹣a )3的值为负数;④如果a +b +c =0,且|a |>|b |>|c |,那么ac <0;⑤2x 2+3x 3=5x 5;⑥多项式−2x 2y3+2xy −1是三次三项式;正确的个数为( )A .3个B .4个C .5个D .6个10.对于式子x +2x +3x +4x +…+99x +100x ,按照以下规则改变指定项的符号(仅限于正号与负号之间的变换):第一次操作改变偶数项前的符号,其余各项符号不变;第二次操作:在前一次操作的结果上只改变3的倍数项前的符号;第三次操作:在前一次操作的结果上只改变4的倍数项前的符号;第四次操作:在前一次操作的结果上只改变6的倍数项前的符号.下列说法:①第二次操作结束后,一共有51项的符号为正号;②第三次操作结束后,所有10的倍数项之和为170x ;③第四次操作结束后,所有项的和为825x .其中正确的个数是( ) A .0 B .1 C .2 D .3二.填空题(11.合并同类项:8m 2﹣5m 2= .12.若单项式12x 2y m与﹣2x n y 3的和仍为单项式,则m +n = .13.2x k y k +2与3x 2y n 的和是5x 2y n ,则k +n = . 14.若4x 2y 3+2ax 2y 3=4bx 2y 3,则3+a ﹣2b = .15.若a n +a n ⋯+a n ︸a 个a n=a 4(a 为大于1的整数),则n 的值是 .16.如图,某校的图书码共有7位数字,它是由6位“数字代码”和1位“校验码”构成,其中校验码是用来校验图书码中前6位数字代码的正确性的,它的编制是按照特定的算法得来的.以图1所示的图书码为例,其算法为:第1步,计算前6位数字中从左向右数偶数位上的数字之和为a ,即a =9+1+3=13;第2步,计算前6位数字中从左向右数奇数位上的数字之和为b ,即b =6+0+2=8; 第3步,计算3a 与b 的和为c ,即c =3×13+8=47;第4步,取大于或等于c 且为10的整数倍的最小数d ,即d =50; 第5步,计算d 与c 的差就是校验码X ,即X =50﹣47=3.如图2,某个图书码中的一位数字被墨水污染了,设这位数字为m ,则m 的值为 . (共9小题)17.计算:﹣3ab ﹣4ab 2+7ab ﹣2ab 2.18.单项式﹣2x 4y m ﹣1与5x n ﹣1y 2的和是一个单项式,求m ﹣2n 的值.19.已知单项式x 3y m +1与单项式12x n−1y 2的和也是单项式.(1)求m ,n 的值;(2)当x =1,y =2时,求x 3y m +1+12x n−1y 2的值.20.(1)已知x=3时,多项式ax3﹣bx+5的值是1,当x=﹣3时,求ax3﹣bx+5的值.(2)如果关于字母x的二次多项式﹣3x2+mx+nx2﹣x+3的值与x的取值无关,求(m+n)(m﹣n)的值.21.已知T=3a+ab﹣7c2+3a+7c2.(1)化简T;(2)当a=3,b=﹣2,c=−16时,求T的值.22.(1)计算:3333+3+3=;7777+7+7=.(2)设aaa是一个三位数,表示这个三位数每一数位上的数字都是a.试说明:无论a取何值,aaaa+a+a的值为定值.23.(1)小丽在计算14a 2−617a 2−1117a 2时,采用了如下做法:解:14a 2−617a 2−1117a 2=14a 2−(617a 2+1117a 2)⋯① =14a 2−a 2 =−34a 2⋯②步骤①的依据是: ; 步骤②的依据是: . (2)请试着用小丽的方法计算:−37x 2y −4419x 2y −47x 2y +619x 2y .24.阅读材料:在合并同类项中,5a ﹣3a +a =(5﹣3+1)a =3a ,类似地,我们把(x +y )看成一个整体,则5(x +y )﹣3(x +y )+(x +y )=(5﹣3+1)(x +y )=3(x +y ).“整体思想”是中学教学解题中的一种重要的思想,它在多项式的化简与求值中应用极为广泛. 尝试应用:(1)把(x ﹣y )2看成一个整体,合并3(x ﹣y )2﹣6(x ﹣y )2+2(x ﹣y )2的结果是 .(2)已知a 2﹣2b =1,求3﹣2a 2+4b 的值.25.【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关,求a的值”.通常的解题方法是把x,y看作字母,把a看作系数合并同类项.因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x﹣6y+5,其中a+3=0,则a=﹣3.(1)若关于x的多项式(2x﹣3)m+m2﹣3x的值与x的取值无关,求m的值;【能力提升】(2)7张如图(a)的小长方形,长为a、宽为b,按照图(b)的方式不重叠地放在大长方形ABCD内,将大长方形中未被覆盖的两个部分涂上阴影,设右上角的面积为S1,左下角的面积为S2,当AD变化时,S1﹣S2的值始终保持不变,求a与b的等量关系.。

七年级合并同类项50题计算题

七年级合并同类项50题计算题

七年级合并同类项50题计算题1. 3x + 2x2. 5y - 3y3. 7a + 3a - 2a4. 6b - 4b + 8b5. 2m^2 + 3m^2 - 5m^26. 4n^2 - 2n^2 + 7n^27. 9p - 5p + 2p8. 8q - 6q + 4q9. 3x^2y + 2x^2y - 4x^2y10. 5xy^2 - 3xy^2 + 2xy^211. 7a^2b + 2a^2b - 3a^2b12. 6x^3 - 4x^3 + 9x^313. 8y^3 - 5y^3 + 2y^314. 3m^3n + 2m^3n - 5m^3n15. 4p^3q - 3p^3q + 7p^3q16. 9r^2s - 6r^2s + 8r^2s17. 5t^2u - 2t^2u + 3t^2u18. 6v^2w - 4v^2w + 5v^2w19. 7x^4 + 3x^4 - 6x^420. 8y^4 - 5y^4 + 2y^421. 2a + 3b - 5a + 7b22. 4x - 6y + 2x + 8y23. 3m^2 + 2n^2 - 5m^2 - 7n^224. 5p^2 - 3q^2 + 7p^2 - 2q^225. 2x^2y + 3xy^2 - 4x^2y + 5xy^226. 6a^2b - 4ab^2 + 8a^2b - 3ab^227. 9m^3 - 5m^2n + 2m^3 + 3m^2n28. 8p^3q - 6p^2q^2 + 4p^3q - 2p^2q^229. 3x^4y^2 - 2x^3y^3 + 5x^4y^2 - 4x^3y^330. 7a^3b^2 - 5a^2b^3 + 9a^3b^2 - 6a^2b^331. 4m^2n + 3mn^2 - 7m^2n - 5mn^232. 6x^2y^2 - 4xy^3 + 8x^2y^2 - 3xy^333. 9a^4 - 6a^3b + 2a^4 + 5a^3b34. 8p^4q^2 - 5p^3q^3 + 4p^4q^2 - 3p^3q^335. 3x^5 - 2x^4 + 5x^5 - 4x^436. 7y^5 - 5y^4 + 9y^5 - 6y^437. 2a^2b + 3ab^2 - 5a^2b + 7ab^238. 4x^3y - 6x^2y^2 + 8x^3y - 5x^2y^239. 5m^4n^2 - 3m^3n^3 + 7m^4n^2 - 2m^3n^340. 6p^5q^3 - 4p^4q^4 + 8p^5q^3 - 3p^4q^441. 9x^6 - 6x^5 + 2x^6 - 5x^542. 8y^6 - 5y^5 + 3y^6 - 2y^543. 3a^3b^2 + 2a^2b^3 - 7a^3b^2 + 5a^2b^344. 4x^4y^3 - 6x^3y^4 + 8x^4y^3 - 5x^3y^445. 7m^5n^3 - 5m^4n^4 + 9m^5n^3 - 6m^4n^446. 6p^6q^4 - 4p^5q^5 + 8p^6q^4 - 3p^5q^547. 9x^7 - 6x^6 + 3x^7 - 5x^648. 8y^7 - 5y^6 + 2y^7 - 4y^649. 5a^4b^3 + 3a^3b^4 - 7a^4b^3 + 2a^3b^450. 6x^5y^4 - 4x^4y^5 + 8x^5y^4 - 3x^4y^5七年级合并同类项 20 题带解析。

七年级数学上册合并同类项检测题及答案

七年级数学上册合并同类项检测题及答案

七年级数学上册合并同类项检测题及答案本文对七年级数学上册中涉及到合并同类项的部分进行检测,为了更好的学习效果,我们将提供题目和答案,希望能帮助同学们更好地理解并掌握这一概念。

单项选择题1.下列各式中,能够合并同类项的是()。

A. 3a+5b B. 2a-3ab C. 4abc-2a-3b D. 6a+5bc答案:A,D2.(2x+3y)+(4x+5y)=()。

A. 5x+8y B. 6x+7y C. 6x+8y D. 7x+8y答案:C3.()可写成2a+5b的形式。

A. 3a+5b-a B. 2a+5b+b C. 3ab-b-2a D.2ab+ab-a答案:A4.()等于5ax+2by。

A. 3ax+by+2ax B. 5ax+2by+3ax C. 5ax+by+3ax D.2by+3ax+5ax答案:B5.(a+2b-3c)+(7c+4a-b)=( )。

A.5a+6b+4c B.5a-2b+4c C. 5a+6b-4cD.5a+6b-2c答案:D填空题1.(2x-3y)+(4x-5y)= ___________。

答案:6x-8y2.(3a+2b)-(5a-b)= __________。

答案:-2a+3b3.(6x-2y)+(-2x+3y)= __________。

答案:4x+y4.(4ab-2a-6b)+(a+3b+2a)= __________。

答案:6ab-a-b5.(2x-3y)+(5y-x)= __________。

答案:x-2y解决问题1.如果两个同类项各自的系数不同该怎么办?这种情况下,我们需要通过化简先将各自的系数相同,例如:2x+3y+4x-5y = (2x+4x) + (3y-5y) = 6x-2y2.合并同类项要注意什么?在合并同类项的时候,我们需要注意变量部分相同,同时系数也要相同。

3.为什么要合并同类项?合并同类项的目的在于简化表达式,使其更加简单明了,从而更便于计算。

解一元一次方程(一)——合并同类项与移项 同步练习题 (含答案) 2024年人教版数学七年级上册

解一元一次方程(一)——合并同类项与移项 同步练习题  (含答案) 2024年人教版数学七年级上册

3.2解一元一次方程(一)——合并同类项与移项同步练习 2023-2024学年人教版数学七年级上册姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.下列选项中,哪个是方程的解()A.B.C.D.2.解一元一次方程,移项正确的是()A.B.C.D.3.方程7x+4=8x的解是()A.x=﹣4 B.x=4 C.x=﹣3 D.x=34.已知方程7x+2=3x-6与x-1=k 的解相同,则3k2-1的值为()A.18 B.20 C.26 D.-265.若 =3 -5, = -7, + =20,则的值为()A.22 B.12 C.32 D.86.若关于的方程的解是,则的值()A.B.1 C.D.7.若方程2x+1=﹣1的解是关于x的方程1﹣2(x﹣a)=2的解,则a的值为()A.﹣1 B.1 C.﹣D.﹣8.若关于的方程的解是正整数,则的整数值有个.()A.1个B.2个C.3个D.4个二、填空题:(本题共5小题,每小题3分,共15分.)9.方程3x﹣6=0的解的相反数是.10.当x= 时,两个代数式1+x²,x2-2x+3的值相等。

11.若是关于x的方程的解,则.12.若关于x的方程3x﹣7=2x+a的解与方程4x+3=﹣5的解互为倒数,则a的值为. 13.一组“数值转换机”按下面的程序计算,如果输入的数是10,那么输出的结果为19,要使输出的结果为13,则输入的最小正整数是.三、解答题:(本题共5题,共45分)14.解方程:.15.解下列方程:(1);(2)16.m为何值时,关于x的一元一次方程的解与的解相等?17.下面是明明同学解方程2+3x=-2x-13的第一步:3x+2x =-13-2.请回答:(1)为什么这样做:;(2)这样做的依据:;(3)求出方程2+3x=-2x-13的解.18.小莹在解关于的方程时,误将看作,得方程的解为,求原方程的解为多少?参考答案:1.C 2.A 3.B 4.C 5.D 6.B 7.D 8.D9.-210.111.12.13.414.解:移项得,合并同类项得,解得15.(1)解:,移项得:,合并同类项得:,把系数化为1得:(2)解:,合并同类项得:,把系数化为1得:.16.解:解第一个方程得:x=3,解第二个方程得:x=2m-1,∴2m﹣1=3,解得:m=2 17.(1)先通过移项,把已知项移到方程的右边,未知项移到方程的左边,为合并同类项做准备(2)等式的基本性质1(3)解:2+3x=-2x-13.3x+2x =-13-2.5x=-15.x=-318.解:把代入方程得:,解得:,∴原方程为,解得:,∴原方程的解为。

初中合并同类项计算题(3篇)

初中合并同类项计算题(3篇)

第1篇一、题目1. 计算:3a - 2a + 4b - 5b + 6c - 7c2. 计算:2(x + 3) - 5(x - 2) + 4x3. 计算:3(2x - 4y + 5z) - 4(3x + 2y - z)4. 计算:-5(x - 2y + 3z) + 6(x + 4y - 2z) - 2(x - 3y + 5z)5. 计算:2a^2 + 3ab - 5b^2 + 4a^2 - 2ab + b^26. 计算:-3x^2 + 2x - 5y^2 + 4x^2 + 3y - 2x7. 计算:4(x^2 - 3xy + 2y^2) - 3(x^2 + 2xy - y^2)8. 计算:-2(a^2 - 3ab + 2b^2) + 5(a^2 + 4ab - b^2)9. 计算:3(2x^2 - 5xy + 3y^2) - 4(3x^2 + 2xy - 2y^2)10. 计算:-4(a^2 - 2ab + 3b^2) + 3(a^2 + 5ab - 4b^2)二、解答1. 首先合并同类项,即合并含有相同字母的项:3a - 2a + 4b - 5b + 6c - 7c = (3 - 2)a + (4 - 5)b + (6 - 7)c = a - b - c所以,计算结果为:a - b - c2. 首先去括号,然后合并同类项:2(x + 3) - 5(x - 2) + 4x = 2x + 6 - 5x + 10 + 4x= (2x - 5x + 4x) + (6 + 10)= x + 16所以,计算结果为:x + 163. 首先去括号,然后合并同类项:3(2x - 4y + 5z) - 4(3x + 2y - z) = 6x - 12y + 15z - 12x - 8y + 4z= (6x - 12x) + (-12y - 8y) + (15z + 4z)= -6x - 20y + 19z所以,计算结果为:-6x - 20y + 19z4. 首先去括号,然后合并同类项:-5(x - 2y + 3z) + 6(x + 4y - 2z) - 2(x - 3y + 5z) = -5x + 10y - 15z + 6x + 24y - 12z - 2x + 6y - 10z= (-5x + 6x - 2x) + (10y + 24y + 6y) + (-15z - 12z - 10z)= -x + 40y - 37z所以,计算结果为:-x + 40y - 37z5. 首先合并同类项:2a^2 + 3ab - 5b^2 + 4a^2 - 2ab + b^2 = (2a^2 + 4a^2) + (3ab - 2ab) + (-5b^2 + b^2)= 6a^2 + ab - 4b^2所以,计算结果为:6a^2 + ab - 4b^26. 首先合并同类项:-3x^2 + 2x - 5y^2 + 4x^2 + 3y - 2x = (-3x^2 + 4x^2) + (2x - 2x) + (-5y^2 + 3y)= x^2 + 3y - 5y^2所以,计算结果为:x^2 + 3y - 5y^27. 首先去括号,然后合并同类项:4(x^2 - 3xy + 2y^2) - 3(x^2 + 2xy - y^2) = 4x^2 - 12xy + 8y^2 - 3x^2 - 6xy + 3y^2= (4x^2 - 3x^2) + (-12xy - 6xy) + (8y^2 + 3y^2)= x^2 - 18xy + 11y^2所以,计算结果为:x^2 - 18xy + 11y^28. 首先去括号,然后合并同类项:-2(a^2 - 3ab + 2b^2) + 5(a^2 + 4ab - b^2) = -2a^2 + 6ab - 4b^2 + 5a^2 + 20ab - 5b^2= (-2a^2 + 5a^2) + (6ab + 20ab) + (-4b^2 - 5b^2)= 3a^2 + 26ab - 9b^2所以,计算结果为:3a^2 + 26ab - 9b^29. 首先去括号,然后合并同类项:3(2x^2 - 5xy + 3y^2) - 4(3x^2 + 2xy - 2y^2) = 6x^2 - 15xy + 9y^2 -12x^2 - 8xy + 8y^2= (6x^2 - 12x^2) + (-15xy - 8xy) + (9y^2 + 8y^2)= -6x^2 - 23xy + 17y^2所以,计算结果为:-6x^2 - 23xy + 17y^210. 首先去括号,然后合并同类项:-4(a^2 - 2ab + 3b^2) + 3(a^2 + 5ab - 4b^2) = -4a^2 + 8ab - 12b^2 + 3a^2 + 15ab - 12b^2= (-4a^2 + 3a^2) + (8ab + 15ab) + (-12b^2 - 12b^2)= -a^2 + 23ab - 24b^2所以,计算结果为:-a^2 + 23ab - 24b^2通过以上解答,我们可以看到合并同类项的计算方法。

7年级合并同类项计算题

7年级合并同类项计算题

7年级合并同类项计算题一、合并同类项计算题。

1. 化简:3x + 2x- 解析:同类项是指所含字母相同,并且相同字母的指数也相同的项。

在3x 和2x中,字母都是x,且指数都是1。

合并同类项就是把同类项的系数相加,字母和指数不变。

所以3x+2x=(3 + 2)x=5x。

2. 化简:4y-3y- 解析:4y和3y是同类项,将系数相减,字母和指数不变,4y-3y=(4 -3)y=y。

3. 化简:2a+3a - 5a- 解析:2a、3a和-5a是同类项,先把前面两项的系数相加,得到(2 +3)a=5a,再与-5a合并,5a-5a=(5 - 5)a = 0。

4. 化简:5x^2+3x^2- 解析:5x^2和3x^2是同类项,因为同类项要求字母相同且相同字母的指数也相同,这里字母是x,指数是2。

合并同类项时系数相加,字母和指数不变,所以5x^2+3x^2=(5 + 3)x^2 = 8x^2。

5. 化简:7y^3 - 4y^3- 解析:7y^3和-4y^3是同类项,合并同类项得(7-4)y^3 = 3y^3。

6. 化简:3ab+2ab - ab- 解析:3ab、2ab和-ab是同类项,先计算3ab+2ab=(3 + 2)ab = 5ab,再与-ab 合并,5ab - ab=(5 - 1)ab=4ab。

7. 化简:2x^2y+3x^2y - 5x^2y- 解析:这三项都是同类项,先算2x^2y+3x^2y=(2 + 3)x^2y = 5x^2y,再与-5x^2y合并,5x^2y-5x^2y=(5 - 5)x^2y = 0。

8. 化简:4a^2b - 2a^2b+3a^2b- 解析:4a^2b、-2a^2b和3a^2b是同类项,先计算4a^2b-2a^2b=(4 - 2)a^2b = 2a^2b,再与3a^2b相加,2a^2b+3a^2b=(2 + 3)a^2b = 5a^2b。

9. 化简:3m^3n - m^3n+2m^3n- 解析:这三项为同类项,先算3m^3n - m^3n=(3 - 1)m^3n = 2m^3n,再加上2m^3n,2m^3n+2m^3n=(2 + 2)m^3n = 4m^3n。

最新人教版初中七年级上册数学《合并同类项》练习题

最新人教版初中七年级上册数学《合并同类项》练习题

第一章 整式的加减2.2 整式的加减第1课时 合并同类项1、若y x y x y x b a 2234-=+-,则b a +=2、三角形三边长分别为x x x 13,12,5,则这个三角形的周长为 ;当cm x 2=时,周长为 cm 。

3、若单项式m y x 22与-331y x n 是同类项,则n m +的值是 。

4、下列各组中的两式是同类项的是( )A .()32-与()3n -B .b a 254-与c a 254-C .2-x 与2-D .n m 31.0与321nm -5、下列判断中正确的个数为( )①23a 与23b 是同类项;②85与58是同类项; ③x 2-与2x-是同类项; ④4321y x 与347.0y x -是同类项A .1个B .2个C .3个D .4个6、下列各式中,与y x 2是同类项的是( )A .2xyB .xy 2C .y x 2-D .223y x7、下列式子中正确的是( )A .ab b a 33=+B .143-=-mn mnC .4221257a a a =+D .2229495xy x y xy -=-8、若323y x m -与n y x 42是同类项,则n m -的值是( )A .0B .1C .7D .-19、一个单项式减去22y x -等于22y x +,则这个单项式是( )A .22xB .22yC .22x -D .22y -10、求单式327y x 、322y x -、323y x -、322y x 的和。

11、合并下列各式中的同类项。

(1)b a ab b a ab b a 2228.44.162.0++---(2)222614121x x x --(3)222234422xy y x xy xy xy y x -++--(4)2238347669a ab a ab +-+-+-(5)22222222215912bc a bc a abc bc a abc bc a -+--+12、先化简,再求值。

七年级数学 上 合并同类项91题(含答案)

七年级数学 上 合并同类项91题(含答案)
合并同类项专项练习 91 题(有答案)
1.4a2+3b2﹣2ab﹣4a2﹣4b2+2ba
9.4x2y﹣8xy2+7﹣4x2y+10xy2﹣4.
2.﹣4x2y+8xy2﹣9x2y﹣21xy2.
10. 15x+4x﹣10x
3.5xy2+2x2y﹣3xy2﹣x2y
11. ﹣p2﹣p2﹣p2
4.a2+3ab+6﹣8a2+ab
13.
=
a2b=
a2b
14. 原式=2x2﹣3x2﹣3x+5x+1+7=﹣x2+2x+8; 15. 原式=﹣x2+2x2﹣3x2+7xy﹣5xy=﹣2x2+2xy. 16. 15x+4x﹣10x=19x﹣10x=9x; 17. ﹣p2﹣p2﹣p2=﹣3p2; 18. x2y﹣3xy2+2yx2﹣y2x=3x2y﹣4xy2. 19. 2x+(x﹣4)﹣(5x﹣4)=2x+x﹣4﹣5x+4=﹣2x; 20. 原式=3a2﹣6a﹣9+25a2+10=28a2﹣6a+1. 21. ﹣3y+0.75y﹣0.25y=(﹣3+0.75﹣0.25)y=﹣2.5y. 22. 5a﹣1.5a+2.4a=(5﹣1.5+2.4)a=5.9a
33. 3a+2a﹣7a 34. ﹣4x2y+8xy2﹣9x2y﹣21xy2. 35.3a2﹣2a﹣4a2﹣7a. 36.12x2y﹣xy﹣3﹣10x2y+6xy+3. 37. 3ab+2mn﹣3ab+4mn 38. ﹣5yx2+4xy2﹣2xy+6x2y+2xy+5. 39.3x﹣2y+1+3y﹣2x﹣5. 40.ax2+2a2x+a3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档