单闭环流量定值控制系统样本
单闭环管道流量比值控制系统设计
![单闭环管道流量比值控制系统设计](https://img.taocdn.com/s3/m/433b0d7d76c66137ef06193e.png)
《单闭环管道流量比值控制系统》过程控制系统课程设计说明书专业班级:11级自动化1班姓名:孙勇李自强周程鲍凯学号:080311009 080311022080311035 080311047指导教师:陈世军设计时间: 2014年6月11日物理与电气工程学院2014年 6 月11 日摘要在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。
实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。
通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流量比值控制系统,这次课程设计的内容就是流量比值过程控制系统。
流量测量是比值控制的基础。
各种流量计都有一定的适用范围(一般正常流量选在满量程的70%左右),必须正确选择使用。
在工程上,具体实施比值控制时,通常有比值器、乘法器或除法器等单元仪表可供选择,相当方便。
若采用计算机控制来实现,只要进行乘法或除法运算即可,我们这次就主要使用计算机及组态王软件进行设计。
关键词:组态王;流量;比值控制系统目录1、引言 (1)1.1主要内容 (1)1.2任务要求 (1)2、设计方案 (2)2.1设计原理 (2)2.2系统原理图 (2)2.3 仿真调试 (3)3、硬件设计 (4)3.1使用仪器 (4)4、软件设计 (7)4.1 程序 (7)4.2 系统组态设计 (11)4.2.1组态图 (11)4.2.2静态画面 (12)4.2.3数字字典 (14)4.2.4系统应用程序 (16)4.2.5动画连接 (17)5、课程设计总结 (17)6、参考文献 (18)1、引言1.1主要内容本课程设计是学完《过程控制系统》课程后的一个应用性实践环节。
通过本课程设计的训练,对过程控制工程设计的概念有完整地了解,同时培养综合应用基础课、专业课所学知识与工程实际知识的能力。
单闭环流量定值控制系统matlab仿真
![单闭环流量定值控制系统matlab仿真](https://img.taocdn.com/s3/m/06141659fe00bed5b9f3f90f76c66137ef064f43.png)
单闭环流量定值控制系统matlab仿真什么是闭环流量定值控制系统?闭环流量定值控制系统是一种基于反馈的控制系统,用于控制流体的流量,并将其维持在预定的值。
该系统通过传感器获取流量的实际值,并与设定的目标值进行比较,然后根据误差信号来调整执行器,以使流量保持在目标值附近。
闭环流量定值控制系统常用于流量控制、液位控制和压力控制等领域。
为什么需要闭环流量定值控制系统?在许多工业流程中,保持流量在设定的目标值是非常重要的。
例如,在化工生产中,过高或过低的流量可能导致反应速率变化、产品质量下降,甚至设备损坏。
因此,需要一种控制系统来实时监测和调整流量,以确保其保持在预定值附近。
闭环流量控制系统的优势是什么?与开环控制系统相比,闭环流量定值控制系统具有以下优势:1. 提高系统的稳定性:闭环控制系统通过不断地与目标值进行比较和反馈来调整执行器,以保持流量的稳定性。
因此,即使受到干扰或系统参数变化,闭环系统仍能快速响应并修正偏差。
2. 提高系统的鲁棒性:闭环控制系统可以通过自适应算法实现对系统参数变化的自动调整,从而提高系统的鲁棒性和对干扰的适应能力。
3. 提高系统的精确度:通过对实际流量进行实时监测和不断调整,闭环系统可以更准确地控制流量,使其保持在设定的目标值附近。
闭环流量定值控制系统的设计步骤:1. 系统建模:首先,需要对流量控制系统进行建模。
根据具体的应用,可以采用传统的线性模型或更复杂的非线性模型。
2. 控制器设计:根据系统模型,设计合适的控制器。
常用的控制器包括比例-积分-微分(PID)控制器、模糊控制器和自适应控制器等。
控制器的选择应综合考虑系统的复杂度、要求的精确度和对干扰的鲁棒性。
3. 传感器选择:选择适当的传感器来实时监测流量。
常用的传感器包括流量计、压力传感器和温度传感器等。
传感器的选择应根据流量范围、精确度、响应速度和成本等因素进行考虑。
4. 执行器选择:根据控制需求选择合适的执行器进行流量调节。
基于MCGS的单闭环流量比值控制系统的设计
![基于MCGS的单闭环流量比值控制系统的设计](https://img.taocdn.com/s3/m/04f55b32376baf1ffc4fad41.png)
2所示 。
通 讯 作 者 : 恒 娟 , m i 58 2 5 @ q .O . 刘 E al 7 7 7 8 q Cr : n
第 4期
刘恒娟 : 于 MC S的单 闭环流量 比值控制系统的设计 基 G
・ 5・ 7
图 2 系统 方 框 图
本设 计在传 统 的过 程 控制 需 要 人 工监 测 和人 工调 节 的基础上 , 加入 了 MC S组态 软件 进行 辅 助 G
Q / 1 系统 原理 图如 图 1所示 。 2Q = 在稳 定状 态 时 , 副 流 量 满足 工 艺 要求 的 比 主、
2 MC S组态 设 计 G
MC S Moi ra d C n o G n rt yt G ( nt n o t l e ea d Ss m) o r e e
量和质 量 , 浪费原材 料 , 环境 污染 , 造成 甚至 发生生 产 事故 。所 以说 流量 比值控 制 在 现 代工 业 中发挥 着非 常关键 的作用 。
为 了克服 开环 比值系统 存在 的不 足 , 本设 计在
图 1 系统 原 理 图
先 设置 好 的 比值使 输 出成 比值 成 比例地变 化 , 即成
第2 7卷 第 4期 21 0 0年 8 月
贵州大学学报(自然科学版 )
Junl f uzo nvri N trl c ne) ora o i uU ie t G h sy( a a Si cs u e
电动阀支路流量定值控制系统调试
![电动阀支路流量定值控制系统调试](https://img.taocdn.com/s3/m/433e4bf30242a8956bece41b.png)
电动阀支路流量定值控制系统调试。
1. 实践操作的要求(1)了解单闭环流量定值控制系统的组成;(2)应用阶跃响应曲线法整定调节器的参数;(3)研究调节器中相关参数的变化对系统性能的影响;(4)撰写报告。
2.设备器材1.仪表自动化实验装置1套2.万用表1台3.上位机1台4.无纸记录仪1台3.实践原理图7-23为单闭环流量控制系统的结构。
系统的被控对象为管道,流经管道中的液体流量Q作为被控变量。
基于系统的控制任务是维持被控变量恒定不变,即在稳态时,它总等于设定值。
因此需把流量Q经检测变送后的信号作为系统的反馈量,并采用PI调节器。
系统的控制方框图如图7-24所示。
图7-23 单闭环流量控制系统的结构图7-24 单闭环流量控制系统的方框图基于被控对象是一个时间常数较小的惯性环节,故本系统调节器的参数宜用阶跃响应曲线法确定。
4. 实践操作的步骤(1)按图7-23的要求,完成该系统的接线,如图7-25所示。
(2)接通总电源和相关仪表的电源。
打开计算机,运行MCGS组态软件,为记录过渡过程曲线做好准备。
(3)打开阀F1-1、F1-2、F1-8。
(4)根据经验法,预先设置好调节器预整定参数值(本系统采用PI调节)。
(5)设置流量的设定值后,手动操作调节器的输出,通过电动调节阀支路给下水箱打水。
等流量Q趋于设定值且不变后,把调节器手动切换为自动,使系统进入自动运行状态。
(6)当系统稳定运行后,突加阶跃扰动(将给定量增加5%~15%),观察并记录系统的输出响应曲线。
(7)通过反复多次调节PI的参数,使系统具有较满意的动态性能指标。
用计算机记录此时系统的动态响应曲线。
(8)记录曲线与参数①用实训方法整定PI调节器的参数。
②作出比例控制时,不同δ值下的阶跃响应曲线,并记下它们的余差e。
③比较不同PI参数对系统性能的影响。
图7-9 智能仪表控制单闭环流量定值控制系统接线图5.注意事项(1)实训线路接好后,必须经过老师检查认可后才能接通电源。
单闭环流量比值控制系统设计
![单闭环流量比值控制系统设计](https://img.taocdn.com/s3/m/895c488d0b1c59eef9c7b465.png)
摘要在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进展,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。
例如氨分解工艺中的氨分解炉,入炉煤气和空气应保持一定的比例,否如此将使燃烧反响不能正常进展,而煤气和空气比例超过一定的极限将会引起爆炸。
实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。
通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流量比值控制系统,这次课程设计的内容就是单闭环流量比值过程控制系统。
在实际的生产过程控制中,比值控制系统除了实现一定比例的混合外,还能起到在扰动影响到被控过程质量指标之前与时控制的作用.而且当最终质量指标难于测量,变送时,可以采用比值控制系统,使生产过程在最终质量达到预期指标下安全正常地进展,因为比值控制具有前馈控制的实质。
关键词:流量;比值控制;PID控制;可编程控制器目录1设计背景12比值控制系统概述4比值控制系统定义5比值控制原理5比值控制系统特点5比值控制系统的类型6开环比值控制系统6单闭环比值控制系统73单闭环流量比值控制系统方案设计9系统方案设计9系统硬件设计104上位机组态与程序设计124.1组态软件WinCC104.1.1WinCC简介104.1.2WinCC的开展与应用104.2上位机组态设计114.3PLC程序设计125PID参数整定与系统调试19控制器19控制器的优点20控制规律的选择20控制器参数的调节与其对控制性能的影响21比例控制对控制性能的影响19积分控制对控制性能的影响20微分控制对控制性能的影响22控制系统的整定23控制系统整定的根本要求23调节器参数的整定方法23 调节器参数的整定与调试27总结29参考文献301设计背景石油炼制生产过程中,把两种或两种以上根底组分油与各种添加剂按一定比例均匀混合,从而成为一种新产品的过程称为调和。
单闭环流量定值控制系统毕业设计分解
![单闭环流量定值控制系统毕业设计分解](https://img.taocdn.com/s3/m/993d912590c69ec3d5bb75a5.png)
开封大学毕业论文单闭环流量定值控制系统专业:[电气自动化]班级:[2班]学生姓名:[毕士杰]指导教师:[曹红英]完成时间:2018年10月13日目录第1章实验装置介绍 (1)1.1对象系统组成 (1)1.2 对象系统主要特点 (2)第2章系统的方案设计 (3)2.1硬件设计 (5)2.2软件设计 (6)第3章组态王软件设计 (10)3.1组态王软件介绍 (10)3.2使用组态王 (11)3. 3 创建组态画面 (14)3. 4 动画连接 (18)第4章系统中的问题和解决方案 (22)4.1控制规律的确定 (22)4.2调节器参数的整定方法 (23)总结 (27)参考文献 (28)第1章实验装置介绍1.1 对象系统组成(1)过程控制实验对象系统实验对象系统包含有:不锈钢储水箱;上、中、下三个串接有机玻璃圆筒型水箱;三相4.5kw电加热锅炉(由不锈钢锅炉内胆加热筒和封闭式外循环不锈钢冷却锅炉夹套构成)和铝塑盘管组成。
系统动力系统两套:一套由三相(380V交流)不锈钢磁力驱动泵、电动调节阀、交流电磁阀、涡轮流量计等组成;另一套由日本三菱变频器、三相不锈钢磁力驱动泵(220V变频)、涡轮流量计等组成。
整套对象系统完全由不锈钢材料制造,包括对象框架、管道、底板、甚至小到每一颗紧固螺钉。
如图1-1(2)对象系统中的各类检测变送及执行装置扩散硅压力变送器三只:分别检测上水箱、中水箱、下水箱液位;涡轮流量计三只:分别检测两条动力支路及盘管出水口的流量;Pt100热电阻温度传感器六只:分别用来检测锅炉内胆、锅炉夹套、盘管(三只)及上水箱出水口水温;控制模块:包括电磁阀、电动调节阀各一个;三相380V不锈钢磁力驱动泵、三相220V不锈钢磁力驱动泵;1.2 对象系统主要特点(1)被调参数囊括了流量、压力、液位、温度四大热工参数;(2)执行器中既有电动调节阀仪表类执行机构,又有变频器等电力拖动类执行器;(3)系统除了能改变调节器的设定值作阶跃扰动外,还可在对象中通过电磁阀和手操作阀制造各种扰动;(4)一个被调参数可用不同的动力源、不同的执行器和不同的工艺线路下可演变成多种调节回路,以利于讨论、比较各种调节方案的优劣;(5)能进行多变量控制系统及特定的过程控制系统实验。
单闭环管道流量比值控制系统设计
![单闭环管道流量比值控制系统设计](https://img.taocdn.com/s3/m/10f5127b240c844768eaee3c.png)
《单闭环管道流量比值控制系统》过程控制系统课程设计说明书专业班级: 11级自动化1班姓名:孙勇李自强周程鲍凯学号:080311009 080311022080311035 080311047指导教师:陈世军设计时间: 2014年6月11日物理与电气工程学院2014年 6 月 11 日摘要在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。
实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。
通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流量比值控制系统,这次课程设计的内容就是流量比值过程控制系统。
流量测量是比值控制的基础。
各种流量计都有一定的适用范围(一般正常流量选在满量程的70%左右),必须正确选择使用。
在工程上,具体实施比值控制时,通常有比值器、乘法器或除法器等单元仪表可供选择,相当方便。
若采用计算机控制来实现,只要进行乘法或除法运算即可,我们这次就主要使用计算机及组态王软件进行设计。
关键词:组态王;流量;比值控制系统目录1、引言 (1)1.1主要内容 (1)1.2任务要求 (1)2、设计方案 (2)2.1设计原理 (2)2.2系统原理图 (2)2.3 MATLAB仿真调试 (3)3、硬件设计 (4)3.1使用仪器 (4)4、软件设计 (7)4.1 PLC程序 (7)4.2 MCGS系统组态设计 (11)4.2.1组态图 (11)4.2.2静态画面 (12)4.2.3数字字典 (14)4.2.4系统应用程序 (16)4.2.5动画连接 (17)5、课程设计总结 (17)6、参考文献 (18)1、引言1.1主要内容本课程设计是学完《过程控制系统》课程后的一个应用性实践环节。
通过本课程设计的训练,对过程控制工程设计的概念有完整地了解,同时培养综合应用基础课、专业课所学知识与工程实际知识的能力。
单闭环流量比值控制系统实验报告
![单闭环流量比值控制系统实验报告](https://img.taocdn.com/s3/m/4dee5b320740be1e640e9a1a.png)
《控制工程实验》实验报告实验题目:单闭环流量比值控制系统课程名称:《控制工程实验》姓名:学号:专业:年级:院、所:日期: 2019.04.25实验一一阶单容上水箱对象特性的测试一、实验目的1.了解单闭环比值控制系统的原理与结构组成。
2.掌握比值系数的计算方法。
3.掌握比值控制系统的参数整定与投运方法二、实验设备1. 实验装置对象及控制柜 1套2. 装有Step7、WinCC等软件的计算机 1台3. CP5621专用网卡及MPI通讯线各1个三、实验原理在工业生产过程中,往往需要几种物料以一定的比例混合参加化学反应。
如果比例失调,则会导致产品质量的降低、原料的浪费,严重时还会发生事故。
这种用来实现两个或两个以上参数之间保持一定比值关系的过程控制系统,均称为比值控制系统。
本实验是单闭环流量比值控制系统。
其实验系统结构图如图1所示。
该系统中有两条支路,一路是来自于电动调节阀支路的流量Q1,它是一个主流量;另一路是来自于变频器—磁力泵支路的流量Q2,它是系统的副流量。
要求副流量Q2能跟随主流量Q1的变化而变化,而且两者之间保持一个定值的比例关系,即Q2/Q1=K。
图1 单闭环流量比值控制系统(a)结构图(b)方框图由图中可以看出副流量是一个闭环控制回路,当主流量不变,而副流量受到扰动时,则可通过副流量的闭合回路进行定值控制;当主流量受到扰动时,副流量按一定比例跟随主流量变化,显然,单闭环流量控制系统的总流量是不固定的。
四、比值系数的计算设流量变送器的输出电流与输入流量间成线性关系,即当流量 Q 由 0~Qmax变化时,相应变送器的输出电流为 4~20mA。
由此可知,任一瞬时主流量 Q1和副流量 Q2所对应变送器的输出电流分别为(1)(2)式中Q1max和Q2max分别为Q1和Q2最大流量值,即涡轮流量计测量上限,由于两只涡轮流量计完全相同,所以有Q1max=Q2max。
设工艺要求Q2/Q1=K,则式(1)、(2)可改写为:(3)(4)于是求得:(5)折算成仪表的比值系数K′为:(6)五、实验内容与步骤本实验选择电动阀支路和变频器支路组成流量比值控制系统。
单闭环流量定值控制系统
![单闭环流量定值控制系统](https://img.taocdn.com/s3/m/165ba2681ed9ad51f01df279.png)
第二节单闭环流量定值控制系统一.实验目的:1.了解单闭环流量控制系统的结构组成与原理。
2.掌握单闭环流量控制系统调节器参数的整定方法。
3.研究P、PI、PD和PID四种控制分别对流量系统的控制作用。
二.实验原理:离心泵恒流量控制系统图如图5.3-1所示,控制系统方框图如图5.3-2所示。
图5.3-1 离心泵恒流量控制系统图图5.3-2 离心泵恒流量控制系统方框图离心泵恒流量控制系统为单回路简单控制系统,安装在离心泵出口管路上涡轮流量传感器TT将离心泵出口流量转换成脉冲信号,其脉冲频率经频率/电压转换器转换成电压信号后输出至流量调节器TC,TC将流量信号与流量给定值比较后,按PID调节规律输出4—20mA信号,驱动电动调节阀改变调节阀的开度,达到恒定离心泵出口流量的目的。
离心泵恒流量控制系统方框图如图十三所示。
控制参数如下:1.控变量y:离心泵出口流量Q。
2.定值(或设定值)ys:对应于被控变量所需保持的工艺参数值3.测量值ym:由传感器检测到的被控变量的实际值4.操纵变量(或控制变量):实现控制作用的变量,在本实验中为离心泵出口流量。
使用电动调节阀作为执行器对离心泵出口流量进行控制。
电动调节阀的输入信号范围:4—20mA。
5.干扰(或外界扰动)f:干扰来自于外界因素,将引起被控变量偏离给定值。
在本实验中采用突然改变离心泵转速的方法,改变离心泵出口压力,人为模拟外界扰动给控制变量造成干扰。
6.偏差信号e:被控变量的实际值与给定值之差, e=ys-ym 。
ym---离心泵出口流量值Q 。
ys---离心泵出口流量设定值。
7.控制信号u :工业调节器将偏差按一定规律计算得到的量。
离心泵恒流量控制系统采用比例积分微分控制规律(PID)对离心泵流量进行控制。
比例积分微分控制规律是比例、积分与微分三种控制规律的组合,理想的PID 调节规律的数学表达式为:01()()()()tP D I de t u t K e t e t dt T T dt ⎡⎤∆=++⎢⎥⎣⎦⎰ 三.实验方法:1.向V103中注入2/3以上清水 2.打开设备总电源,检查各仪表,执行器是否正常3.打开阀门VA110或VA111,A112,A117,其余阀门关闭4.松动离心泵放气螺丝,直到有水流出,拧紧螺丝5.将离心泵出口压力测量表(PI-03)设为手动输出且输出值为100,变频器的频率即设为50.00Hz6.打开实验软件,进入流量曲线界面点击菜单栏中的“曲线 流量控制曲线”开始记录液位变化7.将流量测量表(FI-01)设为自动输出且SV 值为4.00,P=3,I=5,D=1.5 FILE=58.打开立式离心泵向观察曲线变化情况,待流量稳定后,点击菜单栏中的“曲线 流量控制曲线”重新记录液位变化9.大约10秒钟后通过以下几种方式加干扰:(1)突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;(此法推荐,下面方法仅供参考)。
过程控制系统实验指导书02
![过程控制系统实验指导书02](https://img.taocdn.com/s3/m/abe869ea4028915f804dc2fe.png)
《过程控制系统》实验指导书目录第一章实验装置说明 (1)第二章实验要求及安全操作规程 (4)实验一单容自衡水箱液位特性测试 (5)实验二双容水箱特性的测试 (9)实验三单容水箱液位定值控制系统 (12)实验四单闭环流量定值控制系统 (15)实验五锅炉内胆水温定值控制系统 (17)实验六锅炉内胆水温位式控制系统 (19)第一章实验装置说明实验对象总貌图如图1-1所示:图1-1 实验对象总貌图本实验装置对象主要由水箱、锅炉和盘管三大部分组成。
供水系统有两路:一路由三相(380V恒压供水)磁力驱动泵、电动调节阀、直流电磁阀、涡轮流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V变频调速)、涡轮流量计及手动调节阀组成。
一、被控对象由不锈钢储水箱、(上、中、下)三个串接有机玻璃水箱、4.5KW三相电加热模拟锅炉(由不锈钢锅炉内胆加温筒和封闭式锅炉夹套构成)、盘管和敷塑不锈钢管道等组成。
1.水箱:包括上水箱、中水箱、下水箱和储水箱。
上、中、下水箱采用淡蓝色优质有机玻璃,不但坚实耐用,而且透明度高,便于学生直接观察液位的变化和记录结果。
上、中水箱尺寸均为:D=25cm,H=20cm;下水箱尺寸为:D=35cm,H=20cm。
水箱结构独特,由三个槽组成,分别为缓冲槽、工作槽和出水槽,进水时水管的水先流入缓冲槽,出水时工作槽的水经过带燕尾槽的隔板流入出水槽,这样经过缓冲和线性化的处理,工作槽的液位较为稳定,便于观察。
水箱底部均接有扩散硅压力传感器与变送器,可对水箱的压力和液位进行检测和变送。
上、中、下水箱可以组合成一阶、二阶、三阶单回路液位控制系统和双闭环、三闭环液位串级控制系统。
储水箱由不锈钢板制成,尺寸为:长×宽×高=68cm×52㎝×43㎝,完全能满足上、中、下水箱的实验供水需要。
储水箱内部有两个椭圆形塑料过滤网罩,以防杂物进入水泵和管道。
2.模拟锅炉:是利用电加热管加热的常压锅炉,包括加热层(锅炉内胆)和冷却层(锅炉夹套),均由不锈钢精制而成,可利用它进行温度实验。
单闭环流量比值控制系统matlab
![单闭环流量比值控制系统matlab](https://img.taocdn.com/s3/m/25d97c9bcf2f0066f5335a8102d276a20129604f.png)
单闭环流量比值控制系统matlab在控制系统工程中,单闭环流量比值控制系统是一种常见的控制系统结构,它可以实现对给定流量比值的精准控制。
在本文中,我们将探讨这一主题,并结合Matlab的实际应用来深入理解。
1. 单闭环流量比值控制系统概述单闭环流量比值控制系统是指在控制过程中,通过检测两个流量变量的比值,从而实现对流量比值的控制。
这种控制系统结构通常包括传感器、控制器和执行器等组成部分,它能够在一定程度上解决流量控制中的非线性和耦合问题。
2. 控制系统参数评估在设计单闭环流量比值控制系统时,需要对系统参数进行评估。
我们需要确定传感器的精度和灵敏度,以确保能够准确地检测流量比值。
控制器的参数也需要进行调整,包括比例、积分和微分参数的设定,以实现对流量比值的精准控制。
在Matlab中,可以通过仿真和参数优化的方法来进行参数评估,从而实现系统控制的优化。
3. Matlab在单闭环流量比值控制系统中的应用Matlab作为一种功能强大的工具,可以用于建立单闭环流量比值控制系统的数学模型,并进行仿真分析。
通过Matlab/Simulink工具箱,可以方便地搭建系统模型,并对控制器参数和系统结构进行优化。
Matlab还提供了丰富的数据可视化和分析工具,可以帮助工程师更直观地理解控制系统的性能,并进行系统设计与优化。
4. 个人观点和理解在实际工程应用中,单闭环流量比值控制系统具有广泛的应用价值,尤其是在化工、环保和生物工程等领域。
通过Matlab对控制系统进行建模和仿真分析,可以帮助工程师更加深入地理解系统动态特性和稳定性,从而实现系统设计的优化。
在实际工程中,需要综合考虑系统的稳定性、鲁棒性和实时性等因素,进一步优化单闭环流量比值控制系统的性能和可靠性。
总结回顾通过本文对单闭环流量比值控制系统的深入探讨,我们更深入地理解了控制系统工程中的关键概念和方法。
Matlab作为一种功能强大的工具,为工程师提供了便利的系统设计与优化评台,可以帮助实现对单闭环流量比值控制系统的高效建模和仿真分析。
仪表控制图例
![仪表控制图例](https://img.taocdn.com/s3/m/10dd2620be23482fb4da4c85.png)
图1.1 单回路控制系统方框图
图1.2 双容液位定值控制系统
(a) 结构图(b) 方框图
图 1.3 三容液位定值控制系统(a) 结构图(b) 方框图
图 1.4 锅炉夹套水温定值控制系统
(a) 结构图(b) 方框图
图1.5 单闭环流量定值控制系统图1.6 锅炉内胆温度位式控制系统
(a) 结构图(b) 方框图
图2.1 串级控制系统方框图
R- 主参数的给定值;C1- 被控的主参数;C2- 副参数;
f1(t)- 作用在主对象上的扰动;f2(t)- 作用在副对象上的扰动。
图2.2 水箱液位串级控制系统
(a) 结构图(b) 方框图
图2.3 三闭环液位控制系统
(a) 结构图(b) 方框图
图2.4 锅炉夹套与内胆温度串级控制系统
(a) 结构图(b) 方框图
图2.5 锅炉内胆水温与循环水流量串级控制系统
(a) 结构图(b) 方框图
图2.6 盘管出口水温与锅炉内胆水温串级控制系统
(a) 结构图(b) 方框图
图2.7 盘管出口水温与热水流量串级控制系统
(a) 结构图(b) 方框图
图2.8 下水箱液位与进水流量串级控制系统
(a) 结构图(b) 方框图
(a)
(b)
图3.1 (1)管式加热炉温度流量串级控制系统(燃油流量Q 为副参数)
(a) 方框图(b) 结构图
D1: 原料油流量, 初始温度表,D2: 燃油压力(流量),D3: 喷油蒸汽压力,配风,炉膛漏风,
环境温度.燃油成分等
(2)管式加热炉温度压力串级控制系统(燃料压力为副参数)。
基于组态软件的单闭环也为流量控制系统
![基于组态软件的单闭环也为流量控制系统](https://img.taocdn.com/s3/m/1e8191e63186bceb19e8bb71.png)
过程控制系统课程设计题目: 基于组态软件的液位—流量串级控制系统设计院系名称:电气工程学院专业班级:自动化1105学生姓名:金星宇学号:201123910807指导教师:马利设计地点: 31520 设计时间:工业过程控制课程设计任务书之目录1引言 (1)2 系统结构设计 (1)2.1控制方案 (1)2.2 控制规律 (2)3 过程控制仪表的选择 (2)3.1 液位传感器 (2)3.2 电磁流量传感器电磁流量转换器 (3)3.3 电动调节阀 (3)3.4 变频器 (4)3.5 水泵 (5)3.6 模拟量采集模块 (5)3.7 模拟量输出模块 (6)3.8 通信转换模块 (6)4 系统组态设计 (6)4.1 系统工艺流程图 (6)4.2 组态画面 (7)4.3 数据字典 (8)4.4 PID控制算法 (9)设计心得 (11)参考文献 (13)附录A 系统脚本程序 (14)1引言制是根据工业生产过程的特点,采用测量仪表、执行机构和计算机等自动化工具,应用控制理论,设计工业生产过程控制系统,实现工业生产过程的自动化。
过程控制系统一般由控制器、执行器、被控过程和测量变送环节等组成。
在工业过程控制系统中,单回路控制系统约占一半以上,但是单回路控制系统适用于控制要求不高的场合。
对于某些控制要求比较高的场合,单回路控制系统却远远不能满足控制要求,因此就提出了串级控制系统。
串级控制系统是采用两个控制器串联工作,主控制器的输出作为副控制器的设定值,由副控制器的输出去操纵调节阀,从而对主被控变量具有更好的控制效果。
与单回路控制系统相比,串级控制系统在结构上增加了一个副回路,对进入副回路的扰动有很强的抑制作用;同时由于副回路的存在,改善了系统的动态性能,提高了系统的工作频率,并且使系统具有一定的自适应能力。
组态软件是应用软件中提供的工具、方法来完成工程中某一具体任务的软件。
组态软件提供了监控层的软件平台和开发环境,通过灵活的组态方式,可以快速构建工业自动控制系统监控功能。
过程控制综合实验报告
![过程控制综合实验报告](https://img.taocdn.com/s3/m/4bcdc87c3069a45177232f60ddccda38376be1bb.png)
过程控制综合实验报告目录1.流量比值控制系统 (2)2.液位和进口流量串级控制 (5)3.流量-液位前馈反馈控制91 流量比值控制系统1.1 流量比值控制系统描述流量比值控制系统控制流程图如图1.1所示:图1.1 流量比值控制流程图流量比值控制测点清单如表1.1所示:表1.1流量比值控制控制测点清单水介质一路(简称为I路)由泵P101(变频器驱动, 手动控制作为给定值)从水箱V104中加压获得压头, 经电磁阀XV-101进入V103, 水流量可通过变频器或者手阀QV-106来调节;另一路(简称为II路)由泵P102从水箱V104加压获得压头, 经由调节阀FV-101.水箱V103.手阀QV-116回流至水箱V104形成水循环, 通过调节阀FV-101调节此路的水流量;其中, I路水流量通过涡轮流量计FT-101测得, II 路水流量通过电磁流量计FT-102测得。
本题为比值调节系统, 调节阀FV-101为操纵变量, FT-102的测量值与FT-101的测量值经除法器运算后结果作为FTC-101的测量值, FT-102是被控变量。
1.2 控制算法和编程这是一个单闭环流量比值控制系统, 流量计FT-101流量与流量计FT-102成比例控制, 如图1.2所示。
1.3 操作过程和调试编写控制器算法程序, 下装调试;编写测试组态工程, 连接控制器, 进行联合调试。
2.在现场系统上, 打开手阀QV-102.QV-105, QV115, QV106, 电磁阀XV101直接打开(面板上DOCOM接24V, XV101接GND)。
3.在控制系统上, 将支路1流量变送器(FT-101)输出连接到控制器AI1, 将支路2流量变送器(FT-102)输出连接到控制器AI0, 变频器控制端连接到AO0, 调节阀FV-101控制端连接到AO1, 且变频器手动控制。
4.打开设备电源, 包括调节阀电源, 变频器电源, 变频器设为外部信号操作模式。
实验6 单闭环比值控制系统0198916页PPT文档
![实验6 单闭环比值控制系统0198916页PPT文档](https://img.taocdn.com/s3/m/408cef1dbcd126fff7050b47.png)
• F1是通过变频器调整水泵转速而改变,F2的大小则通过电动/气动调 节阀的开度来调节,两管道中的水流分别由电磁泵P101和P102输送 并维持其循环
过程控制工程实验
实验六 单闭环比值控制系统
比值控制的意义
• 比值控制主要目的:保证两路或多路流体计量关系的比值。在生产中, 这种比例关系可能直接影响到产品的产量、质量,生产的能耗与安全; 在化学反应过程的进料比或加热比、燃烧过程的燃-空比、蒸馏过程 多组分的进料或采出的进料比与采出比等,常采用比值控制方案
• 生产中物料的配比关系,是指其质量比或摩尔比。但因质量和浓度参 数不易在线测量,所以当物料的密度、温度、压力基本恒定或变化不 大、配比要求不太严格时,多使用物料的体积比来表示其配比关系
• 在实践中,多针对流量的体积比实现比值控制。在下面的实验中,只 是需要做到保证两路流量的体积比一定
• 在多路流体中,总有一路为主要参照量(主动量),其他的则要求与 它保持一定的比例关系(从动量)
• 1#控制器始终保持手动,其输出信号连接至变频器U101的输入端
• 流量F2变送器FT102输出接在2#控制器的输入端(PV),其输出信 号接到控制阀FV101的输入端
实验步骤
1. 通过连线,取来自现场流量仪表的信号,并把控制作用信号送到现 场的执行仪表,构建单闭环比值控制系统;
2. 检查管路阀门,打开进入下水槽的管线手阀QV105、QV106,关闭 进入中水箱的管线手阀QV107、QV108。注意提高V103出口闸板 QV116在3cm以上,确保V103的积制实验方案
实验三 单闭环流量定值控制系统
![实验三 单闭环流量定值控制系统](https://img.taocdn.com/s3/m/537e95fd770bf78a65295464.png)
实验三单闭环流量定值控制系统一、实验目的1.了解单闭环流量控制系统的结构组成与原理。
2.掌握单闭环流量控制系统调节器参数的整定方法。
3.研究调节器相关参数的变化对系统静、动态性能的影响。
4.研究P、PI、PD和PID四种控制分别对流量系统的控制作用。
5.掌握同一控制系统采用不同控制方案的实现过程。
二、实验设备(同前)三、实验原理图3-27 单闭环流量定值控制系统(a)结构图 (b)方框图本实验系统结构图和方框图如图3-27 所示。
被控量为电动调节阀支路(也可采用变频器支路)的流量,实验要求电动阀支路流量稳定至给定值。
将涡轮流量计FT1检测到的流量信号作为反馈信号,并与给定量比较,其差值通过调节器控制电动调节阀的开度,以达到控制管道流量的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI 控制,并且在实验中PI 参数设置要比较大。
四、实验内容与步骤本实验选择电动阀支路流量作为被控对象。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-8、F1-11 全开,其余阀门均关闭。
将“FT1电动阀支路流量”钮子开关拨到“ON”的位置。
具体实验内容与步骤可根据本实验的目的与原理参照前面的单闭环定值控67制中相应方案进行,下面只给出实验的接线图。
图3-28 智能仪表控制单闭环流量定值控制实验接线图五、实验报告要求1.画出单闭环流量定值控制实验的结构框图。
2.用实验方法确定调节器的相关参数,写出整定过程。
六、思考题1.如果采用变频器支路做实验,其响应曲线与电动阀支路的曲线有什么异同?并分析差异的原因。
2.改变比例度δ和积分时间TI对系统的性能产生什么影响?3.在本实验中为什么采用PI 控制规律,而不用纯P控制规律?。
单闭环流量比值控制系统设计
![单闭环流量比值控制系统设计](https://img.taocdn.com/s3/m/1d0be9942f60ddccdb38a017.png)
摘要在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。
例如氨分解工艺中的氨分解炉,入炉煤气和空气应保持一定的比例,否则将使燃烧反应不能正常进行,而煤气和空气比例超过一定的极限将会引起爆炸。
实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。
通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流量比值控制系统,这次课程设计的内容就是单闭环流量比值过程控制系统。
在实际的生产过程控制中,比值控制系统除了实现一定比例的混合外,还能起到在扰动影响到被控过程质量指标之前及时控制的作用.而且当最终质量指标难于测量,变送时,可以采用比值控制系统,使生产过程在最终质量达到预期指标下安全正常地进行,因为比值控制具有前馈控制的实质。
关键词:流量;比值控制;PID控制;可编程控制器目录1设计背景 (1)2比值控制系统概述 (2)2.1 比值控制系统定义 (2)2.2 比值控制原理 (2)2.3 比值控制系统特点 (2)2.4 比值控制系统的类型 (3)2.4.1 开环比值控制系统 (3)2.4.2 单闭环比值控制系统 (4)3单闭环流量比值控制系统方案设计 (7)3.1 系统方案设计 (7)3.2 系统硬件设计 (7)4上位机组态与程序设计 (10)4.1 组态软件WinCC (10)4.1.1 WinCC简介 (10)4.1.2 WinCC的发展及应用 (10)4.2 上位机组态设计 (11)4.3 PLC程序设计 (12)5 PID参数整定及系统调试 (17)5.1 PID控制器 (17)5.1.1 PID控制器的优点 (18)5.1.2 控制规律的选择 (18)5.2 PID控制器参数的调节及其对控制性能的影响 (19)5.2.1 比例控制对控制性能的影响 (19)5.2.2 积分控制对控制性能的影响 (20)5.2.3 微分控制对控制性能的影响 (22)5.3 控制系统的整定 (23)5.3.1 控制系统整定的基本要求 (23)5.3.2 调节器参数的整定方法 (23)5.4 调节器参数的整定及调试 (25)总结 (28)参考文献 (29)1设计背景石油炼制生产过程中,把两种或两种以上基础组分油与各种添加剂按一定比例均匀混合,从而成为一种新产品的过程称为调和。
单闭环流量比值控制系统设计
![单闭环流量比值控制系统设计](https://img.taocdn.com/s3/m/34f5623416fc700aba68fc03.png)
摘要在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。
例如氨分解工艺中的氨分解炉,入炉煤气和空气应保持一定的比例,否则将使燃烧反应不能正常进行,而煤气和空气比例超过一定的极限将会引起爆炸。
实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。
通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流量比值控制系统,这次课程设计的内容就是单闭环流量比值过程控制系统。
在实际的生产过程控制中,比值控制系统除了实现一定比例的混合外,还能起到在扰动影响到被控过程质量指标之前及时控制的作用.而且当最终质量指标难于测量,变送时,可以采用比值控制系统,使生产过程在最终质量达到预期指标下安全正常地进行,因为比值控制具有前馈控制的实质。
关键词:流量;比值控制;PID控制;可编程控制器目录1设计背景 (1)2比值控制系统概述 (5)2.1 比值控制系统定义 (5)2.2 比值控制原理 (5)2.3 比值控制系统特点 (5)2.4 比值控制系统的类型 (6)2.4.1 开环比值控制系统 (6)2.4.2 单闭环比值控制系统 (7)3单闭环流量比值控制系统方案设计 (10)3.1 系统方案设计 (10)3.2 系统硬件设计 (10)4上位机组态与程序设计 (13)4.1 组态软件WinCC (10)4.1.1 WinCC简介 (10)4.1.2 WinCC的发展及应用 (10)4.2 上位机组态设计 (11)4.3 PLC程序设计 (12)5 PID参数整定及系统调试 (20)5.1 PID控制器 (20)5.1.1 PID控制器的优点 (21)5.1.2 控制规律的选择 (21)5.2 PID控制器参数的调节及其对控制性能的影响 (22)5.2.1 比例控制对控制性能的影响 (19)5.2.2 积分控制对控制性能的影响 (20)5.2.3 微分控制对控制性能的影响 (22)5.3 控制系统的整定 (23)5.3.1 控制系统整定的基本要求 (23)5.3.2 调节器参数的整定方法 (23)5.4 调节器参数的整定及调试 (28)总结 (31)参考文献 (32)1设计背景石油炼制生产过程中,把两种或两种以上基础组分油与各种添加剂按一定比例均匀混合,从而成为一种新产品的过程称为调和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节单闭环流量定值控制系统
一.实验目的:
1.了解单闭环流量控制系统的结构组成与原理。
2.掌握单闭环流量控制系统调节器参数的整定方法。
3.研究P、 PI、 PD和PID四种控制分别对流量系统的控制作用。
二.实验原理:
离心泵恒流量控制系统图如图5.3-1所示, 控制系统方框图如图5.3-2所示。
图5.3-1 离心泵恒流量控制系统图
图5.3-2 离心泵恒流量控制系统方框图
离心泵恒流量控制系统为单回路简单控制系统, 安装在离心泵出口管路上涡轮流量传感器TT将离心泵出口流量转换成脉冲信号, 其脉冲频率经频率/电压转换器转换成电压信号后输出至流量调节器TC, TC将流量信号与流量给定值比较后, 按PID调节规律输出4—20mA信号, 驱动电动调节阀改变调节阀的开度, 达到恒定离心泵出口流量的目的。
离心泵恒流量控制系统方框图如图十三所示。
控制参数如下:
1.控变量y: 离心泵出口流量Q。
2.定值(或设定值)ys: 对应于被控变量所需保持的工艺参数值
3.测量值ym: 由传感器检测到的被控变量的实际值
4.操纵变量(或控制变量): 实现控制作用的变量, 在本实验中为离心泵出口流
量。
使用电动调节阀作为执行器对离心泵出口流量进行控制。
电动调节阀的输入信号范围: 4—20mA 。
5.干扰(或外界扰动)f: 干扰来自于外界因素, 将引起被控变量偏离给定值。
在
本实验中采用突然改变离心泵转速的方法, 改变离心泵出口压力, 人为模拟外界扰动给控制变量造成干扰。
6.偏差信号e:被控变量的实际值与给定值之差, e=ys-ym 。
ym---离心泵出口流量值Q 。
ys---离心泵出口流量设定值。
7.控制信号u: 工业调节器将偏差按一定规律计算得到的量。
离心泵恒流量控制系统采用比例积分微分控制规律(PID)对离心泵流量进行控制。
比例积分微分控制规律是比例、 积分与微分三种控制规律的组合, 理想的PID 调节规律的数学表示式为:
01()()()()t
P D I de t u t K e t e t dt T T dt ⎡⎤∆=++⎢⎥⎣
⎦⎰ 三.实验方法:
1.向V103中注入2/3以上清水 2.打开设备总电源, 检查各仪表, 执行器是否正常
3.打开阀门VA110或VA111, A112, A117, 其余阀门关闭
4.松动离心泵放气螺丝, 直到有水流出, 拧紧螺丝
5.将离心泵出口压力测量表( PI-03) 设为手动输出且输出值为100, 变频
器的频率即设为50.00Hz
6.打开实验软件, 进入流量曲线界面点击菜单栏中的”曲线 流量控制曲线”
开始记录液位变化
7.将流量测量表( FI-01) 设为自动输出且SV 值为4.00, P=3, I=5, D=1.5
FILE=5
8.打开立式离心泵向观察曲线变化情况, 待流量稳定后, 点击菜单栏中的”
曲线流量控制曲线”重新记录液位变化
9.大约10秒钟后经过以下几种方式加干扰:
( 1) 突增( 或突减) 仪表设定值的大小, 使其有一个正( 或负) 阶跃增量的变化; ( 此法推荐, 下面方法仅供参考) 。
( 2) 改变开立式离心泵频率
以上两种干扰均要求扰动量为控制量的5%~15%, 干扰过大可能系统不稳定。
加入干扰后, 液体流量便离开原平衡状态, 经过一段调节
时间后, 液体流量稳定至新的设定值( 采用( 2) 干扰方法仍稳定在原
设定值) , 记录此时的智能仪表的设定值、输出值和仪表参数, 保存图
像
10.分别适量改变调节仪的控制参数, 重复步骤8~9, 用计算机记录不同参数时系统的阶跃响应曲线。
11.分别用P、 PI、 PID三种控制规律重复步骤7~9, 用计算机记录不同控制规律下系统的阶跃响应曲线。
12.关闭立式离心泵, 设备电源, 结束实验
13.分析流量图像, 得出结果
四.实验数据:
图5.3-3 单闭环流量控制曲线
第四节单闭环压力定值控制系统
一.实验目的:
1.了解单闭环压力控制系统的结构组成与原理。
2.掌握单闭环压力控制系统调节器参数的整定方法。
3.研究P、 PI、 PD和PID四种控制分别对压力系统的控制作用。
二.实验原理:
离心泵恒压力控制系统图如图5.4-1所示所示。