抽样与抽样分布
抽样与抽样分布
抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。
抽样的目的是通过样本来推断总体的特征和性质。
在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。
一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。
这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。
常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。
2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。
这样可能导致样本的代表性不足,从而产生较大的估计误差。
有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。
二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。
统计量可以是样本均值、样本方差等。
抽样分布的性质对于进行统计推断和假设检验非常重要。
2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。
中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。
3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。
这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。
4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。
通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。
为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。
三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。
以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。
通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。
2. 假设检验假设检验是统计学中常用的推断方法之一。
通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。
统计学之抽样与抽样分布
的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差
•
有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体
•
称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。
统计学 第三章抽样与抽样分布
=10
= 50 X
总体分布
n= 4
x 5
n =16
x 2.5
x 50
X
抽样分布
从非正态总体中抽样
结论:
从非正态中体中抽样,所形成 的抽样分布最终也是趋近于正态分 布的。只是样本容量需要更大些。
总结:中心极限定理
设从均值为,方差为 2的一个任意总体中抽 取容量为n的样本,当n充分大时(超过30),样本 均值的抽样分布近似服从均值为μ、方差为σ2/n的
总体
样本
参数
统计量
总体与样本的指标表示法
总体参数
样本统计量
(Parameter) (Sample Statistic)
容量 平均数 比例 方差 标准差
N
n
X
x
p
2
s2
s
小练习
某药品制造商感兴趣的是用该公司开发的某 种新药能控制高血压人群血压的比例。进行了一 项包含5000个高血压病人个体的研究。他发现用 这种药后80%的个体,他们的高血压能够被控制。 假定这5000个个体在高血压人群中具有代表性的 话,回答下列问题: 1、总体是什么? 2、样本是什么? 3、识别所关心的参数 4、识别此统计量并给出它的值 5、我们知道这个参数的值么?
正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
X
总体分布
正态分布
非正态分布
大样本 小样本 大样本 小样本
正态分布
正态分布
非正态分布
三 中心极限定理的应用
中心极限定理(Central Limit theorem) 不论总体服从何种分布,从中抽取
统计学中抽样和抽样分布基础知识
样本均值的抽样分布
定义:样本均值的所有可能值的概率分布 样本均值的数学期望:对于简单随机样本时,样本均值的数学期望与总体均值相等 样本均值样本中具有感兴趣特征的个体个数/样本容量 样本比率的抽样分布:是样本比率的所有可能值的概率分布
样本比率的数学期望:样本比率的数学期望与总体比率相等 样本比率的标准差
有限总体:有限总体修正系数*无限总体样本比率的标准差 无限总体:根号下p(1-p)/n 样本比率的抽样分布的形态 当样本容量足够大,同时np≥5和n(1-p)大于等于5时,样本比率的抽样分布可以 用正态分布近似
统计学中抽样和抽样分布基础知识
抽样基本属于
抽样总体:抽取样本的总体 抽样框:用于抽选样本的个体清单 参数:总体的数字特征
抽样
从有限总体的抽样 建议采用概率抽样 简单随机样本:从容量为N的有限总体中抽取一个容量为n的样本,如果容量为n 的每一个可能的样本都以相等的概率被抽出,则称该样本为简单随机样本 无放回抽样和有放回抽样 无放回抽样:被抽取对象已经选入样本,不希望该对象被多次选入 有放回抽样:对已经出现过的随机数仍选入样本
点估计
样本统计量:为了估计总体参数,计算样本的特征 抽样总体和目标总体
目标总体是我们想要推断的总体 抽样总体是指实际抽取样本的总体 点估计的性质 无偏性:样本统计量是相应总体参数的无偏估计量 有效性:采用标准误差较小的点估计量,给出的估计值与总体参数更接近 一致性:大样本容量给出的点估计与总体均值更接近
其他抽样方法
分层随机抽样:总体中的个体首先被分成层,总体中的每一个体属于且仅属于某一 层,从每一层抽一个简单随机样本 整群抽样:总体中的个体首先被分成单个组,总体中的每一个个体属于且仅属于某 一群,有群为单位抽取一个简单随机样本 系统抽样:对容量很大的总体,第一个个体为随机抽样,总体个体排列时个体的随 机顺序 方便抽样:非概率抽样 判断抽样:对总体非常了解主观确定总体中认为最具代表性的个体组成样本
统计学第六章抽样和抽样分布
2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布
《统计学》第9章 抽样与抽样分布
二、抽样中的基本概念
⚫ 样本比例(成数)
p = n1 ,q = n0 = 1− p
n
n
⚫ 样本是非标志的标准差
(n = n0 + n1)
sp =
n p (1− p) =
n −1
n pq n −1
⚫ 样本是非标志的方差
s
2 p
=
n n −1
p(1 −
p)
=
n n −1
pq
第一节 抽样和抽样方法
三、抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 在实践中总体所包括的单位数很多,分布很广,通过一次 抽样就选出有代表性的样本是很困难的。此时可将整个抽 样过程分为几个阶段,然后逐阶段进行抽样,最终得到所 需要的有代表性的样本。
第一节 抽样和抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 阶段数不宜过多,一般采用两个、三个阶段,至多四个阶 段为宜,否则,手续繁琐,效果也不一定好。
第一节 抽样和抽样方法
二、抽样中的基本概念
⚫ 总体参数
⚫ 总体参数是根据总体各单位的标志值或特征计算的、反 映总体某一属性的综合指标。
⚫ 总体参数是唯一的、确定的常数,但一般情况下又是未 知的。
⚫ 常用的总体参数有 ⚫ 总体均值 ⚫ 总体标准差、总体方差 ⚫ 总体比例(成数)
第一节 抽样和抽样方法
⚫ 样本标准差
s =
1 n −1
n i =1
(xi
−
x )2,或s
=
1
m
m
(xi − x )2 fi
fi −1 i=1
i =1
⚫ 样本方差
( ) ( ) s2 = 1 n n −1 i=1
抽样及抽样分布
分层抽样 概念:分层抽样又称类型抽样。首先将总体单
位按某一个标志分层;然后在各层按随机抽样的方 法分别抽出各层的样本。
特点:分层抽样在层内是抽样调查,层间是全面调
查,所以分层时应该尽量让每层内的变异程度小,
而层间的变异程度大。分层抽样的抽样误差较简单 随机抽样小,样本具有很好的代表性。
抽样平均误差的计算公式:
z
(
X 1
X
)
2
( 1
2
)
s2 1
s2 2
n1 n2
渐近服从标准正态分布。
如果: X1 和 X2 是两个非正态总体,当和样本容
量足够大,
z
(
X1
X
2
)
(1
2
)
s2 1
s2 2
n1 n2
渐近服从标准正态分布。
NEXT
二、样本成数及成数差的抽样 分布
成数的概念 样本成数的分布 两个总体样本成数差的分布
,则样本的成数为p n1
n
。
例如,某工厂生产某种电子元件,某批产品
共10000件,其中不合格品100件原则抽100件,其中
有3件不合格品,则样本的成数为p 3% 。
NEXT
样本成数的分布
用途:推断或估计总体的成数。例如某项改革 方案工人的支持率,产品的正品率等。
假设A、B、C、D、E5位同学的统计学成绩分别为: 80、 86、90、92、96。可计算得总体均值为88.8,总体方 差为29.76。现在随机从中抽容量为2的样本。
重复抽样的所有可能的样本:
样本(AA)(AB)(AC)(AD)(AE)
均值 80 83 85
86 88
样本 (BA)(BB) (BC) (BD)(BE)
抽样与抽样分布
什么是抽样分布?
如果要估计总体的均值 ;是用样本平均值 还是用中位数m?
x,
3.5 第一次,2,2,6,m=2 x 3.33 第二次,3,4,6,m=4, x 4.33
还是掷骰子,总体均值 可见,不能仅仅根据一个样本去比较是 本n个观察值计算的统计量的概率分布。
x 和m
平均身高=169.8CM
总平均身高=168.6CM 平均身高=174.6CM
抽样的三个特点
遵守随机原则; 以样本的数量特征推断总体的数量特征 抽样推断产生抽样误差,但抽样误差可以 事先计算并控制。
抽样推断的应用
不可能进行全面调查时; 不必要进行全面调查时; 来不及进行全面调查时; 对全面调查资料进行补充修正时。
随机原则的实现
抽签法,是将总体中每个单位的编号写在外形 完全一致的签上,将其搅拌均匀,从中任意抽 选,签上的号码所对应的单位就是样本单位。
随机数表法:将总体中每个单位编上号码,然
后使用随机数表,查出所要抽取的调查单位。 计算机模拟法:是将随机数字编制为程序存储 在计算机中,需要时将总体中各单位编上号码, 启用随机数字发生器输出随机数字。
4 统计抽样与抽样分布
抽样的基本概念
抽样方法
抽样分布的概念
样本均值的抽样分布
本章的学习目的
本章的学习目的是为了认识到通过样本推 断总体的科学性。 当总体元素非常多,或者检查具有破坏性 时,需要进行抽样。抽样的目的是为了推 断总体的数量特征,但这种推断必定伴有
某种程度的不确定性,需要用概率来表示
正态分布的计算 - 例题
概率与统计中的随机抽样与抽样分布知识点
概率与统计中的随机抽样与抽样分布知识点概率与统计是数学中重要的分支之一,它研究了随机事件和随机现象的规律。
在概率与统计的领域中,随机抽样与抽样分布是基础而重要的概念。
在本文中,我们将深入探讨随机抽样与抽样分布的相关知识点,包括其定义、性质以及在实际应用中的重要性。
1. 随机抽样的定义与性质随机抽样是指从整体中以一定的概率选择出一部分样本的过程,以便对整体的某些特征进行推断。
随机抽样应具备以下几个基本性质:a. 独立性:每个样本在抽取过程中的选中与否应该是彼此独立的,不受前一个样本的影响。
b. 随机性:每个样本在被选中的概率应该是相等且随机的,确保对整体进行推断时具有普遍性。
c. 大样本量:所抽取的样本数量足够大,可以保证对整体的推断具有较高的精确度。
2. 抽样分布的定义与性质抽样分布是指针对不同样本规模的抽样所得到的某个统计量的分布。
常见的抽样分布包括正态分布、t分布和F分布等。
a. 正态分布:当样本量趋于无穷大时,根据中心极限定理,样本均值的分布逼近于正态分布。
正态分布在统计分析中经常应用,具备对称性和稳定性等特点,受到广泛的关注和应用。
b. t分布:在样本量较小的情况下,当总体近似于正态分布时,使用t分布来进行推断更加准确。
t分布相较于正态分布而言,具有更宽的尾部,样本量较小时可提供更精确的结果。
c. F分布:F分布是一种比值分布,常用于方差分析以及回归分析等。
它是基于正态分布的样本方差比值构成的。
3. 随机抽样与抽样分布在实际应用中的重要性随机抽样与抽样分布在各个领域的实际应用中具有重要意义,例如:a. 市场调研:通过随机抽样方式,可以从总体中选取一部分样本进行调查和数据收集。
然后通过对样本数据的分析,可以推断总体市场的特征、趋势以及用户行为等。
b. 医学研究:在进行药物疗效试验时,需要通过随机抽样的方式从患者中选取一部分进行试验。
通过对试验结果的分析,可以推断药物的疗效以及副作用等情况。
第7章抽样与抽样分布
· · ·
· · ·
统计学
STATISTICS
3· 等距抽样(机械抽样或系统抽样)
将总体单位按某一标志排序,然后按相等间隔 抽取样本单位构成样本的抽样形式 随机起点 · · · · · · (总体单位按某一标志排序) 按无关标志排队,其抽样效果相当于简单随机抽样; 半距起点 对称起点
按有关标志排队,其抽样效果相当于类型抽样。
明确 总体及 抽样单位
统计学
STATISTICS
明确 调查目 的
确定或构 建抽样框
提出指标 精度要求
选择抽样 组织形式
2019/1/31
确定 样本容量
制定 具体办法 步骤
23
统计学
STATISTICS
2.抽样方案设计的基本原则
(1)保证实现抽样随机性的原则 (2)保证实现最大的抽样效果原则
3.抽样方案设计中的重要问题
不重复抽样
每次从总体中抽选一个单位后就不 再将其放回参加下一次的抽选。又 称不放回抽样. 总体单位数减少n,同一单位只可 7 能被抽中一次。
2019/1/31
可能的样本数目考虑各单Biblioteka 的中选顺序 AB≠BA统计学
STATISTICS
考虑顺序的重复抽样 不考虑顺序的重复抽样 考虑顺序的不重复抽样
N
n
Nn N 2
15
(二)随机抽样的组织方式 STATISTICS
1· 简单随机抽样(纯随机抽样)
根据随机原则直接从总体中抽取单位构成样 本的一种抽样方式。
•每个容量为n的样本都有同等机会(概率)被抽中 •简单、直观,是最简单、最基本、最符合随机原 则,但同时也是抽样误差最大的抽样组织形式 •仅适用于规模不大、分布比较均匀的总体 •一般有抽签、抓阄、随机数码表、抽样函数等
抽样及抽样分布
抽样及抽样分布引言在统计学中,抽样是从总体中选择一局部个体进行研究的过程。
通过抽样可以获得总体的估计值,从而对总体进行推断。
抽样是统计学的根底,也是进行统计推断的前提。
本文将介绍抽样的根本概念和方法,以及抽样分布的概念和特性。
抽样方法进行抽样时,需要选择适宜的抽样方法。
常见的抽样方法包括简单随机抽样、系统抽样、分层抽样和群组抽样等。
简单随机抽样简单随机抽样是最根本的抽样方法,每个个体被随机地选入样本,且每个个体被选入样本的概率相等。
这种方法可以确保样本具有代表性。
系统抽样系统抽样是按照一定的规那么从总体中选取样本,例如每隔一定间隔选取一个个体。
这种方法简单实用,但需要注意规那么的选择是否会引入偏差。
分层抽样分层抽样是将总体分成假设干层,然后从每层中随机选取个体组成样本。
这种方法可以保证每个层次都有足够的代表性。
群组抽样群组抽样是将总体划分为假设干群组,然后随机选取假设干群组作为样本。
这种方法适用于总体中包含多个群组,但群组内个体相似的情况。
抽样分布抽样分布是指抽样统计量的分布。
统计量可以是样本均值、样本方差、样本相关系数等。
样本均值的抽样分布假设总体服从正态分布,样本均值的抽样分布也会服从正态分布。
根据中心极限定理,当样本容量足够大时,样本均值的抽样分布将变得更加接近正态分布。
样本方差的抽样分布样本方差的抽样分布是以总体方差为参数的分布,通常服从卡方分布。
样本容量的大小将影响样本方差的抽样分布形状。
样本相关系数的抽样分布样本相关系数的抽样分布通常是以总体相关系数为参数的分布。
样本容量的增加会使样本相关系数的抽样分布趋向于正态分布。
抽样误差与置信区间抽样误差是指样本统计量与总体参数之间的差异。
抽样误差的大小会受到样本容量和抽样方法的影响。
为了评估抽样结果的可靠性,可以构建置信区间。
置信区间是总体参数的一个区间估计,表示总体参数落在该区间的概率。
置信区间的宽度与置信水平、样本容量以及总体标准差等相关。
抽样与抽样分布
抽样与抽样分布抽样是统计学中一种重要的数据收集方法,通过从总体中选择一部分样本来代表整体,可以更方便、更经济地进行数据分析和推断。
而抽样分布则是与抽样密切相关的概念,指的是样本统计量的概率分布。
本文将从抽样的定义和目的、抽样方法和抽样分布的性质等方面进行探讨。
一、抽样的定义和目的抽样是统计学中利用一定的方法和技术从总体中选取一部分个体作为样本,以了解总体特征或者对总体进行推断的过程。
抽样的目的在于通过对样本的观测和研究来推断总体的特征,而无需对整个总体进行调查。
抽样可以减少调查或实验的成本、节约时间,并且在一定程度上能够保证结果的可靠性和精确度。
二、抽样方法1. 简单随机抽样:简单随机抽样是指从总体中随机选择样本,使每一个样本都有相同的概率被选中。
简单随机抽样通常需要使用随机数表、随机数发生器或者抽签等方法来实现。
2. 系统抽样:系统抽样是按照一定的规则和系统性地从总体中选择样本,例如每隔一个固定的间隔选取一个样本。
系统抽样的优点在于操作简单,但是如果总体中存在某种周期性或者规律性的分布,可能会导致抽样结果的偏差。
3. 整群抽样:整群抽样是将总体根据某些特征进行分类,然后从每个分类中随机选择一定数量的群体作为样本。
整群抽样适用于总体中存在明显的群体结构的情况,可以提高样本的代表性。
4. 分层抽样:分层抽样是按照某种特征将总体分为若干层,然后从每一层中随机选择一定数量的样本。
分层抽样可以更好地体现总体的结构和差异,提高样本的代表性和准确性。
三、抽样分布的性质抽样分布是样本统计量的概率分布,其具有以下几个重要性质:1. 无偏性:如果样本统计量的期望值等于总体参数的真值,那么称该统计量是无偏的。
即样本统计量是对总体参数的无偏估计。
无偏性是抽样分布的重要性质,保证了样本统计量的可靠性和准确性。
2. 一致性:当样本数量趋向无穷大时,样本统计量的值趋向于总体参数的真值。
即样本统计量在大样本情况下能够接近总体参数,具有一致性。
统计学之抽样与抽样分布
正确答案: d. n/N > 0.05
8. 从一个均匀分布的总体中抽取一个样本容量为45的样本, 从什么分布?
a. 指数分布 b. 正态分布 c. 均匀分布 d. 无法判断
正确答案: b. 正态分布
考察所有900个申请者
• 考试成绩
• 总体平均成绩
xi 990
900
• 总体标准差
(xi )2 80 900
考察所有900个申请者
• 无相同工作经验的申请者比例
• 总体比例
p 648 .72 900
使用随机数表随机选择30个申请者作为样本进行研 究,从书上随机数表第三列开始
统计学之抽样与抽样分 布
2021年7月19日星期一
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布
样本平均值x 的抽样分布 样本比例 p 的抽样分布
抽样方法
n = 100
n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参 数进行很好的估计
点估计
• x 作为 的点估计值 x xi 29,910 997
30 30
• s 作为 的点估计值
s
(xi x )2 163,996 75.2
29
29
• p 作为p 的点估计值
p 20 30 .68
值得注意的是,不同的随机数会导致不同的抽样,也就会 数的不同的点估计值
抽样与抽样分布
N (1.0 2.5) 2 (4.0 2.5) 2 2 0.625 16 n
比较及结论:1. 样本均值的均值(数学期望) 等于总体均值 2. 样本均值的方差等于总体方差的1/n
样本均值的分布与总体分布的比较 (例题分析)
总体分布
.3 P(X)
抽样分布
.3 .2 .1 0
样本均值的抽样分布
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1、x2=2、x3=3 、x4=4 。总 体的均值、方差及分布如下 总体分布
.3
均值和方差
x
i 1
N
i
.2 .1 0
1 2 3 4
N
N i 1
2.5
2
2 ( x ) i
抽样中的泰坦尼克事件
在1936年美国总统选举前一份颇有名气的 杂志的工作人员做了一次民意调查, 调查兰 顿(当时任堪萨斯州州长)和罗斯福(当时总 统)中谁将担任下一界总统, 为了了解公众意 向, 调查者通过电话簿和车辆登记簿上的名 单给一大批人发了调查表, 通过分析回收的 调查表, 发现兰顿非常受欢迎,于是此杂志预 测兰顿将在选举中获胜.
系统抽样(systematic sampling)
将总体各单位按某种顺序排列,并按某种规则确 定一个随机起点,然后,每隔一定的间隔抽取一 个单位,直至抽取n个单位形成一个样本。
整群抽样(cluster sampling)
在总体中以群(或组)为单位,将简单或系统抽 样方式,抽取若干群(或)组,然后对所有抽中 的各群(或各组)中的全部单位一一进行调查。
1. t 分布是对称分布,均值为0。 2. 样本容量大于或等于30时, t 分布接近于标准正态分布,这时可 用标准正态分布来代替t 分布。 3. t 分布是一个分布族,不同自由度对应不同的 t 分布。 4. 与标准正态分布相比,t 分布的中心部分较低,两个尾部较高。 5. 变量t 的取值范围在 与 之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现从总体中抽取n=2的简单随机样本,在重复抽 样条件下,共有42=16个样本。所有样本的结果为
所有可能的n = 2 的样本(共16个)
第一个
第二个观察值
观察
1,1
1,2
1,3
1,4
2
2,1
2,2
2,3
2,4
3
3,1
3,2
3,3
3,4
4
4,1
4,2
4,3
4,4
抽样与抽样分布
样本均值的抽样分布
抽样与抽样分布
二、分层抽样
(stratified sampling)
1. 将总体单位按某种特征或某种规则划分为不 同的层,然后从不同的层中独立、随机地抽 取样本
2. 优点
保证样本的结构与总体的结构比较相近,从而 提高估计的精度
组织实施调查方便 既可以对总体参数进行估计,也可以对各层的
目标量进行估计
在重复选取容量为n的样本时,由该统计量的所有可能 取值形成的相对频数分布。
2. 随机变量是 样本统计量
样本均值, 样本比例,样本方差等
3. 结果来自容量相同的所有可能样本 4. 提供了样本统计量长远而稳定的信息,是进行推断
的理论基础,也是抽样推断科学性的重要依据
抽样与抽样分布
抽样分布的形成过程
抽样与抽样分布
4.1 常用的抽样方法
一、简单随机抽样 二、分层抽样 三、系统抽样 四、整群抽样
抽样与抽样分布
抽样方法
抽样方式
概率抽样
非概率抽样
简单随机抽样 整群抽样
多阶段抽样
分层抽样
方便抽样
系统抽样
自愿样本
配额抽样
抽样与抽样分布
判断抽样 滚雪球抽样
一、简单随机抽样
(simple random sampling)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4 。总 体的均值、方差及分布如下
总体分布
.3
.2
.1 0
1
23
均值和方差
N
xi
i1 2.5
N
4
抽样与抽样分布
N
(xi )2
2 i1
1.25
N
样本均值的抽样分布
(例题分析)
抽样与抽样分布
四、整群抽样
(cluster sampling)
1. 先将总体划分为若干个群,然后再以群作为 调查单位从中抽取部分群,然后对中选群中 的所有单位全部实施调查。
2. 特点
抽样时只需群的抽样框,可简化工作量 调查的地点相对集中,节省调查费用,方便调
查的实施 当群为总体的一个缩影时,抽样估计误差小,
样本均值的抽样分布
抽样与抽样分布
样本均值的分布与总体分布的比较 (例题分析)
总体分布
.3
.2
.1 0
1
23
= 2.5
σ2 =1.25
.3 P ( x )
抽样分布
.2
.1
0
4
1.0 1.5 2.0 2.5 3.0 3.5 4.0
x
x 2.5
2 x
0.625
抽样与抽样分布
2、样本均值的抽样分布 与中心极限定理
(例题分析)
计算出各样本的均值,如下表。并给出样本均 值的抽样分布
16个样本的均值(x)
第一个
第二个观察值
观察值 1 2 3 4
1 1.0 1.5 2.0 2.5
P(x) 0.3
0.2
2 1.5 2.0 2.5 3.0
0.1
3 2.0 2.5 3.0 3.5 4 2.5 3.0 3.5 4.0
0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
否则误差较大。
抽样与抽样分布
4.2 抽样分布(一)
(一个总体参数推断时样本统计量的抽样分布)
一、抽样分布的概念 二、样本均值的抽样分布 三、样本比率的抽样分布 四、样本方差的抽样分布
抽样与抽样分布
一、抽样分布的概念
(sampling distribution)
1. 样本统计量的概率分布,是一种理论分布
(sampling distribution)
总体
计算样本统计
样
量
本
如:样本均值
、比例、方差
抽样与抽样分布
二、样本均值的抽样分布
1. 在重复选取容量为n的样本时,由样本均值 的所有可能取值形成的相对频数分布
2. 一种理论概率分布
3. 推断总体均值的理论基础
抽样与抽样分布
1、样本均值的抽样分布
(例题分析)
x 的分布趋 于正态分布 的过程
抽样与抽样分布
3、样本均值抽样分布的数学特征
(数学期望与方差)
1. 样本均值的数学期望
E(x)
2. 样本均值的方差
中心极限定理:设从均值为,方差为 2的一个任意总
体中抽取容量为n的样本,当n充分大时,样本均值的抽 样分布近似服从均值为μ、方差为σ2/n的正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
抽样与抽样x分布
x
中心极限定理
(central limit theorem)
当总体服从正态分布N(μ,σ2)时,来自该总体的所有 容量为n的样本的均值x也服从正态分布,x 的数
学期望为μ,方差为σ2/n。即x~N(μ,σ2/n)
=10
n= 4
x 5
n =16
x 2.5
= 50 X
总体分布
x 50
x
抽样分布
抽样与抽样分布
中心极限定理
(central limit theorem)
第四章抽样与抽样分布
第 4 章 抽样与抽样分布
4.1 常用的抽样方法 4.2 抽样分布(一)
(一个总体参数推断时样本统计量的抽样分布)
4.3 抽样分布(二)
(两个总体参数推断时样本统计量的抽样分布)
4.4 中心极限定理的应用
抽样与抽样分布
学习目标
1. 了解抽样的概率抽样方法 2. 理解抽样分布的意义 3. 了解抽样分布的形成过程 4. 理解中心极限定理 5. 理解抽样分布的性质
1. 从总体N个单位中随机地抽取n个单位作为样本,使得 总体中每一个元素都有相同的机会 (概率)被抽中
2. 抽取元素的具体方法有重复抽样和不重复抽样 3. 特点
简单、直观,在抽样框完整时,可直接从中抽取样本 用样本统计量对目标量进行估计比较方便 4. 局限性 当N很大时,不易构造抽样框 抽出的单位很分散,给实施调查增加了困难 没有利用其他辅助信息以提高估计的效率
抽样与抽样分布
三、系统抽样
(systematic sampling)
1. 将总体中的各单位按一定顺序排列,在规定 的范围内随机地抽取一个单位作为初始单位, 然后按事先规定好的规则确定其他样本单位
先从数字1到k之间随机抽取一个数字r作为初始 单位,以后依次取r+k,r+2k…等单位
2. 优点:操作简便,可提高估计的精度