2015年北京西城初三二模数学试题及答案(word版)
2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)
![2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)](https://img.taocdn.com/s3/m/36469f0bf111f18582d05a3e.png)
北京市西城区2014-2015学年度第一学期期末试卷九年级数学 2015. 1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.二次函数2(+1)2y x =--的最大值是( )A .2-B .1-C .1D .22.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果ADE =120°,那么∠B 等于( ) A .130°B .120°C .80°D .60°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,如果△ABC 的面 积是3,那么△A ′B ′C ′的面积等于A .3B .6C .9D .12 6.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是A .m >2B .m ≥3C .m <5D .m ≤57.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是 A .512B .513 C .1213D .1258.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,AB =,且点A ,B ,C 的横坐标A x ,B x ,C x 满足A x <B x <C x ,那么符合上述条件的抛物线条数是( ) A .7 B .8 C .14 D .16二、填空题(本题共16分,每小题4分)9.在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-错误!未找到引用源。
2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)
![2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)](https://img.taocdn.com/s3/m/b11d0eaddd88d0d232d46a2a.png)
北京市西城区2014-2015学年度第一学期期末试卷九年级数学 2015. 1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.二次函数2(+1)2y x =--的最大值是( )A .2-B .1-C .1D .22.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果ADE =120°,那么∠B 等于( ) A .130°B .120°C .80°D .60°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,如果△ABC 的面 积是3,那么△A ′B ′C ′的面积等于A .3B .6C .9D .126.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是A .m >2B .m ≥3C .m <5D .m ≤57.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是 A .512B .513 C .1213D .1258.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,AB =A ,B ,C 的横坐标A x ,B x ,C x 满足A x <B x <C x ,那么符合上述条件的抛物线条数是( ) A .7 B .8 C .14 D .16二、填空题(本题共16分,每小题4分)9.在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-错误!未找到引用源。
2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)
![2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)](https://img.taocdn.com/s3/m/ed93adeda58da0116c1749f6.png)
北京市西城区2014-2015学年度第一学期期末试卷九年级数学 2015. 1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.二次函数2(+1)2y x =--的最大值是( )A .2-B .1-C .1D .22.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果ADE =120°,那么∠B 等于( ) A .130°B .120°C .80°D .60°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,如果△ABC 的面 积是3,那么△A ′B ′C ′的面积等于A .3B .6C .9D .12 6.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是A .m >2B .m ≥3C .m <5D .m ≤57.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是 A .512B .513 C .1213D .1258.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,AB =,且点A ,B ,C 的横坐标A x ,B x ,C x 满足A x <B x <C x ,那么符合上述条件的抛物线条数是( ) A .7 B .8 C .14 D .16二、填空题(本题共16分,每小题4分)9.在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-错误!未找到引用源。
2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)
![2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)](https://img.taocdn.com/s3/m/23eaa6b76529647d2628521b.png)
北京市西城区2014-2015学年度第一学期期末试卷九年级数学 2015. 1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.二次函数2(+1)2y x =--的最大值是( )A .2-B .1-C .1D .22.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果ADE =120°,那么∠B 等于( ) A .130°B .120°C .80°D .60°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,如果△ABC 的面 积是3,那么△A ′B ′C ′的面积等于A .3B .6C .9D .12 6.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是A .m >2B .m ≥3C .m <5D .m ≤57.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是 A .512B .513 C .1213D .1258.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,AB =,且点A ,B ,C 的横坐标A x ,B x ,C x 满足A x <B x <C x ,那么符合上述条件的抛物线条数是( ) A .7 B .8 C .14 D .16二、填空题(本题共16分,每小题4分)9.在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-错误!未找到引用源。
2015北京各区中考数学二模26题全面总结及答案
![2015北京各区中考数学二模26题全面总结及答案](https://img.taocdn.com/s3/m/11d4db4da8956bec0975e338.png)
x 的请回答:(1) 当k =1时,使得原等式成立的x 的个数为 _______; (2) 当0<k <1时,使得原等式成立的x 的个数为_______; (3) 当k >1时,使得原等式成立的x 的个数为 _______. 参考小明思考问题的方法,解决问题:关于x 的不等式240 ()x a a x+-<>0只有一个整数解,求a 的取值范围.26.(1)小明遇到下面一道题:如图1,在四边形ABCD 中,AD ∥BC ,∠ABC =90º,∠ACB =30º,BE ⊥AC 于点E ,且=CDE ACB ∠∠.如果AB =1,求CD 边的长.小明在解题过程中发现,图1中,△CDE 与△ 相似,CD 的长度等于,线段CD 与线段 的长度相等;他进一步思考:如果ACB α∠=(α是锐角),其他条件不变,那么CD 的长度可以表示为CD = ;(用含α的式子表示))(2)受以上解答过程的启发,小明设计了如下的画图题:在Rt △OMN 中,∠MON =90º,OM <ON ,OQ ⊥MN 于点Q ,直线l 经过点M ,且l ∥ON .请在直线l 上找出点P 的位置,使得NPQ ONM ∠=∠.请写出你的画图步骤,并在答题卡上完成相应的画图过程.(画出一个即可,保留画图痕迹,不要求证明)26 .阅读材料如图1,若点P 是⊙O 外的一点,线段PO 交⊙O 于点A,则PA 长是点P 与⊙O 上各点之间的最短距离.图1 图2 证明:延长PO 交⊙O 于点B ,显然PB>PA .如图2,在⊙O 上任取一点C (与点A ,B 不重合),连结PC ,OC .,,,,PO PC OC PO PA OA OA OC PA PC <+=+=∴<且∴PA 长是点P 与⊙O 上各点之间的最短距离.由此可以得到真命题:圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差.请用上述真命题解决下列问题.(1)如图3,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以BC 为直径的半圆交AB 于D ,P 是上的一个动点,连接AP ,则AP长的最小值是.图3(2)如图4,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△MN A ',连接C A ',①求线段A ’M 的长度; ②求线段C A '长的最小值.26.问题背景:在△ABC 中,AB ,BC ,AC ,求这个三角形的面积.小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC 的高,借用网格就能计算出它的面积.图4图1 图2 (1)请你直接写出△ABC 的面积________; 26.阅读下面材料:小玲遇到这样一个问题:如图1,在等腰三角形ABC 中,AC AB =,︒=∠45BAC ,22=BC ,BC AD ⊥图3小玲发现:分别以AB ,AC 为对称轴,分别作出△ABD ,△ACD 的轴对称图形,点D 的对称点分别为E ,F ,延长EB ,FC 交于点G ,得到正方形AEGF ,根据勾股定理和正方形的性质就能求出AD 的长.(如图2)请回答:BG 的长为,AD 的长为; 参考小玲思考问题的方法,解决问题:如图3,在平面直角坐标系xOy 中,点()0,3A ,()4,0B ,点P 是△OAB 的外角的角平分线AP 和BP 的交点,求点P 的坐标.CBAE图1 图226.阅读下面材料:小凯遇到这样一个问题:如图1,在四边形ABCD 中,对角线AC 、BD 相交于点O , AC =4,BD =6,∠AOB =30°,求四边形ABCD 的面积.小凯发现,分别过点A 、C 作直线BD 的垂线,垂足分别为点E 、F ,设AO 为m ,通过计算△ABD 与△BCD 的面积和使问题得到解决(如图2).请回答:(1)△ABD 的面积为 (用含m 的式子表示). (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图3,在四边形ABCD 中,对角线AC 、BD 相交于 点O ,AC =a ,BD =b ,∠AOB =α(0°<α<90°),则四边形ABCD 的面积为 (用含a 、b 、α的式子表示).26.【阅读学习】 刘老师提出这样一个问题:已知α为锐角,且tan α=13,求sin2α的值.小娟是这样解决的:如图1,在⊙O 中,AB 是直径,点C 在⊙O 上,∠BAC =α,所以∠ACB =90°,tan α=BCAC=13.易得∠BOC =2α.设BC =x ,则AC =3x ,则AB.作CD ⊥AB 于D ,求出CD = (用含x 的式子表示),可求得sin2α=CDOC= . 【问题解决】已知,如图2,点M 、N 、P 为圆O 上的三点,且∠P =β,tan β =12,求sin2β的值.图1图2图326. 如图,在平面直角坐标系xOy 中,矩形ABCD 各边都平行于坐标轴,且A (-2,2),C(3,-2).对矩形ABCD 及其内部的点进行如下操作:把每个点的横坐标乘以a ,纵坐标乘以b ,将得到的点再向右平移k (0k >)个单位,得到矩形''''A B C D 及其内部的点(''''A B C D 分别与ABCD 对应).E (2,1)经过上述操作后的对应点记为'E . (1)若a =2,b =-3,k =2,则点D 的坐标为 ,点'D 的坐标为 ; (2)若'A (1,4),'C (6,-4),求点'E 的坐标.26.阅读下面的材料:小明遇到一个问题:如图1,在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G . 如果3AF EF =,求CDCG的值. 他的做法是:过点E 作EH ∥AB 交BG 于点H ,那么可以得到△BAF ∽△HEF . 请回答:(1)AB 和EH 之间的数量关系是 ,CG 和EH 之间的数量关系是 ,图1图2CDCG的值为 . (2)参考小明思考问题的方法,解决问题:如图2,在四边形ABCD 中,DC ∥AB ,点E 是BC 延长线上一点,AE 和BD 相交于点F .如果2AB CD =,23BC BE =,求AFEF的值.图1 图226.在平面内,将一个图形以任意点O 为旋转中心,逆时针...旋转一个角度θ,得到图形'G ,再以O 为中心将图形放大或缩小得到图形''G ,使图形''G 与图形G 对应线段的比为k ,并且图形G 上的任一点P ,它的对应点''P 在线段'OP 或其延长线上;我们把这种图形变换叫做旋转相似变换,记为()O θ,k ,其中点O 叫做旋转相似中心,θ叫做旋转角,叫做相似比. 如图1中的线段''OA 便是由线段OA 经过()302︒O ,得到的.(1)如图2,将△ABC 经过☆ ()901,︒后得到△'''A B C ,则横线上“☆”应填下列四个点()00O ,、()01D ,、()0E ,-1、()12C ,中的点 . (2)如图3,△ADE 是△ABC 经过()A θ,k 得到的,90︒=EAB ∠,12cos EAC =∠ 则这个图形变换可以表示为(),A .HG F ECDBAFECB A D G 'G k图2图3O26.如图1,在□ABCD 中,点E 是BC 边上的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G ,若AB =6,3AF EF =,求DG 的长.小米的发现,过点E 作交BG 于点H (如图2),经过推理和计算能够使问题得到解决.则DG = .如图3,四边形ABCD 中,AD ∥BC ,点E 是射线DM 上的一点,连接BE 和AC 相交于点F ,若BC aAD =,CD bCE =,求BFEF的值(用含EH AB ∥,a 图1图2图326.如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.(1)如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. (2)如图③,在△ABC 中,∠A <∠B <∠C .①利用尺规作出△ABC 的自相似点P (不写出作法,保留作图痕迹);②如果△ABC 的内心P 是该三角形的自相似点,请直接写出该三角形三个内角的度数.BBC①②CBC③答案26. (本小题满分5分)解:(1)当k=1时,使1 ;…………………………………….(2)当0<k<1时,2 ;(3)当k>1时,使1 .…..解决问题:将不等式240 (x a ax+-<研究函数2(0)y x a a=+>与函数4yx=∵函数4yx=的图象经过点A(1,4),B函数2y x=的图象经过点C(1,1),D若函数2(y x=+3a=,结合图象可知,当03a<<时,关于x的不等式24(0)x a ax+<>只有一个整数解.也就是当03a<<时,关于x的不等式240()x a ax+-<>0只有一个整数解. ……………………5分26.解:(1)CAD BC. ……………………………………………………………3分1tan α.……………………………………………………………………………4分 (2)方法1:如图8,以点N 为圆心,ON 为半径作圆,交直线l 于点1P ,2P ,则点 1P ,2P 为符合题意的点.……………………………………………… 5分 方法2:如图9,过点N 画NO 的垂线1m ,画NQ 的垂直平分线2m ,直线1m 与2m 交于点R ,以点R 为圆心,RN 为半径作圆,交直线l 于点1P ,2P ,则点1P ,2P 为符合题意的点. ……………………………………… 5分26. 解:(1)△ABC 的面积是4.5;…….2分(2)如右图: …….4分△MNP 的面积是7. …….5分26.解:BG 的长为2,AD 的长为22+;…………………2分如图,过点P 分别作x PC ⊥轴于点C ,y PD ⊥轴于点D ,AB PE ⊥于点E …………………3分∵AP 和BP 是△OAB 的外角的角平分线 ∴CAP EAP ∠=∠,EBP DBP ∠=∠ ∴PD PE PC ==∴四边形OCPD 是正方形,AE AC =,BE BD =…………4分∴DO PD CP OC === ∵()0,3A ,()4,0B ∴5=AB∴12=++=+BO AB OA OD OC∴6==OD OC ,∴6==PD CP ∴()6,6P ……………………5分26. 解:(1)32m ;……………………………………………………………………………1分(2)由题意可知∠AEO =90°.∵ AO = m ,∠AOB =30°, ∴AE =12m .∴S △ABD =m AE BD 2321=⋅. 同理,CF =1(4)2m -.∴S △BCD =m CF BD 23621-=⋅.…………………………………………………2分 ∴S 四边形ABCD = S △ABD +S △BCD 6=.…………………………………………………3分解决问题:αsin 21⋅ab .………………………………………………………………5分 26.解:10103xCD =. ……………………………………………………………………… 1分Sin2α=CD OC=53. ……………………………………………………………………… 2分 如图,连接NO ,并延长交⊙O 于Q ,连接MQ ,MO ,作NO MH ⊥于H . 在⊙O 中,∠NMQ =90°. ∵ ∠Q=∠P =β,OM=ON,∴ ∠MON=2∠Q=2β. ………………………………………… 3分∵ tan β=21,∴ 设MN =k ,则MQ =2k ,∴ NQ =k MQ MN 522=+.∴ OM=21NQ=k 25. ∵ MH NQ MQ MN S NMQ ⋅=⋅=∆2121, ∴ MH k k k ⋅=⋅52 . ∴MH=k 552. ………………………………………………………………………………… 4分 在MHORt ∆中,sin2β=sin ∠MON =5425552==kkOM MH . …………………………………… 5分26. 解:(1)D (3,2),'D (8,-6),..................................................................................2分 (2)依题可列:21,3 6.a k a k -+=⎧⎨+=⎩则a =1,k =3,2b =4,b =2,.........................................................4分(a ,b ,k 求出一个给1分) ∵点E (2,1),∴'E (5,2)......................................................................................................5分26.(本小题满分5分)解:(1)AB =3EH ,CG =2EH ,32.………………………………………………3分 (2)如图,过点E 作EH ∥AB 交BD 的延长线于点H .∴ EH ∥AB ∥CD . ∵ EH ∥CD , ∴23CD BC EH BE ==, ∴ CD =23EH . 又∵2AB CD=,∴ AB =2CD =43EH .∵ EH ∥AB ,∴ △ABF ∽△EHF . ∴4433AF AB EH EH EF EH ===.……………………………………5分 26.(1)E ………………………………………………………………………………2分 (2)60,k︒………………………………………………………5分26.答案:DG =2;……………………………………………………………………………………2 如图(画图正确,正确标出点E 、F )………………………………………………………………3 过E 作EG ∥AD ,延长CA 交于点G ∴△CAD ∽△CGE .∴AD CDGE CE=. ∵CD bCE =,HF E CB AD∴ADb GE=.∴AD bEG=. (4)∵AD∥BC,∴BC∥EG.∴△GEF∽△CBF.∴BC BF EG EF=.∵BC aAD=,∴BC abEG=.∴BFabEF= (5)26.解:⑴在Rt△ABC中,∠ACB=90°,CD是AB上的中线,∴12CD AB=,∴CD=BD.∴∠BCE=∠ABC.……………………………….(1分)∵BE⊥CD,∴∠BEC=90°,∴∠BEC=∠ACB.……………………………….(2分)∴△BCE∽△ABC.∴E是△ABC的自相似点.………………………….(3分)⑵①作图略.(方法不唯一)……………………….(5分)②连接PB、PC.∵P为△ABC的内心,∴12PBC ABC∠=∠,12PCB ACB∠=∠.∵P为△ABC的自相似点,∴△BCP∽△ABC.∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC =2∠A,∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°.∴∠A+2∠A+4∠A=180°.∴1807A∠=.∴该三角形三个内角的度数分别为1807、3607、7207.…………….(6分)。
2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)
![2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)](https://img.taocdn.com/s3/m/ccaa092e55270722192ef7ec.png)
北京市西城区2014-2015学年度第一学期期末试卷九年级数学 2015. 1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.二次函数2(+1)2y x =--的最大值是( )A .2-B .1-C .1D .22.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果ADE =120°,那么∠B 等于( ) A .130°B .120°C .80°D .60°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,如果△ABC 的面 积是3,那么△A ′B ′C ′的面积等于A .3B .6C .9D .126.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是A .m >2B .m ≥3C .m <5D .m ≤57.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是 A .512B .513 C .1213D .1258.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,AB =A ,B ,C 的横坐标A x ,B x ,C x 满足A x <B x <C x ,那么符合上述条件的抛物线条数是( ) A .7 B .8 C .14 D .16二、填空题(本题共16分,每小题4分)9.在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-错误!未找到引用源。
2015北京西城中考二模数学答案(纯WORD)
![2015北京西城中考二模数学答案(纯WORD)](https://img.taocdn.com/s3/m/cb6b8a3eb90d6c85ec3ac68f.png)
北京市西城区2015年初三二模数学试卷参考答案及评分标准2015. 6二、填空题(本题共18分,每小题3分) 三、解答题(本题共30分,每小题5分) 17.证明:如图1. ∵ △ABC 是等边三角形,∴ AC =BC ,∠ACB =∠ABC =60°.………………………………… 1分 ∵D ,E 两点分别在AB ,BC 的延长线上, ∴ ∠ACE =∠CBD =120°. …………………2分在△ACE 和△CBD 中,,,AC CB ACE CBD CE BD =⎧⎪∠∠⎩=⎪⎨,= ……………………… 3分∴ △ACE ≌△CBD .……………………… 4分∴ ∠E =∠D .…………………………………………………… 5分18.解: 1012cos 30()1(3)3π-++-2311=+-- ………………………………………………4分 1=. …………………………………………………………… 5分 19.解: (2)(2)(21)(2)x x x x +----=224(252)x x x ---+………………………………………………2分 =224252x x x --+-=256x x -+-.……………………………………………………3分∵ 2540x x --=, ∴ 254x x -=.…………………………………………………… 4分 ∴ 原式=2(5)64610x x ---=--=-.………………………………5分 20.解:去分母,得 3(3)2x x --=.………………………………………… 1分 去括号,得 332x x -+=. …………………………………………2分 整理,得 21x =-.…………………………………………… 3分解得 12x =-. ……………………………………………………… 4分经检验,12x =-是原方程的解. ………………………………………5分所以原方程的解是12x =-.21.解:设牙膏每盒x 元,牙刷每支y 元.…………………………………1分 由题意,得 713121,1415187.x y x y +=+=⎧⎨⎩……………………………………… 2分解得 85.x y ==⎧⎨⎩,……………………………………………………… 3分(124125)88-⨯=(盒). ……………………………………………… 4分 答:第三天卖出牙膏8盒.…………………………………………………5分 22.解:(1)当m =0 时,该函数为一次函数33y x =--,它的图象与x 轴有公共点.………………………………… 1分当m ≠0 时,二次函数2(3)3y mx m x =+--.2(3)4(3)m m ∆=--⨯-26912m m m =-++2269(3)m m m =++=+. ∵ 无论m 取何实数,总有2(3)m +≥0,即∆≥0, ∴ 方程2(3)30mx m x +--=有两个实数根.∴ 此时函数2(3)3y mx m x =+--的图象与x 轴有公共点.…………2分 综上所述,无论m 取何实数,该函数的图象与x 轴总有公共点.(2)∵m >0,∴ 该函数为二次函数,它的图象与x 轴的公共点的横坐标为(3)(3)2m m x m --±+=.∴ 11x =-,23x m=. …………………………………………… 3分∵ 此抛物线与x 轴公共点的横坐标为整数,∴正整数m =1或3.……………………………………………………5分四、解答题(本题共20分,每小题5分) 23.(1)证明:如图2.∵点C 与点A 重合,折痕为EF ,∴12∠=∠,AE =EC .∵ 四边形ABCD 为平行四边形, ∴ AD ∥BC . ∴ 32∠=∠. ∴ 13∠=∠. ∴ AE =AF∴ AF =EC . 又∵ AF ∥EC ,∴ 四边形AFCE 是平行四边形.……………………………… 2分 又AE =AF ,∴ 四边形AFCE 为菱形.……………………………………… 3分(2)解:如图3,作AG ⊥BE 于点G ,则∠AGB=∠AGE=90°. ∵点D 的落点为点D ′ ,折痕为EF ,∴D F DF '=. ∵四边形ABCD 为平行四边形, ∴ AD =BC .又∵AF =EC ,∴AD AF BC EC -=-,即DF BE =. ∵在Rt △AGB 中,∠AGB=90°,∠B =45°,AB =∴AG =GB =6. ∵ 四边形AFCE 为平行四边形, ∴ AE ∥FC . ∴ ∠4=∠5=60°.∵ 在Rt △AGE 中,∠AGE =90°,∠4=60°, ∴ tan60AGGE ==︒∴6BE BG GE =+=+.∴6D F '=+…………………5分 24.解:(1)③④.………………………………… 2分 (2)补全统计图见图4. ………………… 3分 1055万人. ………………………… 4分(3)1.3%. …………………………… 5分25. 解:(1)补全图形如图5所示. …………… 1分 答:PG 与⊙O 相切.证明:如图6,连接OG .∵ PF =PG , ∴ ∠1=∠2.又∵OG =OA , ∴ ∠3=∠A . ∵ CD ⊥AB 于点E , ∴ ∠A +∠AFE =90°. 又∵∠2 =∠AFE , ∴ ∠3+∠1=90°. ……………………… 2分 即 OG ⊥PG . ∵ OG 为⊙O 的半径, ∴ PG 与⊙O 相切. …………………… 3分(2)解:如图7,连接CG . ∵ CD ⊥AB 于点E ,∴ ∠OEC =90°. ∵ DG ∥AB , ∴∠GDC =∠OEC =90°. ∵∠GDC 是⊙O 的圆周角, ∴ CG 为⊙O 的直径. ∵ E 为半径OA 的中点,∴ 22OA OCOE ==. ∴ ∠OCE =30°即∠GCP =30°.又∵∠CGP =90°,2CG OA ==∴tan 4PG CG GCP =⋅∠==. ………………… 5分26.解:(1)CADBC . …………………………………………… 3分1tan α.………………………………………………………………4分 (2)方法1:如图8,以点N 为圆心,ON 为半径作圆,交直线l 于点1P ,2P ,则点1P ,2P 为符合题意的点.………………………………… 5分方法2:如图9,过点N 画NO 的垂线1m ,画NQ 的垂直平分线2m ,直线1m 与2m 交于点R ,以点R 为圆心,RN 为半径作圆,交直线l 于点1P ,2P ,则点1P ,2P 为符合题意的点. ……………………………………… 5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.解:(1)∵ 一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,∴ 20,4 1.k b k b +=⎧⎨+=⎩解得1,21.k b ⎧=⎪⎨⎪=-⎩……………………………………………… 1分∴ 1211-=x y . …………………………………… 2分 ∵ 22224)(42a a x ax x y -+-=+-=,∴ 二次函数图象的顶点坐标为2(,4)a a -.……………… 3分(2)①当25=a 时,4522+-=x x y .………………………… 4分 如图10,因为10y >且2y ≤0,由图象得2<x ≤4. … 6分②136≤a <52.……………………………7分 28.解:(1)CH=AB . ………………………………… 1分 (2)结论成立.………………………………… 2分 证明:如图11,连接BE . 在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°. ∵ DE=DF , ∴ AF=CE .在△ABF 和△CBE 中,,,,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBE .∴ ∠1=∠2.……………………………………3分 ∵ EH ⊥BF ,∠BCE =90°,∴ H ,C 两点都在以BE 为直径的圆上. ∴ ∠3=∠2. ∴ ∠3=∠1. ∵ ∠3+∠4=90°,∠1+∠HBC =90°, ∴ ∠4=∠HBC .∴ CH=CB .……………………………………… 5分 ∴ CH=AB .…………………………………… 6分(3)3.………………………………………………7分29.解:(1)点A .………………………………………1分 画图见图12.(画出一个即可)………… 2分△AMN (或△AJK ). …………………… 3分(2)如图13,作OL ⊥EF 于点L .∵ 线段EF 为点O 的τ型线, ∴ OL 即为线段EF 关于点O 的τ型三角形的高. ∵线段EF 关于点O 的τ型三角形的面积为,∴OL =. ……………………………… 4分 ∵ 2OE =,OF m =,∴EL ==∴cos 1EL OE ∠== ∴cos 2cos 1OL OLOF ===∠∠∴m =…………………………………………………………6分(3)n ≤54-.………………………………………………………8分。
2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)
![2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)](https://img.taocdn.com/s3/m/03930c6ce2bd960590c677c5.png)
北京市西城区2014-2015学年度第一学期期末试卷九年级数学 2015. 1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.二次函数2(+1)2y x =--的最大值是( )A .2-B .1-C .1D .22.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果ADE =120°,那么∠B 等于( ) A .130°B .120°C .80°D .60°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,如果△ABC 的面 积是3,那么△A ′B ′C ′的面积等于A .3B .6C .9D .126.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是A .m >2B .m ≥3C .m <5D .m ≤57.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是 A .512B .513 C .1213D .1258.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,AB =A ,B ,C 的横坐标A x ,B x ,C x 满足A x <B x <C x ,那么符合上述条件的抛物线条数是( ) A .7 B .8 C .14 D .16二、填空题(本题共16分,每小题4分)9.在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-错误!未找到引用源。
2015年北京西城初三二模数学试题及答案(word版)
![2015年北京西城初三二模数学试题及答案(word版)](https://img.taocdn.com/s3/m/6b3eea03844769eae009edf8.png)
北京市西城区2015年初三二模试卷数 学 2015.6一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.2015年羊年除夕夜的10点半,在央视春晚送红包的活动中,微信“摇一摇”峰值的摇动次数达到8.1亿次/分钟,送出微信红包120 000 000个.将120 000 000用科学记数法表示应为( )A. 90.1210⨯B. 71.210⨯C. 81.210⨯D. 71210⨯2.如图,BD ∥AC ,AD 与BC 交于点E ,如果∠BCA =50°,∠D =30°, 那么∠DEC 等于( )A. 75°B. 80°C. 100°D. 120°3.64的立方根是( )A. 8±B. 4±C. 8D. 4 4.函数2y x =-中,自变量x 的取值范围是( ) A.2x ≠ B. x ≥2 C. x >2 D. x ≥2-5.如图,△ABC 中,D ,E 两点分别在AB ,AC 边上,且DE ∥BC , 如果23AD AB =,AC =6,那么AE 的长为( ) A. 3 B. 4 C. 9 D. 126.某居民小区开展节约用电活动,该小区100户家庭4月份的节电情况如下表所示. 节电量(千瓦时) 20 30 40 50 户数(户)20303020那么4月份这100户家庭的节电量(单位:千瓦时)的平均数是( )A. 35B. 26C. 25D. 20 7. 若一个正六边形的半径为2,则它的边心距等于( ) A. 2 B. 1 C. 3 D. 238.如图,△ABC 的边AC 与⊙O 相交于C ,D 两点,且经过圆心O , 边AB 与⊙O 相切,切点为B .如果∠A =34°,那么∠C 等于( ) A .28° B .33° C .34° D .56°9.如图,将正方形OABC 放在平面直角坐标系xOy 中,O 是原点,若点A 的坐标为(1,3),则点C 的坐标为( )A .(3,1)B .(1,3)-C .(3,1)-D .(3,1)--10.在平面直角坐标系xOy 中,点M 的坐标为(,1)m .如果以原点为圆心,半径为1的⊙O上存在点N ,使得45OMN ∠=︒,那么m 的取值范围是( )A .1-≤m ≤1 B. 1-<m <1 C. 0≤m ≤1 D. 0<m <1二、填空题(本题共18分,每小题3分)11.若2(2)10m n ++-= 则m n -= .12.若一个凸n 边形的内角和为1080︒,则边数n = . 13.两千多年前,我国的学者墨子和他的学生做了小孔成像的实验.他的做法是,在一间黑暗的屋子里,一面墙上开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小华在学习了小孔成像的原理后,利用如下装置来验证小孔成像的现象.已知一根点燃的蜡烛距小孔20cm ,光屏在距小孔30cm 处,小华测量了蜡烛的火焰高度为2cm ,则光屏上火焰 所成像的高度为______cm .14.请写出一个图象的对称轴是直线1x =,且经过(0,1)点的二次函数的表达式:_____________.15.如图,在平面直角坐标系xOy 中,直线3y x =与双曲线ny x =(n ≠0)在第一象限的公共点是(1,)P m .小明说:“从图象上可 以看出,满足3nx x>的x 的取值范围是1x >.”你同意他的 观点吗?答: .理由是 .16.如图,在平面直角坐标系xOy 中,点D 为直线2y x =上且在第一象限内的任意一点,1DA ⊥x 轴于点1A ,以1DA 为边在1DA 的右侧 作正方形111A B C D ;直线1OC 与边1DA 交于点2A ,以2DA 为边在 2DA 的右侧作正方形222A B C D ;直线2OC 与边1DA 交于点3A ,以 3DA 为边在3DA 的右侧作正方形333A B C D ,……,按这种方式进行下去,则直线1OC 对应的函数表达式为 ,直线3OC 对应的函数表达式为 .三、解答题(本题共30分,每小题5分)17.如图,△ABC 是等边三角形,D ,E 两点分别在AB ,BC的延长线上,BD =CE ,连接AE ,CD . 求证:∠E =∠D .18.计算:1012cos 30()13(3)3π-++---.19.已知2540x x --=,求代数式(2)(2)(21)(2)x x x x +----的值.20.解方程:231233x x x x-=--.21.列方程(组)解应用题:某超市的部分商品账目记录显示内容如下:商品 时间 第一天 第二天 第三天 牙膏(盒) 7 14 ? 牙刷(支) 13 15 12 营业额(元)121187124求第三天卖出牙膏多少盒.22.已知关于x 的函数 2(3)3y mx m x =+--.(1)求证:无论m 取何实数,此函数的图象与x 轴总有公共点;(2)当m >0时,如果此函数的图象与x 轴公共点的横坐标为整数,求正整数m 的值.四、解答题(本题共20分,每小题5分)23.如图,将平行四边形纸片ABCD按如图方式折叠,使点C与点A重合,点D的落点记为点D′ ,折痕为EF,连接CF.(1)求证:四边形AFCE是菱形;(2)若∠B=45°,∠FCE=60°,AB=62,求线段D′F的长.24.1949年以来,北京市人口结构变迁经历了5个阶段,从2001年至今已进入第五个阶段——人口膨胀增长阶段.以下是根据北京市统计局2015年1月的相关数据制作的统计图.根据以上信息解决下列问题:(1)以下说法中,正确的是(请填写所有正确说法的序号)①从2011年至2014年,全市常住人口数在逐年下降;②2010年末全市常住人口数达到近年来的最高值;③2014年末全市常住人口比2013年末增加36.8万人;④从2011年到2014年全市常住人口的年增长率连续递减.(2)补全“2014年末北京市常住人口分布图”,并回答:2014年末朝阳、丰台、石景山、海淀四区的常住人口总数已经达到多少万人?(3)水资源缺乏制约着北京市的人口承载能力,为控制人口过快增长,到2015年底,北京市要将全市常住人口数控制在2180万以内(即不超过2180万).为实现这一目标,2015年的全市常住人口的年增长率应不超过.(精确到0.1%)25.如图1,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,点F 在线段ED 上.连接AF 并延长交 ⊙O 于点G ,在CD 的延长线上取一点P ,使PF=PG . (1)依题意补全图形,判断PG 与⊙O 的位置关系,并证明你的结论; (2)如图2,当E 为半径OA 的中点,DG ∥AB ,且=23OA 时,求PG 的长.26.(1)小明遇到下面一道题:如图1,在四边形ABCD 中,AD ∥BC ,∠ABC =90º,∠ACB =30º,BE ⊥AC 于点E ,且=CDE ACB ∠∠.如果AB =1,求CD 边的长.小明在解题过程中发现,图1中,△CDE 与△ 相似,CD 的长度等于,线段CD 与线段 的长度相等;他进一步思考:如果ACB α∠=(α是锐角),其他条件不变,那么CD 的长度可以表示为CD = ;(用含α的式子表示)(2)受以上解答过程的启发,小明设计了如下的画图题: 在Rt △OMN 中,∠MON =90º,OM <ON ,OQ ⊥MN 于点Q ,直线l 经过点M ,且l ∥ON .请在直线l 上找出点P 的位置,使得NPQ ONM ∠=∠. 请写出你的画图步骤,并在答题卡上完成相应的画图过程.(画出一个即可,保留画图痕迹,不要求证明)五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,二次函数2224y x ax =-+(其中a >2).(1)求一次函数的表达式及二次函数图象的顶点坐标(用含a 的代数式表示); (2)利用函数图象解决下列问题: ①若25=a ,求当10y >且2y ≤0时,自变量x 的取值范围; ②如果满足10y >且2y ≤0时的自变量x 的取值范围内恰有一个整数,直接写出a的取值范围.8.正方形ABCD 的边长为3,点E ,F 分别在射线DC ,DA 上运动,且DE=DF .连接BF ,作EH ⊥BF 所在直线于点H ,连接CH .(1)如图1,若点E 是DC 的中点,CH 与AB 之间的数量关系是 ; (2)如图2,当点E 在DC 边上且不是DC 的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E ,F 分别在射线DC ,DA 上运动时,连接DH ,过点D 作直线DH的垂线,交直线BF 于点K ,连接CK ,请直接写出线段CK 长的最大值.29.对于平面直角坐标系xOy 中的点P 和图形G ,给出如下定义:在图形G 上若存在两点M ,N ,使△PMN 为正三角形,则称图形G 为点P 的τ型线,点P 为图形G 的τ型点, △PMN 为图形G 关于点P 的τ型三角形. (1)如图1,已知点(0,3)A -,(3,0)B ,以原点O 为圆心的⊙O 的半径为1.在A ,B两点中,⊙O 的τ型点是____,画出并回答⊙O 关于该τ型点的τ型三角形;(画 出一个即可)(2)如图2,已知点(0,2)E ,点(,0)F m (其中m >0).若线段EF 为原点O 的τ型线,且线段EF 关于原点O 的τ型三角形的面积为439,求m 的值; (3)若(0,2)H -是抛物线2y x n =+的τ型点,直接写出n 的取值范围.北京市西城区2015年初三二模数学试卷参考答案及评分标准2015. 6一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案 CBDBBACACA二、填空题(本题共18分,每小题3分) 11 12 13 14 15163- 83221y x x =-+(答案不唯一)不同意x 的取值范围是10x -<<或1x >(或其他正确结论)23y x =1415y x =三、解答题(本题共30分,每小题5分) 17.证明:如图1.∵ △ABC 是等边三角形,∴ AC =BC ,∠ACB =∠ABC =60°.……………………………………………… 1分∵ D ,E 两点分别在AB ,BC 的延长线上,∴ ∠ACE =∠CBD =120°. …………………2分在△ACE 和△CBD 中,,,AC CB ACE CBD CE BD =⎧⎪∠∠⎩=⎪⎨,= ……………………… 3分∴ △ACE ≌△CBD .……………………… 4分∴ ∠E =∠D . (5)分18.解: 1012cos 30()13(3)3π-++---3233112=⨯++-- ………………………………………………………………4分 231=+. ………………………………………………………………………… 5分 19.解: (2)(2)(21)(2)x x x x +----=224(252)x x x ---+………………………………………………………………2分 =224252x x x --+-=256x x -+-.………………………………………………………………………3分图1∵ 2540x x --=,∴ 254x x -=.…………………………………………………………………… 4分 ∴ 原式=2(5)64610x x ---=--=-.……………………………………………5分 20.解:去分母,得 3(3)2x x --=.…………………………………………………… 1分 去括号,得 332x x -+=. ………………………………………………………2分整理,得 21x =-.……………………………………………………………… 3分解得 12x =-. …………………………………………………………………… 4分经检验,12x =-是原方程的解. …………………………………………………5分所以原方程的解是12x =-.21.解:设牙膏每盒x 元,牙刷每支y 元.…………………………………………………1分 由题意,得 713121,1415187.x y x y +=+=⎧⎨⎩…………………………………………………… 2分解得 85.x y ==⎧⎨⎩,……………………………………………………………………… 3分(124125)88-⨯=(盒). ………………………………………………………… 4分 答:第三天卖出牙膏8盒.………………………………………………………………5分22.解:(1)当m =0 时,该函数为一次函数33y x =--,它的图象与x 轴有公共点. (1)分当m ≠0 时,二次函数2(3)3y mx m x =+--.2(3)4(3)m m ∆=--⨯-26912m m m =-++2269(3)m m m =++=+. ∵ 无论m 取何实数,总有2(3)m +≥0,即∆≥0, ∴ 方程2(3)30mx m x +--=有两个实数根.∴ 此时函数2(3)3y mx m x =+--的图象与x 轴有公共点.……………2分 综上所述,无论m 取何实数,该函数的图象与x 轴总有公共点.(2)∵m >0,∴ 该函数为二次函数,它的图象与x 轴的公共点的横坐标为(3)(3)2m m x m--±+=.∴ 11x =-,23x m=. ……………………………………………………… 3分 ∵ 此抛物线与x 轴公共点的横坐标为整数,∴正整数m =1或3.……………………………………………………………5分四、解答题(本题共20分,每小题5分)23.(1)证明:如图2.∵点C 与点A 重合,折痕为EF ,∴12∠=∠,AE =EC .∵ 四边形ABCD 为平行四边形,∴ AD ∥BC .∴ 32∠=∠.∴ 13∠=∠. ∴ AE =AF .…………………………………………………………………1分∴ AF =EC .又∵ AF ∥EC ,∴ 四边形AFCE 是平行四边形.………………………………………… 2分又AE =AF ,∴ 四边形AFCE 为菱形.………………………………………………… 3分(2)解:如图3,作AG ⊥BE 于点G ,则∠AGB=∠AGE=90°.∵ 点D 的落点为点D ′ ,折痕为EF ,∴D F DF '=. ∵四边形ABCD 为平行四边形, ∴ AD =BC .又∵AF =EC ,∴AD AF BC EC -=-,即DF BE =. ∵在Rt △AGB 中,∠AGB=90°,∠B =45°,AB =62,∴AG =GB =6. ∵ 四边形AFCE 为平行四边形,∴ AE ∥FC .∴ ∠4=∠5=60°.∵ 在Rt △AGE 中,∠AGE =90°,∠4=60°,∴23tan60AG GE ==︒. ∴ 623BE BG GE =+=+.∴ 623D F '=+.…………………5分图2图324.解:(1)③④.………………………………… 2分(2)补全统计图见图4. ………………… 3分1055万人. ………………………… 4分 (3)1.3%. …………………………………………………………………………… 5分25. 解:(1)补全图形如图5所示. ………………………………………………………… 1分 答:PG 与⊙O 相切.证明:如图6,连接OG .∵ PF =PG ,∴ ∠1=∠2.又∵OG =OA ,∴ ∠3=∠A .∵ CD ⊥AB 于点E ,∴ ∠A +∠AFE =90°.又∵∠2 =∠AFE ,∴ ∠3+∠1=90°. ……………………… 2分即 OG ⊥PG .∵ OG 为⊙O 的半径,∴ PG 与⊙O 相切. …………………… 3分(2)解:如图7,连接CG .∵ CD ⊥AB 于点E ,∴ ∠OEC =90°.∵ DG ∥AB ,∴∠GDC =∠OEC =90°.∵∠GDC 是⊙O 的圆周角,∴ CG 为⊙O 的直径.∵ E 为半径OA 的中点,∴ 22OA OC OE ==. ∴ ∠OCE =30°即∠GCP =30°.又∵∠CGP =90°,243CG OA ==,∴3tan 4343PG CG GCP =⋅∠=⨯=. …………………………… 5分 26.解:(1)CAD ,3,BC . …………………………………………………………… 3分1tan α.……………………………………………………………………………4分 (2)方法1:如图8,以点N 为圆心,ON 为半径作圆,交直线l 于点1P ,2P ,则点 1P ,2P 为符合题意的点.……………………………………………… 5分 方法2:如图9,过点N 画NO 的垂线1m ,画NQ 的垂直平分线2m ,直线1m 与图5 图6 图7 图42m 交于点R ,以点R 为圆心,RN 为半径作圆,交直线l 于点1P ,2P , 则点1P ,2P 为符合题意的点. ……………………………………… 5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.解:(1)∵ 一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,∴ 20,4 1.k b k b +=⎧⎨+=⎩解得1,21.k b ⎧=⎪⎨⎪=-⎩……………………………………………………………… 1分∴ 1211-=x y . ………………………………………………………… 2分 ∵ 22224)(42a a x ax x y -+-=+-=,∴ 二次函数图象的顶点坐标为2(,4)a a -.………………………………… 3分(2)①当25=a 时,4522+-=x x y . ………………………………… 4分如图10,因为10y >且2y ≤0,由图象得2<x ≤4. ………………………… 6分②136≤a <52.……………………………7分 28.解:(1)CH=AB . ………………………………… 1分(2)结论成立.………………………………… 2分证明:如图11,连接BE . 图8图9 图10在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°.∵ DE=DF ,∴ AF=CE .在△ABF 和△CBE 中, ,,,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBE .∴ ∠1=∠2.……………………………………………………………………3分 ∵ EH ⊥BF ,∠BCE =90°,∴ H ,C 两点都在以BE 为直径的圆上.∴ ∠3=∠2.∴ ∠3=∠1.∵ ∠3+∠4=90°,∠1+∠HBC =90°,∴ ∠4=∠HBC .∴ CH=CB .………………………………………………………………… 5分 ∴ CH=AB .………………………………………………………………… 6分(3)323+.………………………………………………………………………7分29.解:(1)点A .………………………………………1分画图见图12.(画出一个即可)………… 2分△AMN (或△AJK ). …………………… 3分(2)如图13,作OL ⊥EF 于点L .∵ 线段EF 为点O 的τ型线,∴ OL 即为线段EF 关于点O 的τ型三角形的高.∵线段EF 关于点O 的τ型三角形的面积为439, ∴233OL =. ……………………………… 4分 ∵ 2OE =,OF m =, ∴222223262()33EL OE OL =-=-=. ∴ 6cos 13EL OE ∠==. ∴ 2cos 2cos 1OL OL OF ===∠∠. 图13 图11图12∴2m=.………………………………………………………………………6分(3)n≤54 -.……………………………………………………………………………8分。
2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)
![2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)](https://img.taocdn.com/s3/m/374c962b6edb6f1aff001fb2.png)
北京市西城区2014-2015学年度第一学期期末试卷九年级数学 2015. 1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.二次函数2(+1)2y x =--的最大值是( )A .2-B .1-C .1D .22.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果ADE =120°,那么∠B 等于( ) A .130°B .120°C .80°D .60°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,如果△ABC 的面 积是3,那么△A ′B ′C ′的面积等于A .3B .6C .9D .126.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是A .m >2B .m ≥3C .m <5D .m ≤57.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是 A .512B .513 C .1213D .1258.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,AB =A ,B ,C 的横坐标A x ,B x ,C x 满足A x <B x <C x ,那么符合上述条件的抛物线条数是( ) A .7 B .8 C .14 D .16二、填空题(本题共16分,每小题4分)9.在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-错误!未找到引用源。
2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)
![2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)](https://img.taocdn.com/s3/m/bd5c38ccba0d4a7302763aeb.png)
北京市西城区2014-2015学年度第一学期期末试卷九年级数学 2015. 1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.二次函数2(+1)2y x =--的最大值是( )A .2-B .1-C .1D .22.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果ADE =120°,那么∠B 等于( ) A .130°B .120°C .80°D .60°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,如果△ABC 的面 积是3,那么△A ′B ′C ′的面积等于A .3B .6C .9D .126.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是A .m >2B .m ≥3C .m <5D .m ≤57.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是 A .512B .513 C .1213D .1258.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,AB =A ,B ,C 的横坐标A x ,B x ,C x 满足A x <B x <C x ,那么符合上述条件的抛物线条数是( ) A .7 B .8 C .14 D .16二、填空题(本题共16分,每小题4分)9.在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-错误!未找到引用源。
2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)
![2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)](https://img.taocdn.com/s3/m/0573cbfe4028915f804dc283.png)
北京市西城区2014-2015学年度第一学期期末试卷九年级数学 2015. 1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.二次函数2(+1)2y x =--的最大值是( )A .2-B .1-C .1D .22.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果ADE =120°,那么∠B 等于( ) A .130°B .120°C .80°D .60°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,如果△ABC 的面 积是3,那么△A ′B ′C ′的面积等于A .3B .6C .9D .12 6.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是A .m >2B .m ≥3C .m <5D .m ≤57.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是 A .512B .513 C .1213D .1258.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,AB =,且点A ,B ,C 的横坐标A x ,B x ,C x 满足A x <B x <C x ,那么符合上述条件的抛物线条数是( ) A .7 B .8 C .14 D .16二、填空题(本题共16分,每小题4分)9.在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-错误!未找到引用源。
2015年北京13区中考数学二模分类汇编及答案——选填最后一道
![2015年北京13区中考数学二模分类汇编及答案——选填最后一道](https://img.taocdn.com/s3/m/facf6d046edb6f1afe001f16.png)
(东城)10. 如图,矩形ABCD 中,AB =3,BC =4,动点P 从A 点出发,按A →B →C 的方向在AB 和BC 上移动,记P A =x ,点D 到直线P A 的距离为y ,则y 关于x 的函数图象大致是A .B .C .D .16.如图,已知A 1,A 2,……,A n ,A n +1在x 轴上,且OA 1=A 1A 2=A 2A 3=……=A n A n +1=1,分别过点A 1,A 2,……,A n ,A n +1作x 轴的垂线交直线y =x 于点B 1,B 2,……,B n ,B n +1,连接A 1B 2,B 1A 2,A 2B 3,B 2A 3,……,A n B n +1,B n A n +1,依次相交于点P 1,P 2,P 3,……,P n ,△A 1B 1P 1,△A 2B 2P 2,……,△A n B n P n 的面积依次为S 1,S 2,……,S n ,则S 1= ,S n = .(西城)10.在平面直角坐标系xOy 中,点M 的坐标为(,1)m .如果以原点为圆心,半径为1的⊙O上存在点N ,使得45OMN ∠=︒,那么m 的取值范围是A .1-≤m ≤1 B. 1-<m <1 C. 0≤m ≤1 D. 0<m <116.如图,在平面直角坐标系xOy 中,点D 为直线2y x =上且在第一象限内的任意一点,1DA ⊥x 轴于点1A ,以1DA 为边在1DA 的右侧作正方形111A B C D ;直线1OC 与边1DA 交于点2A ,以2DA 为边在2DA 的右侧作正方形222A B C D ;直线2OC 与边1DA 交于点3A ,以3DA 为边在3DA 的右侧作正方形333A B C D ,……,按这种方式进行下去,则直线1OC 对应的函数表达式为 ,直线3OC 对应的函数表达式为 .(海淀)10.如右图所示,点Q 表示蜜蜂,它从点P 出发,按照着箭头所示的方向沿P →A →B →P →C →D →P 的路径匀速飞行,此飞行路径是一个以直线l 为对称轴的轴对称图形,在直线l 上的点O 处(点O 与点P 不重合)利用仪器测量了∠POQ 的大小.设蜜蜂飞行时间为x ,∠POQ 的大小为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是AB C D16.五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O 为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A 的坐标为(7,5),则白子B 的坐标为______________;为了不让白方获胜,此时黑方应该下在坐标为______________的位置处.(朝阳)10. 如图,矩形ABCD 中,E 为AD 中点,点F 为BC 上的动点(不 与B 、C 重合).连接EF ,以EF 为直径的圆分别交BE ,CE 于点G 、H . 设BF 的长度为x ,弦FG 与FH 的长度和为y ,则 下列图象中,能表示y 与x 之间的函数关系的图象大致是A B C D16.如果一个平行四边形一个内角的平分线分它的一边为1:2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为 .(丰台)10.如图,点N 是以O 为圆心,AB 为直径的半圆上的动点,(不与点A ,B 重合),AB =4,M 是OA 的中点,设线段MN 的长为x ,△MNO 的面积为y ,那么下列图象中,能表示y 与x 的函数关系的图象大致是A B C D16.如图,在平面直角坐标系xOy 中,直线l 的表达式是y ,点A 1坐标为(0,1),过点A 1作y 轴的垂线交直线l 于点B 1,以原点O 为圆心,OB 1长为半径画弧交y 轴于点A 2;再过点A 2作y 轴的垂线交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画弧交y 轴于点A 3,…,按此做法进行下去,点B 4的坐标为 ,2015OA = .(顺义)10.如图,大小两个正方形在同一水平线上,小正方形从图①的位置开始,匀速向右平移,3AOBMN到图③的位置停止运动.如果设运动时间为x ,大小正方形重叠部分的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是C.B.A.D.16.如图,在平面直角坐标系xOy 中,点1A ,2A ,3A ,…,n A在x 轴的正半轴上,且1=2OA ,212OA OA =,322OA OA =,…,12n n OA OA -=,点1B ,2B ,3B ,…,n B 在第一象限的角平分线l 上,且11A B ,22A B ,…,n nA B 都与射线l 垂直, 则1B 的坐标是_ _____, 3B 的坐标是_ _____,n B 的坐标是_ _____.(昌平)10.如图,正方形ABCD 的边长为5,动点P 的运动路线为AB →BC ,动点Q 的运动路线为BD .点P 与Q 以相同的均匀速度分别从A ,B 两点同时出发,当一个点到达终点停止运动时另一个点也随之停止.设点P 运动的路程为x ,△BPQ 的面积为y ,则下列能大致表示y 与x 的函数关系的图象为16. 如图所示,是一张直角三角形纸片,其中有一个内角为30︒,最小边长为2,点D 、E 分别图③图②图①是一条直角边和斜边的中点,先将纸片沿DE 剪开,然后再将两部分拼成一个四边形,则所得四边形的周长是 .(石景山)10.在平面直角坐标系中,四边形ABCD 是菱形,其中点B 的坐标是(0,2),点D 的坐标是(34,2),点M 和点N 是两个动点,其中点M 从点B 出发沿BA 以每秒1个单位的速度做匀速运动,到点A 后停止,同时点N 从B 点出发沿折线BC →CD 以每秒2个单位的速度做匀速运动,如果其中一点停止运动,则另一点也停止运动,设M 、N 两点的运动时间为x ,BMN ∆的面积是y ,下列图象中能表示y 与x 的函数关系的图象大致是A B C D16.在平面直角坐标系xOy 中,我们把横,纵坐标都是整数的点叫做整点,已知在函数()50050<<+-=x x y 上有一点()n m P ,(,m n 均为整数),过点P 作x PA ⊥轴于点A ,y PB ⊥轴于点B ,当2=m 时,矩形PAOB 内部(不包括边界)有47个整点,当3=m 时,矩形PAOB 内部有92个整点,当4=m 时,矩形PAOB 内部有_________个整点,当=m 时,矩形PAOB 内部的整点最多_______.(门头沟)10.在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度 的速度运动,设直线m 与矩形OABC 的两边分别交于点M ,N , 直线m 运动的时间为t (秒).设△OMN 的面积为S ,那么能反 映S 与t 之间函数关系的大致图象是yxOM AB C Nmxy OA BCA B C D16.在平面直角坐标系xOy 中,矩形OABC 如图放置,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时 反射角等于入射角,当点P 第2次碰到矩形 的边时,点P 的坐标为 ;当点P 第 6次碰到矩形的边时,点P 的坐标为 ;当点P 第2015次碰到矩形的边时,点P 的坐标为____________.(平谷)10.在平行四边形ABCD 中,点P 从起点B 出发,沿BC ,CD 逆时针方向向终点D 匀速运动.设点P 所走过的路程为x ,则线段AP ,AD 与平行四边形的边所围成的图形面积为y ,表示y 与x 的函数关系的图象大致如下图,则AB 边上的高是A .3B .4C .5D .616.在平面直角坐标系中,点A,B,C 的坐标分别为()1,0,()0,1,()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点P 1,使得点P 1与点O 关于点A 成中心对称;第二次跳跃到点P 2,使得点P 2与点P 1关于点B 成中心对称;第三次跳跃到点P 3,使得点P 3与点P 2关于点C 成中心对称;第四次跳跃到点P 4,使得点P 4与点P 3关于点A 成中心对称;第五次跳跃到点P 5,使得点P 5与点P 4关于点B 成中心对称;.…照此规律重复下去.则点P 3的坐标为 ;点P n 在y 轴上,则点P n 的坐标为 .通州10.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度......y 之间的关系用图象描述大致是( )A .B .C .D . 16.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是1112=--,-1的差倒数为11112=-(-),现已知,x 1=13-,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,……,依次类推,则x 2015= .房山10. 如图,在矩形A BCD 中,AB =2,点E 在边AD 上,∠ABE =45°,BE=DE ,连接BD ,点P 在线段DE 上,过点P 作PQ ∥BD 交BE 于点Q ,连接QD .设PD =x ,△PQD 的面积为y ,则能表示y 与x 函数关系的图象大致是第10题图A B C D16.正方形111A B C O ,2221A B C C ,3332A B C C ,…,按如图所示的方式放置.点1A ,2A ,3A ,…,和点1C ,2C ,3C ,…,分别在直线1y x =+和x 轴上,则点B 1的坐标是; 点B n 的坐标是 .(用含n 的代数式表示)怀柔10.小丽早上从家出发骑车去上学,途中想起忘了带昨天晚上完成的数学作业,于是打电话让妈妈马上从家里送来,同时小丽也往回骑,遇到妈妈后停下说了几句话,接着继续骑车去学校.设小丽从家出发后所用时间为t ,小丽与学校的距离为S .下面能反映S 与t 的函数关系的大致图象是16.已知等腰△ABC 中,AD⊥BC 于点D ,且AD=21BC ,则△ABC 底角的度数为__________. 答案 东城 10,B 1616;24+2n n 西城朝阳10(写出一个正确结果给1分)丰台顺义10,C 16. 1A (1,1),3A (4,4),11n n n A --(2,2).(每空1分)昌平石景山10,D 16.135;25. 门头沟平谷通州10. B . 16.34. 房山10.C16. ()111B , ,()121,2n n n B --怀柔。
2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)
![2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)](https://img.taocdn.com/s3/m/a93ed30eeefdc8d376ee3253.png)
北京市西城区2014-2015学年度第一学期期末试卷九年级数学 2015. 1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.二次函数2(+1)2y x =--的最大值是( )A .2-B .1-C .1D .22.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果ADE =120°,那么∠B 等于( ) A .130°B .120°C .80°D .60°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,如果△ABC 的面 积是3,那么△A ′B ′C ′的面积等于A .3B .6C .9D .126.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是A .m >2B .m ≥3C .m <5D .m ≤57.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是 A .512B .513 C .1213D .1258.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,AB =A ,B ,C 的横坐标A x ,B x ,C x 满足A x <B x <C x ,那么符合上述条件的抛物线条数是( ) A .7 B .8 C .14 D .16二、填空题(本题共16分,每小题4分)9.在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-错误!未找到引用源。
2015北京初三数学二模试题及答案WORD
![2015北京初三数学二模试题及答案WORD](https://img.taocdn.com/s3/m/8da095300722192e4536f6ca.png)
中考统一练习㈡数 学 2015.5考生须知1.本试卷共6页,共五道大题,25个小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考试编号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.考试结束,请将本试卷和答题卡一并交回。
一、选择题(共8道小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.21-的倒数是( ). A .2 B .2- C .21D . 21-2.根据中国汽车工业协会的统计,2011年上半年的中国汽车销量约为932.5万辆,同比增速3.35%.将932.5万辆用科学记数法表示为( )辆A .93.25×105B .0.9325×107C .9.325×106D .9.325×1023.若一个正多边形的每个内角都为135°,则这个正多边形的边数是( ). A .9 B .8 C .7 D .6 4.下列运算正确的是( ).A .22a a a =⋅B .22=÷a aC . 22423a a a +=D . ()33a a -=-5.如图所示,直线a ∥b ,直线c 与直线a ,b 分别相交于点A 、点B ,AM ⊥b ,垂足为点M ,若∠1=58°,则∠2的度数是( ).A .22B .30C .32D .426.某校抽取九年级的8名男生进行了1次体能测试,其成绩分别为90,75,90,85, 75,85,95,75,(单位:分)这次测试成绩的众数和中位数分别是 ( ).A .85,75B .75,85C .75,80D .75,757.已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积等于( ).A .15πB .14π C.13π D .12π8.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( ) .A B C D 二、填空题(共4道小题,每小题4分,共16分)第5题图2a bcMB A 19.在函数3+=x y 中,自变量x 的取值范围是 .10.若()022=++-a b a ,则=+b a .11.把代数式142-+m m 化为()b a m ++2的形式,其中a 、b 为常数,则a +b = . 12.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探索可得,第20个点的坐标是__________;第90个点的坐标为____________.三、解答题(共6道小题,每小题5分,共30分) 13.()33602120---+︒-πcos解:14.解方程:2132+=+-a a a解:15. 已知4+=y x ,求代数式2524222-+-y xy x 的值.解:16.如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F .求证:BE =CF . 证明:17.如图,某场馆门前台阶的总高度CB 为0.9m ,为了方便残疾人行走,该场馆决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角A ∠为8°,请计算从斜坡起点A 到台阶最高点D 的距离(即斜坡AD 的长).(结果精确到0.1m ,参考数据:sin 8°≈0.14,cos 8°≈0.99,tan 8°≈0.14)C ABD解:18.如图,平面直角坐标系中,直线AB 与x 轴交于点A (2,0),与y 轴交于点B ,点D 在直线AB 上.⑴求直线AB 的解析式;⑵将直线AB 绕点A 逆时针旋转30°,求旋转后的直线解析式.解:⑴⑵四、解答题(共4道小题,每小题均5分,共20分)19.如图1,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形. ⑴求证:四边形ABCD 是菱形;⑵如图2,若2AED EAD ∠=∠,AC =6.求DE 的长.OBEACD OB EACD图1 图2 证明:⑴ ⑵ 20. 如图,⊙O 中有直径AB 、EF 和弦BC ,且BC 和EF 交于点D ,点D 是弦BC 的中点,CD =4,DF =8.⑴求⊙O 的半径及线段AD 的长; ⑵求sin ∠DAO 的值. 解:⑴ ⑵21.图①、图②反映是某综合商场今年1-4月份的商品销售额统计情况.观察图①和图②,解答下面问题:y x31D B O A FED BOA C⑴来自商场财务部的报告表明,商场1-4月份的销售总额一共是280万元,请你根据这一信息补全图①;⑵商场服装部4月份的销售额是多少万元;⑶小华观察图②后认为,4月份服装部的销售额比3月份减少了.你同意他的看法吗?为什么? 解:⑴ ⑵ ⑶22.⑴阅读下面材料并完成问题:已知:直线AD 与△ABC 的边BC 交于点D ,①如图1,当BD =DC 时,则S △ABD ________S △ADC .(填“=”或“<”或“>”)DBCADBCABCAD图1 图2 图3②如图2,当BD =21DC 时,则=∆ABD S ADC S ∆ . ③如图3,若AD ∥BC ,则有ABC S ∆ DBC S ∆ .(填“=”或“<”或“>”)⑵请你根据上述材料提供的信息,解决下列问题:过四边形ABCD 的一个顶点画一条直线,把四边形ABCD 的面积分成1︰2的两部分.(保留画图痕迹)BCAD五、解答题(共3道小题,23题7分,24题8分,25题7分,共22分)23.已知:关于x 的方程mx 2-3(m -1)x +2m -3=0.⑴当m 取何整数值时,关于x 的方程mx 2-3(m -1)x +2m -3=0的根都是整数; ⑵若抛物线32)1(32-+--=m x m mx y 向左平移一个单位后,过反比例函数)0(≠=k xky 上的一点(-1,3),①求抛物线32)1(32-+--=m x m mx y 的解析式; ②利用函数图象求不等式0>-kx x k 的解集.解:⑴⑵①② 24.探究问题:已知AD 、BE 分别为△ABC 的边BC 、AC 上的中线,且AD 、BE 交于点O .⑴△ABC 为等边三角形,如图1,则AO ︰OD = ;⑵当小明做完⑴问后继续探究发现,若△ABC 为一般三角形(如图2),⑴中的结论仍成立,请你给予证明.⑶运用上述探究的结果,解决下列问题:如图3,在△ABC 中,点E 是边AC 的中点,AD 平分∠BAC , AD ⊥BE 于点F ,若AD =BE =4. 求:△ABC 的周长.ODE ABCOE DBCA1 2 3 4 4 3 2 1xy O -1 -2 -3 -4 -4 -3-2-1D CF B EA图1 图2 图3解:⑴⑵⑶25.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(可用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.解:⑴⑵⑶参考答案一、选择题1 2 3 4 5 6 7 8 B C B D C B DB二、填空题9、x ≥-3 10、-4 11、-3 12、(6,4);(13,1) 三、解答题(共6道小题,每小题5分,共30分) 13.解:原式=3121232-+⨯----------------------------------------4分 =3---------------------------------------5分14.解:()()()()32322-=+-++a a a a a ---------------------------------------1分a a a a a364222-=--++ ---------------------------------------2分 24=a ---------------------------------------3分 21=a ---------------------------------------4分是原方程的根经检验:21=a∴是原方程的根21=a ---------------------------5分15.44=-∴+=y x y x 解:---------------------------------------1分原式=2524222-+-y xy x ---------------------------------------2分()2522--=y x ---------------------------------------4分7254242=-⨯==-时,原式当y x ---------------------------------------5分 16.证明: AD 是中线∴BD=CD ---------------------------------------1分 分别过点B 、C 作AD 及其延长线的垂线BE 、CFCFD E ∠=∠∴---------------------------------------2分中和在CFD BED ∆∆ ⎪⎩⎪⎨⎧∠=∠=∠=∠CDF BDE CDBD CFD E ()AAS CFD BED ∆≅∆∴-------------------------------4分 CF BE =∴---------------------------------------5分17.解:E AB DE D 于点作过⊥---------------------------------------1分 ,于B AB CB ⊥ DC ∥AB∴.90==CB DE ---------------------------------------2分A DE AD AED Rt sin =∆ 中,在---------------------------------------4分∴m AD 4.614.09.0≈= EC AD B∴从斜坡起点A 到台阶最高点D 的距离约为6.4m 。
2015北京各区中考数学二模27题汇编及答案
![2015北京各区中考数学二模27题汇编及答案](https://img.taocdn.com/s3/m/8c8d8cb0c77da26925c5b05f.png)
2015北京各区中考数学二模27题汇编及答案27.在平面直角坐标系xOy 中,抛物线224y mx m m x -++=与y 轴交于点A (0,3),与x 轴交于点B ,C (点B 在点C 左侧).(1)求该抛物线的表达式及点B ,C 的坐标;(2)抛物线的对称轴与x 轴交于点D ,若直线y kx b =+经过点D 和点 E (1,2)--,求直线DE 的表达式;(3)在(2)的条件下,已知点P (t ,0),过点P 作垂直于x 轴的直线交抛物线于点M ,交直线DE 于点N ,若点M 和点N 中至少有一个点在x 轴下方,直接写出t 的取值范围.27已知一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,二次函数2224y x ax =-+(其中a >2).(1)求一次函数的表达式及二次函数图象的顶点坐标(用含a 的代数式表示); (2)利用函数图象解决下列问题: ①若25=a ,求当10y >且2y ≤0时,自变量x 的取值范围; ②如果满足10y >且2y ≤0时的自变量x 的取值范围内恰有一个整数,直接写出a的取值范围.()27.在平面直角坐标系中,抛物线2+3y ax bx =+()0≠a 与x 轴交于点A (-3,0)、B (1,0)两点, D 是抛物线顶点,E 是对称轴与x 轴的交点.(1)求抛物线的解析式;(2)若点F 和点D 关于x 轴对称, 点P 是x 轴上的一个动点,过点P 作PQ ∥OF 交抛物线于点Q ,是否存在以点O ,F ,P ,Q 为顶点的平行四边形?若存在,求出点P 坐标;若不存在,请说明理由.27.在平面直角坐标系xOy 中,抛物线21y ax bx =++经过(13)A ,,(21)B ,两点.(1)求抛物线及直线AB 的解析式;(2)点C 在抛物线上,且点C 的横坐标为3.将抛物线在 点A ,C 之间的部分(包含点A ,C )记为图象G ,如 果图象G 沿y 轴向上平移()个单位后与直线 AB 只有一个公共点,求的取值范围.t 0t >t27.已知关于x 的方程()231220mx m x m --+-=.(1)求证:无论m 取任何实数时,方程恒有实数根;(2)若关于x 的二次函数()23122y mx m x m =--+-的图象经过坐标原点,得到抛物线1C .将抛物线1C 向下平移后经过点()0,2A -进而得到新的抛物线2C ,直线l 经过点A 和点()2,0B ,求直线l 和抛物线2C 的解析式;(3)在直线l 下方的抛物线2C 上有一点C ,求点C 到直线l 的距离的最大值.27. 已知:关于x 的一元二次方程22(1)20(0)ax a x a a --+-=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中1x >2x ).若y 是关于a 的函数,且21y ax x =+,求这个函数的表达式;(3)在(2)的条件下,结合函数的图象回答:若使231y a ≤-+,则自变量a 的取值范围为 .27.已知抛物线2y ax bx c =++经过原点O 及点A (-4,0)和点B (-6,3). (1)求抛物线的解析式以及顶点坐标;(2)如图1,将直线2y x =沿y 轴向下平移后与(1)中所求抛物线只有一个交点C ,平移后的直线与y 轴交于点D ,求直线CD 的解析式;(3)如图2,将(1)中所求抛物线向上平移4个单位得到新抛物线,请直接写出新抛物线上到直线CD 距离最短的点的坐标及该最短距离.27.已知关于x 的方程()2230x m x m +-+-=.(1)求证:方程()2230x m x m +-+-=总有两个实数根; (2)求证:抛物线()223y x m x m =+-+-总过x 轴上的一个定点;(3)在平面直角坐标系xOy 中,若(2)中的“定点”记作A抛物线()223y x m x m =+-+-与x 轴的另一个交点为B 与y 轴交于点C ,且△OBC 的面积小于或等于8,求m 的 取值范围.图2xyO27.在平面直角坐标系xOy 中,抛物线214y x bx c =-++经过点A (4,0)和B (0,2).(1)求该抛物线的表达式;(2)在(1)的条件下,如果该抛物线的顶点为C ,点B 关于抛物线对称轴对称的点为D ,求直线 CD 的表达式;(3)在(2)的条件下,记该抛物线在点A ,B 之间的部分(含点A ,B )为图象G ,如果图象G 向上平移m (m >0)个单位后与直线CD 只有一个公共点,请结合函数的图象,直接写出m 的取值范围.27.已知关于x 的一元二次方程()23130kx k x +++= (k ≠0).(1)求证:无论k 取何值,方程总有两个实数根;(2)点()()120,0A x B x ,、在抛物线()2313y kx k x =+++上,其中12x x <0<,且12x x 、和k 均为整数,求A ,B 两点的坐标及k 的值;(3) 设(2)中所求抛物线与y 轴交于点C ,问该抛物线上是否存在点E ,使得ABEABCS S=,若存在,求出E 点坐标,若不存在,说明理由.yx11O27.如图,在平面直角坐标系中,点A(5,0),B(3,2),点C在线段OA上,BC=BA,点Q 是线段BC上一个动点,点P的坐标是(0,3),直线PQ的解析式为y=kx+b(k≠0),且与x轴交于点D.(1)求点C的坐标及b的值;(2)求k的取值范围;(3)当k为取值范围内的最大整数时,过点B作BE∥x﹣5ax(a≠0)的顶点在四边形ABED的内部,求a27.已知关于x的方程mx2-(3m-1)x+2m-2=0(1)求证:无论m取任何实数时,方程恒有实数根.(2)若关于x的二次函数y= mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求二次函数的表达式.答案27. (本小题满分7分)解:(1)∵抛物线224y mx m m x -++=与y 轴交于点A (0,3),∴43m +=. ∴1m =-. ∴抛物线的表达式为232y x x=-++.…………………………………………………………………1分 ∵抛物线232y x x =-++与x 轴交于点B ,C , ∴令0y =,即 2320x x +-=+. 解得 11x =-,23x =. 又∵点B 在点C 左侧, ∴点B的坐标为(1,0)-,点C 的坐标为(3,0).…………………………………………………...……3分(2)∵2223(1)4y x x x +=---++=,∴抛物线的对称轴为直线1x =. ∵抛物线的对称轴与x 轴交于点D , ∴点D的坐标为(.…………………………………………………………………………...………4分 ∵直线y kx b =+经过点D (1,0)和点E (1,2)--,∴0,2.k b k b +=⎧⎨-+=-⎩解得1,1.k b =⎧⎨=-⎩∴直线DE的表达式为1y x =-. ………………………………………………………………………5分(3)1t <或3t > ……………………………………………………………………………………………7分27.解:(1)∵ 一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,∴ 20,4 1.k b k b +=⎧⎨+=⎩解得1,21.k b ⎧=⎪⎨⎪=-⎩ ……………………………………………………………… 1分∴ 1211-=x y . ………………………………………………………… 2分 ∵ 22224)(42a a x ax x y -+-=+-=,∴ 二次函数图象的顶点坐标为2(,4)a a -.………………………………… 3分(2)①当25=a 时,4522+-=x x y . ………………………………… 4分如图10,因为10y >且2y ≤0,由图象得2<x ≤4. ………………………… 6分②136≤a <52.……………………………7分27.解:(1)据题意得9-3b+3=01,a+b+3=0. 2.a ab =-⎧⎧⎨⎨=-⎩⎩,解得 ∴解析式为y = -x 2 -2x +3 ……3分 (2)当12bx a=-=-时,y =4 ∴顶点D (-1,4)∴F (-1,-4)… 4分 若以点O 、F 、P 、Q 为顶点的平行四边形存在,则点Q (x ,y )满足4y EF == ①当y = - 4时,-x 2-2x +3= -4解得,1x =-±∴12(14),(14)Q Q ----+-∴12(P P -……6分 ②当y = 4时,-x 2-2x +3= 4 解得,x = - 1 ∴Q 3(-1,4) ∴P 3(-2,0)……7分综上所述,符合条件的点有三个即:123((2,0)P P P --27 . 解:(1)∵抛物线21y ax bx =++过(13)A ,,(21)B ,两点.∴134211a b a b ++=⎧⎨++=⎩ .…….1分解得,24a b =-⎧⎨=⎩ .∴抛物线的表达式是224+1y x x =-+.…….2分 设直线AB 的表达式是y mx n =+ ,∴321m n m n +=⎧⎨+=⎩ ,解得,25m n =-⎧⎨=⎩ .…….3分∴直线AB 的表达式是25y x =-+.…….4分 (2)∵点C 在抛物线上,且点C 的横坐标为3.∴C (3,-5).…….5分点C 平移后的对应点为点'(3,5)C t -代入直线表达式25y x =-+,解得4t =.…….6分结合图象可知,符合题意的t 的取值范围是04t <≤. …….7分27.解:(1)当0m =时,2x =当0m ≠时,()()231422m m m ∆=---2296188m m m m =-+-+()22211m m m =++=+∵()210m +≥,∴0∆≥综上所述:无论m 取任何实数时,方程恒有实数根;………………………3分 (2)∵二次函数2(31)22y mx m x m =--+-∴220m -=∴1m =………………………4分抛物线1C 的解析式为:22y x x =- 抛物线2C 的解析式为:222y x x =-- 设直线l 所在函数解析式为:y kx b =+将A 和点()2,0B 代入y kx b =+∴直线l 所在函数解析式为:2y x =-………5分(3)据题意:过点C 作CE x ⊥轴交AB 于E ,可证45DEC OAB ∠=∠=︒ ,则2CD =设()2,22C t t t --,(),2E t t -,()03t <<∴E C EC y y =-23t t =-+23924t ⎛⎫=--+ ⎪⎝⎭………………………6分∵3032⎛⎫<< ⎪⎝⎭∴当32t =时,max 94EC = ∵CD 随EC 增大而增大,∴max CD =.………………………7分27. (1)证明:22(1)20(0)ax a x a a --+-=>是关于x 的一元二次方程,2[2(1)]4(2)a a a ∴∆=---- ·················································································· 1分 =4. 即0∆>.∴方程有两个不相等的实数根. ·········································································· 2分 (2) 解:由求根公式,得2(1)22a x a-±=.∴1x =或21x a=-. ······························································································ 3分 0a >,1x >2x ,11x ∴=,221x a=-. ····························································································· 4分 211y ax x a ∴=+=-.即1(0)y a a =->为所求.………………………………………………………5分(3)0<a ≤23.…………………………………………………………………………7分27.解:(1)∵ 抛物线经过()0,0,()4,0- ,()6,3-三点, ∴01640,366 3.c a b a b =⎧⎪-=⎨⎪-=⎩…………………………………………………………………… 1分 解得1410a b c ⎧=⎪⎪=⎨⎪=⎪⎩,,. ………………………………………………………………………… 2分 ∴ 抛物线的解析式为214y x x =+.∵()()22211144421444y x x x x x =+=++-=+-∴抛物线的顶点坐标为()2,1-- …………………………………………………… 3分(2)设直线CD 的解析式为2y x m =+,根据题意,得2124x x x m+=+, …………………………………………………… 4分 化简整理,得2440x x m --=, 由16160m ∆=+=,解得1m =-, ………………………………………………… 5分∴直线CD 的解析式为21y x =- .(3)点的坐标为()2,7, …………………………………………………………… 6分最短距离为. ……………………………………………………………… 7分 27. 解:(1)24b ac -=()()2243m m ---........................................................1分 =244412m m m -+-+ =2816m m -+ =()24m - ∵()240m -≥,∴方程()2230x m x m +-+-=总有两个实数根...............................................2分(2)()21,224m m x -±-==()242m m -±-................................................3分∴11x =-,23x m =-+,∴抛物线()223y x m x m =+-+-总过x 轴上的一个定点(-1,0).................4分 (3)∵抛物线()223y x m x m =+-+-与x 轴的另一个交点为B ,与y 轴交于点C , ∴B (3-m ,0),C (0, m -3),...................................................................................5分 ∴△OBC 为等腰直角三角形, ∵△OBC 的面积小于或等于8, ∴OB ,OC 小于或等于4,∴3-m ≤4或m -3 ≤4, .......................................................................................6分 ∴m ≥-1或m ≤7.∴-1≤m ≤7且3m ≠.............................................................................................7分 27.(本小题满分7分)解:(1)∵ 抛物线214y x bx c =-++经过点A (4,0)和B (0,2).∴ 21440,42.b c c ⎧-⨯++=⎪⎨⎪=⎩………………………………………………1分解得 1,22.b c ⎧=⎪⎨⎪=⎩ ∴ 此抛物线的表达式为211242y x x =-++.………………………2分 (2)∵()221119214244y x x x =-++=--+, ∴ C (1,94).…………………………………………………………3分 ∵ 该抛物线的对称轴为直线x =1,B (0,2),∴ D (2,2).……………………………………………………………4分 设直线CD 的表达式为y =kx +b .由题意得 9,42 2.k b k b ⎧+=⎪⎨⎪+=⎩解得 1,45.2k b ⎧=-⎪⎪⎨⎪=⎪⎩∴ 直线CD 的表达式为1542y x =-+.………………………………5分 (3)0.5<m ≤1.5.……………………………………………………………7分27. (1)∵()()222Δ=3112961310k k k k k +-=-+=-≥∴方程总有两个实数根.……………………………………………………2分 (2)由求根公式得:()()31312k kx k-+?=∴3x =-或1x k=- ∵12x x 、和k 均为整数∴=1k ± 又∵120x x <<∴1k =-…………………………………………………………………………3分 ∴A (-3,0), B (1,0) ……………………………………………………4分 (3)()()()2,3131,,--+---…………………………………………7分27.解:(1)直线y=kx+b (k ≠0)经过P (0,3),∴b =3. (1)过点B 作BF ⊥AC 于F , ∵A (5,0),B (3,2),BC =BA , ∴点F 的坐标是(3,0). ∴点C 的坐标是(1,0).…………………………………(2)当直线PC 经过点C 时,k =﹣3. 当直线PC 经过点B 时,k =13-.………………………∴133k -≤≤-……………………………………………(3)133k -≤≤-且k 为最大整数,∴k =﹣1.则直线PQ 的解析式为y=﹣x+3.∵抛物线y=ax 2﹣5ax (a≠0)的顶点坐标是52524a ⎛⎫-⎪⎝⎭,,对称轴为52x =.解方程组352y x x =-+⎧⎪⎨=⎪⎩,得5212x y ⎧=⎪⎪⎨⎪=⎪⎩ 即直线PQ 与对称轴为52x =的交点坐标为5122⎛⎫⎪⎝⎭,,…………………………………………6 ∴125224a <-<. 解得822525a -<<-. (7)27.解:(1)△=9m 2-6m +1-8m 2+8m =m 2+2m +1,=(m +1)2;∴△=(m +1)2≥0,………………………………………….(1分) ∴无论m 取任何实数时,方程恒有实数根;(2)设x 1,x 2为抛物线y =mx 2-(3m -1)x +2m -2与x 轴交点的横坐标. 令y =0,则mx 2-(3m -1)x +2m -2=0由求根公式得,x 1=2,, …………………………….(2分)∴抛物线y =mx 2-(3m -1)x +2m -2不论m 为任何不为0的实数时恒过定点(2,0).∴x 2=0或x 2=4,∴m =1或 ) 当m =1时,y =x 2-2x ,,∴抛物线解析式为y =x 2-2x当 时,382312-+-=x x y答:抛物线解析式为y =x 2-2x ;或 382312-+-=x x y ……….(3分)。
2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)
![2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)](https://img.taocdn.com/s3/m/1c143904b90d6c85ec3ac63e.png)
北京市西城区2014-2015学年度第一学期期末试卷九年级数学 2015. 1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.二次函数2(+1)2y x =--的最大值是( )A .2-B .1-C .1D .22.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果ADE =120°,那么∠B 等于( ) A .130°B .120°C .80°D .60°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,如果△ABC 的面 积是3,那么△A ′B ′C ′的面积等于A .3B .6C .9D .12 6.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是A .m >2B .m ≥3C .m <5D .m ≤57.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是 A .512B .513 C .1213D .1258.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,AB =,且点A ,B ,C 的横坐标A x ,B x ,C x 满足A x <B x <C x ,那么符合上述条件的抛物线条数是( ) A .7 B .8 C .14 D .16二、填空题(本题共16分,每小题4分)9.在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-错误!未找到引用源。
2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)
![2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)](https://img.taocdn.com/s3/m/402e094ff242336c1eb95e47.png)
北京市西城区2014-2015学年度第一学期期末试卷九年级数学 2015. 1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.二次函数2(+1)2y x =--的最大值是( )A .2-B .1-C .1D .22.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果ADE =120°,那么∠B 等于( ) A .130°B .120°C .80°D .60°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,如果△ABC 的面 积是3,那么△A ′B ′C ′的面积等于A .3B .6C .9D .12 6.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是A .m >2B .m ≥3C .m <5D .m ≤57.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是 A .512B .513 C .1213D .1258.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,AB =,且点A ,B ,C 的横坐标A x ,B x ,C x 满足A x <B x <C x ,那么符合上述条件的抛物线条数是( ) A .7 B .8 C .14 D .16二、填空题(本题共16分,每小题4分)9.在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-错误!未找到引用源。
2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)
![2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)](https://img.taocdn.com/s3/m/9e1a70b284868762caaed59b.png)
北京市西城区2014-2015学年度第一学期期末试卷九年级数学 2015. 1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.二次函数2(+1)2y x =--的最大值是( )A .2-B .1-C .1D .22.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果ADE =120°,那么∠B 等于( ) A .130°B .120°C .80°D .60°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,如果△ABC 的面 积是3,那么△A ′B ′C ′的面积等于A .3B .6C .9D .126.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是A .m >2B .m ≥3C .m <5D .m ≤57.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是 A .512B .513 C .1213D .1258.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,AB =A ,B ,C 的横坐标A x ,B x ,C x 满足A x <B x <C x ,那么符合上述条件的抛物线条数是( ) A .7 B .8 C .14 D .16二、填空题(本题共16分,每小题4分)9.在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-错误!未找到引用源。
2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)
![2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)](https://img.taocdn.com/s3/m/7c2bd5c204a1b0717ed5dd01.png)
北京市西城区2014-2015学年度第一学期期末试卷九年级数学 2015. 1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.二次函数2(+1)2y x =--的最大值是( )A .2-B .1-C .1D .22.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果ADE =120°,那么∠B 等于( ) A .130°B .120°C .80°D .60°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,如果△ABC 的面 积是3,那么△A ′B ′C ′的面积等于A .3B .6C .9D .12 6.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是A .m >2B .m ≥3C .m <5D .m ≤57.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是 A .512B .513 C .1213D .1258.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,AB =,且点A ,B ,C 的横坐标A x ,B x ,C x 满足A x <B x <C x ,那么符合上述条件的抛物线条数是( ) A .7 B .8 C .14 D .16二、填空题(本题共16分,每小题4分)9.在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区2015年初三二模试卷数 学 2015.6一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.2015年羊年除夕夜的10点半,在央视春晚送红包的活动中,微信“摇一摇”峰值的摇动次数达到8.1亿次/分钟,送出微信红包120 000 000个.将120 000 000用科学记数法表示应为( )A. 90.1210⨯B. 71.210⨯C. 81.210⨯D. 71210⨯2.如图,BD ∥AC ,AD 与BC 交于点E ,如果∠BCA =50°,∠D =30°, 那么∠DEC 等于( )A. 75°B. 80°C. 100°D. 120°3.64的立方根是( )A. 8±B. 4±C. 8D. 4 4.函数2y x =-中,自变量x 的取值范围是( ) A.2x ≠ B. x ≥2 C. x >2 D. x ≥2-5.如图,△ABC 中,D ,E 两点分别在AB ,AC 边上,且DE ∥BC , 如果23AD AB =,AC =6,那么AE 的长为( ) A. 3 B. 4 C. 9 D. 126.某居民小区开展节约用电活动,该小区100户家庭4月份的节电情况如下表所示. 节电量(千瓦时) 20 30 40 50 户数(户)20303020那么4月份这100户家庭的节电量(单位:千瓦时)的平均数是( )A. 35B. 26C. 25D. 20 7. 若一个正六边形的半径为2,则它的边心距等于( ) A. 2 B. 1 C. 3 D. 238.如图,△ABC 的边AC 与⊙O 相交于C ,D 两点,且经过圆心O , 边AB 与⊙O 相切,切点为B .如果∠A =34°,那么∠C 等于( ) A .28° B .33° C .34° D .56°9.如图,将正方形OABC 放在平面直角坐标系xOy 中,O 是原点,若点A 的坐标为(1,3),则点C 的坐标为( )A .(3,1)B .(1,3)-C .(3,1)-D .(3,1)--10.在平面直角坐标系xOy 中,点M 的坐标为(,1)m .如果以原点为圆心,半径为1的⊙O上存在点N ,使得45OMN ∠=︒,那么m 的取值范围是( )A .1-≤m ≤1 B. 1-<m <1 C. 0≤m ≤1 D. 0<m <1二、填空题(本题共18分,每小题3分)11.若2(2)10m n ++-= 则m n -= .12.若一个凸n 边形的内角和为1080︒,则边数n = . 13.两千多年前,我国的学者墨子和他的学生做了小孔成像的实验.他的做法是,在一间黑暗的屋子里,一面墙上开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小华在学习了小孔成像的原理后,利用如下装置来验证小孔成像的现象.已知一根点燃的蜡烛距小孔20cm ,光屏在距小孔30cm 处,小华测量了蜡烛的火焰高度为2cm ,则光屏上火焰 所成像的高度为______cm .14.请写出一个图象的对称轴是直线1x =,且经过(0,1)点的二次函数的表达式:_____________.15.如图,在平面直角坐标系xOy 中,直线3y x =与双曲线ny x =(n ≠0)在第一象限的公共点是(1,)P m .小明说:“从图象上可 以看出,满足3nx x>的x 的取值范围是1x >.”你同意他的 观点吗?答: .理由是 .16.如图,在平面直角坐标系xOy 中,点D 为直线2y x =上且在第一象限内的任意一点,1DA ⊥x 轴于点1A ,以1DA 为边在1DA 的右侧 作正方形111A B C D ;直线1OC 与边1DA 交于点2A ,以2DA 为边在 2DA 的右侧作正方形222A B C D ;直线2OC 与边1DA 交于点3A ,以 3DA 为边在3DA 的右侧作正方形333A B C D ,……,按这种方式进行下去,则直线1OC 对应的函数表达式为 ,直线3OC 对应的函数表达式为 .三、解答题(本题共30分,每小题5分)17.如图,△ABC 是等边三角形,D ,E 两点分别在AB ,BC的延长线上,BD =CE ,连接AE ,CD . 求证:∠E =∠D .18.计算:1012cos 30()13(3)3π-++---.19.已知2540x x --=,求代数式(2)(2)(21)(2)x x x x +----的值.20.解方程:231233x x x x-=--.21.列方程(组)解应用题:某超市的部分商品账目记录显示内容如下:商品 时间 第一天 第二天 第三天 牙膏(盒) 7 14 ? 牙刷(支) 13 15 12 营业额(元)121187124求第三天卖出牙膏多少盒.22.已知关于x 的函数 2(3)3y mx m x =+--.(1)求证:无论m 取何实数,此函数的图象与x 轴总有公共点;(2)当m >0时,如果此函数的图象与x 轴公共点的横坐标为整数,求正整数m 的值.四、解答题(本题共20分,每小题5分)23.如图,将平行四边形纸片ABCD按如图方式折叠,使点C与点A重合,点D的落点记为点D′ ,折痕为EF,连接CF.(1)求证:四边形AFCE是菱形;(2)若∠B=45°,∠FCE=60°,AB=62,求线段D′F的长.24.1949年以来,北京市人口结构变迁经历了5个阶段,从2001年至今已进入第五个阶段——人口膨胀增长阶段.以下是根据北京市统计局2015年1月的相关数据制作的统计图.根据以上信息解决下列问题:(1)以下说法中,正确的是(请填写所有正确说法的序号)①从2011年至2014年,全市常住人口数在逐年下降;②2010年末全市常住人口数达到近年来的最高值;③2014年末全市常住人口比2013年末增加36.8万人;④从2011年到2014年全市常住人口的年增长率连续递减.(2)补全“2014年末北京市常住人口分布图”,并回答:2014年末朝阳、丰台、石景山、海淀四区的常住人口总数已经达到多少万人?(3)水资源缺乏制约着北京市的人口承载能力,为控制人口过快增长,到2015年底,北京市要将全市常住人口数控制在2180万以内(即不超过2180万).为实现这一目标,2015年的全市常住人口的年增长率应不超过.(精确到0.1%)25.如图1,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,点F 在线段ED 上.连接AF 并延长交 ⊙O 于点G ,在CD 的延长线上取一点P ,使PF=PG . (1)依题意补全图形,判断PG 与⊙O 的位置关系,并证明你的结论; (2)如图2,当E 为半径OA 的中点,DG ∥AB ,且=23OA 时,求PG 的长.26.(1)小明遇到下面一道题:如图1,在四边形ABCD 中,AD ∥BC ,∠ABC =90º,∠ACB =30º,BE ⊥AC 于点E ,且=CDE ACB ∠∠.如果AB =1,求CD 边的长.小明在解题过程中发现,图1中,△CDE 与△ 相似,CD 的长度等于,线段CD 与线段 的长度相等;他进一步思考:如果ACB α∠=(α是锐角),其他条件不变,那么CD 的长度可以表示为CD = ;(用含α的式子表示)(2)受以上解答过程的启发,小明设计了如下的画图题: 在Rt △OMN 中,∠MON =90º,OM <ON ,OQ ⊥MN 于点Q ,直线l 经过点M ,且l ∥ON .请在直线l 上找出点P 的位置,使得NPQ ONM ∠=∠. 请写出你的画图步骤,并在答题卡上完成相应的画图过程.(画出一个即可,保留画图痕迹,不要求证明)五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,二次函数2224y x ax =-+(其中a >2).(1)求一次函数的表达式及二次函数图象的顶点坐标(用含a 的代数式表示); (2)利用函数图象解决下列问题: ①若25=a ,求当10y >且2y ≤0时,自变量x 的取值范围; ②如果满足10y >且2y ≤0时的自变量x 的取值范围内恰有一个整数,直接写出a的取值范围.8.正方形ABCD 的边长为3,点E ,F 分别在射线DC ,DA 上运动,且DE=DF .连接BF ,作EH ⊥BF 所在直线于点H ,连接CH .(1)如图1,若点E 是DC 的中点,CH 与AB 之间的数量关系是 ; (2)如图2,当点E 在DC 边上且不是DC 的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E ,F 分别在射线DC ,DA 上运动时,连接DH ,过点D 作直线DH的垂线,交直线BF 于点K ,连接CK ,请直接写出线段CK 长的最大值.29.对于平面直角坐标系xOy 中的点P 和图形G ,给出如下定义:在图形G 上若存在两点M ,N ,使△PMN 为正三角形,则称图形G 为点P 的τ型线,点P 为图形G 的τ型点, △PMN 为图形G 关于点P 的τ型三角形. (1)如图1,已知点(0,3)A -,(3,0)B ,以原点O 为圆心的⊙O 的半径为1.在A ,B两点中,⊙O 的τ型点是____,画出并回答⊙O 关于该τ型点的τ型三角形;(画 出一个即可)(2)如图2,已知点(0,2)E ,点(,0)F m (其中m >0).若线段EF 为原点O 的τ型线,且线段EF 关于原点O 的τ型三角形的面积为439,求m 的值; (3)若(0,2)H -是抛物线2y x n =+的τ型点,直接写出n 的取值范围.北京市西城区2015年初三二模数学试卷参考答案及评分标准2015. 6一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案 CBDBBACACA二、填空题(本题共18分,每小题3分) 11 12 13 14 15163- 83221y x x =-+(答案不唯一)不同意x 的取值范围是10x -<<或1x >(或其他正确结论)23y x =1415y x =三、解答题(本题共30分,每小题5分) 17.证明:如图1.∵ △ABC 是等边三角形,∴ AC =BC ,∠ACB =∠ABC =60°.……………………………………………… 1分∵ D ,E 两点分别在AB ,BC 的延长线上,∴ ∠ACE =∠CBD =120°. …………………2分在△ACE 和△CBD 中,,,AC CB ACE CBD CE BD =⎧⎪∠∠⎩=⎪⎨,= ……………………… 3分∴ △ACE ≌△CBD .……………………… 4分∴ ∠E =∠D . (5)分18.解: 1012cos 30()13(3)3π-++---3233112=⨯++-- ………………………………………………………………4分 231=+. ………………………………………………………………………… 5分 19.解: (2)(2)(21)(2)x x x x +----=224(252)x x x ---+………………………………………………………………2分 =224252x x x --+-=256x x -+-.………………………………………………………………………3分图1∵ 2540x x --=,∴ 254x x -=.…………………………………………………………………… 4分 ∴ 原式=2(5)64610x x ---=--=-.……………………………………………5分 20.解:去分母,得 3(3)2x x --=.…………………………………………………… 1分 去括号,得 332x x -+=. ………………………………………………………2分整理,得 21x =-.……………………………………………………………… 3分解得 12x =-. …………………………………………………………………… 4分经检验,12x =-是原方程的解. …………………………………………………5分所以原方程的解是12x =-.21.解:设牙膏每盒x 元,牙刷每支y 元.…………………………………………………1分 由题意,得 713121,1415187.x y x y +=+=⎧⎨⎩…………………………………………………… 2分解得 85.x y ==⎧⎨⎩,……………………………………………………………………… 3分(124125)88-⨯=(盒). ………………………………………………………… 4分 答:第三天卖出牙膏8盒.………………………………………………………………5分22.解:(1)当m =0 时,该函数为一次函数33y x =--,它的图象与x 轴有公共点. (1)分当m ≠0 时,二次函数2(3)3y mx m x =+--.2(3)4(3)m m ∆=--⨯-26912m m m =-++2269(3)m m m =++=+. ∵ 无论m 取何实数,总有2(3)m +≥0,即∆≥0, ∴ 方程2(3)30mx m x +--=有两个实数根.∴ 此时函数2(3)3y mx m x =+--的图象与x 轴有公共点.……………2分 综上所述,无论m 取何实数,该函数的图象与x 轴总有公共点.(2)∵m >0,∴ 该函数为二次函数,它的图象与x 轴的公共点的横坐标为(3)(3)2m m x m--±+=.∴ 11x =-,23x m=. ……………………………………………………… 3分 ∵ 此抛物线与x 轴公共点的横坐标为整数,∴正整数m =1或3.……………………………………………………………5分四、解答题(本题共20分,每小题5分)23.(1)证明:如图2.∵点C 与点A 重合,折痕为EF ,∴12∠=∠,AE =EC .∵ 四边形ABCD 为平行四边形,∴ AD ∥BC .∴ 32∠=∠.∴ 13∠=∠. ∴ AE =AF .…………………………………………………………………1分∴ AF =EC .又∵ AF ∥EC ,∴ 四边形AFCE 是平行四边形.………………………………………… 2分又AE =AF ,∴ 四边形AFCE 为菱形.………………………………………………… 3分(2)解:如图3,作AG ⊥BE 于点G ,则∠AGB=∠AGE=90°.∵ 点D 的落点为点D ′ ,折痕为EF ,∴D F DF '=. ∵四边形ABCD 为平行四边形, ∴ AD =BC .又∵AF =EC ,∴AD AF BC EC -=-,即DF BE =. ∵在Rt △AGB 中,∠AGB=90°,∠B =45°,AB =62,∴AG =GB =6. ∵ 四边形AFCE 为平行四边形,∴ AE ∥FC .∴ ∠4=∠5=60°.∵ 在Rt △AGE 中,∠AGE =90°,∠4=60°,∴23tan60AG GE ==︒. ∴ 623BE BG GE =+=+.∴ 623D F '=+.…………………5分图2图324.解:(1)③④.………………………………… 2分(2)补全统计图见图4. ………………… 3分1055万人. ………………………… 4分 (3)1.3%. …………………………………………………………………………… 5分25. 解:(1)补全图形如图5所示. ………………………………………………………… 1分 答:PG 与⊙O 相切.证明:如图6,连接OG .∵ PF =PG ,∴ ∠1=∠2.又∵OG =OA ,∴ ∠3=∠A .∵ CD ⊥AB 于点E ,∴ ∠A +∠AFE =90°.又∵∠2 =∠AFE ,∴ ∠3+∠1=90°. ……………………… 2分即 OG ⊥PG .∵ OG 为⊙O 的半径,∴ PG 与⊙O 相切. …………………… 3分(2)解:如图7,连接CG .∵ CD ⊥AB 于点E ,∴ ∠OEC =90°.∵ DG ∥AB ,∴∠GDC =∠OEC =90°.∵∠GDC 是⊙O 的圆周角,∴ CG 为⊙O 的直径.∵ E 为半径OA 的中点,∴ 22OA OC OE ==. ∴ ∠OCE =30°即∠GCP =30°.又∵∠CGP =90°,243CG OA ==,∴3tan 4343PG CG GCP =⋅∠=⨯=. …………………………… 5分 26.解:(1)CAD ,3,BC . …………………………………………………………… 3分1tan α.……………………………………………………………………………4分 (2)方法1:如图8,以点N 为圆心,ON 为半径作圆,交直线l 于点1P ,2P ,则点 1P ,2P 为符合题意的点.……………………………………………… 5分 方法2:如图9,过点N 画NO 的垂线1m ,画NQ 的垂直平分线2m ,直线1m 与图5 图6 图7 图42m 交于点R ,以点R 为圆心,RN 为半径作圆,交直线l 于点1P ,2P , 则点1P ,2P 为符合题意的点. ……………………………………… 5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.解:(1)∵ 一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,∴ 20,4 1.k b k b +=⎧⎨+=⎩解得1,21.k b ⎧=⎪⎨⎪=-⎩……………………………………………………………… 1分∴ 1211-=x y . ………………………………………………………… 2分 ∵ 22224)(42a a x ax x y -+-=+-=,∴ 二次函数图象的顶点坐标为2(,4)a a -.………………………………… 3分(2)①当25=a 时,4522+-=x x y . ………………………………… 4分如图10,因为10y >且2y ≤0,由图象得2<x ≤4. ………………………… 6分②136≤a <52.……………………………7分 28.解:(1)CH=AB . ………………………………… 1分(2)结论成立.………………………………… 2分证明:如图11,连接BE . 图8图9 图10在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°.∵ DE=DF ,∴ AF=CE .在△ABF 和△CBE 中, ,,,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBE .∴ ∠1=∠2.……………………………………………………………………3分 ∵ EH ⊥BF ,∠BCE =90°,∴ H ,C 两点都在以BE 为直径的圆上.∴ ∠3=∠2.∴ ∠3=∠1.∵ ∠3+∠4=90°,∠1+∠HBC =90°,∴ ∠4=∠HBC .∴ CH=CB .………………………………………………………………… 5分 ∴ CH=AB .………………………………………………………………… 6分(3)323+.………………………………………………………………………7分29.解:(1)点A .………………………………………1分画图见图12.(画出一个即可)………… 2分△AMN (或△AJK ). …………………… 3分(2)如图13,作OL ⊥EF 于点L .∵ 线段EF 为点O 的τ型线,∴ OL 即为线段EF 关于点O 的τ型三角形的高.∵线段EF 关于点O 的τ型三角形的面积为439, ∴233OL =. ……………………………… 4分 ∵ 2OE =,OF m =, ∴222223262()33EL OE OL =-=-=. ∴ 6cos 13EL OE ∠==. ∴ 2cos 2cos 1OL OL OF ===∠∠. 图13 图11图12∴2m=.………………………………………………………………………6分(3)n≤54 -.……………………………………………………………………………8分。