陆佩文材料科学基础 名词解释 -课后

合集下载

无机材料科学基础陆佩文

无机材料科学基础陆佩文

无机材料科学基础陆佩文在无垠的科研世界里,有一位熠熠生辉的领航者——陆佩文教授,他以其深厚的无机材料科学基础研究,在这个充满无限可能的领域内铸就了一座座创新理论与实践的丰碑。

他的名字犹如璀璨星辰,点亮了无数科研后辈探索未知的道路。

陆佩文教授,这位无机材料领域的“炼金术士”,凭借对材料世界的独特洞察力和执着追求,不断挖掘着无机材料内部那神秘而微妙的变化规律。

他的研究成果,恰似一幅精妙绝伦的“元素舞蹈图”,生动揭示了原子、离子如何通过巧妙的排列组合,演绎出各种性能优异的无机材料的奥秘。

“工欲善其事,必先利其器。

”陆教授深谙此道,他以坚实的物理化学知识为基石,运用现代科技手段,如X射线衍射、扫描电镜等精密仪器,如同握住了打开无机材料微观世界大门的钥匙,一探究竟。

他的实验室,是孕育未来材料革命的温床,每一次实验数据的出炉,都伴随着惊叹与惊喜,那是对科学真理孜孜不倦追求的最好见证。

“十年磨一剑,砺得梅花香。

”陆佩文教授在无机材料科学研究道路上的辛勤耕耘,收获颇丰。

他不仅在高温超导材料、新型储氢材料等领域取得了一系列重大突破,更为我国无机功能材料的发展擘画了宏伟蓝图。

他的科研成果落地生根,转化应用,实实在在地推动了我国新材料产业的升级换代,堪称学以致用、知行合一的典范。

然而,陆佩文教授的魅力并不仅仅在于他在科研上的卓越成就,更在于他的人格魅力和教育理念。

他坚信“授人以鱼不如授人以渔”,将自己毕生所学倾囊相授,培养了一批批优秀的无机材料科学家,为中国乃至全球的无机材料科学发展输送了源源不断的新生力量。

他常说:“科研之路虽崎岖,但只要有热爱与坚持,定能攀上高峰,领略那壮丽的科研风景。

”陆佩文教授,一位无机材料科学界的灵魂人物,他的学术贡献和人格光辉交相辉映,照亮了我们前行的方向。

他的故事告诉我们:科研之路并非坦途,唯有持之以恒,勇于探索,才能在无机材料科学这片广袤天地中绽放异彩,铸就辉煌!。

陆佩文版无机材料科学基础习题及解答第五章扩散

陆佩文版无机材料科学基础习题及解答第五章扩散

第五章扩散7-1解释并区分下列概念:(1)稳定扩散与不稳定扩散;(2)本征扩散与非本征扩散;(3)自扩散与互扩散;(4)扩散系数与扩散通量。

解:略7-2 浓度差会引起扩散,扩散是否总是从高浓度处向低浓度处进行?为什么?解:扩散是由于梯度差所引起的,而浓度差只是梯度差的一种。

当另外一种梯度差,比如应力差的影响大于浓度差,扩散则会从低浓度向高浓度进行。

7-3 欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)时都是非本质扩散,要求三价离子有什么样的浓度?试对你在计算中所做的各种特性值的估计作充分说明。

已知CaO肖特基缺陷形成能为6eV。

解:掺杂M3+引起V’’Ca的缺陷反应如下:当CaO在熔点时,肖特基缺陷的浓度为:所以欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)时都是非本质扩散,M3+的浓度为,即7-4 试根据图7-32查取:(1)CaO在1145℃和1650℃的扩散系数值;(2)Al2O3在1393℃和1716℃的扩散系数值;并计算CaO和Al2O3中Ca2+和Al3+的扩散活化能和D0值。

解:由图可知CaO在1145℃和1650℃的扩散系数值分别为,Al2O3在1393℃和1716℃的扩散系数值分别为根据可得到CaO在1145℃和1650℃的扩散系数的比值为:,将值代入后可得,Al2O3的计算类推。

7-5已知氢和镍在面心立方铁中的扩散数据为cm2/s和cm2/s,试计算1000℃的扩散系数,并对其差别进行解释。

解:将T=1000℃代入上述方程中可得,同理可知。

原因:与镍原子相比氢原子小得多,更容易在面心立方的铁中通过空隙扩散。

7-6 在制造硅半导体器体中,常使硼扩散到硅单晶中,若在1600K温度下,保持硼在硅单晶表面的浓度恒定(恒定源半无限扩散),要求距表面10-3cm深度处硼的浓度是表面浓度的一半,问需要多长时间(已知D1600℃=8×10-12cm2/s;当时,)?解:此模型可以看作是半无限棒的一维扩散问题,可用高斯误差函数求解。

无机材料科学基础(陆佩文)

无机材料科学基础(陆佩文)

无机材料科学基础概论一. 研究对象与学习目的自古以来,材料的发展一直是人类文明的里程碑.材料、能源、•信息被公认为是现代文明的三大支柱.新材料已成为各个高技术领域的突破口.材料主要包括:金属材料、有机材料、无机非金属材料.本课程研究的对象是无机非金属材料.无机非金属材料的最大特点是耐高温、耐腐蚀,这些特点是其它材料无法比拟的.无机非金属材料的发展在国民经济中的重要作用是显而易见.研究的对象是"无机非金属材料〞,从化学组成上看:包含硅酸盐,和各种氧化物、氮化物、碳化物、硼化物、硅化物、氟化物等.从物质结构上看:可以包括单晶体、多晶体或无定形体.本专业主要研究多晶、多相无机非金属材料,也可称为"陶瓷".从材料形态上看:不仅包括块体材料,还包括粉体材料、纤维材料、晶须材料和薄膜材料.从所属的工业产品来看:可分为传统材料和现代陶瓷,所属的工业产品涉与各个领域.传统材料主要包括陶瓷、玻璃、耐火材料、水泥、磨料、砖瓦等.现代陶瓷按其功能又可分为两大部分:高温结构陶瓷:能在高温条件下承受各种机械作用的陶瓷材料.如:陶瓷发动机的部件、切削工具、耐磨轴承、火箭燃气喷嘴、各种密封环〔石墨〕、能承受超高温作用的结构部件.功能陶瓷:具有声、光、•电、•磁、•热等功能的陶瓷制品.•如:•压电陶瓷〔PbTiO3系>、热敏陶瓷、陶瓷基片、光电陶瓷、生物陶瓷、超导材料、核燃料、磁性材料、化学电池〔β-Al2O3>材料等.我们学习无机材料科学基础的目的是:从理论上定性的了解无机非金属材料的组成、结构与性能之间的关系和变化规律,了解控制材料性能的基本和共性规律.至于如何具体从技术上实现这些,则属于工艺课的范畴.二.学习的内容分为四大部分:材料的结构:晶体结构晶体缺陷玻璃体和熔体固体表面过程热力学和动力学:热力学应用相图相图的热力学推导扩散相变材料制备原理:硅酸盐晶体结构坯料制备与成型的理论基础固相反应烧结材料的制备实验:包括基础实验和选作实验两部分,独立设课三.学习要求材料科学基础对无机非金属材料的性能与生产过程中的一些共性问题从理论上做了系统的讨论.该课程是后续工艺课的理论基础课,同样也是今后指导实际工作,进行理论研究的理论基础.其重要性显而易见.学习过程中实现思维方式的两个转变:--从微观结构的角度考虑问题如:扩散原高浓度—低浓度现为什么在不同的物质中扩散速度不同—结构决定--建立工程意识科学教育—是与非;工程教育—是否可行、是否有效、是否最优.谈到某一因素的影响时既有有利一面又有不利一面.应结合具体情况进行综合考虑.材料科学基础研究无机非金属材料的共性问题,是一门新兴学科,一些理论和学说仍在发展之中,这使我们更容易了解这些理论和学说建立的过程,从中可学习到材料科学的一些研究方法和研究思路.材料科学基础是以物理、化学、物化等学科的知识为基础.要求在学习过程中与时复习所涉与到的有关内容.材料科学基础是一门新兴学科,有些理论尚不成熟.在某些问题上不同学派存在不同观点,为了广泛了解这些观点授课内容不只限于选用教材.所以要求同学们课上做好笔记,课下多看参考书.为了加强同学们独立分析解决问题的能力,习题的选择有一定的难度.某些习题是课堂授课内容的延伸.希望能独立、认真地完成,以收到良好的学习效果.第一章晶体无机非金属材料所用原料与其制品大多数是以结晶状态存在的物质.然而不同的晶体结构具有不同的性质.例如 ,TiO2光催化材料可以在太阳光的照射下降解污染物,TiO2有金红石、锐钛矿、板钛矿等几种晶体结构,锐钛矿型TiO2材料的光催化性能优于金红石型;陶瓷行业中常用的粘土,由于晶体结构不同,工艺性能也表现出很大的差异;α-Al2O3是良好的绝缘材料,而β-Al2O3可作为电池中的电解质以离子导电的方式传递电荷.人们对晶体的研究首先是从研究晶体几何外形的特征开始的,1912年X射线晶体衍射实验的成功,使人们对晶体的研究从晶体的外部进入到了晶体的内部,使得对晶体的认识有了质的变化.晶体所具有的性质是由晶体中质点排列方式所决定,结构发生变化,性质随之发生变化.然而晶体结构又取决于晶体的化学组成,组成晶体的质点不同意味着质点间键的作用形式和排列方式发生改变.所以,本章主要研究晶体的组成、空间结构和性质之间的关系.本章主要介绍了几何结晶学、晶体化学的基本概念和原理.从这些基本原理出发,介绍了描述晶体结构的方法,包括:i 从几何结晶学角度——空间格子ii 从球体堆积角度——负离子做堆积,正离子填充空隙iii 用鲍林规则分析——多面体堆积iv 取晶胞,晶胞中质点的具体位置以通过这些方法掌握NaCl型、CsCl 型、闪锌矿型、萤石型、刚玉型的晶体结构,并了解纤锌矿型、金红石型、碘化镉CdI2型、钙钛矿型和尖晶石型结构.在此基础上,了解晶体的组成、空间结构和性质之间的关系.第一节几何结晶学基本概念一、晶体的定义1、定义晶体是内部质点在三维空间作有规则的周期性重复排列的固体,是具有格子构造的固体.晶体的这一定义表明,不论晶体的组成如何不同,也不论其表观是否具有规则的几何外形,晶体的共同特征是内部质点在三维空间按周期性的重复排列.不具备这一特征的物体就不是晶体.以NaCl晶体为例.NaCl的晶胞结构2、空间点阵〔空间格子〕在三维空间按周期性重复排列的几何点的集合称为空间点阵〔空间格子〕.空间点阵〔空间格子〕中的结点是抽象的几何点并非实际晶体中的质点.阵点或结点:空间点阵中的几何点称为阵点或结点.等同点:同一套空间格子中的结点叫等同点.实际晶体是由组成晶体的离子或原子去占据一套或几套穿插在一起的空间格子的结点位置而构成.实际晶体的内部质点是有实际内容的原子或离子.实际晶体中化学组成相同、结晶化学环境相同的质点占据的结点构成一套等同点.所谓结晶化学环境相同是指质点周围在相同方位上离开相同距离有相同的质点.晶体中有几套空间格子就有几套等同点,判断晶体中有几套空间格子的方法是看晶体中有几套等同点.NaCl晶体有2套空间格子,Na+ 离子和Cl-离子各构成一套空间格子.CsCl晶体有2套空间格子,Cs+ 离子和Cl-离子各构成一套空间格子.CaF2 晶体有3套空间格子,Ca2+离子构成一套空间格子;F-离子有两套空间格子. 3、晶体的性质:结晶均一性、各向异性、自限性、对称性、最小内能性.二、晶系:根据晶体的对称性,将晶体分为三大晶族、七大晶系.高级晶族:立方晶系〔等轴晶系〕中级晶族:六方晶系、三方晶系〔菱方晶系〕、四方晶系〔正方晶系〕低级晶族:斜方晶系〔正交晶系〕、单斜晶系、三斜晶系三、晶胞晶胞是晶体中重复出现的最小结构单元,它包含了整个晶体的特点.对应于七大晶系,晶胞形状有七种.四、空间格子的类型:〔14种布拉维空间格子〕以等同点为基准取晶胞,根据七大晶系,晶胞的形状共有7种. 等同点在晶胞的位置可以有以下几种:1.原始式:等同点占据晶胞的各个角顶2.体心式:等同点占据晶胞的各个角顶和体心3.面心式:等同点占据晶胞的各个角顶和面心4.底心式:等同点占据晶胞的各个角顶和上下底面中心根据某一套等同点为基准所取晶胞的形状和该套等同点在晶胞中的位置可以判断该套等同点构成的空间格子类型,共有十四种空间格子类型,通常称为十四种布拉维空间格子〔布拉维空间点阵〕.晶胞种类等同点在晶胞的位置立方晶胞原始式体心式面心式六方晶胞底心式三方晶胞原始式四方晶胞原始式体心式斜方晶胞原始式体心式面心式底心式单斜晶胞原始式体心式三斜晶胞原始式如:①NaCl晶体是由一套Na+离子立方面心格子和一套Cl-离子立方面心格子穿插而成.②CsCl晶体是由一套Cl-离子立方原始格子和一套Cs+离子立方原始格子穿插而成.CsCl晶体结构③立方ZnS〔闪锌矿〕晶体是由一套S2-离子立方面心格子和一套Zn2+离子立方面心格子穿插而成.④CaF2〔萤石〕晶体是由一套Ca2+离子立方面心格子和两套F-离子立方面心格子穿插而成.⑤TiO2〔金红石〕晶体是由两套Ti4+离子四方原始格子和四套O2-离子四方原始格子穿插而成.第二节晶体化学基础一、晶体中键的形式:1. 典型键型化学键:原子或离子结合成为分子或晶体时,相邻原子或离子间的强烈的吸引作用称为化学键.分子键:分子间较弱的相互作用力.电负性〔X〕可衡量电子转移的情况,因而可用来判断化学键的键型.原子的X越大,越易得到电子,X 大于2,呈非金属性;原子的X越小,越易失去电子,X小于2,呈金属性.化学键的类型:离子键:凡是X值相差大的不同种原子作用形成离子键.X值小的原子易失电子形成正离子,X值大的原子易得电子形成负离子.如:碱土金属与氧原子结合.离子键无饱和性和方向性.共价键:凡是X值较大的同种或不同种原子组成共价键.共价键有饱和性和方向性.金属键:凡是X值都较小的同种或不同种原子组成金属键,被给出的电子形成自由电子气,金属离子浸没其中.金属键无饱和性和方向性.分子键的类型:范德华键:分子间由于色散、诱导、取向作用而产生的吸引力的总和.氢键:X—H…Y,可将其归入分子键.氢键键键力 > 范德华键键力一般的情况下各种键的强度顺序如下:共价键最强,离子键很强,金属键较强,三种化学键的键力远大于分子键,分子键中氢键的键力大于范德华键.2.键型的过渡性凡是X值有相当差异、但差异并不过大的原子之间形成离子键和共价键之间的过渡键型.如:Si-O键〔共价键和离子键成份各占50%〕.依据鲍林公式计算过渡键型中离子键占的百分数P:P=1-exp[-1/4〔xA-xB〕2]二离子半径:对于独立存在的离子,它的离子半径是不确定的,但在离子晶体中,设离子为点电荷 ,根据库仑定律,正、负离子之间的吸引力:F∝<q1q2>/r2随着离子的相互靠近,电子云之间的斥力出现并迅速增大.当引力=斥力时处于平衡,平衡间距r=r0.r0为正离子中心到负离子中心的距离,即正、负离子都可以近似看成球形,各有一个作用圈半径,平衡间距就是相邻的正、负离子相互接触时半径之和.对于存在于离子晶体中的离子,它有确定的离子半径.r0=r++ r-三、球体的堆积方式:1. 球体的最紧密堆积原理假设球体是刚性球,堆积密度越大,堆积体的内能越小,结构越稳定.球体的堆积倾向于最紧密方式堆积.2. 等径球体的堆积方式:〔1〕最紧密堆积①六方最紧密堆积:ABAB……〔ACAC……〕每两层重复一次,其球体在空间的分布与六方格子相对应,堆积体中有两套六方底心格子.其密排面//〔0001〕②立方最紧密堆积:ABCABC……〔ACBACB……〕每三层重复一次,球体分布方式与立方面心格子相对应,堆积体中有一套立方面心格子.其密排面//〔111〕除上述这两种常见的最紧密堆积方式,最紧密堆积也可能出现ABACABAC……,每四层重复一次,或ABABCABABC……,每五层重复一次,等等.密堆率〔堆积系数〕:晶胞中含有的球体体积与晶胞体积之比.最紧密堆积密堆率都是74.05%,空隙率25.95%.最紧密堆积体中是有空隙的,空隙类型有:①四面体空隙:处于四个球体包围之中的空隙,四个球体中心连线形成一个四面体.②八面体空隙:处于六个球体包围之中的空隙,六个球体中心连线形成一个八面体.空隙半径〔空隙中内切球半径〕:八面体>四面体有n个球体作最紧密堆积:①每个球周围有四面体空隙8个,每个四面体空隙为4个球共有,每个球占有四面体空隙数8*1/4=2②每个球周围有八面体空隙6个,每个八面体空隙为6个球共有,每个球占有八面体空隙数6*6/1=1n个球体作最紧密堆积的堆积体中,有2 n个四面体空隙,有n个八面体空隙.〔2〕简单立方堆积简单立方堆积不是最紧密堆积.球体分布方式与立方原始格子相对应,密堆率为52%.堆积体中只形成立方体空隙〔8个球包围,其球心连线形成一个立方体〕.同理可知,n 个球做简单立方堆积有n个立方体空隙.〔3〕不等径球体的堆积不等径球体的堆积可看成较大的球体作等径球体的最紧密堆积,较小的球填充于堆积体的空隙中.在离子晶体中,负离子一般较大,负离子通常作最紧密堆积,正离子较小,填充于堆积体的四面体空隙或八面体空隙中,如果正离子太大,八面体空隙也填不下,则要求负离子改变堆积方式,作简单立方堆积,产生较大的立方体空隙,正离子填充于堆积体的立方体空隙中.用这种方式描述离子晶体结构,虽不严密但有助于我们想象.如:NaCl :n个Cl-离子做立方最紧密堆积,产生n 个八面体空隙,Na+离子填充全部八面体空隙.CsCl:Cl-做简单立方堆积,Cs+离子填充于全部的立方体空隙当中.ZnS:S2-做立方最紧密堆积,Zn2+填充一半的四面体空隙.CaF2:F-做简单立方堆积,Ca2+填充一半的立方体空隙.不等径球体堆积达到的密堆率可以大于等径球体的密堆率.四、配位数〔CN〕:定义在离子晶体中,每个离子都被与其电荷相反的异名离子相包围,则异名离子的数量就是这个离子的配位数.如:NaCl,Na+周围有6个Cl-,则Na+的CN=62.配位多面体配位数决定了配位多面体的形态.配位数:8——配位多面体:立方体;配位数:4——配位多面体:四面体假设离子是刚性球,正离子的配位数由R+/R-决定:在最紧密堆积体中,八面体空隙内切球的半径:设:堆积球的半径为R,八面体空隙内切球的半径为r,连接四个堆积球的球心为正方形, 所以, 2〔2R〕2=〔2R+2r〕2解得,1.414R=R+r 所以, r/ R=0.414可见,当R+/ R-=0.414 时,正离子恰好填入八面体空隙,此时正离子的配位数为6.同理,当R+/ R-=0.225时,正离子恰好填入四面体空隙,此时正离子的配位数为4.当R+/ R-=0.732 时,正离子恰好填入立方体空隙,此时正离子的配位数为8.实际上,离子晶体中的R+/ R-很少恰好是这些数值,当R+/ R-在两临界值之间时,配位数取下限值.正离子的配位数与R+/ R-的关系如下:R+/ R- <0.155≤R+/ R- <0.225≤R+/ R- <0.414≤ R+/ R- <0.732≤ R+/ R- <1≤ R+/ R-配位数 2 3 4 6 8 12 注意:当配位数为12 相当于等径球体的最紧密堆积.3. 离子的极化对晶体结构的影响在外电场作用下离子被极化,产生偶极矩.离子晶体中每个离子都有双重能力,既有极化别的离子的能力,又有被别的离子极化的能力.极化率〔极化系数〕α:离子被极化的难易程度〔α越大,变形程度越大;α越小,变形程度越小〕极化力β:离子极化其它离子的能力,主极化.一般地,只考虑正离子对负离子的极化作用,而对于最外层电子是18、18+2型正离子,除考虑正离子对负离子的极化作用外,还必须考虑负离子对正离子的极化,因为最外层电子为18、18+2型离子不仅β大.而且α也大,总的极化作用大大加强,晶体结构类型可能因此而改变.* 例:离子极化对卤化银晶体结构的影响AgClAgBrAgIR+/R-0.6350.5870.523实际配位数664〔理论为6〕理论结构类型NaClNaClNaC l实际结构类型NaClNaCl立方ZnS五、决定离子晶体结构的因素——结晶化学定律离子晶体结构取决其组成质点的数量关系、大小关系和极化性能.数量关系:正负离子的比例,如:NaCl中为1:1〔两套立方面心格子〕,CaF2中为1:2〔三套立方面心格子〕大小关系:NaCl中,R+/R-=0.95/1.81=0.52,CN=6.CsCl 中,R+/R-=1.69/1.81=0.93,CN=8.极化性能:AgCl,CN=6;AgI,CN=4.六、晶格能1.定义:把1mol离子晶体中各离子拆散至气态时所需要的能量.对于二元离子晶体U=W1W2e2N0A<1-1/n>/r0其中:W1W2——正负离子的电价, e——电子电荷,r0——平衡间距,N0——阿佛加德罗常数,A——马德伦常数, n——波恩指数.2.晶格能的意义:对于二元晶体,晶格类型相同,且离子间的极化作用不太强烈时,由晶格能大小可比较晶体有关的物理性质如:MgO、CaO、SrO、BaO二元晶体,结构类型为NaCl型,故:晶格能UMgO>U CaO >U SrO >UBaO故熔点 MgO>CaO>SrO>BaO硬度 MgO>CaO>SrO>BaO在利用晶格能比较晶体物理性质时必须注意极化的影响,如ZrO2、CeO2、ThO2均为CaF2型二元晶体,且RZr<RCe<RTh晶格能U ZrO2>U CeO2>U ThO2实际熔点为:2710℃<2750℃<3050℃,熔点ZrO2最低而ThO2最高.七从多面体堆积角度认识晶体——鲍林规则1 第一规则:关于组成负离子多面体的规则在每个正离子周围都形成一个负离子多面体,正负离子间距取决于它们的半径之和,正离子的配位数取决于正负离子半径之比.2 第二规则:电价规则在一个稳定的离子化合物结构中,每一负离子的电价等于或近似等于从邻近的正离子至该负离子各静电强度的总和.W-=∑Si〔偏差不超过1/4价〕其中:Si—静电键强度〔中心正离子分配给每个负离子的电价分数〕〔1〕对于二元晶体可推断其结构〔已知结构稳定〕如:NaClR+/R-=0.95/1.81=0.52,形成[NaCl6]八面体,Si=1/6∴W-=1=∑Si=1/6*i 推出i=6即:每个Cl-周围有6个Na+,或每个Cl-是6个[NaCl6]八面体的共用顶点.〔2〕判断结构是否稳定〔已知结构〕如:镁橄榄石〔Mg2SiO4〕已知结构中,一个[SiO4]四面体和三个[MgO6]八面体共用一个O顶点∴∑Si=1*4/4+3*2/6=2= W- 故结构稳定3第三规则:关于负离子配位多面体共用顶点规则在一个配位结构中,两个负离子多面体以共棱方式特别是共面方式存在时,结构稳定性较低,对于电价高而配位数小的正离子此效应尤为显著.阴离子多面体存在方式不连共顶共棱共面阴离子多面体共用顶点123随着顶点共用数增加,导致两个正离子中心距减小,如在八面体中以点、棱、面相连时,两中心正离子之间的距离以1:0.71:0.58的比例减小,而四面体以点、棱、面相连时,两中心正离子之间的距离以1:0.58:0.33的比例减小.正离子间距减小,排斥力增大,不稳定程度增大.4、第四规则:不同种类配位多面体之间的连接规则在含有不同种类正离子的晶体中,电价高而配位数小的正离子的配位多面体趋向于相互不共用顶点.该规则的物理基础与第三规则相同.5、第五规则:节约规则八、典型无机化合物的结构* 描述晶体结构的方法:i 从几何结晶学角度——空间格子ii 从球体堆积角度——负离子做堆积,正离子填充空隙iii 用鲍林规则分析——多面体堆积iv 取晶胞,晶胞中质点的具体位置1、AX型〔1〕NaCl型方法i:一套Cl-和一套Na+的立方面心格子穿插而成.方法ii:Cl-做立方最紧密堆积,Na+填充全部的八面体空隙.方法iii:第一规则:RNa+/RCl-=0.52,形成[NaCl6]八面体.第二规则:已知结构稳定,W-=1=∑Si在[NaCl6]八面体中,Si=1/6 ∴1=1/6*i 推出:i=6即:每个Cl-是6个[NaCl6]八面体的共用顶点.第三规则:最高连接方式是共棱连接,结构稳定.方法iv:Cl-为基准取晶胞,立方晶胞:Cl- <0,0,0>,<1/2,0,1/2>,<0,1/2,1/2>,<1/2,1/2,0>Na+ <1/2,1/2,1/2>NaCl晶胞中含有的式量分子数:Na+:体心,各边心 1+1/4*12=4Cl- :各角顶,各面心 1/8*8+1/2*6=4即:每个晶胞中含有4个式量分子.〔"分子〞〕碱土金属氧化物MgO、CaO、SrO、BaO具有NaCl型晶体结构.〔其中的Mg2+、Ca2+、Cs2+、Ba2+相当于NaCl中的Na+离子,而O离子相当于Cl-离子〕〔2〕CsCl型方法i:由一套Cl-和一套Cs+离子的立方原始格子穿插而成.方法ii:Cl-做简单立方堆积,Cs+填充全部立方体空隙.方法iii:第一规则:RCs+/RCl-=0.167/0.181=0.93,形成[CsCl8]立方体第二规则:W-=1=∑Si在[CsCl8]立方体中,Si=1/8 ∴1=1/8*i 推出:i=8即:每个Cl-是8个[CsCl8]立方体的共用顶点.方法iv:立方晶胞:Cl-:<0,0,0>Cs+:<1/2,1/2,1/2>晶胞中含有的式量分子数:Cs+:体心 1Cl-:角顶 1/8*8=1即:每个晶胞中含有1个CsCl式量分子.属于该类型结构的晶体有CsBr、CsI、TlCl、NH4Cl等〔3〕闪锌矿型〔立方ZnS〕方法i:由一套S2-和一套Zn2+的立方面心格子穿插而成.方法ii:S2-做立方最紧密堆积,Zn2+填充1/2的四面体空隙.方法iii:R Zn2+/R S2-=0.44,理论上为[ZnO6]八面体,实际为[ZnO4]四面体.W-=2=∑Si Si=2/4=1/2 ∴1/2*i=2 推出:i=4即:每个S2-是4 个[ZnO4]四面体的共用顶点.最高连接方式为共顶连接.立方晶胞中S2-:<0,0,0>,<0,1/2,1/2>,<1/2,0,1/2>,<1/2,1/2,0>Zn2+:<1/4,1/4,3/4>,<1/4,3/4,1/4>,<3/4,1/4,1/4>,<3/4,3/4,3/4> 晶胞中含有的式量分子数:S2-:各角顶,各面心 1/8*8+1/2*6=4Zn2+:各1/8小立方体的体心 8*1/2=4即:每个晶胞含有4个ZnS"分子".β-SiC、GaAs、AlP、InSb等具有该类型结构.〔4〕纤锌矿型〔六方ZnS〕由2套S2-和2套Zn2+的六方底心格子穿插而成.2. AX2型〔1〕CaF2〔萤石型〕方法i:由一套Ca2+和2套F-的立方面心格子穿插而成.方法ii:F-做简单立方堆积,Ca2+填充一半的立方体空隙.方法iii:R Ca2+/R F-=0.112/0.131=0.85,形成[CaF8]立方体W-=1=∑Si Si=2/8=1/4 ∴1/4*i=1 推出:i=4即:4个[CaF8]立方体共用1 个顶点最高连接方式为共棱连接.方法iv:立方晶胞:Ca2+:<0,0,0>,<1/2,1/2,0>,<1/2,0,1/2>,<0,1/2,1/2>F-:<1/4,1/4,1/4>,<3/4,3/4,1/4>,<3/4,1/4,3/4>,<1/4,3/4,3/4>,<3/4,3/4,3/4>,<1/4,1/4,3/4>,<1/4,3/4,1/4>,<3/4,1/4,1/4> 晶胞中含有的式量分子数:Ca2+:各角顶、各面心 1/8*8+6*1/2=4F-:各1/8小立方体体心 8即:每个晶胞中含有4个CaF2式量分子.该类型结构晶体有ZrO2、UO2、ThO2等* 反萤石结构:与萤石结构相反,正、负离子位颠倒的结构,阴离子做立方最紧密堆积,阳离子填充全部的四面体空隙.晶体举例:碱金属氧化物Li2O、Na2O、K2O〔2〕TiO2〔金红石型〕方法i:由2套Ti4+和4套O2-的四方原始格子穿插而成.方法ii:O2-做六方最紧密堆积,Ti4+填充一半的八面体空隙.方法iii:R Ti4+/R O2-=0.06/0.125=0.46,形成[TiO6]八面体W-=2=∑Si Si=4/6=2/3 ∴2/3*i=2 推出:i=3即:每个O2-是三个[TiO6]八面体的共用顶点.最高连接方式为共棱连接.方法v:四方晶胞:Ti4+:各角顶、体心 1/8*8+1=2O2-:2个1/8立方体体心、4个小立方体底心 2+4*1/2=4即:每个晶体中含有2个TiO2式量分子.晶体举例:GeO2、SnO2、PbO2、MnO2等.* TiO2变体:①金红石型:八面体之间共用棱边数为2条②板钛矿型:八面体之间共用棱边数为3条③锐钛矿型:八面体之间共用棱边数为4条〔3〕CdI2型I-做近似的六方最紧密堆积,Cd2+填充一半的八面体空隙.填充方式为I-形成的层间一层填满一层不填,形成层状结构晶体.两片I-离子夹一片Cd2+离子,电价饱和,层之间靠范德华力连接.方法iii:R Cd2+/R I-=0.095/0.22=0.44,形成[CdI6]八面体W-=1=∑Si Si=2/6=1/3 ∴1/3*i=1 推出:i=3即:每个I-是三个[CdI6]八面体的共用顶点.晶体举例:Mg<OH>2、Ca<OH> 23. A2X3型:α-Al2O3〔刚玉型〕——三方晶系O2-做近似六方最紧密堆积,Al3+填充2/3的八面体空隙.晶胞中存在6个八面体空隙,Al3+填充4个,故不可避免出现八面体共面现象,但α-Al2O3是稳定的,因为Al-O键很强, Al3+配位数高,比4配位时斥力小的多.R Al3+/R O2-= 0.057/0.13 5 = 0.40,形成[AlO6]八面体W-=2=∑Si Si=3/6=1/2 ∴1/2*i=2 推出:i=4即:每个O2-是4个[AlO6]八面体的共用顶点.晶体举例:α-Fe2O3、Cr2O3、Ti2O3、V2O3等.4、ABO3型:〔1〕 CaTiO3〔钙钛矿型〕Ca2+:个角顶 O2-:个面心 Ti4+:体心——[TiO6]Ti4+:个角顶 Ca2+:体心 O2-:各边边心——[CaO12]可视做Ca2+、 O2-〔较大的Ca2+〕做立方最紧密堆积〔2〕钛铁矿:FeTiO3〔A离子较小〕O2-做立方最紧密堆积,Fe2+、Ti4+共同填充八面体空隙.〔3〕络阴离子团的ABO3:CaCO3〔B离子较小〕5、AB2O4型:MgAl2O4〔镁铝尖晶石〕O2-做立方最紧密堆积,Al3+填充一半的八面体空隙,Mg2+填充1/8的四面体空隙.将一个晶胞分为8个小立方体〔4个为A,4个为B〕其中A:O2-:各角顶、各面心 Al3+:6条边边心 Mg2+:2个小立方体体心B:O2-:各角顶、各面心 Al3+:另6条边边心和体心无Mg2+* 正尖晶石:二价离子填充四面体空隙,三价离子填充八面体空隙.反尖晶石:一半三价离子填充四面体空隙,另一半三价离子和二价离子填充八面体空隙.第二章晶体缺陷固体在热力学上最稳定的状态是处于0K温度时的完整晶体状态,此时,其内部能量最低.晶体中的原子按理想的晶格点阵排列.实际的真实晶体中,在高于0K的任何温度下,都或多或少的存在着对理想晶体结构的偏离,即存在着结构缺陷.结构缺陷的存在与其运动规律,对固体的一系列性质和性能有着密切的关系,尤其是新型陶瓷性能的调节和应用功能的开发常常取决于对晶体缺陷类型和缺陷浓度的控制,因此掌握晶体缺陷的知识是掌握材料科学的基础.晶体缺陷从形成的几何形态上可分为点缺陷、线缺陷和面缺陷三类.其中点缺陷按形成原因又可分为热缺陷、组成缺陷〔固溶体〕和非化学计量化合物缺陷,点缺陷对材料的动力性质具有重要影响.本章对点缺陷进行重点研究,对线缺陷的类型和基本运动规律进行简要的介绍,面缺陷的内容放在表面和界面一章中讲解.第一节热缺陷一.热缺陷定义当晶体的温度高于绝对0K时,由于晶格内原子热振动,使一部分能量较大的原子离开平衡位置造成的缺陷.由于质点热运动产生的缺陷称为热缺陷.二.热缺陷产生的原因当温度高于绝对温度时,晶格中原子热振动,温度是原子平均动能的度量,部分原子的能量较高,大于周围质点的约束力时就可离开其平衡位置,形成缺陷.三.热缺陷的基本类型1.肖特基缺陷。

无机材料科学基础(陆佩文)

无机材料科学基础(陆佩文)

无机材料科学基础概论一. 研究对象与学习目的自古以来,材料的发展一直是人类文明的里程碑.材料、能源、•信息被公认为是现代文明的三大支柱.新材料已成为各个高技术领域的突破口.材料主要包括:金属材料、有机材料、无机非金属材料.本课程研究的对象是无机非金属材料.无机非金属材料的最大特点是耐高温、耐腐蚀,这些特点是其它材料无法比拟的.无机非金属材料的发展在国民经济中的重要作用是显而易见.研究的对象是"无机非金属材料〞,从化学组成上看:包含硅酸盐,和各种氧化物、氮化物、碳化物、硼化物、硅化物、氟化物等.从物质结构上看:可以包括单晶体、多晶体或无定形体.本专业主要研究多晶、多相无机非金属材料,也可称为"陶瓷".从材料形态上看:不仅包括块体材料,还包括粉体材料、纤维材料、晶须材料和薄膜材料.从所属的工业产品来看:可分为传统材料和现代陶瓷,所属的工业产品涉与各个领域.传统材料主要包括陶瓷、玻璃、耐火材料、水泥、磨料、砖瓦等.现代陶瓷按其功能又可分为两大部分:高温结构陶瓷:能在高温条件下承受各种机械作用的陶瓷材料.如:陶瓷发动机的部件、切削工具、耐磨轴承、火箭燃气喷嘴、各种密封环〔石墨〕、能承受超高温作用的结构部件.功能陶瓷:具有声、光、•电、•磁、•热等功能的陶瓷制品.•如:•压电陶瓷〔PbTiO3系>、热敏陶瓷、陶瓷基片、光电陶瓷、生物陶瓷、超导材料、核燃料、磁性材料、化学电池〔β-Al2O3>材料等.我们学习无机材料科学基础的目的是:从理论上定性的了解无机非金属材料的组成、结构与性能之间的关系和变化规律,了解控制材料性能的基本和共性规律.至于如何具体从技术上实现这些,则属于工艺课的范畴.二.学习的内容分为四大部分:材料的结构:晶体结构晶体缺陷玻璃体和熔体固体表面过程热力学和动力学:热力学应用相图相图的热力学推导扩散相变材料制备原理:硅酸盐晶体结构坯料制备与成型的理论基础固相反应烧结材料的制备实验:包括基础实验和选作实验两部分,独立设课三.学习要求材料科学基础对无机非金属材料的性能与生产过程中的一些共性问题从理论上做了系统的讨论.该课程是后续工艺课的理论基础课,同样也是今后指导实际工作,进行理论研究的理论基础.其重要性显而易见.学习过程中实现思维方式的两个转变:--从微观结构的角度考虑问题如:扩散原高浓度—低浓度现为什么在不同的物质中扩散速度不同—结构决定--建立工程意识科学教育—是与非;工程教育—是否可行、是否有效、是否最优.谈到某一因素的影响时既有有利一面又有不利一面.应结合具体情况进行综合考虑.材料科学基础研究无机非金属材料的共性问题,是一门新兴学科,一些理论和学说仍在发展之中,这使我们更容易了解这些理论和学说建立的过程,从中可学习到材料科学的一些研究方法和研究思路.材料科学基础是以物理、化学、物化等学科的知识为基础.要求在学习过程中与时复习所涉与到的有关内容.材料科学基础是一门新兴学科,有些理论尚不成熟.在某些问题上不同学派存在不同观点,为了广泛了解这些观点授课内容不只限于选用教材.所以要求同学们课上做好笔记,课下多看参考书.为了加强同学们独立分析解决问题的能力,习题的选择有一定的难度.某些习题是课堂授课内容的延伸.希望能独立、认真地完成,以收到良好的学习效果.第一章晶体无机非金属材料所用原料与其制品大多数是以结晶状态存在的物质.然而不同的晶体结构具有不同的性质.例如 ,TiO2光催化材料可以在太阳光的照射下降解污染物,TiO2有金红石、锐钛矿、板钛矿等几种晶体结构,锐钛矿型TiO2材料的光催化性能优于金红石型;陶瓷行业中常用的粘土,由于晶体结构不同,工艺性能也表现出很大的差异;α-Al2O3是良好的绝缘材料,而β-Al2O3可作为电池中的电解质以离子导电的方式传递电荷.人们对晶体的研究首先是从研究晶体几何外形的特征开始的,1912年X射线晶体衍射实验的成功,使人们对晶体的研究从晶体的外部进入到了晶体的内部,使得对晶体的认识有了质的变化.晶体所具有的性质是由晶体中质点排列方式所决定,结构发生变化,性质随之发生变化.然而晶体结构又取决于晶体的化学组成,组成晶体的质点不同意味着质点间键的作用形式和排列方式发生改变.所以,本章主要研究晶体的组成、空间结构和性质之间的关系.本章主要介绍了几何结晶学、晶体化学的基本概念和原理.从这些基本原理出发,介绍了描述晶体结构的方法,包括:i 从几何结晶学角度——空间格子ii 从球体堆积角度——负离子做堆积,正离子填充空隙iii 用鲍林规则分析——多面体堆积iv 取晶胞,晶胞中质点的具体位置以通过这些方法掌握NaCl型、CsCl 型、闪锌矿型、萤石型、刚玉型的晶体结构,并了解纤锌矿型、金红石型、碘化镉CdI2型、钙钛矿型和尖晶石型结构.在此基础上,了解晶体的组成、空间结构和性质之间的关系.第一节几何结晶学基本概念一、晶体的定义1、定义晶体是内部质点在三维空间作有规则的周期性重复排列的固体,是具有格子构造的固体.晶体的这一定义表明,不论晶体的组成如何不同,也不论其表观是否具有规则的几何外形,晶体的共同特征是内部质点在三维空间按周期性的重复排列.不具备这一特征的物体就不是晶体.以NaCl晶体为例.NaCl的晶胞结构2、空间点阵〔空间格子〕在三维空间按周期性重复排列的几何点的集合称为空间点阵〔空间格子〕.空间点阵〔空间格子〕中的结点是抽象的几何点并非实际晶体中的质点.阵点或结点:空间点阵中的几何点称为阵点或结点.等同点:同一套空间格子中的结点叫等同点.实际晶体是由组成晶体的离子或原子去占据一套或几套穿插在一起的空间格子的结点位置而构成.实际晶体的内部质点是有实际内容的原子或离子.实际晶体中化学组成相同、结晶化学环境相同的质点占据的结点构成一套等同点.所谓结晶化学环境相同是指质点周围在相同方位上离开相同距离有相同的质点.晶体中有几套空间格子就有几套等同点,判断晶体中有几套空间格子的方法是看晶体中有几套等同点.NaCl晶体有2套空间格子,Na+ 离子和Cl-离子各构成一套空间格子.CsCl晶体有2套空间格子,Cs+ 离子和Cl-离子各构成一套空间格子.CaF2 晶体有3套空间格子,Ca2+离子构成一套空间格子;F-离子有两套空间格子. 3、晶体的性质:结晶均一性、各向异性、自限性、对称性、最小内能性.二、晶系:根据晶体的对称性,将晶体分为三大晶族、七大晶系.高级晶族:立方晶系〔等轴晶系〕中级晶族:六方晶系、三方晶系〔菱方晶系〕、四方晶系〔正方晶系〕低级晶族:斜方晶系〔正交晶系〕、单斜晶系、三斜晶系三、晶胞晶胞是晶体中重复出现的最小结构单元,它包含了整个晶体的特点.对应于七大晶系,晶胞形状有七种.四、空间格子的类型:〔14种布拉维空间格子〕以等同点为基准取晶胞,根据七大晶系,晶胞的形状共有7种. 等同点在晶胞的位置可以有以下几种:1.原始式:等同点占据晶胞的各个角顶2.体心式:等同点占据晶胞的各个角顶和体心3.面心式:等同点占据晶胞的各个角顶和面心4.底心式:等同点占据晶胞的各个角顶和上下底面中心根据某一套等同点为基准所取晶胞的形状和该套等同点在晶胞中的位置可以判断该套等同点构成的空间格子类型,共有十四种空间格子类型,通常称为十四种布拉维空间格子〔布拉维空间点阵〕.晶胞种类等同点在晶胞的位置立方晶胞原始式体心式面心式六方晶胞底心式三方晶胞原始式四方晶胞原始式体心式斜方晶胞原始式体心式面心式底心式单斜晶胞原始式体心式三斜晶胞原始式如:①NaCl晶体是由一套Na+离子立方面心格子和一套Cl-离子立方面心格子穿插而成.②CsCl晶体是由一套Cl-离子立方原始格子和一套Cs+离子立方原始格子穿插而成.CsCl晶体结构③立方ZnS〔闪锌矿〕晶体是由一套S2-离子立方面心格子和一套Zn2+离子立方面心格子穿插而成.④CaF2〔萤石〕晶体是由一套Ca2+离子立方面心格子和两套F-离子立方面心格子穿插而成.⑤TiO2〔金红石〕晶体是由两套Ti4+离子四方原始格子和四套O2-离子四方原始格子穿插而成.第二节晶体化学基础一、晶体中键的形式:1. 典型键型化学键:原子或离子结合成为分子或晶体时,相邻原子或离子间的强烈的吸引作用称为化学键.分子键:分子间较弱的相互作用力.电负性〔X〕可衡量电子转移的情况,因而可用来判断化学键的键型.原子的X越大,越易得到电子,X 大于2,呈非金属性;原子的X越小,越易失去电子,X小于2,呈金属性.化学键的类型:离子键:凡是X值相差大的不同种原子作用形成离子键.X值小的原子易失电子形成正离子,X值大的原子易得电子形成负离子.如:碱土金属与氧原子结合.离子键无饱和性和方向性.共价键:凡是X值较大的同种或不同种原子组成共价键.共价键有饱和性和方向性.金属键:凡是X值都较小的同种或不同种原子组成金属键,被给出的电子形成自由电子气,金属离子浸没其中.金属键无饱和性和方向性.分子键的类型:范德华键:分子间由于色散、诱导、取向作用而产生的吸引力的总和.氢键:X—H…Y,可将其归入分子键.氢键键键力 > 范德华键键力一般的情况下各种键的强度顺序如下:共价键最强,离子键很强,金属键较强,三种化学键的键力远大于分子键,分子键中氢键的键力大于范德华键.2.键型的过渡性凡是X值有相当差异、但差异并不过大的原子之间形成离子键和共价键之间的过渡键型.如:Si-O键〔共价键和离子键成份各占50%〕.依据鲍林公式计算过渡键型中离子键占的百分数P:P=1-exp[-1/4〔xA-xB〕2]二离子半径:对于独立存在的离子,它的离子半径是不确定的,但在离子晶体中,设离子为点电荷 ,根据库仑定律,正、负离子之间的吸引力:F∝<q1q2>/r2随着离子的相互靠近,电子云之间的斥力出现并迅速增大.当引力=斥力时处于平衡,平衡间距r=r0.r0为正离子中心到负离子中心的距离,即正、负离子都可以近似看成球形,各有一个作用圈半径,平衡间距就是相邻的正、负离子相互接触时半径之和.对于存在于离子晶体中的离子,它有确定的离子半径.r0=r++ r-三、球体的堆积方式:1. 球体的最紧密堆积原理假设球体是刚性球,堆积密度越大,堆积体的内能越小,结构越稳定.球体的堆积倾向于最紧密方式堆积.2. 等径球体的堆积方式:〔1〕最紧密堆积①六方最紧密堆积:ABAB……〔ACAC……〕每两层重复一次,其球体在空间的分布与六方格子相对应,堆积体中有两套六方底心格子.其密排面//〔0001〕②立方最紧密堆积:ABCABC……〔ACBACB……〕每三层重复一次,球体分布方式与立方面心格子相对应,堆积体中有一套立方面心格子.其密排面//〔111〕除上述这两种常见的最紧密堆积方式,最紧密堆积也可能出现ABACABAC……,每四层重复一次,或ABABCABABC……,每五层重复一次,等等.密堆率〔堆积系数〕:晶胞中含有的球体体积与晶胞体积之比.最紧密堆积密堆率都是74.05%,空隙率25.95%.最紧密堆积体中是有空隙的,空隙类型有:①四面体空隙:处于四个球体包围之中的空隙,四个球体中心连线形成一个四面体.②八面体空隙:处于六个球体包围之中的空隙,六个球体中心连线形成一个八面体.空隙半径〔空隙中内切球半径〕:八面体>四面体有n个球体作最紧密堆积:①每个球周围有四面体空隙8个,每个四面体空隙为4个球共有,每个球占有四面体空隙数8*1/4=2②每个球周围有八面体空隙6个,每个八面体空隙为6个球共有,每个球占有八面体空隙数6*6/1=1n个球体作最紧密堆积的堆积体中,有2 n个四面体空隙,有n个八面体空隙.〔2〕简单立方堆积简单立方堆积不是最紧密堆积.球体分布方式与立方原始格子相对应,密堆率为52%.堆积体中只形成立方体空隙〔8个球包围,其球心连线形成一个立方体〕.同理可知,n 个球做简单立方堆积有n个立方体空隙.〔3〕不等径球体的堆积不等径球体的堆积可看成较大的球体作等径球体的最紧密堆积,较小的球填充于堆积体的空隙中.在离子晶体中,负离子一般较大,负离子通常作最紧密堆积,正离子较小,填充于堆积体的四面体空隙或八面体空隙中,如果正离子太大,八面体空隙也填不下,则要求负离子改变堆积方式,作简单立方堆积,产生较大的立方体空隙,正离子填充于堆积体的立方体空隙中.用这种方式描述离子晶体结构,虽不严密但有助于我们想象.如:NaCl :n个Cl-离子做立方最紧密堆积,产生n 个八面体空隙,Na+离子填充全部八面体空隙.CsCl:Cl-做简单立方堆积,Cs+离子填充于全部的立方体空隙当中.ZnS:S2-做立方最紧密堆积,Zn2+填充一半的四面体空隙.CaF2:F-做简单立方堆积,Ca2+填充一半的立方体空隙.不等径球体堆积达到的密堆率可以大于等径球体的密堆率.四、配位数〔CN〕:定义在离子晶体中,每个离子都被与其电荷相反的异名离子相包围,则异名离子的数量就是这个离子的配位数.如:NaCl,Na+周围有6个Cl-,则Na+的CN=62.配位多面体配位数决定了配位多面体的形态.配位数:8——配位多面体:立方体;配位数:4——配位多面体:四面体假设离子是刚性球,正离子的配位数由R+/R-决定:在最紧密堆积体中,八面体空隙内切球的半径:设:堆积球的半径为R,八面体空隙内切球的半径为r,连接四个堆积球的球心为正方形, 所以, 2〔2R〕2=〔2R+2r〕2解得,1.414R=R+r 所以, r/ R=0.414可见,当R+/ R-=0.414 时,正离子恰好填入八面体空隙,此时正离子的配位数为6.同理,当R+/ R-=0.225时,正离子恰好填入四面体空隙,此时正离子的配位数为4.当R+/ R-=0.732 时,正离子恰好填入立方体空隙,此时正离子的配位数为8.实际上,离子晶体中的R+/ R-很少恰好是这些数值,当R+/ R-在两临界值之间时,配位数取下限值.正离子的配位数与R+/ R-的关系如下:R+/ R- <0.155≤R+/ R- <0.225≤R+/ R- <0.414≤ R+/ R- <0.732≤ R+/ R- <1≤ R+/ R-配位数 2 3 4 6 8 12 注意:当配位数为12 相当于等径球体的最紧密堆积.3. 离子的极化对晶体结构的影响在外电场作用下离子被极化,产生偶极矩.离子晶体中每个离子都有双重能力,既有极化别的离子的能力,又有被别的离子极化的能力.极化率〔极化系数〕α:离子被极化的难易程度〔α越大,变形程度越大;α越小,变形程度越小〕极化力β:离子极化其它离子的能力,主极化.一般地,只考虑正离子对负离子的极化作用,而对于最外层电子是18、18+2型正离子,除考虑正离子对负离子的极化作用外,还必须考虑负离子对正离子的极化,因为最外层电子为18、18+2型离子不仅β大.而且α也大,总的极化作用大大加强,晶体结构类型可能因此而改变.* 例:离子极化对卤化银晶体结构的影响AgClAgBrAgIR+/R-0.6350.5870.523实际配位数664〔理论为6〕理论结构类型NaClNaClNaC l实际结构类型NaClNaCl立方ZnS五、决定离子晶体结构的因素——结晶化学定律离子晶体结构取决其组成质点的数量关系、大小关系和极化性能.数量关系:正负离子的比例,如:NaCl中为1:1〔两套立方面心格子〕,CaF2中为1:2〔三套立方面心格子〕大小关系:NaCl中,R+/R-=0.95/1.81=0.52,CN=6.CsCl 中,R+/R-=1.69/1.81=0.93,CN=8.极化性能:AgCl,CN=6;AgI,CN=4.六、晶格能1.定义:把1mol离子晶体中各离子拆散至气态时所需要的能量.对于二元离子晶体U=W1W2e2N0A<1-1/n>/r0其中:W1W2——正负离子的电价, e——电子电荷,r0——平衡间距,N0——阿佛加德罗常数,A——马德伦常数, n——波恩指数.2.晶格能的意义:对于二元晶体,晶格类型相同,且离子间的极化作用不太强烈时,由晶格能大小可比较晶体有关的物理性质如:MgO、CaO、SrO、BaO二元晶体,结构类型为NaCl型,故:晶格能UMgO>U CaO >U SrO >UBaO故熔点 MgO>CaO>SrO>BaO硬度 MgO>CaO>SrO>BaO在利用晶格能比较晶体物理性质时必须注意极化的影响,如ZrO2、CeO2、ThO2均为CaF2型二元晶体,且RZr<RCe<RTh晶格能U ZrO2>U CeO2>U ThO2实际熔点为:2710℃<2750℃<3050℃,熔点ZrO2最低而ThO2最高.七从多面体堆积角度认识晶体——鲍林规则1 第一规则:关于组成负离子多面体的规则在每个正离子周围都形成一个负离子多面体,正负离子间距取决于它们的半径之和,正离子的配位数取决于正负离子半径之比.2 第二规则:电价规则在一个稳定的离子化合物结构中,每一负离子的电价等于或近似等于从邻近的正离子至该负离子各静电强度的总和.W-=∑Si〔偏差不超过1/4价〕其中:Si—静电键强度〔中心正离子分配给每个负离子的电价分数〕〔1〕对于二元晶体可推断其结构〔已知结构稳定〕如:NaClR+/R-=0.95/1.81=0.52,形成[NaCl6]八面体,Si=1/6∴W-=1=∑Si=1/6*i 推出i=6即:每个Cl-周围有6个Na+,或每个Cl-是6个[NaCl6]八面体的共用顶点.〔2〕判断结构是否稳定〔已知结构〕如:镁橄榄石〔Mg2SiO4〕已知结构中,一个[SiO4]四面体和三个[MgO6]八面体共用一个O顶点∴∑Si=1*4/4+3*2/6=2= W- 故结构稳定3第三规则:关于负离子配位多面体共用顶点规则在一个配位结构中,两个负离子多面体以共棱方式特别是共面方式存在时,结构稳定性较低,对于电价高而配位数小的正离子此效应尤为显著.阴离子多面体存在方式不连共顶共棱共面阴离子多面体共用顶点123随着顶点共用数增加,导致两个正离子中心距减小,如在八面体中以点、棱、面相连时,两中心正离子之间的距离以1:0.71:0.58的比例减小,而四面体以点、棱、面相连时,两中心正离子之间的距离以1:0.58:0.33的比例减小.正离子间距减小,排斥力增大,不稳定程度增大.4、第四规则:不同种类配位多面体之间的连接规则在含有不同种类正离子的晶体中,电价高而配位数小的正离子的配位多面体趋向于相互不共用顶点.该规则的物理基础与第三规则相同.5、第五规则:节约规则八、典型无机化合物的结构* 描述晶体结构的方法:i 从几何结晶学角度——空间格子ii 从球体堆积角度——负离子做堆积,正离子填充空隙iii 用鲍林规则分析——多面体堆积iv 取晶胞,晶胞中质点的具体位置1、AX型〔1〕NaCl型方法i:一套Cl-和一套Na+的立方面心格子穿插而成.方法ii:Cl-做立方最紧密堆积,Na+填充全部的八面体空隙.方法iii:第一规则:RNa+/RCl-=0.52,形成[NaCl6]八面体.第二规则:已知结构稳定,W-=1=∑Si在[NaCl6]八面体中,Si=1/6 ∴1=1/6*i 推出:i=6即:每个Cl-是6个[NaCl6]八面体的共用顶点.第三规则:最高连接方式是共棱连接,结构稳定.方法iv:Cl-为基准取晶胞,立方晶胞:Cl- <0,0,0>,<1/2,0,1/2>,<0,1/2,1/2>,<1/2,1/2,0>Na+ <1/2,1/2,1/2>NaCl晶胞中含有的式量分子数:Na+:体心,各边心 1+1/4*12=4Cl- :各角顶,各面心 1/8*8+1/2*6=4即:每个晶胞中含有4个式量分子.〔"分子〞〕碱土金属氧化物MgO、CaO、SrO、BaO具有NaCl型晶体结构.〔其中的Mg2+、Ca2+、Cs2+、Ba2+相当于NaCl中的Na+离子,而O离子相当于Cl-离子〕〔2〕CsCl型方法i:由一套Cl-和一套Cs+离子的立方原始格子穿插而成.方法ii:Cl-做简单立方堆积,Cs+填充全部立方体空隙.方法iii:第一规则:RCs+/RCl-=0.167/0.181=0.93,形成[CsCl8]立方体第二规则:W-=1=∑Si在[CsCl8]立方体中,Si=1/8 ∴1=1/8*i 推出:i=8即:每个Cl-是8个[CsCl8]立方体的共用顶点.方法iv:立方晶胞:Cl-:<0,0,0>Cs+:<1/2,1/2,1/2>晶胞中含有的式量分子数:Cs+:体心 1Cl-:角顶 1/8*8=1即:每个晶胞中含有1个CsCl式量分子.属于该类型结构的晶体有CsBr、CsI、TlCl、NH4Cl等〔3〕闪锌矿型〔立方ZnS〕方法i:由一套S2-和一套Zn2+的立方面心格子穿插而成.方法ii:S2-做立方最紧密堆积,Zn2+填充1/2的四面体空隙.方法iii:R Zn2+/R S2-=0.44,理论上为[ZnO6]八面体,实际为[ZnO4]四面体.W-=2=∑Si Si=2/4=1/2 ∴1/2*i=2 推出:i=4即:每个S2-是4 个[ZnO4]四面体的共用顶点.最高连接方式为共顶连接.立方晶胞中S2-:<0,0,0>,<0,1/2,1/2>,<1/2,0,1/2>,<1/2,1/2,0>Zn2+:<1/4,1/4,3/4>,<1/4,3/4,1/4>,<3/4,1/4,1/4>,<3/4,3/4,3/4> 晶胞中含有的式量分子数:S2-:各角顶,各面心 1/8*8+1/2*6=4Zn2+:各1/8小立方体的体心 8*1/2=4即:每个晶胞含有4个ZnS"分子".β-SiC、GaAs、AlP、InSb等具有该类型结构.〔4〕纤锌矿型〔六方ZnS〕由2套S2-和2套Zn2+的六方底心格子穿插而成.2. AX2型〔1〕CaF2〔萤石型〕方法i:由一套Ca2+和2套F-的立方面心格子穿插而成.方法ii:F-做简单立方堆积,Ca2+填充一半的立方体空隙.方法iii:R Ca2+/R F-=0.112/0.131=0.85,形成[CaF8]立方体W-=1=∑Si Si=2/8=1/4 ∴1/4*i=1 推出:i=4即:4个[CaF8]立方体共用1 个顶点最高连接方式为共棱连接.方法iv:立方晶胞:Ca2+:<0,0,0>,<1/2,1/2,0>,<1/2,0,1/2>,<0,1/2,1/2>F-:<1/4,1/4,1/4>,<3/4,3/4,1/4>,<3/4,1/4,3/4>,<1/4,3/4,3/4>,<3/4,3/4,3/4>,<1/4,1/4,3/4>,<1/4,3/4,1/4>,<3/4,1/4,1/4> 晶胞中含有的式量分子数:Ca2+:各角顶、各面心 1/8*8+6*1/2=4F-:各1/8小立方体体心 8即:每个晶胞中含有4个CaF2式量分子.该类型结构晶体有ZrO2、UO2、ThO2等* 反萤石结构:与萤石结构相反,正、负离子位颠倒的结构,阴离子做立方最紧密堆积,阳离子填充全部的四面体空隙.晶体举例:碱金属氧化物Li2O、Na2O、K2O〔2〕TiO2〔金红石型〕方法i:由2套Ti4+和4套O2-的四方原始格子穿插而成.方法ii:O2-做六方最紧密堆积,Ti4+填充一半的八面体空隙.方法iii:R Ti4+/R O2-=0.06/0.125=0.46,形成[TiO6]八面体W-=2=∑Si Si=4/6=2/3 ∴2/3*i=2 推出:i=3即:每个O2-是三个[TiO6]八面体的共用顶点.最高连接方式为共棱连接.方法v:四方晶胞:Ti4+:各角顶、体心 1/8*8+1=2O2-:2个1/8立方体体心、4个小立方体底心 2+4*1/2=4即:每个晶体中含有2个TiO2式量分子.晶体举例:GeO2、SnO2、PbO2、MnO2等.* TiO2变体:①金红石型:八面体之间共用棱边数为2条②板钛矿型:八面体之间共用棱边数为3条③锐钛矿型:八面体之间共用棱边数为4条〔3〕CdI2型I-做近似的六方最紧密堆积,Cd2+填充一半的八面体空隙.填充方式为I-形成的层间一层填满一层不填,形成层状结构晶体.两片I-离子夹一片Cd2+离子,电价饱和,层之间靠范德华力连接.方法iii:R Cd2+/R I-=0.095/0.22=0.44,形成[CdI6]八面体W-=1=∑Si Si=2/6=1/3 ∴1/3*i=1 推出:i=3即:每个I-是三个[CdI6]八面体的共用顶点.晶体举例:Mg<OH>2、Ca<OH> 23. A2X3型:α-Al2O3〔刚玉型〕——三方晶系O2-做近似六方最紧密堆积,Al3+填充2/3的八面体空隙.晶胞中存在6个八面体空隙,Al3+填充4个,故不可避免出现八面体共面现象,但α-Al2O3是稳定的,因为Al-O键很强, Al3+配位数高,比4配位时斥力小的多.R Al3+/R O2-= 0.057/0.13 5 = 0.40,形成[AlO6]八面体W-=2=∑Si Si=3/6=1/2 ∴1/2*i=2 推出:i=4即:每个O2-是4个[AlO6]八面体的共用顶点.晶体举例:α-Fe2O3、Cr2O3、Ti2O3、V2O3等.4、ABO3型:〔1〕 CaTiO3〔钙钛矿型〕Ca2+:个角顶 O2-:个面心 Ti4+:体心——[TiO6]Ti4+:个角顶 Ca2+:体心 O2-:各边边心——[CaO12]可视做Ca2+、 O2-〔较大的Ca2+〕做立方最紧密堆积〔2〕钛铁矿:FeTiO3〔A离子较小〕O2-做立方最紧密堆积,Fe2+、Ti4+共同填充八面体空隙.〔3〕络阴离子团的ABO3:CaCO3〔B离子较小〕5、AB2O4型:MgAl2O4〔镁铝尖晶石〕O2-做立方最紧密堆积,Al3+填充一半的八面体空隙,Mg2+填充1/8的四面体空隙.将一个晶胞分为8个小立方体〔4个为A,4个为B〕其中A:O2-:各角顶、各面心 Al3+:6条边边心 Mg2+:2个小立方体体心B:O2-:各角顶、各面心 Al3+:另6条边边心和体心无Mg2+* 正尖晶石:二价离子填充四面体空隙,三价离子填充八面体空隙.反尖晶石:一半三价离子填充四面体空隙,另一半三价离子和二价离子填充八面体空隙.第二章晶体缺陷固体在热力学上最稳定的状态是处于0K温度时的完整晶体状态,此时,其内部能量最低.晶体中的原子按理想的晶格点阵排列.实际的真实晶体中,在高于0K的任何温度下,都或多或少的存在着对理想晶体结构的偏离,即存在着结构缺陷.结构缺陷的存在与其运动规律,对固体的一系列性质和性能有着密切的关系,尤其是新型陶瓷性能的调节和应用功能的开发常常取决于对晶体缺陷类型和缺陷浓度的控制,因此掌握晶体缺陷的知识是掌握材料科学的基础.晶体缺陷从形成的几何形态上可分为点缺陷、线缺陷和面缺陷三类.其中点缺陷按形成原因又可分为热缺陷、组成缺陷〔固溶体〕和非化学计量化合物缺陷,点缺陷对材料的动力性质具有重要影响.本章对点缺陷进行重点研究,对线缺陷的类型和基本运动规律进行简要的介绍,面缺陷的内容放在表面和界面一章中讲解.第一节热缺陷一.热缺陷定义当晶体的温度高于绝对0K时,由于晶格内原子热振动,使一部分能量较大的原子离开平衡位置造成的缺陷.由于质点热运动产生的缺陷称为热缺陷.二.热缺陷产生的原因当温度高于绝对温度时,晶格中原子热振动,温度是原子平均动能的度量,部分原子的能量较高,大于周围质点的约束力时就可离开其平衡位置,形成缺陷.三.热缺陷的基本类型1.肖特基缺陷。

2015清华大学材料工程(专硕)考研专业目录招生人数参考书目历年真题复试分数线答题方法

2015清华大学材料工程(专硕)考研专业目录招生人数参考书目历年真题复试分数线答题方法
更多资料请到易研官网 下载
第一,明确案例的理论依据——市场失灵理论、政府失灵理论和 政策工具理论。然后阐述市场失灵和政府失灵的概念及其表现,阐释 政策工具的定义和种类。
第二,结合材料进行分析。结合材料具体说明为什么在房地产市 场既存在市 场失灵也存在政府失灵,以及运用什么政策工具。
回答出名词本身的核心含义,力求尊重课本。这是最主要的。 简答该名词的特征、内涵、或者其构成、或者举一个案例加以 解释。如果做到,基本上你就可以拿满分。 如果除非你根本不懂这个名词所云何事,或者压根没见过这个 名词,那就要运用类比方法或者词义解构法,去尽可能地把握这个名 词的意思,并组织下语言并加以润色,最好是以很学术的方式把它的 内涵表述出来。 【名词解释答题示范】
【案例分析题答题注意事项提示】: 第一,不要就事论事,要先分析、铺垫理论。 第二,要做到理论和材料的有效结合,不能理论材料两张皮。结 合的方法或为验证理论的正确,或为运用理论对材料的相关问题进行 评析,这个需要考生要具体问题具体分析。 第三,案例分析题一般是最后一道考题,分值较大,需要考生合 理规划时间,每道案例分析至少留出 30 分钟以上的时间。 【名师结语点评】如果想考取专业课 135 分及以上的高分,答题 方法不可忽视。经过长期摸索,总结了一套成熟的考研专业课答题模 板。每年的专业课复习后期,一般是 12 月份左右,会组织相关的专 业课模考,一般考生只要按照总结的模板模拟考试 4-5 次,就能熟练 地掌握高分答题方法和技巧。
复试时专业综合考试内容:X 射线衍射基 础或金属材料性能或结晶化学(含固体材 料结构基础)(三选一)。
二、2014年清华大学材料工程专业考研复试分数线
专业代码
专业名称
总分 政治 外语 业务 1 业务 2

无机材料科学基础陆佩文PPT文档44页

无机材料科学基础陆佩文PPT文档44页
制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you

无机材料科学基础陆佩文)

无机材料科学基础陆佩文)

无机材料科学基础(陆佩文)无机材料科学基础概论一. 研究对象及学习目的自古以来,材料的发展一直是人类文明的里程碑。

材料、能源、?信息被公认为是现代文明的三大支柱。

新材料已成为各个高技术领域的突破口。

材料主要包括:金属材料、有机材料、无机非金属材料。

本课程研究的对象是无机非金属材料。

无机非金属材料的最大特点是耐高温、耐腐蚀,这些特点是其它材料无法比拟的。

无机非金属材料的发展在国民经济中的重要作用是显而易见。

研究的对象是“无机非金属材料”,从化学组成上看:包含硅酸盐,和各种氧化物、氮化物、碳化物、硼化物、硅化物、氟化物等。

从物质结构上看:可以包括单晶体、多晶体或无定形体。

本专业主要研究多晶、多相无机非金属材料,也可称为“陶瓷\。

从材料形态上看:不仅包括块体材料,还包括粉体材料、纤维材料、晶须材料和薄膜材料。

从所属的工业产品来看:可分为传统材料和现代陶瓷,所属的工业产品涉及各个领域。

传统材料主要包括陶瓷、玻璃、耐火材料、水泥、磨料、砖瓦等。

现代陶瓷按其功能又可分为两大部分:高温结构陶瓷:能在高温条件下承受各种机械作用的陶瓷材料。

如:陶瓷发动机的部件、切削工具、耐磨轴承、火箭燃气喷嘴、各种密封环(石墨)、能承受超高温作用的结构部件。

功能陶瓷:具有声、光、?电、?磁、?热等功能的陶瓷制品。

?如:?压电陶瓷(PbTiO3系)、热敏陶瓷、陶瓷基片、光电陶瓷、生物陶瓷、超导材料、核燃料、磁性材料、化学电池(β-Al2O3)材料等。

我们学习无机材料科学基础的目的是:从理论上定性的了解无机非金属材料的组成、结构与性能之间的关系和变化规律,了解控制材料性能的基本和共性规律。

至于如何具体从技术上实现这些,则属于工艺课的范畴。

二.学习的内容分为四大部分:材料的结构:晶体结构晶体缺陷玻璃体和熔体固体表面过程热力学和动力学:热力学应用相图相图的热力学推导扩散相变材料制备原理:硅酸盐晶体结构坯料制备与成型的理论基础固相反应烧结材料的制备实验:包括基础实验和选作实验两部分,独立设课三.学习要求材料科学基础对无机非金属材料的性能及生产过程中的一些共性问题从理论上做了系统的讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章晶体结构2.1名词解释晶体由原子(或离子分子等)在空间作周期性排列所构成的固态物质晶胞是能够反应晶体结构特征的最小单位, 晶体可看成晶胞的无间隙堆垛而成。

晶体结构中的平行六面体单位点阵(空间点阵) 一系列在三维空间按周期性排列的几何点.对称:物体相同部分作有规律的重复。

对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合,又叫点群.空间群:是指一个晶体结构中所有对称要素的集合布拉菲格子把基元以相同的方式放置在每个格点上,就得到实际的晶体结构。

基元只有一个原子的晶格称为布拉菲格子。

范德华健分子间由于色散、诱导、取向作用而产生的吸引力的总和配位数:晶体结构中任一原子周围最近邻且等距离的原子数.2.2试从晶体结构的周期性论述晶体点阵结构不可能有5次和大于6次的旋转对称?2.3金属Ni具有立方最紧密堆积的结构试问: I一个晶胞中有几个Ni原子? II 若已知Ni原子的半径为0.125nm,其晶胞边长为多少?2.4金属铝属立方晶系,其边长为0.405nm,假定其质量密度为2.7g/m3试确定其晶胞的布拉维格子类型2.5某晶体具有四方结构,其晶胞参数为a=b,c=a/2,若一晶面在x y z轴上的截距分别为2a 3b 6c,试着给出该晶面的密勒指数。

2.6试着画出立方晶体结构中的下列晶面(001)(110)(111)并分别标出下列晶向[210] [111] [101].2.14氯化铯(CsCl)晶体属于简立方结构,假设Cs+和Cl-沿立方对角线接触,且Cs+的半径为0.170nm Cl-的半径为0.181nm,试计算氯化铯晶体结构中离子的堆积密度,并结合紧密堆积结构的堆积密度对其堆积特点进行讨论。

2.15氧化锂(Li2O)的晶体结构可看成由O2-按照面心立方密堆,Li+占据其四面体空隙中,若Li+半径为0.074nm,O2-半径为0.140nm试计算I Li2O的晶胞常数 II O2-密堆积所形成的空隙能容纳阳正离子的最大半径是多少。

2.16 MgO具有NaCl型晶体结构,试画出MgO在(111)(110)和(100)晶面上离子的排列图案,写出其离子面密度和晶面间距的表达式。

第三章熔体玻璃体3.1熔体高温下熔融形成的液态固体玻璃体高温熔体快冷时,由于冷却速度快,粘度增大太快,质点没来得及做有规则排列就已经固化,形成玻璃体网络形成体:正离子是网络形成离子,单键强度大于335 kJ/mol,能单独形成玻璃的氧化物。

网络改变体:正离子是网络变性离子,单键强度小于250KJ/mol,不能单独形成玻璃,但能改变玻璃网络结构和性质的氧化物。

网络中间体网络改变体向玻璃中加入某种氧化物使得玻璃的结构改变,性质改变,这种氧化物称为“网调整氧化物”桥氧:与两个网络形成离子相连的氧称为桥氧,非桥氧: 只与一个网络形成离子相连的氧称为非桥氧晶子学说:玻璃性质的变化是由于石英的多晶转变引起的。

所以玻璃是高分散晶体(晶子)的集合体。

“晶子”不同于一般微晶,是带有晶格变形的有序区域,它们分散在无定型介质中,从“晶子”部分到无定型部分的过渡是逐渐完成的,两者之间无明显界线. 晶子学说的核心是结构的不均匀性及进程有序性。

无规则网络学说:凡是成为玻璃态的物质和相应的晶体结构一样,也是由一个三度空间网络所构成。

这种网络是由离子多面体(三角体或四面体)构筑起来的。

玻璃中结构多面体的重复没有规律性。

多面体的结合程度取决于桥氧离子的百分数,而网络变性离子均匀而无序的分布在四面体骨架空隙中玻璃形成温度T g又称脆性温度,是玻璃出现脆性的最高温度,由于在这个温度下可以消除玻璃制品因不均匀冷却产生的内应力,因此又称为退火温度上限.软化温度T f玻璃开始出现液体状态典型特征的温度,是玻璃可以拉成丝的最低温度.玻璃的通性各向同性, 热力学介稳性, 凝固的渐变性与可逆性, 熔融态向玻璃态转化时物理化学性质随温度变化的连续性无规密堆积模型将原子看作是不可压缩的硬球,这些硬球无规则地堆垛,使其总体密度达到最大可能值。

液态金属的结构是由一些基本的几何单元组成的近程有序,最小的单元是四面体,这种模型又成为密集无序堆垛模型微晶无序模型微晶:带有晶格变形的有序区域,大小为1--10nm,几个到几十个原子间距。

在微晶中心质点排列有序,离其中心越远则变形程度愈大。

拓扑无序模型拓扑无序模型认为:非晶态合金是均匀连续、致密填充、混乱无规的原子硬球的集合,不存在微晶与周围原子以晶界分开的情况。

硼反常现象在Na2O-SiO2熔体中加入B2O3粘度会先增大后减小.最初加入B2O3时,主要形成[SiO4]四面体进行补网作用,由于Na2O拆网使粘度很低;随着B2O3加入量的增加,[BO4]含量增加,粘度不断增加,直到补网完成[BO4]的比例最大,粘度达到最大值;此后继续加入B2O3,则形成[BO3]平面三角形的结构,使网络的连接变得疏松,又导致粘度η下降.(其他名词解释)类质同晶:物质结晶时,其晶体结构中原有离子或原子的配位位置被介质中部分类质类似的它种离子或原子占存,共同结晶成均匀的,单一的混合晶体,但不引起键性。

同质多晶:化学组成相同的物质,在不同的热力学条件下结晶或结构不同的晶体。

正尖晶石:二价阳离子分布在1/8四面体空隙中,三价阳离子分布在1/2八面体空隙的尖晶石。

反尖晶石:如果二价阳离子分布在八面体空隙中,而三价阳离子一半在四面体空隙中,另一半在八面体空隙中的尖晶石。

分化过程:架状[SiO4]断裂称为熔融石英的分化过程。

缩聚过程:分化过程产生的低聚化合物相互发生作用,形成级次较高的聚合物,次过程为缩聚过程。

单键强度:化合物的分解能除以化合物的配位数得出的商数即为单键强度。

3.2影响熔体粘度的因素有哪些?分析R2O对硅酸盐熔体黏度的影响规律以及原因3.3简述石英晶体,石英熔体,Na2O·SiO2熔体结构和性质的区别3.4简述非晶态合金材料的主要特性以及应用3.6 SiO2熔体粘度在1000°C时的粘度10的14次方Pa*S,在1400°C时为10的7次方Pa*S,Si2O玻璃的粘滞流动的活化能是多少?上述数据在恒压下获得,若在恒容下获得,你认为活化能会改变吗为什么?3.8 在SiO2中应加入多少Na2O,使玻璃的O/Si=2.5 ?此时析晶能力是增强还是减弱?3.9计算下列玻璃的结构参数以及非桥氧分数(1)(2)(3)(4)3.10 有一种玻璃组成为14% Na2O 13%CaO 73%SiO2 (Wt%)其密度为2.5g/cm3计算该玻璃的原子堆积系数和结构参数值3.11两种不同配比的玻璃,其组成(wt%)见下表,试计算玻璃结构参数,并由结构参数说明该两种玻璃在高温时粘度的大小。

3.13比较硅酸盐玻璃和硼酸盐玻璃在结构和性能上的差异。

第四章点缺陷和线缺陷弗伦克尔缺陷:在晶格热振动时,一些能量足够大的原子离开平衡位置后,挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位。

这种缺陷称为弗伦克尔缺陷。

肖特基缺陷:如果正常格点上的原子,热起伏过程中活的能量离开平衡位置迁移到晶体的表面,在晶体内正常格点上留下空位,这即是肖特基缺陷。

刃型位错:伯格斯矢量b与位错线垂直的位错称为刃型位错。

螺型位错:位错线和滑移方向(伯格斯矢量b)平行,由于位错线垂直的平行面不是水平的,而是像螺旋形的,故称螺旋位错。

伯格斯矢量第五章表面与界面表面:固体的表面现象与液体相似,通常把一个相与它本身蒸汽接触的分界面称为表面。

界面:相邻晶粒不仅位向不同,而且结构、组成也不相同,即它们代表不同的两个相,则其间界称为界面。

第六章相平衡与相图相体系中具有相同物理与化学性质的均匀部分的总和,如纯液体或真溶液均为单相。

固溶体也为单相。

相平衡相与相之间的平衡,是动态平衡。

第七章固体中质点的扩散7.1本征扩散:主要出现肖特基和弗兰克尔点缺陷,由此点缺陷引起的扩散称为本征扩散。

非本征扩散:因扩散受固溶引入的杂质离子的电价和浓度等外界因素所控制,故称为非本征扩散。

自扩散互扩散稳定扩散:扩散质点的浓度分布不随时间变化的扩散称为稳定扩散;不稳定扩散扩散质点的浓度分布随时间变化的扩散称为不稳定扩散菲克第一定律:在扩散体系中,参与扩散质点的浓度因位置而异,且可随时间而变化。

正扩散:受热力学因子作用,物质由高浓度处流向低浓度处,扩散结果使溶质趋于均匀化,D i>0。

逆扩散:受热力学因子作用,物质由低浓度处流向高浓度处,扩散结果使溶质趋于均匀化,D i<0。

无序扩散:无化学位梯度、浓度梯度。

无外场推动力,由热起伏引起的扩散。

质点的扩散是无序的、随机的。

互扩散推动力:多元系统中几种离子同时进行扩散,扩散过程中化学位梯度的变化。

间隙扩散:质点从一个间隙到另一个间隙矿化剂:在固相反应中加入少量非反应物,反应过程中不与反应物起化学反应,只起加速反应作用的物质。

第八章固态化学反应固态化学反应(固相反应)狭义指固体与固体间发生化学反应生成新的固体产物的过程。

广义凡是具有固相参加的化学反应都叫固相反应。

固相反应特征第九章固态相变3.1 一级相变:体系由一相变为另一相时,如两相的化学势相等但化学势的一级偏微商不相等的称为一级相变。

二级相变:相变时两相化学势相等,其一级偏微商也相等,但二级偏微商不等。

玻璃析晶:指由于玻璃的内能较同组成的晶体为高,所以玻璃处于介稳状态。

在一定条件下存在着自发地析出晶体的倾向,这种出现晶体的现象叫做析晶。

又称失透或反玻璃化。

玻璃分相:一个均匀的玻璃相在一定的温度和组成范围内有可能分成两个互不溶解或部分溶解的玻璃相,并相互共存的现象称为玻璃分相。

均匀成核:晶核从均匀的单相熔体中产生的几率处处相同。

非均匀成核:借助于表面、界面、微粒裂纹、器壁以及各种催化位置等而形成晶核的过程。

马氏体相变:一个晶体在外加应力的作用下通过晶体的一个分立方体积的剪切作用以极迅速的速率而进行相变称为马氏体相变。

第十章固态烧结10.1熔融温度烧结温度泰曼温度烧结:由于固态中分子的相互吸引,通过加热,使粉末体产生颗粒粘结,经过物质迁移使粉末体产生强度并导致致密化和再结晶的过程称为烧结。

烧成:把一定温度范围内烧制成为致密体的一系列物理、化学、变化过程,人们把完成这样一个烧结过程的工艺称之为烧成。

体积密度:材料在包含实体积、开口和密闭孔隙的状态下单位体积的质量称为材料的体积密度。

理论密度:多孔材料中固相的密度,即同种材料在无孔状态下的密度。

相对密度:多孔体的密度与无孔状态下同成分材料的密度之比,通常以百分率表示。

固相烧结:没有液相参与,完全是由固体颗粒直接的高温烧结过程。

液相烧结:有液相参与的烧结。

晶粒生长:无应变的材料在热处理时,平衡晶粒尺寸在不改变其分布的情况下连续增大的过程。

相关文档
最新文档