刚体的转动习题

合集下载

刚体转动习题解答

刚体转动习题解答

作业07(刚体转动1)1. 两个均质圆盘A 和B 的密度分别为A ρ和B ρ,若B A ρρ>,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面的转动惯量各为A J 和B J ,则[ ]。

A. B A J J >B. B A J J <C. B A J J =答:[B ]解: 由V m =ρ,B A ρρ> ,B A m m =, B A V V <∴,B A R R <∴ 又:221mR =ρ B A J J <∴ 2. 几个力同时作用在一个具有固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体[ ]。

A. 必然不会转动B. 转速必然不变C. 转速必然改变D. 转速可能不变,也可能改变答:[D ]解:几个力的矢量和为零,不一定外力矩为零,因此,刚体不一定不转动。

但和外力为零,刚体不会平动。

3. 有两个力作用在一个有固定转轴的刚体上:(1). 这两个力都平行于轴作用时,它们对轴的合力矩一定是零。

(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零。

(3). 这两个力合力为零时,它们对轴的合力矩一定是零。

(4). 这两个力对轴的合力矩为零时,它们的合力一定是零。

在上述说法中是正确的是[ ]。

A. 只有(1)是正确的B. (1)(2)正确(3)(4)错误C. (1)(2)(3)都正确,(4)错误D. (1)(2)(3)(4)都正确答:[B ]解:如图所示(1)由)(a )(b )(c 可见,21//ˆ//F k F ,则它们对轴的力矩0ˆ)(111=⋅⨯=k F r L z ,0ˆ)(222=⋅⨯=k F r L z ,对轴的合力矩为零。

(1)是正确的。

(2)由)(d )(e )(f 可见,由21ˆF k F ⊥⊥,则它们对轴的力矩 0ˆ)(111=⋅⨯=k F r L z ,0ˆ)(222=⋅⨯=k F r L z ,对轴的合力矩为零; 由)(g )(i )(j 可见,21ˆF k F ⊥⊥,则它们对轴的力矩0ˆ)(111≠⋅⨯=k F r L z ,0ˆ)(222≠⋅⨯=k F r L z ,但如果21F F =,对轴的合力矩021=+z z L L 由)(h 可见,21ˆF k F ⊥⊥,则它们对轴的力矩 0ˆ)(111≠⋅⨯=k F r L z ,0ˆ)(222≠⋅⨯=k F r L z ,对轴的合力矩不为零。

第四章 刚体的转动 习题

第四章 刚体的转动 习题

第四章 刚体的转动1. 一质量为m 0 ,长为l 的棒能绕通过O 点的水平轴自由转动。

一质量为m ,速率为v 0的子弹从水平方向飞来,击中棒的中点且留在棒内,如图所示。

则棒中点的速度为( )。

A .00m m mv +; B .0433m m mv +;C .0023m mv ;D .043m mv 。

2. 一根长为l ,质量为m 的均匀细棒在地上竖立着。

如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时速率应为( )。

A .gl 6;B .gl 3;C .gl 2;D .lg23。

3. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一个是正确的?( ) A .角速度从小到大,角加速度从大到小 B .角速度从小到大,角加速度从小到大 C .角速度从大到小,角加速度从大到小 D .角速度从大到小,角加速度从小到大4. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度ω( ) A .增大 B .不变 C .减小 D .不能确定5. 一静止的均匀细棒,长为L ,质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML 。

一质量为m 速率为v 的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为( )A .ML mvB .ML mv 23C .MLmv 35 D .ML mv 476. 在某一瞬时,物体在力矩作用下,则有( )A 、角速度ω可以为零,角加速度α也可以为零;B 、角速度ω不能为零,角加速度α可以为零;C 、角速度ω可以为零,角加速度α不能为零;D 、角速度ω与角加速度α均不能为零。

第3章 刚体的定轴转动 习题答案

第3章 刚体的定轴转动 习题答案

1
1 v r 78 . 5 1 78 . 5 m s (3) 解:
an r 78.5 1 6162 .2 m s
2 2
2
a r 3.14 m s
2
3-13. 如图所示,细棒长度为l,设转轴通过棒上距中心d的一 点并与棒垂直。求棒对此轴的转动惯量 J O ',并说明这一转 动惯量与棒对质心的转动惯量 J O之间的关系。(平行轴定理)
n0
J 2 2 n 收回双臂后的角动能 E k J n 0 2 J 0 n
1 2 2 1 2
Ek 0 J
1 2
2 0
3-17. 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来, 此后无外力矩作用。则当此人收回双臂时,人和转椅这一系 统的转速、转动动能、角动量如何变化?
解:首先,该系统的角动量守恒。
设初始转动惯量为 J ,初始角速度为 0 收回双臂后转动惯量变为 J n , 由转动惯量的定义容易知,n 1 由角动量守恒定理容易求出,收回双臂后的角速度 初始角动能
M t J
代入数据解得:M 12.5 N m
3-4. 如图所示,质量为 m、长为 l 的均匀细杆,可绕过其一 端 O 的水平轴转动,杆的另一端与一质量为m的小球固定在 一起。当该系统从水平位置由静止转过 角时,系统的角
速度、动能为?此过程中力矩所做的功?
解: 由角动能定理得:
解:设该棒的质量为m,则其
线密度为 m l
1 l d 2 1 l d 2
O
d O'
J O'

0
r dr
2
3
0
r dr

刚体的定轴转动习题解答

刚体的定轴转动习题解答

- 第五章 刚体的定轴转动一 选择题1. 一绕定轴转动的刚体,某时刻的角速度为,角加速度为,则其转动加快的依据是:( )A. > 0B. > 0,> 0C. < 0,> 0D.> 0,< 0解:答案是B 。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。

3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21=(2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线- 作定轴转动,则在2秒F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。

简要提示:由定轴转动定律: α221MR FR =,得:mRF t 4212==∆αθ 所以:m F M W /42=∆=θ5. 一电唱机的转盘正以 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )A .0211ωJ J J +B .0121ωJ J J +C .021ωJ JD .012ωJ J 解:答案是A 。

(完整版)刚体的转动习题

(完整版)刚体的转动习题

17-4图18-4 图F F ρ-O 04 第四章 刚体力学一、选择题:1、如图4-18所示,一圆盘绕通过盘心且与盘面垂直的轴o 以角速度ω针转动。

今将两大小相等、方向相反、但不在同一条直线上的力F 和F -盘面同时作用到圆盘上,则圆盘的角速度:[ ] (A )必然减少 (B )必然增大(C )不会变化 (D )如何变化,不能确定 2、如图4-17所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B端置于粗糙的水平地面上而静止,杆身与竖直方向成θ角,则A 端对墙壁的压力大小为:[ ](A )θcos 41mg (B )θmgtg 21 (C )θsin mg (D )不能唯一确定 3、某转轮直径m d 4.0=,以角量表示的转动方程为t t t 4323+-=θ(SI ),则:[ ](A )从s t 2=到s t 4=这段时间内,其平均角加速度为2.6-s rad ;(B )从s t 2=到s t 4=这段时间内,其平均角加速度为2.12-s rad ;(C )在s t 2=时,轮缘上一点的加速度大小等于2.42.3-s m ;(D )在s t 2=时,轮缘上一点的加速度大小等于2.84.6-s m 。

4、如图4-2所示,一倔强系数为k 轮(转动惯量为J ),下端连接一质量为m 的物体,问物体在运动过程中,下列哪个方程能成立?[ ] (A )ky mg = (B )02=-T mg(C )my T mg =-1 (D )y R J J βR T T ''⋅==-)(21 5、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]7、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .1-4 图5-4图19-4 图 (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]8、一力N j i F )53(ϖϖϖ+=,其作用点的矢径为m j i r )34(ϖϖϖ-=,则该力对坐标原点的力矩为:[ ] (A )m N k ⋅-ϖ3 (B )m N k ⋅ϖ29 (C )m N k ⋅ϖ19 (D )m N k ⋅ϖ39、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ]10、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]11、如图4-19所示P 、Q 、R 、S l RS QR PQ ===,则系统对o o '轴的转动惯量为:[ ](A )250ml (B )214ml(C )210ml (D )29ml12、如图4-1所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且Mg F =。

大学物理第四章 刚体的转动部分的习题及答案

大学物理第四章 刚体的转动部分的习题及答案

第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。

二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。

大学物理刚体习题

大学物理刚体习题

大学物理刚体习题(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习 题第三章 刚体的转动刚体的定轴转动47. 一定滑轮半径为R ,质量为M ,用一质量不计的绳绕在滑轮上,另一端系一质量为m 的物体并由静止释放,这时滑轮的角加速度为1β,若不系物体而用一力F = mg 拉绳子使滑轮转动,这时角加速度为2β,这时有()1β2β()1β2β (C )1β2β(D )无法判断 分析由转动定律M I β=本题中I 不变β的大小完全取决于M 的大小而 M TR =系物体m 时 : T mg <不系物体而用一力F = mg 时: TF mg ==因此力矩变大所以有12ββ<mF选49.一飞轮的转动惯量为J ,t = 0时角速度为0ω,轮子在转动过程中受到一力矩2ωk M-=,则当转动角速度为0/3ω时的角加速度β = 从0ω到0/3ω飞轮转动经过的时间t ∆= 解: (1) 求β当0/3ω时, 20()3M k ω=-由 M J β=, 可得此时 209k MJ J ωβ==-(2) d M J J dt ωβ== 2d k J dt ωω-=分离变量,两边积分32td kdt Jωωωω-=⎰⎰解得: 02J t k ω∆=50.长为l 的均匀直棒可绕其下端与棒垂直的水平光滑轴在竖直平面内转动。

抬起一端使与水平夹角为60=θ,棒对轴的转动惯量为231ml J =,由静止释放直棒,则t = 0时棒的β=?;水平位置时的β=?这时的ω=(1)求β 据转动定律M J β=, MJβ= 0t =时, cos 602lM mg =︒水平位置时, 2lM mg =代入MJβ=,可别解得034glβ= 和 32g l β= (2)求ωd d d d M J J J J dt d dt d ωωθωβωθθ====将cos 2l M mg θ=和213J ml =代入化简并积分得, 0033cos 2g d d l ωπθθωω=⎰⎰ 60可求得332g l ω=(本题还可用动能定律机械能守恒方便求解ω)2211sin 60223l mg ml ω︒=⋅ 332g lω⇒=51.一飞轮以min /600rev 的转速转动,其转动惯量为25.2m kg J ⋅=,以恒定力矩使飞轮在一分钟内停止转动,求该力矩M 。

刚体的转动习题

刚体的转动习题

第四章刚体的转动习题(一)教材外习题一、选择题:1.关于刚体对轴的转动惯量,下列说法中正确的是(A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。

(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。

(C)取决于刚体的质量、质量的空间分布和轴的位置。

(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。

()2.两个均质圆盘A和B的密度分别为ρA和ρB,若ρA>ρB,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A和J B,则(A)J A>J B(B)J B>J A(C)J A=J B(D)J A、J B哪个大,不能确定()3.花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,转动惯量为J0角速度为ω0,然后她将两臂收回,使转动惯量减少J0/3。

这时她转动的角速度变为(A)ω0/3 (B)(1/3)ω0(C)3ω0 (D)3ω0()4.如图所示,一水平刚性轻杆,质量不计,杆长l =20cm,其上穿有两个小球。

初始时,两小球相对杆中心O对称放置,与O的距离d=5cm,二者之间用细线拉紧。

现在让细杆绕通过中心O的竖直固定轴作匀角速的转动,转速为ω0,再烧断细线让两球向杆的两端滑动。

不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为(A)ω0 (B)2ω0(C)ω0/2 (D)ω0/4()二、填空题:1.半径为r =1.5m的飞轮,初角速度ω0=10rad·s-1,角加速度β = -5rad·s-2,则在t=_______ _________时角位移为零,而此时边缘上点的线速度v= _______________________。

2.半径为30cm的飞轮,从静止开始以0.50rad·s-2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240︒时的切向加速度a t =______________,法向加速度a n =_______________。

刚体的转动习题

刚体的转动习题
解:细棒从水平位置到竖直位置,机械能守恒.
m2 L
O
m1
v
x
细棒在竖直位置与小物体相碰角动量守恒.
此时轴不受侧向力,水平方向动量守恒.
联立解得:
m2 L
O
m1
v
x
v2C
C
3,一质量为m、长为L的均匀细棒,可在水平桌面上绕通过其一端的竖直固定轴转动,已知细棒与桌面的摩擦因素为μ,求棒转动时受到的摩擦力矩的大小. x o dx x 解:如图,距O点为x,长为dx的质元dm的质量 其所受阻力矩
教学基本要求
内容提要
刚 体 力 学
角 位 移
角 速 度
角加速度
刚体运动学
刚体动力学
转动定律
角动量定理
角动量守恒定律
转动动能定理
内容提要
一、刚体的运动:
1,刚体:
刚体运动时,体内任意两点所连成的直线,始终与其初始位置平行.
2,刚体的运动:
(1),平动:
具有质量和形状大小,但形状大小不发生变化的物体.
位置矢量
角加速度
力 矩
转动惯量
角 速 度
角 位 移
角 位 置
质点运动与刚体定轴转动比较
刚体定轴转动
质点运动
角 动 量 守恒定律
角动量定理
角 冲 量
角 动 量
转动定律
动 量 守 恒 定 律
动量定理
冲 量
动 量
运动定律
质点运动与刚体定轴转动比较
,质量大小
1,表达式:
2,决定因素:
,质量分布
,转轴位置
5,匀加速转动:
3,定理:
(1),平行轴定理:
(2),垂直轴定理:

刚体定轴转动习题知识分享

刚体定轴转动习题知识分享

刚体定轴转动习题刚体定轴转动一、选择题(每题3分)1、个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的( )(A)机械能守恒,角动量守恒; (B)机械能守恒,角动量不守恒,(C)机械能不守恒,角动量守恒; (D)机械能不守恒,角动量不守恒.2、一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为()(A) L 不变,ω增大 (B) 两者均不变(C) L不变,ω减小 (D) 两者均不确定3、有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零在上述说法中,正确的是()(A)只有(1)是正确的(B)只有(1)、(2)正确(C)只有(4)是错误的(D)全正确4、以下说法中正确的是()(A)作用在定轴转动刚体上的力越大,刚体转动的角加速度越大。

(B)作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大。

(C)作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大。

(D)作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零。

5、一质量为m的均质杆长为l,绕铅直轴o o'成θ角转动,其转动惯量为()6、一物体正在绕固定光滑轴自由转动( )(A) 它受热膨胀或遇冷收缩时,角速度不变. (B) 它受热时角速度变小,它遇冷时角速度变大. (C)它受热或遇冷时,角速度均变大.(D) 它受热时角速度变大,它遇冷时角速度变小.7、关于刚体对轴的转动惯量,下列说法中正确的是( )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关. (C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.8、两个均质圆盘A 和B 的密度分别为A ρ和B ρ,若A ρ﹥B ρ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面的转动惯量各为J A 和J B ,则( )(A )J A >J B (B )J B >J A(C )J A = J B (D )J A 、 J B 哪个大,不能确定9、某转轮直径d =40cm ,以角量表示的运动方程为θ=3t -3.02t +4.0t ,式中θ的单位为rad,t 的单位为s,则t =2.0s 到t =4.0s 这段时间内,平均角加速度为( )(A)212-⋅s rad (B)26-⋅s rad(C)218-⋅s rad (C)212-⋅s m10、 轮圈半径为R ,其质量M 均匀分布在轮缘上,长为R 、质量为m的均质辐条固定在轮心和轮缘间,辐条共有2N 根。

03 刚体的定轴转动习题

03 刚体的定轴转动习题

V刚体的定轴转动习题班级 姓名 学号 成绩一、选择题1、一刚体以每分钟60转绕z 轴沿正方向做匀速转动,设此时该刚体上一点P 的位矢k j i r543++=,单位为10-2m ,若以12s m 10--⋅为速度单位,则该时刻点P 的速度为【 】(A )k j i v0.1546.1252.94++= (B )j i v8.181.25+-=(C )j i v8.181.15+= (D )k v4.32=2、下列说法中正确的是【 】(A )作用在定轴转动刚体上的力越大,刚体转动的角速度越大 (B )作用在定轴转动刚体上的合力矩力越大,刚体转动的角速度越大 (C )作用在定轴转动刚体上的合力矩力越大,刚体转动的角加速度越大 (D )作用在定轴转动刚体上的合力矩力为零,刚体转动的加速度为零3、两个均匀圆盘A 和B 的密度分别为A ρ和B ρ,若B A ρρ>,但两圆盘的质量和厚度相同,如两圆盘对通过盘心垂直于盘面的轴的转动惯量各为A J 和B J ,则【 】(A )B A J J > (B )B A J J <(C )B A J J = (D )A J 、B J 哪个大,不能确定4、有两个半径相同、质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的转轴的转动惯量分别为J A 和J B ,则【 】(A )B A J J > (B )B A J J <(C )B A J J = (D )A J 、B J 哪个大,不能确定5、如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止。

杆身与竖直方向成θ角,则A 端对墙壁的压力大小为【 】(A )4)cos (θmg (B )2)tan (θmg (C )θsin mg (D )不能唯一确定 6、有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于转轴作用时,它们对转轴的合力矩一定是零 (2)这两个力都垂直于转轴作用时,它们对转轴的合力矩可能是零 (3)当这两个力的合力为零时,它们对转轴的合力矩也一定是零 (4)当这两个力对转轴的合力矩为零时,它们的合力也一定是零 在上述说法中【 】(A )只有(1)是正确的 (B )(1)(2)正确,(3)(4)错误 (C )(1)(2)(3)正确,(4)错误 (D )(1)(2)(3)(4)都正确7、半径为R 、质量为m 的匀质圆形平板在粗糙的水平桌面上,绕通过圆心且垂直于平板的O O '轴转动,摩擦力对O O '轴的力矩为【 】(A )2mgR μ (B )mgR μ (C )2mgR μ (D )0 8、一不可伸长的摆线长L ,下挂一质量为m 的小球,小球静止。

大学物理第四章-刚体的转动-习题及答案

大学物理第四章-刚体的转动-习题及答案
第 4 章 刚体的定轴转动 习题及答案
1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法 向加速度的大小是否随时间变化?
答:当刚体作匀变速转动时,角加速度 不变。刚体上任一点都作匀变速圆周运动,因此该点速
率在均匀变化,v l ,所以一定有切向加速度 at l ,其大小不变。又因该点速度的方向变化,
ω dr
(1)圆盘上半径为r、宽度为dr的同心圆环所受的摩擦力矩

dM
m
(
R2
2 rdr)grBiblioteka 2r 2 mgdr/
R2
负号表示摩擦力矩为阻力矩。对上式沿径向积分得圆盘所受
r dF
的总摩擦力矩大小为
M dM R 2r2mgdrdr 2 mgR
0
R2
3
(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量 I 1 mr2 ,由角动量定理可得圆盘停止的 2
度.
解:碰撞过程满足角动量守恒:
2 3
mv0l
1 2
mv0
2 3
l
I

I m( 2 l)2 2m(1 l)2 2 ml2
3
33
所以
mv0l
2 3
ml 2
由此得到: 3v0 2l
2m
1 3
l
O⅓l
1 2
v
0
2 3
l
m
⅓l m v0
⅓l
15. 如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 JA=10 kg·m2 和 JB
2
2
22
2
2
1 16
( Ld14
1 2
ad24

刚体的转动习题

刚体的转动习题

17-4图18-4 图F FO 04 第四章 刚体力学一、选择题:1、如图4-18所示,一圆盘绕通过盘心且与盘面垂直的轴o 以角速度ω针转动。

今将两大小相等、方向相反、但不在同一条直线上的力F 和F -盘面同时作用到圆盘上,则圆盘的角速度:[ ] (A )必然减少 (B )必然增大(C )不会变化 (D )如何变化,不能确定 2、如图4-17所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B端置于粗糙的水平地面上而静止,杆身与竖直方向成θ角,则A 端对墙壁的压力大小为:[ ](A )θcos 41mg (B )θmgtg 21 (C )θsin mg (D )不能唯一确定 3、某转轮直径m d 4.0=,以角量表示的转动方程为t t t 4323+-=θ(SI ),则:[ ](A )从s t 2=到s t 4=这段时间内,其平均角加速度为2.6-s rad ;(B )从s t 2=到s t 4=这段时间内,其平均角加速度为2.12-s rad ;(C )在s t 2=时,轮缘上一点的加速度大小等于2.42.3-s m ;(D )在s t 2=时,轮缘上一点的加速度大小等于2.84.6-s m 。

4、如图4-2所示,一倔强系数为k 轮(转动惯量为J ),下端连接一质量为m 的物体,问物体在运动过程中,下列哪个方程能成立?[ ] (A )ky mg = (B )02=-T mg(C )my T mg =-1 (D )y R J J βR T T ''⋅==-)(21 5、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]7、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .1-4 图5-4图19-4 图 (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]8、一力N j i F )53( +=,其作用点的矢径为m j i r )34( -=,则该力对坐标原点的力矩为:[ ] (A )m N k ⋅- 3 (B )m N k ⋅ 29 (C )m N k ⋅ 19 (D )m N k ⋅ 39、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ]10、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]11、如图4-19所示P 、Q 、R 、S l RS QR PQ ===,则系统对o o '轴的转动惯量为:[ ](A )250ml (B )214ml(C )210ml (D )29ml12、如图4-1所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且Mg F =。

大学物理-刚体的定轴转动-习题和答案

大学物理-刚体的定轴转动-习题和答案

第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。

刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。

又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。

2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。

()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。

既 z M I β=。

所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。

3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。

4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。

(完整版)刚体定轴转动习题

(完整版)刚体定轴转动习题

刚体定轴转动一、选择题(每题3分)1、个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的( )(A)机械能守恒,角动量守恒; (B)机械能守恒,角动量不守恒,(C)机械能不守恒,角动量守恒; (D)机械能不守恒,角动量不守恒.2、一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为( ) (A) L 不变,ω增大 (B) 两者均不变(C) L不变,ω减小 (D) 两者均不确定3、有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零在上述说法中,正确的是()(A)只有(1)是正确的(B)只有(1)、(2)正确(C)只有(4)是错误的(D)全正确4、以下说法中正确的是()(A)作用在定轴转动刚体上的力越大,刚体转动的角加速度越大。

(B)作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大。

(C)作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大。

(D)作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零。

5、一质量为m的均质杆长为l,绕铅直轴o o'成θ角转动,其转动惯量为()6、一物体正在绕固定光滑轴自由转动()(A) 它受热膨胀或遇冷收缩时,角速度不变.(B) 它受热时角速度变小,它遇冷时角速度变大.(C)它受热或遇冷时,角速度均变大.(D) 它受热时角速度变大,它遇冷时角速度变小.O7、关于刚体对轴的转动惯量,下列说法中正确的是( )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.(C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.8、两个均质圆盘A 和B 的密度分别为A ρ和B ρ,若A ρ﹥B ρ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面的转动惯量各为J A 和J B ,则( )(A )J A >J B (B )J B >J A(C )J A = J B (D )J A 、 J B 哪个大,不能确定9、某转轮直径d =40cm ,以角量表示的运动方程为θ=3t -3.02t +4.0t ,式中θ的单位为rad,t 的单位为s,则t =2.0s 到t =4.0s 这段时间内,平均角加速度为( )(A)212-⋅srad (B)26-⋅s rad(C)218-⋅s rad (C)212-⋅s m10、 轮圈半径为R ,其质量M 均匀分布在轮缘上,长为R 、质量为m 的均质辐条固定在轮心和轮缘间,辐条共有2N 根。

物理学02习题

物理学02习题

第二章 刚体的转动习 题1、两个半径相同的飞轮用一皮带相连,作无滑动转动时,大飞轮边缘上各点的线速度的大小是否与小飞轮边缘上各点的线速度的大小相同?角速度又是否相同?2、当刚体转动时,如果它的角速度很大,是否说明刚体的角加速度一定很大?3、如果作用在刚体上的合力矩垂直于刚体的角动量,则刚体角动量的大小和方向会发生变化吗?4、一个人随着转台转动,两手各拿一只重量相等的哑铃,当他将两臂伸开,他和转台的转动角速度是否改变?5、直径为0.6 m 的转轮,从静止开始做匀变速转动,经20 s 后,它的角速度达到100π rad/s,求角加速度和在这一段时间内转轮转过的角度。

6、求质量为m ,长为l 的均匀细棒对下面几种情况的转动惯量。

(1) 转轴通过棒的中心并与棒成垂直; (2) 转轴通过棒的一端并与棒垂直;(3) 转轴通过棒上离中心为h 的一点并与棒成垂直; (4) 转轴通过棒中心并和棒成θ角。

7、如图2-19所示,一铁制飞轮,已知密度ρ=7.8 g/cm 3,R 1=0.030 m ,R 2=0.12 m ,R 3=0.19 m ,b =0.040 m ,d =0.090 m ,求它对转轴的转动惯量。

8、一飞轮直径为0.3 m ,质量为5 kg ,边缘绕绳,现用恒力拉绳一端,使它由静止均匀地加速,经0.5 s 转速达到10 rev/s,假定飞轮可看做实心圆柱体,试求:(1)飞轮的角加速度及其在这段时间内转过的转数;(2)从拉动后t =10 s 时飞轮的角速度及轮边缘上一点的速度和加速度。

(3)拉力及拉力所作的功;9、用线绕于半径R =1 m ,质量m =100 kg 的圆盘上,在绳的一端作用10 N 的拉力,设圆盘可绕过盘心垂直于盘面的定轴转动。

试求: (1)圆盘的角加速度;(2)当线拉下5 m 时,圆盘所得到的动能。

10、两个质量为m 1和m 2的物质分别系在两条绳上,这两条绳又分别绕在半径为r 1和r 2并装在同一轴的两鼓轮上,如图2-20所示。

物理

物理

第二章刚体的转动习题一、单选题1、下列说法正确的是()A.作用在定轴转动刚体上的合力越大,刚体转动的角加速度越大B.作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大C.作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大D.作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零2、刚体绕定轴转动,在每1 s内角速度都增加 rad/s,则刚体的运动是()A.匀加速转动B.匀速转动C.匀减速转动D.不能确定图2-1DM3、均匀细杆DM能绕D轴在竖直平面内自由转动,如图2-1所示,细杆DM从水平位置开始摆下,其角加速度变化为()A.始终不变B.由小变大C.由大变小D.恒等于零4、一半径为R质量为m的均质圆形平板在粗糙的水平桌面上,绕通过圆心且垂直于平板的OO'轴转动(已知圆形平板与水平桌面之间的摩擦系数为μ),摩擦力对OO'轴的力矩为()A.B.C.D.05、一圆形飞轮可绕垂直中心轴转动,其转动惯量为20 ㎏·m2,给圆盘施加一个400 N·m的恒外力矩使其由静止开始转动,经2 s后飞轮转过的圈数为()A.10B.20C.30D.406、有两个共轴的圆盘A和B。

A盘和B盘是分开的,盘B静止,盘A的角速度为ω0。

两者接合后的共同角速度为。

已知盘A绕该轴的转动惯量为IA,则盘B 绕该轴的转动惯量IB等于()A.4IAB.3IAC.2IAD.IA7、刚性双原子分子中两原子相距为r,质量分别为m1和m2,绕着通过质心而垂直于两原子连线的转轴转动,则该分子绕该轴的转动惯量为()A.(m1+m2)r2B. (m1+m2)r2C.D. (m1+m2)r2二、判断题1、人骑自行车时,自行车的角蹬子在任何位置,人施加于它的力矩都相等。

()2、刚体作定轴转动时,如果它的角速度越大,则作用在刚体上的力矩就一定越大。

()3、有一均匀的实心圆柱体沿着同一光滑斜面落下,则其滑下时和滚下时的末速度相等。

刚体的定轴转动---练习题

刚体的定轴转动---练习题

刚体的定轴转动---练习题一、选择题1.几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 ( )(A) 必然不会转动. (B) 转速必然不变.(C) 转速可能不变,也可能改变. (D) 转速必然改变.2.关于刚体对轴的转动惯量,下列说法中正确的是( )(A )取决于刚体的质量、质量的空间分布和轴的位置.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.3.关于刚体,下列说法正确的是: ( )A .刚体所受合外力为零,则刚体所受的合外力矩也为零;B .刚体所受合外力矩为零时,刚体角速度一定为零;C .刚体所受合外力矩不为零时,刚体角速度会发生变化;D .刚体平衡的条件是:它所受到的合外力为零.4.两个匀质圆盘A 和B 的半径分别为A R 和B R ,若B A R R >,但两圆盘的质量相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则 ( )(A ) J B >J A . (B ) J A >J B . (C ) J A =J B . (D )J A 、J B 哪个大,不5.如图所示,均匀木棒OA 可绕过其端点O 并与棒垂直的水平光滑轴转动。

令棒从水平位置开始下落,在棒转到竖直位置的过程中,下列说法中正确的是 ( )A 、角速度从小到大,角加速度从小到大;B 、角速度从小到大,角加速度从大到小;C 、角速度从大到小,角加速度从大到小;D 、角速度从大到小,角加速度从小到大6. 如图所示,A 、B 为两个相同的绕着轻绳的质量为M 的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B两滑轮的角加速度分别为A α和B α,不计滑轮轴的摩擦,则有A .B A αα= B . B A αα>C . B A αα<D . 不确定 7.一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿顺时针方向转动,则绳中的张力 ( )(A )处处相等.(B )左边大于右边.(C )右边大于左边.(D )哪边大无法判断.A MB F m 2m 18.一力学系统由两个质点组成,两质点之间只有万有引力作用,若系统所受外力的矢量和为零,则此系统 ( )A 、动量、机械能以及对某一定轴的动量矩守恒;B 、动量、机械能守恒,但动量矩是否守恒不能确定;C 、动量守恒、但机械能和动量矩是否守恒不能确定;D 、动量和动量矩守恒、但机械能是否守恒不能确定.9.人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用L 和E K 分别表示卫星对地心的动量矩及其动能的瞬时值,则应有 ( )A .L A >LB ,E KA >E kB . B . L A =L B ,E KA >E KB .C .L A =L B ,E KA <E KB .D . L A <L B ,E KA <E KB .10. 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统 ( )A . 动量守恒.B . 机械能守恒.C . 动量、机械能和角动量都守恒.D . 对转轴的角动量守恒.11.花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0角速度为ω0,然后她将两臂收回,使转动惯量变为原来的一半,这时她转动的角速度变为 ( B )A 、ω0/2;B 、2ω0;C 、(1/2)ω0;D 、2ω0.12.如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 ( )(A) 只有动量守恒.(B) 只有机械能守恒.(C) 只有对转轴O 的动量矩守恒.(D) 机械能、动量和动量矩均守恒.13.刚体动量矩守恒的充分必要条件是 ( )(A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变.14.一质量为M 的均匀细杆,可绕光滑水平轴转动,一质量为m 的小球以速度V 0水平飞来,与杆一端作完全弹性碰撞,则小球与杆组成的系统(如图所示),满足: ( )A 、动量守恒,动量矩守恒;B 、动量不守恒,动量矩守恒;C 、动量不守恒,动量矩不守恒;D 、动量守恒,动量矩不守恒..15.如图所示,均匀木棒可绕过其中点O 的水平光滑轴在竖直平面内转动,棒初始位于水平位置,一小球沿竖直方向下落与棒的右端发生碰撞,碰撞后球粘在杆上。

刚体的转动习题课

刚体的转动习题课
解:取人和转台为系统,则人走动时,系统角动 量守恒
设平台角速度 , 人 相对转轴角速度
J0 J人 0
mRv J0 mR
2
4. 斜面倾角为 ,m1和 m2物
体经细绳联接,绕过一定滑
轮。求m下2 落的加速度。 (m1与斜面的摩擦因数为

T1 m1g sin m1g cos m1a1
m2g T2 m2a2
ac N
f r Jc ac r
机械能守恒吗?
f
mg
计算题
1.一轻绳过一半径为R、质量为m/4的滑轮, 质量为m的人抓住了绳的一端,另一端系一 质量为m/2的重物,开始静止,求人相对于 绳匀速上爬时,重物上升的加速度。
a 4 g 13
R m/4
m/2
+
m
2. 今使杆水平静止的落下,在
铅直位置与质量为m2的物体作 完全非弹性碰撞后,m2 沿摩擦
T2r T1r J
T2 T2,T1 T1
a1 a2 r
J ,r m1
m2
T1
FR
FN T1
T2 P
m1
Fr m1g
T2 m2
m2 g
a1
a2
m2 g
m1g sin
m1 m2
m2g
J r2
cos
讨论:是否有其它计算方法?
功能关系!
m2 gy
m1gy sin
m1gy cos
1 2
(m1
mg
macy
m
l 2
2
F
Nx F (3l / 2l 1)
l 2 l 打击中心 3
在摩擦系数 的水平桌面上,长为l ,质
量 为
m1 m2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

04第四章刚体力学一、选择题: 1、如图4-18所示,一圆盘绕通过盘心且与盘面垂直的轴 0以角速度 针转动。

今将两大小相等、方向相反、但不在同一条直线上的力 F 和 盘面同时作用到圆盘上,则圆盘的角速度: [] (A )必然减少 (B )必然增大 (C )不会变化 (D )如何变化,不能确定 4-17所示,一质量为 m 的匀质细杆 AB , A 端靠在粗糙的竖直墙壁上, B 端置于粗糙的水平地面上而静止,杆身与竖直方向成 力大小为:[] 2、如图 (A ) 1 mgcos (B ) ^mgtg (C ) mgsin 2 (D )不能唯一确定角,则A 端对墙壁的压 3、 某转轮直径 d 0.4m ,以角量表示的转动方程为t 32 3t 4t (SI ),则: 4、 轮 (A ) (B ) (C ) (D ) 从t 从t 在t 在t 2s 到t 4s 这段时间内,其平均角加速度为 2s 到t 4s 这段时间内,其平均角加速度为 2s 时,轮缘上一点的加速度大小等于2s 时,轮缘上一点的加速度大小等于 6rad.s 2 ; 12rad .s 2 ; 3.42m.s 2; 26.84m.s 。

如图4-2所示, (转动惯量为 J ),下端连接一质量为 动过程中,下列哪个方程能成立? (A ) mg ky (B ) 倔强系数为 k 的弹簧连接一轻绳,绳子跨过滑 m 的物体,问物体在运 [] mg T 2 5、 T 2)R J B J yR 关于刚体对轴的转动惯量,下列说法中正确的是 只取决于刚体的质量,与质量的空间分布和轴的位置无关. 取决于刚体的质量和质量的空间分布,与轴的位置无关. 取决于刚体的质量、质量的空间分布和轴的位置. 只取决于转轴的位置,与刚体的质量和质量的空间分布无关. (C ) mg T 1my (A )(B ) (C ) (D ) (D ) (T i 6、有两个力作用在一个有固定转轴的刚体上: (1) (2)(3)(4) 在 (A) (B) (1) (C) (1)(D) (1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; 当这两个力的合力为零时,它们对轴的合力矩也一定是零; 当这两个力对轴的合力矩为零时,它们的合力也一定是零. 上述说法中, 只有(1)是正确的. 、⑵正确,(3) 、(4)错误. 、(2)、(3)都正确,⑷错误. 、(2) 、(3) 、(4)都正确. A 和B. A 环的质量分布均匀, J A 和J B ,则7、有两个半径相同,质量相等的细圆环 匀•它们对通过环心并与环面垂直的轴的转动惯量分别为 (A) J A > J B • (B) J A V J B .[ :B 环的质量分布不均为:[](A ) 3kN m (B )29kN m9、一圆盘绕过盘心且与盘面垂直的光滑固定轴 向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一 条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度 (A) 必然增大. (B) 必然减少.(C)不会改变.(D)如何变化,不能确定.[]10、均匀细棒O 柯绕通过其一端 O 而与棒垂直的水平固定光滑轴转动,如图所示•今使棒从水平位置由静止开始自由下落,在棒摆动到竖直 位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小. (D)角速度从大到小,角加速度从小到大.k 40N m 1,细杆质量m 3kg 。

若当 0时弹簧无伸长,那么细 杆在 0的位置上至少具有多大的角速度才能转到水平位置? [](A ) 2.97rad s ( B ) 6.18rad s (C ) 8.41rad s 1( D ) 10.01rad s 114、关于力矩有以下几种说法: (1)对某个定轴而言,内力矩不会改变刚体的角动量;(2)作用力和反作用力对同一轴的力矩之和必为零;(3 )质量相等、形状和大小不同的两个刚体,在相同力矩的作用下, 它们的角加速度一定相等。

上述说法中[](A)只有(2)正确 (B ) ( 1)、(2 )是正确的(C ) (2)、(3)是正确的(D ) ( 1)、(2)、(3)都是正确的(C) J A = J B .(D)不能确定J A 、J B 哪个大.&一力 F (3i 5j)N ,其作用点的矢径为r (4i 3j)m ,则该力对坐标原点的力矩11、如图 4-19 所示 P 、Q 、 R 、S 是附于刚性轻杆上的四个质点,且 PQ QR RS l ,则系统对oo 轴的转动惯量为: (A) 50ml (C ) 10ml 2(B ) 14ml (D ) 9ml 4m 3m 2m m P Q R S 图 4-19 12、如图4-1所示, A 、B 为两个相同的绕着轻绳的定滑轮, A 滑轮挂 一质量为M 的物体, B 滑轮受拉力F ,而且F Mg 。

设 A 、B 两滑 (A ) A B(B )A B(C ) A B (D )开始时 A B ,以后 A B13、一理想轻弹簧与 匀质细杆如图 4-5连接。

弹簧的倔强系数轮的角加速度分别为 则有:A、 []B ,不计滑轮与轴的摩擦,图4-1(C 19kN m( D )3kN mO 以角速度按图示方O15、两个匀质圆盘A和B的密度分别为A和B,若A>B,但两圆盘的质量与厚度相同,m 2的物体,这一系统由静止开始运动。

当物体m 1下落h 时,该系统的总动能为:[]m.图4-4(A) J A > J B . (B) J B > J A . (C)J A = J B . (D) J A 、J B 哪个大,不能确定.[]16、一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为 J ,绳下端挂一物体.物体所受重力为P,滑轮的角加速度为 .若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度 将 (A)不变.(B)变小.B 端置于粗糙水平地面上而静止.杆身与竖直方向成角,则A 端对墙壁的压力大小1 (A)为 mg cos .1(B)为 mg g42(C) 为 m® n . (D) 不能唯一确定. [18、一轻绳跨过一具有水平光滑轴、质量为 M 的定滑轮,绳的两端分别悬有质量为m 和m 的物体(m v m ),如图所示.绳与轮之间无相对滑动.若 某时刻滑轮沿逆时针方向转动,则绳中的张力 (A)处处相等.(B) 左边大于右边. (C)右边大于左边.(D)哪边大无法判断.[ : 19、如图4-22所示,两根长度和质量都相等的细直杆,分别绕光滑的水平轴 o 1和02转动,设它们自水平位置静止释放,当它们分别转过 90时,端点A 、B 的速度分别为v A 、v B ,则:[](A V A > V B ( B ) V A = V B (C ) V A V V B( D )不能确定20、如图1所示,一均匀细杆可绕通过其一端的水平轴在竖直平面内自由5动,杆长5m 。

今使杆与竖直方向成 60角时由静止释放(g 取10m3则杆的最大角速度为:[](A ) 3rad s 1(B ) rad s 1(C ) 0.3rad s'(D )01s 2),2m21、一人站在旋转平台的中央,两臂侧平举,整个系统以 量为6.0 kg • m .如果将双臂收回则系统的转动惯量变为 能与原来的转动动能之比 云/ E 0为 2 rad/s 的角速度旋转,转动惯22.0 kg • m .此时系统的转动动(A) , 2 . (B), 3 . (C) 2.(D) 322、如图4-4所示,一个组合轮是由两个匀质圆盘固结而成,内、外圆盘的半 径分别为r 和R 。

两圆盘的边缘上均绕有细绳,细绳的下端各系着质量为m 1B。

1(C)变大. (D)如何变化无法判断. [ :17、如图所示,一质量为m的匀质细杆AB A端靠在光滑的竖直墙壁上,r(A ) m i gh (B ) m 2gh(C (m i m 2)gh(D ) m m 2 ghR25、一个圆盘在水平面内绕一竖直固定轴转动的转动惯量为J ,初始角速度为o,后来变0.在上述过程中,阻力矩所作的功为:27、关于力矩有以下几种说法: (1) 对某个定轴而言,内力矩不会改变刚体的角动量. (2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度 定相等• 在上述说法中,(A)只有(2)是正确的.(B) (1) 、(2)是正确的.(C)⑵、(3)是正确的.(D) (1)、(2) 、(3)都是正确的. [28、花样滑冰运动员绕过自身的竖直轴转动, 开始时两臂伸开,转动惯量为J 0,角速度为23、图⑻为一绳长为I 、质量为m 的单摆•图(b)为一长度为I 、 质量为m 能绕水平固定轴 0自由转动的匀质细棒•现将单摆和细 棒同时从与竖直线成 角度的位置由静止释放,若运动到竖直位置时, 单摆、细棒角速度分别以 1、2表示•贝y :(A) 11 2・ (B)21= 2 •(C)122 •(D)1.2/3 2・324、一匀质砂轮半径为 R,质量为 M 绕固定轴转动的角速度为/广wA 4(a)(b)[ :.若此时砂轮的动能等于1 2 2(A)—MR . (B)2 (C)Mg(D)h的位置落至地面时所具有的动能,那么R 2 2 4M • R 2 2 4g •h 应等于 (A)-J 4(B)-J-J 426、一均匀细杆可绕垂直它而离其一端 在竖直平面内转动.杆的质量为(C)3J 28 J 0 •I 为杆长)的水平固定轴 m 当杆自由悬挂时,给它一个起始角速度(D)o,如杆恰能持续转动而不作往复摆动 (A) (C)[已[> 4.3g/7I . o >4/3 g/l .细杆绕轴(B) (D) 的转(一切摩擦不计)则需要> 4/^77 •> -12g/l •动惯量 J(7/48) ml 2]1I/4一质量为M 的自由落体从高度为29、人造地球卫星绕地球作椭圆运动(地球在椭圆的一个焦点上) 否守恒?[](A )动量不守恒,角动量不守恒(B )动量守恒,角动量不守恒(C )动量不守恒,角动量守恒 (D)动量守恒,角动量守恒30、一块方板,可以绕通过其一个水平边的光滑固定轴自由转动. 最初板自由下垂.今有 小团粘土,垂直板面撞击方板,并粘在板上•对粘土和方板系统,如果忽略空气阻力,在碰 撞中守恒的量是 (C)机械能.(D) 动量.31、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴 O 旋转,:_ 初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之 挣0间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 (A) 只有机械能守恒. (B) 只有动量守恒.-(C) 只有对转轴O 的角动量守恒. (D)机械能、动量和角动量均守恒.[]32、一长为|,质量为M 的均匀直尺静止于光滑水平桌面上, 一质量为m的小球以速率v 向直尺垂直运动,如图 4-6所示。

相关文档
最新文档