有理数运算综合测试题目
人教版七年级有理数混合运算100题

人教版七年级有理数混合运算100题1. 将-3和-5相加。
2. 计算(-6) + (+9)。
3. 将+4和-7相加。
4. 计算(-8) + (-2)。
5. 将+5和+6相加。
6. 计算(-3) + (+2)。
7. 将-9和+7相加。
8. 计算(-4) + (-6)。
9. 将+3和+8相加。
10. 计算(+2) + (-9)。
11. 将-5和+3相加。
12. 计算(-7) + (+6)。
13. 将+4和-9相加。
14. 计算(-2) + (-5)。
15. 将+8和+7相加。
16. 计算(-3) + (+4)。
17. 将-6和+9相加。
18. 计算(-8) + (-1)。
19. 将+2和+5相加。
20. 计算(+7) + (-4)。
21. 用括号计算:(-2) + 5 + (-3)。
22. 用括号计算:(-4) + (-6) + 7。
23. 用括号计算:8 + 9 + (-7)。
24. 用括号计算:(-5) + (-3) + 2。
25. 用括号计算:(-6) + 10 + (-4)。
26. 用括号计算:3 + (-2) + 5。
27. 用括号计算:(-4) + 7 + (-5)。
28. 用括号计算:(-8) + (-5) + 2。
29. 用括号计算:4 + 6 + (-9)。
30. 用括号计算:(-7) + 8 + (-3)。
31. 用括号计算:(-3) + (-5) - 2。
32. 用括号计算:10 - 6 + (-4)。
33. 用括号计算:(-7) - 8 + 11。
35. 用括号计算:(-4) - (-2) + 7。
36. 用括号计算:6 - 3 - (-5)。
37. 用括号计算:(-8) - (-6) + 4。
38. 用括号计算:12 - 7 - 4。
39. 用括号计算:13 - 2 - (-5)。
40. 用括号计算:8 - 4 - (-3)。
41. 用括号计算:(-3) - 5 - 2 - (-4)。
有理数混合运算习题(含答案)300道

有理数的混合运算(一)填空4.23-17-(+23)=______.5.-7-9+(-13)=______.6.-11+|12-(39-8)|=______.7.-9-|5-(9-45)|=______.8.-5.6+4.7-|-3.8-3.8|=______.9.-|-0.2|+[0.6-(0.8-5.4)]=______.12.9.53-8-(2-|-11.64+1.53-1.36|)=______.13.73.17-(812.03-|219.83+518|)=______.36.38×(-7)+5[(-2)3(-32)-(-22)]-38×339÷(-3)38=______.48.(-2)×{(-3)×[(-5)+2×(0.3-0.3)÷83-3]+4}=______.112.413-74-(-5+26).116.-84-(16-3)+7.118.-0.182+3.105-(0.318-6.065).119.-2.9+[1.7-(7+3.7-2.1)].121.34.23-[194.6-(5.77-5.4)].125.23.6+[3.9-(17.8-4.8+15.4)].134.(-3)2÷2.5.135.(-2.52)×(-4).136.(-32)÷(-2)2.173.(-1)2×5+(-1)×52-12×5+(-1×5)2.174.(-2)(-3)(-36)+(-1)20×63.178.(-32)÷(3×2)×(-3-2).180.3×(-2)2+(-2×3)2+(-2+3)2.188.2+42×(-8)×16÷32.190.[5.78+3.51-(0.7)2]÷(0.2)3×11.191.(1.25)4÷(0.125)4×0.0036-(0.6)2.194.(-42×26+132×2)÷(-3)7×(-3)5.195.(3-9)4×23×(-0.125)2.201.741×[(-30)2-(-402)]3÷(1250)2.211.[(-5)3+3.4×2-2×4+53]2.213.(24-5.1×3-3×5+33)2.234.(-5)×(-3)×(-4)2+(-2)3×(-8)×(-3)-(-12)×3÷24.240.-18-23×[(-4)3÷(-43)+0.2×8+(-3)2÷(-32)].(四)用符号“>”,“<”,“≥”,“≤”,“=”之一填空241.当两个数和的绝对值______这两个数差的绝对值时,这两个数同号.242.一个正数与一个负数差的绝对值______这两个数绝对值的和.243.一个正数与一个负数和的绝对值______这两个数绝对值的差.244.一个正数与一个负数差的绝对值______这两个数绝对值的差.245.一个正数与一个负数和的绝对值______这两个数绝对值的和.246.当两个数和的绝对值______这两个数差的绝对值时,这两个数异号.247.当两数和的绝对值______这两个数差的绝对值时,这两个数至少有一个是零.248.当两数和的绝对值______这两个数的绝对值之和时,这两个数可以是任意的有理数.249.当两数差的绝对值______这两个数的绝对值之和时,这两个数可以是任意的有理数.250.当两个数和的绝对值______这两个数绝对值的差时,这两个数可以是任意的有理数.251.当两个数差的绝对值______这两个数绝对值的差时,这两个数可以是任意的有理数.252.欲使两个数的绝对值的和等于这两个数的和的绝对值,这两个数必须是怎样的数?253.欲使两个数和的绝对值不小于这两个数的差的绝对值,这两个数必须是怎样的数?254.欲使两数和的绝对值不大于这两数差的绝对值,这两个数必须是怎样的数?255.欲使两数和的绝对值不小于这两个数的绝对值的和,这两个数必须是怎样的数?256.一个盛有水的圆柱形水桶,其底面半径为1.6分米①.现将一个半径为1.2分米的铁球沉没在桶内水面下,问桶内水面升高多少分米?(列综合算式计算,球的体积公式为,其中V表示体积,R表示球的半径)257.一个盛有水的长方体状容器,它的底面是边长为2.4分米的正方形,现将一个半径是1.2分米的铁球放在容器内,正好铁球体积的1/3在水面下,问放入铁球后,水面升高了多少分米?(列综合算式计算,球的体积公式为V表示体积,R表示球的半径,π取3.14。
有理数混合运算经典习题及答案

有理数的混合运算习题一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
2.一个数的101次幂是负数,则这个数是 。
3.7.20.9 5.6 1.7---+= 。
4.232(1)---= 。
5.67()()51313-+--= 。
6.211()1722---+-= 。
7.737()()848-÷-= 。
8.21(50)()510-⨯+= 。
三.计算题、2(3)2--⨯ 12411()()()23523+-++-+- 11( 1.5)4 2.75(5)42-+++-8(5)63-⨯-- 3145()2-⨯- 25()()( 4.9)0.656-+----22(10)5()5-÷⨯- 323(5)()5-⨯- 25(6)(4)(8)⨯---÷-1612()(2)472⨯-÷- 2(16503)(2)5--+÷- 32(6)8(2)(4)5-⨯----⨯21122()(2)2233-+⨯-- 199711(10.5)3---⨯ 2232[3()2]23-⨯-⨯--4211(10.5)[2(3)]3---⨯⨯-- 4(81)( 2.25)()169-÷+⨯-÷232()(1)043-+-+⨯215[4(10.2)(2)]5---+-⨯÷- 666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-235()(4)0.25(5)(4)8-⨯--⨯-⨯- 23122(3)(1)6293--⨯-÷- 213443811-⨯⨯÷-125)5.2()2.7()8(⨯-⨯-⨯-; 6.190)1.8(8.7-⨯⨯-⨯- 7)412(54)721(5÷-⨯⨯-÷-)251(4)5(25.0-⨯⨯-⨯-- 3)411()213()53(÷-÷-⨯- 2)21(214⨯-÷⨯-四、1、已知,032=-++y x 求xy y x 435212+--的值。
专题 有理数的混合运算计算题(50题)(解析版)-七年级数学上册

七年级上册数学《第一章有理数》专题有理数的混合运算的计算题(50题)1.(2022秋•晋安区期末)计算:(1)7﹣(﹣6)+(﹣4)×(﹣3);(2)﹣3×(﹣2)2﹣1+(−12)3.【分析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【解答】解:(1)7﹣(﹣6)+(﹣4)×(﹣3)=7+6+12=25;(2)﹣3×(﹣2)2﹣1+(−12)3=﹣3×4﹣1+(−18)=﹣12﹣1+(−18)=﹣1318.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.2.(2022春•香坊区校级期中)计算:(1)(−23)﹣(+13)﹣|−34|﹣(−14);(2)﹣12−15×[2﹣(﹣3)2].【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘法和加减法可以解答本题.【解答】解:(1)(−23)﹣(+13)﹣|−34|﹣(−14)=(−23)+(−13)−34+14=−32;(2)﹣12−15×[2﹣(﹣3)2]=﹣1−15×(﹣7)=﹣1+75=25.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.(2023春•香坊区校级期中)计算:(1)(13−12+14)×24(2)﹣23×34−(−3)3÷9【分析】(1)根据乘法分配律简便计算即可求解.;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(13−12+14)×24=13×24−12×24+14×24=8﹣12+6=2;(2)﹣23×34−(−3)3÷9=﹣8×34+27÷9=﹣6+3=﹣3.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.4.(2023•西乡塘区二模)计算:6×(3−5)+(−2)2+14.【分析】先算乘方,再算乘法,然后算加减法即可.【解答】解:6×(3−5)+(−2)2+14=6×(﹣2)+4+14=﹣12+4+14=﹣734.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.5.(2023•南宁三模)计算:(﹣1)3+8÷22+|4﹣7|×13.【分析】先算乘方,再算乘除法,最后算加法即可.【解答】解:(﹣1)3+8÷22+|4﹣7|×13=(﹣1)+8÷4+3×13=(﹣1)+2+1=2.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.6.(2023•柳州三模)计算(−1)2−6÷(−2)×|−13|.【分析】先算乘方和绝对值,再算乘除,最后算加减.【解答】解:原式=1﹣(﹣3)×13=1+1=2.【点评】本题考查了有理数的混合运算,掌握有理数的运算顺序是解决本题的关键.7.(2023春•浦东新区期末)计算:﹣23+|﹣5|﹣18×(−13)2.【分析】先计算立方、绝对值和平方,再计算乘法,最后计算加减.【解答】解:﹣23+|﹣5|﹣18×(−13)2.=﹣8+5﹣18×19=﹣8+5﹣2=﹣5.【点评】此题考查了有理数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.8.(2023•武鸣区二模)计算:−12023+(−4)÷12−(1−32).【分析】先算括号里面的,再算乘方,除法,最后算加减即可.【解答】解:原式=﹣12023+(﹣4)÷12−(1﹣9)=﹣12023+(﹣4)÷12−(﹣8)=﹣1+(﹣4)×2+8=﹣1﹣8+8=﹣1.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.9.(2023春•松江区期中)计算:−32−42÷|−6|+8×(−12)3.【分析】利用乘方运算、绝对值的定义和有理数的混合运算法则计算.【解答】解:−32−42÷|−6|+8×(−12)3=﹣9﹣42÷6+8×(−18)=﹣9﹣7﹣1=﹣17.【点评】本题考查了有理数的混合运算,解题的关键是掌握乘方运算、绝对值的定义和有理数的混合运算法则.10.(2022秋•万源市校级期末)﹣22+|5﹣8|+24÷(﹣3)×13.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3−83=−113.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.(2022春•徐汇区校级期末)计算:−24−14×[2−(−2)2].【分析】利用有理数的混合运算法则进行计算即可.【解答】解:原式=﹣16−14×(2﹣4)=﹣16−14×(﹣2)=﹣16+12=﹣1512.【点评】本题考查有理数的混合运算,熟练掌握相关运算法则是解题的关键.12.(2023春•黄浦区期中)计算:(−1112+34)×(−42)+(−213)÷3.5【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=(−1112+912)×(﹣16)−73×27=−16×(﹣16)−23=83−23=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.(2023春•闵行区期中)计算:2×(−12)3−3×(−12)2+3×(−12)−1.【分析】先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算.【解答】解:原式=2×(−18)﹣3×14−32−1=−14−34−32−1=﹣312.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.14.(2023春•黄浦区期中)计算:(−1112−34)×(−42)+(−213)÷3.5.【分析】先算括号里面的,再算乘除,最后算加减即可.【解答】解:原式=(−1112−912)×(﹣16)+(﹣213)÷3.5=−53×(﹣16)−73×27=803−23=783=26.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.15.(2023春•雁峰区校级期末)计算:(−3)4÷[2−(−7)]+6×(12−1).【分析】先算乘方和括号内的式子,再算括号外的乘除法,最后算加法即可.【解答】解:(−3)4÷[2−(−7)]+6×(12−1)=81÷(2+7)+6×(−12)=81÷9+(﹣3)=9+(﹣3)=6.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.16.(2023春•黄浦区期末)计算:(−56+34)×(−42)+(−213)÷3.5.【分析】有理数的混合运算,先算乘方,再算乘除再算加减,有括号的先算括号的,从而可求出最后结果.【解答】解:(−56+34)×(−42)+(−213)÷3.5=−10+912×(−16)+(−73)×27=−13×(−4)−23=43−23=23.【点评】本题主要考查了有理数的混合运算.本题的易错点是对于负号的计算处理.17.(2023•贺州一模)计算:﹣12023+8÷(﹣2)2﹣|﹣4|×5.【分析】按照有理数的运算法则和运算顺序进行计算即可.【解答】解:原式=﹣1+8÷4﹣4×5=﹣1+2﹣20=﹣19.【点评】本题考查了绝对值和含有乘方的有理数的混合运算,掌握相关运算法则是解题的关键.最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.(2023•防城港二模)计算:−14×[(−8)+2÷12]−|−3|.【分析】根据有理数的混合运算法则进行计算即可.【解答】解:原式=﹣1×(﹣8+2×2)﹣3=﹣1×(﹣8+4)﹣3=﹣1×(﹣4)﹣3=4﹣3=1.【点评】本题考查有理数的混合运算,其相关运算法则是基础且重要知识点,必须熟练掌握.19.(2023春•浦东新区期末)计算:﹣14+(1﹣0.5)×13×(﹣2)2.【分析】首先计算乘方和小括号里面的减法,然后计算乘法,最后计算加法,求出算式的值即可.【解答】解:﹣14+(1﹣0.5)×13×(﹣2)2=﹣1+12×13×4=﹣1+23=−13.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(2022秋•泸县期末)计算:−23÷(−2−14)×(−13)2−3281+1.【分析】根据有理数的运算法则和顺序计算.注意同级运算中的先后顺序.【解答】解:−23÷(−2−14)×(−13)2−3281+1=−8÷(−94)×19−3281+1=−8×(−49)×19−3281+1=3281−3281+1=1.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算;(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.21.(2022秋•汝阳县期末)−14−(1−0.5)×(−113)×[2−(−3)2].【分析】原式先计算乘方运算以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1−12×(−43)×(2﹣9)=﹣1−143=−173.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.22.(2022秋•泸县期末)计算:−23÷(−2−14)×(−13)2−3281+1.【分析】根据有理数的运算法则和顺序计算.注意同级运算中的先后顺序.【解答】解:−23÷(−2−14)×(−13)2−3281+1=−8÷(−94)×19−3281+1=−8×(−49)×19−3281+1=3281−3281+1=1.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算;(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.23.(2023春•吉林月考)计算:(−1)2022+|(−2)3+(−3)2|−(−14+16)×(−24).【分析】先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.注意乘法分配律的运用.【解答】解:(−1)2022+|(−2)3+(−3)2|−(−14+16)×(−24)=1+|﹣8+9|−14×24+16×24=1+1﹣6+4=0.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,24.(2022秋•易县期末)计算:(1)25÷23−25×(−12);(2)(﹣3)2×(12−56)+|﹣4|.【分析】(1)先把除法转化为乘法,再逆用乘法的分配律进行求解即可;(2)先算乘方,括号里的减法,绝对值,再算乘法,最后算加法即可.【解答】解:(1)25÷23−25×(−12)=25×32+25×12=25×(32+12)=25×2=50;(2)(﹣3)2×(12−56)+|﹣4|=9×(−13)+4=﹣3+4=1.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.25.(2022秋•广宗县期末)计算(1)(14−13−1)×(﹣12)(2)﹣22×14+(﹣3)3×(−827)【分析】(1)利用乘法分配律展开,再计算乘法,最后计算加减可得;(2)先计算乘方,再计算乘法,最后计算加减可得.【解答】解:(1)原式=14×(﹣12)−13×(﹣12)﹣1×(﹣12)=﹣3+4+12=13;(2)原式=﹣4×14+(﹣27)×(−827)=﹣1+8=7.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.26.(2022秋•黄石港区期末)计算与化简:(1)﹣22+|﹣18﹣(﹣3)×2|÷4;(2)(14−49)×(﹣6)2+7÷(−12).【分析】(1)根据有理数的乘除法和加法可以解答本题;(2)根据乘法分配律、有理数的乘除法和加法可以解答本题.【解答】解:(1)﹣22+|﹣18﹣(﹣3)×2|÷4=﹣4+|﹣18+6|÷4=﹣4+12÷4=﹣4+3=﹣1;(2)(14−49)×(﹣6)2+7÷(−12)=(14−49)×36+7×(﹣2)=9+(﹣16)+(﹣14)=﹣21.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.27.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(−13)2+(34−16+38)÷(−124)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣72+37+22﹣17=﹣89+59=﹣30;(2)原式=﹣9×19+(34−16+38)×(﹣24)=﹣1﹣18+4﹣9=﹣28+4=﹣24.【点评】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.28.(2022秋•翠屏区期末)计算:(1)12×(116−13−34);(2)−22−13÷5×|1−(−4)2|.【分析】(1)根据乘法分配律计算即可;(2)先算乘方和去绝对值,然后算乘除法,最后算减法即可.【解答】解:(1)12×(116−13−34)=12×116−12×13−12×34=22﹣4﹣9=9;(2)−22−13÷5×|1−(−4)2|=﹣4−13×15×|1﹣16|=﹣4−13×15×15=﹣4﹣1=﹣5.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.29.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(−13)2+(34−16+38)÷(−124)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣72+37+22﹣17=﹣89+59=﹣30;(2)原式=﹣9×19+(34−16+38)×(﹣24)=﹣1﹣18+4﹣9=﹣28+4=﹣24.【点评】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.30.(2022秋•和平区校级期末)计算(1)(13−18+16)×24;(2)(﹣2)4÷(﹣223)2+512×(−16)﹣0.25.【分析】(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,最后算加减法即可.【解答】解:(1)(13−18+16)×24=13×24−18×24+16×24=8﹣3+4=9;(2)(﹣2)4÷(﹣223)2+512×(−16)﹣0.25=16÷649+112×(−16)−14=16×964+(−1112)−14=2712+(−1112)−312=1312.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.31.(2023•章贡区校级模拟)计算:(1)﹣12008﹣[5×(﹣2)﹣(﹣4)2÷(﹣8)];(2)(514−78−712)÷(﹣134).【分析】(1)先算乘方和括号内的式子,然后计算括号外的减法即可;(2)先把除法转化为乘法,然后根据乘法分配律计算即可.【解答】解:(1)﹣12008﹣[5×(﹣2)﹣(﹣4)2÷(﹣8)]=﹣1﹣[(﹣10)﹣16÷(﹣8)]=﹣1﹣[(﹣10)+2]=﹣1﹣(﹣8)=﹣1+8=7;(2)(514−78−712)÷(﹣134)=(214−78−712)×(−47)=214×(−47)−78×(−47)−712×(−47)=﹣3+12+13=−186+36+26=−136.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.32.(2023•长阳县一模)计算:(1)(12−13)×6÷|−15|;(2)(−1)2018+(−10)÷12×2−[2−(−3)3].【分析】(1)根据有理数的加减乘除混合运算法则计算即可;(2)根据有理数的加减乘除乘法混合运算法则计算即可.【解答】解:(1)(12−13)×6÷|−15|=(12−13)×6×5=(12−13)×30=12×30−13×30=15﹣10=5;(2)(−1)2018+(−10)÷12×2−[2−(−3)3]=1+(﹣10)×2×2﹣(2+27)=1﹣40﹣29=﹣68.【点评】本题考查有理数的混合运算,关键在于熟练掌握基础运算法则.33.(2022秋•定远县期中)计算:(1)−22−|0.5−1|×13×[3−(−3)2];(2)(−4.66)×49−5.34÷94+5×(23)2.【分析】(1)先计算绝对值里面的式子和中括号里面的式子,然后再计算出括号外的式子;(2)先把除法转化为乘法、然后根据有理数的乘方和乘法分配律即可解答本题.【解答】解:(1)−22−|0.5−1|×13×[3−(−3)2]=﹣4−12×13×(3﹣9)=﹣4−16×(﹣6)=﹣4+1=﹣3;(2)(−4.66)×49−5.34÷94+5×(23)2=(﹣4.66)×49−5.34×49+5×49=[(﹣4.66)﹣5.34+5]×49=﹣5×49=−209.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.34.(2022秋•鞍山期末)计算:(1)(134−78−712)÷(−78)+(−34);(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2).【分析】(1)先把除法转为乘法,再利用乘法的分配律进行运算,最后算加减即可;(2)先算乘方,再算括号里的运算,接着算乘法与除法,最后算加减即可.【解答】解:(1)(134−78−712)÷(−78)+(−34)=(74−78−712)×(−87)+(−34)=74×(−87)−78×(−87)−712×(−87)−34=﹣2+1+23−34=−1312;(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)=﹣8﹣3×(16+2)﹣9÷(﹣2)=﹣8﹣3×18﹣9×(−12)=﹣8﹣54+4.5=﹣57.5.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.35.(2022秋•正阳县期中)计算:(1)(1112−76+34−1324)×(﹣48);(2)﹣9+5×|﹣3|﹣(﹣2)2÷4;(3)﹣18+(﹣4)2÷14−(1﹣32)×(13−0.5).【分析】(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,最后算加减法即可;(3)先算乘方和括号内的式子,然后计算括号外的乘除法,最后算加减法即可.【解答】解:(1)(1112−76+34−1324)×(﹣48)=1112×(﹣48)−76×(﹣48)+34×(﹣48)−1324×(﹣48)=﹣44+56+(﹣36)+26=2;(2)﹣9+5×|﹣3|﹣(﹣2)2÷4=﹣9+5×3﹣4÷4=﹣9+15﹣1=5;(3)﹣18+(﹣4)2÷14−(1﹣32)×(13−0.5)=﹣1+16×4﹣(1﹣9)×(−16)=﹣1+64﹣(﹣8)×(−16)=﹣1+64−43=6123.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.36.(2022秋•临邑县期中)计算:(1)(﹣0.5)﹣(﹣314)+2.75﹣(+712);(2)(−49)÷75×57÷(−25).(3)﹣22÷43−[22﹣(1−12×13)]×12;【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)先把除法转化为乘法,然后根据乘法法则计算即可;(3)先算乘方和括号内的式子,然后括号外的乘除法,最后算加减法即可.【解答】解:(1)(﹣0.5)﹣(﹣314)+2.75﹣(+712)=(−12)+314+234+(﹣712)=﹣2;(2)(−49)÷75×57÷(−25)=49×57×57×125=1;(3)﹣22÷43−[22﹣(1−12×13)]×12=﹣4×34−[4﹣(1−16)]×12=﹣3﹣(4−56)×12=﹣3﹣4×12+56×12=﹣3﹣48+10=﹣41.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.37.(2022秋•南票区期中)计算(1)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5;(2)(﹣5)×6×(−45)÷(﹣4);(3)﹣11×(−227)+19×(−227)+6×(−227);(4)﹣32×(﹣2)+42÷(﹣2)3﹣|﹣22|.【分析】(1)去括号,进行加减运算;(2)把除法变成乘法,再进行计算;(3)先提公因数,再计算;(4)先乘方,再乘除,最后加减运算.【解答】解:(1)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5=(﹣0.8)+0.8﹣0.7﹣2.1+1.2+3.5=0﹣2.8+4.7=1.9;(2)(﹣5)×6×(−45)÷(﹣4)=(﹣5)×6×(−45)×(−14)=﹣6;(3)﹣11×(−227)+19×(−227)+6×(−227)=(−227)×(﹣11+19+6)=(−227)×14=﹣44;(4)﹣32×(﹣2)+42÷(﹣2)3﹣|﹣22|=﹣9×(﹣2)+16÷(﹣8)﹣4=18+(﹣2)﹣4=18﹣2﹣4=12.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数的运算法则和运算顺序.38.(2022秋•库车市期中)计算:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37);(2)﹣54×219+(﹣412)×29;(3)(12+56−712)×(﹣24);(4)﹣12022÷(−52)×(﹣5)2﹣|2﹣9|.【分析】(1)先去括号,再进行加减运算;(2)(3)先算乘除,再算加减;(4)先算乘方和绝对值,再算乘除,最后算加减.【解答】解:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)=﹣53+21+69﹣37=﹣53﹣37+21+69=﹣90+90=0;(2)﹣54×219+(﹣412)×29=﹣54×199+(−92)×29=﹣115;(3)(12+56−712)×(﹣24)=12×(﹣24)+56×(﹣24)−712×(﹣24)=﹣12﹣20+14=﹣32+14=﹣18;(4)﹣12022÷(−52)×(﹣5)2﹣|2﹣9|=﹣1÷(−52)×25﹣7=﹣1×(−25)×25﹣7=10﹣7=3.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的顺序.39.(2022秋•南山区校级期中)计算:(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(23−112−415)×(−60);(3)−14−16×[2−(−3)2];(4)(−2)2−[(−23)+(−14)]÷112.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算计算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算及括号里面的,再计算除法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣12﹣5﹣14+39=﹣31+39=8;(2)原式=﹣40+5+16=﹣19;(3)原式=−1−16×(2−9)=−1+76=16;(4)原式=4−(−23−14)×12=4+8+3=15.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.40.计算:(1)4﹣(﹣28)+(﹣2);(2)(13−16)×(﹣24);(3)(﹣2)3﹣(﹣13)÷(−12);(4)﹣12﹣(1﹣0.5)÷52×15.【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算除法运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=4+28﹣2=30;(2)原式=﹣8+4=﹣4;(3)原式=﹣8﹣26=﹣34;(4)原式=﹣1−12×25×15=−1−125=−1125.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.41.计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13;(3)(34−13−56)×(﹣12);(4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13=(﹣4)×(−54)×3=15;(3)(34−13−56)×(﹣12)=34×(﹣12)−13×(﹣12)−56×(﹣12)=(﹣9)+4+10=5;(4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(−13)×(﹣4+3)+12×2=﹣1+13×(﹣1)+1=﹣1+(−13)+1=−13.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.42.计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9);(2)−12021×[4−(−3)2]+3÷(−34);(3)(512−79+23)÷136;(4)−316×7−316×(−9)+(−196)×(−8).【分析】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)先算乘方和括号内的式子,然后计算括号外的乘除法、最后算加法即可;(3)先把除法转化为乘法、然后根据乘法分配律计算即可;(4)先将带分数化为假分数,然后根据乘法分配律计算即可.【解答】解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=(﹣5)+(﹣4)+(﹣101)+9=﹣101;(2)−12021×[4−(−3)2]+3÷(−34)=﹣1×(4﹣9)+3×(−43)=﹣1×(﹣5)+(﹣4)=5+(﹣4)=1;(3)(512−79+23)÷136=(512−79+23)×36=512×36−79×36+23×36=15﹣28+24=11;(4)−316×7−316×(−9)+(−196)×(−8)=−196×7−196×(﹣9)−196×(﹣8)=−196×[7+(﹣9)+(﹣8)]=−196×(﹣10)=953.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序,注意乘法分配律的应用.43.(2022秋•西城区校级期中)计算:(1)﹣2+8﹣36﹣(﹣30);(2)﹣24÷(﹣6)×(−14);(3)(−34+56+716)×(﹣48);(4)|12−1|×(﹣1)2021﹣[1﹣(﹣6)2].【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)先把除法转化为乘法,然后根据乘法法则计算即可;(3)根据乘法分配律计算即可;(4)先算乘方和括号内的式子,然后算乘法,最后算减法即可.【解答】解:(1)﹣2+8﹣36﹣(﹣30)=﹣2+8+(﹣36)+30=0;(2)﹣24÷(﹣6)×(−14)=﹣24×16×14=﹣1;(3)(−34+56+716)×(﹣48)=−34×(﹣48)+56×(﹣48)+716×(﹣48)=36+(﹣40)+(﹣21)=﹣25;(4)|12−1|×(﹣1)2021﹣[1﹣(﹣6)2]=12×(﹣1)﹣(1﹣36)=−12−(﹣35)=−12+35=3412.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.44.计算:(1)(−58)÷143×(−165)÷(−67)(2)﹣3﹣[﹣5+(1﹣0.2×35)÷(﹣2)](3)(413−312)×(﹣2)﹣223÷(−12)(4)[50﹣(79−1112+16)×(﹣6)2]÷(﹣7)2.【分析】(1)原式从左到右依次计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=−58×314×165×76=−12;(2)原式=﹣3+5+(1−325)×12=−3+5+1125=21125;(3)原式=−263+7+163=323;(4)原式=(50﹣28+33﹣6)×149=49×149=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.45.计算:(1)﹣4﹣28﹣(﹣29)+(﹣24);(2)4×(﹣3)2﹣5×(﹣2)+6;(3)(−34+712−59)÷(−136);(4)﹣14﹣(1﹣0.5)÷213×[2﹣(﹣3)2].【分析】(1)先化简,再计算加减法即可求解;(2)(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(3)将除法变为乘法,再根据乘法分配律简便计算.【解答】解:(1)﹣4﹣28﹣(﹣29)+(﹣24)=﹣4﹣28+29﹣24=﹣56+29=﹣27;(2)4×(﹣3)2﹣5×(﹣2)+6=4×9+10+6=36+10+6=52;(3)(−34+712−59)÷(−136)=(−34+712−59)×(﹣36)=34×36−712×36+59×36=27﹣21+20=26;(4)﹣14﹣(1﹣0.5)÷213×[2﹣(﹣3)2]=﹣1−12÷213×[2﹣9]=﹣1−12÷213×(﹣7)=﹣1+112=12.【点评】考查了有理数的混合运算,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.46.(2022秋•汤阴县期中)计算:(1)−22×|−5|−6÷(12−13)×56;(2)(−56+13−34)×(−24);(3)(−1)2023×[−24×(−34)2−1];(4)24−12022×(−2)3−5.5÷415×(−815).【分析】(1)先算乘方、括号内的式子和去绝对值,然后计算括号外的乘除法,再算减法即可;(2)根据乘法分配律计算即可;(3)先算乘方和括号内的式子,再算括号外的乘法即可;(4)先算乘方,再算乘除法,最后算加减法即可.【解答】解:(1)−22×|−5|−6÷(12−13)×56=﹣4×5﹣6÷16×56=﹣20﹣6×6×56=﹣20﹣30=﹣50;(2)(−56+13−34)×(−24)=−56×(﹣24)+13×(﹣24)−34×(﹣24)=20+(﹣8)+18=30;(3)(−1)2023×[−24×(−34)2−1]=(﹣1)×(﹣16×916−1)=(﹣1)×(﹣9﹣1)=(﹣1)×(﹣10)=10;(4)24−12022×(−2)3−5.5÷415×(−815)=24﹣1×(﹣8)−112×154×(−815)=24+8+11=43.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键,注意乘法分配律的应用.47.(2022秋•丰泽区校级期中)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13;(2)(−38−16+34)×(﹣24);(3)(−14)×42﹣0.25×(﹣8)×(﹣1)2017;(4)﹣22÷43−[22﹣(1−12×13)]×12.【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算乘方,再算乘法,最后算减法即可;(4)先算乘方和括号内的式子,然后计算括号外的乘除法,最后算减法即可.【解答】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣20+(﹣14)+18+(﹣13)=﹣29;(2)(−38−16+34)×(﹣24)=−38×(﹣24)−16×(﹣24)+34×(﹣24)=9+4+(﹣18)=﹣5;(3)(−14)×42﹣0.25×(﹣8)×(﹣1)2017=(−14)×16−14×(﹣8)×(﹣1)=﹣4﹣2=﹣6;(4)﹣22÷43−[22﹣(1−12×13)]×12=﹣4×34−(4﹣1+16)×12=﹣3﹣(3+16)×12=﹣3﹣36﹣2=﹣41.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.48.计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣2467)÷6(3)(﹣18)÷214×49÷(﹣16)(4)43−{(−3)4−[(−1)÷2.5+214×(−4)]÷(24815−27815)}.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣5+4+7﹣6=2;(2)原式=(﹣24−67)×16=−4−17=−417;(3)原式=﹣18×49×49×(−116)=29;(4)原式=64﹣81+(﹣925)÷(﹣3)=64﹣81+4715=−131315.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.49.(2023春•沈阳月考)计算:(1)3﹣(+63)﹣(﹣259)﹣(﹣41);(2)213−(+1013)+(−815)⋅(+325);(3)(−292324)×12;(4)(−24)×(1−34+16−58);(5)−32−(−2)3×(−4)÷(−14);(6)(−32+3)×[(−1)2022−(1−0.5×13)].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)先算乘法,再算加减法即可;(3)先变形,然后根据乘法分配律计算即可;(4)根据乘法分配律计算即可;(5)先算乘方,再算乘除法,最后算减法即可;(6)先算括号内的式子,再算括号外的乘法即可.【解答】解:(1)3﹣(+63)﹣(﹣259)﹣(﹣41)=3+(﹣63)+259+41=240;(2)213−(+1013)+(−815)⋅(+325);=213+(﹣1013)+(−415)×175=213+(﹣1013)+(−69725)=﹣8+(−69725)=−89725;(3)(−292324)×12=(﹣30+124)×12=﹣30×12+124×12=﹣360+12=﹣35912;(4)(−24)×(1−34+16−58)=﹣24×1+24×34−24×16+24×58=﹣24+18﹣4+15=5;(5)−32−(−2)3×(−4)÷(−14)=﹣9﹣(﹣8)×(﹣4)×(﹣4)=﹣9+128=119;(6)(−32+3)×[(−1)2022−(1−0.5×13)]=(﹣9+3)×[1﹣(1−16)]=(﹣6)×(1−56)=(﹣6)×16=﹣1.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.50.(2022秋•朝阳区校级月考)计算.(1)﹣32﹣(+11)+(﹣9)﹣(﹣16);(2)﹣9+0.8+(﹣1)+(−45)−(−10);(3)﹣212÷(−5)×(−313)÷0.75;(4)(−16−512+13)×(−72);(5)−12023+27×(−13)2−|﹣5|;(6)(−12+34)×(﹣2)3+(﹣4)2+2×12.【分析】(1)先把减法统一成加法,写成省略括号和的形式,再把负数、正数分别相加;(2)先把分数化成小数,再把和为0的放一起先加;(3)先把除法统一成乘法,再算乘法;(4)利用乘法的分配律计算比较简便;(5)先算乘方化简绝对值,再算乘法,最后算加减;(6)先算乘方,再算括号里面的,最后算乘法、加减.【解答】解:(1)﹣32﹣(+11)+(﹣9)﹣(﹣16)=﹣32﹣11﹣9+16=﹣52+16=﹣36;(2)﹣9+0.8+(﹣1)+(−45)−(−10)=﹣9+0.8﹣1﹣0.8+10=(﹣9﹣1+10)+(0.8﹣0.8)=0+0=0;(3)﹣212÷(−5)×(−313)÷0.75=−52×(−15)×(−103)÷34=−52×15×103×43=−209;(4)(−16−512+13)×(−72)=(−16)×(﹣72)−512×(﹣72)+13×(﹣72)=12+30﹣24=18;(5)−12023+27×(−13)2−|﹣5|=﹣1+27×19−5=﹣1+3﹣5=﹣3;(6)(−12+34)×(﹣2)3+(﹣4)2+2×12=(−24+34)×(﹣8)+16+2×12=14×(﹣8)+16+1=﹣2+16+1=15.【点评】本题考查了有理数的混合运算,掌握有理数的运算律、运算法则是解决本题的关键.。
《100道有理数混合运算纯计算题》训练专用

《100道有理数混合运算纯计算题》训练专用题目:《100道有理数混合运算纯计算题》训练专用在数学学习中,有理数混合运算是一个基础而重要的概念。
通过混合运算的训练,学生可以巩固对有理数的运算规则的理解和运用能力的提升。
本文为您提供了100道有理数混合运算纯计算题,旨在帮助您提高数学运算的技巧和速度。
(注:为了排版整洁,以下将题目和答案分开)题目:1. 计算:(-3) + 5 - (-6) = _________。
2. 计算:23 - [-15 - (-7)] + (-4) = _________。
3. 计算:(-2) × 3 - 4 ÷ (-2) + 10 ÷ (-2) = _________。
4. 计算:(-6) ÷ 3 × (-4) - 5 = _________。
5. 计算:(-8) + 12 - 2 × (-3) ÷ 2 = _________。
6. 计算:5 - (-3) + 6 × (-2) ÷ (-3) = _________。
7. 计算:(-4) - 10 ÷ [2 - (-6)] × (-3) = _________。
8. 计算:(-12) × 4 + 7 ÷ [(-2) - (-7)] = _________。
9. 计算:(-5) × 6 - 4 × (-8) + 12 = _________。
10. 计算:20 ÷ (-5) + 16 ÷ (-8) - (-8) = _________。
....................................................... .......................................................(以下省略90道题目)答案:1. (-3) + 5 - (-6) = 82. 23 - [-15 - (-7)] + (-4) = 293. (-2) × 3 - 4 ÷ (-2) + 10 ÷ (-2) = -94. (-6) ÷ 3 × (-4) - 5 = 75. (-8) + 12 - 2 × (-3) ÷ 2 = 146. 5 - (-3) + 6 × (-2) ÷ (-3) = -27. (-4) - 10 ÷ [2 - (-6)] × (-3) = -88. (-12) × 4 + 7 ÷ [(-2) - (-7)] = 299. (-5) × 6 - 4 × (-8) + 12 = 2210. 20 ÷ (-5) + 16 ÷ (-8) - (-8) = -4 ....................................................... .......................................................(以下省略90道答案)通过以上100道有理数混合运算题目的训练,相信您对有理数的运算规则和运用能力已经有了更深入的理解。
有理数的混合运算练习题(含答案)(大综合17套)

有理数的混合运算练习题(含答案)(大综合17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48)÷82-(-25)÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32)÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51)×624.【素质优化训练】1.填空题:(1)如是0,0>>c b b a ,那么ac0;如果0,0<<cbb a ,那么ac 0; (2)若042=-++++c c b a ,则abc= ;-a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4)÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73(2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31; (2)-8;2719(3)224【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______. 3.当||a a =1,则a____0;若||a a =-1,则a______0. 4.(教材变式题)若a<b<0,那么下列式子成立的是() A .1a <1b B .ab<1 C .a b <1 D .a b>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)]ob a(3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)8 3.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2 (2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-30 2. 计算2223(23)-⨯--⨯=( )A.0 B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<-B. 342(2)2(2)-<-<-C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<- 5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( )A.-2 B.-3 C.-4 D.4二.填空题1.有理数的运算顺序是先算,再算,最算;如果有括号,那么先算。
第二章 有理数及其运算(单元测试)(考试版)

第2章有理数及其运算(单元重点综合测试)时间:120分分数:120分一、单项选择题(每题3分,共12题,共计36分)1.(2022•怀化)﹣的相反数是( )A.B.2C.﹣2D.﹣2.(2022秋•礼县月考)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心,据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( )A.5×109千克B.50×109千克C.5×1010千克D.0.5×1011千克3.(2022秋•江都区校级月考)如果|a|=﹣a,下列成立的是( )A.a>0B.a<0C.a≥0D.a≤04.(2022秋•思明区校级月考)若x的相反数是3,|y|=5,则x+y的值为( )A.﹣8B.2C.8或﹣2D.﹣8或25.(2022秋•忠县校级月考)有理数a、b在数轴上的对应的位置如图所示,则( )A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>06.(2022秋•港闸区校级月考)下列各组数中,互为相反数的是( )A.2与B.﹣1与(﹣1)2C.(﹣1)2与1D.2与|﹣2|7.(2022秋•景县校级月考)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差( )A.0.8kg B.0.6kg C.0.5kg D.0.4kg8.(2021秋•砚山县期末)若|m﹣3|+(n+2)2=0,则m+2n的值为( )A.﹣4B.﹣1C.0D.49.(2022秋•临沭县校级月考)把﹣6﹣(+7)+(﹣2)﹣(﹣9)写成省略加号和括号的形式后的式子是( )A.﹣6﹣7+2﹣9B.﹣6+7﹣2﹣9C.﹣6﹣7﹣2+9D.﹣6+7﹣2+910.(2022秋•平潭县校级期中)若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为( )A.B.99!C.9900D.2!11.(2021秋•荔城区期末)若a<0,则2a+5|a|等于( )A.3a B.﹣3a C.7a D.﹣7a12.(2022秋•启东市校级月考)把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是( )A.﹣7B.﹣1C.5D.11二、填空题(每题2分,共6题,共计12分)13.(2021秋•丹棱县期末)用“>”或“<”符号填空:﹣7 ﹣9.14.(2022秋•临沭县校级月考)若0<a<1,则a,a2,的大小关系是 .15.(2022秋•沭阳县校级月考)在数轴上与﹣3的距离等于4的点表示的数是 .16.(2022秋•九龙坡区校级月考)定义a※b=a2﹣b,则(1※2)※3= .17.(2022秋•北仑区期中)喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如图所示,这样捏合到第 次后可拉出128根面条.18.(2022秋•肥东县校级月考)若三个非零有理数a,b,c满足++=1,则= .三、综合题(共8题,共计72分)19.(8分)(2022秋•紫金县期中)把下列各数分类,并填在表示相应集合的大括号内:﹣11,,﹣9,0,+12,﹣6.4,﹣π,﹣4%.(1)整数集合:{ …};(2)分数集合:{ …};(3)非负整数集合:{ …};(4)负有理数集合:{ …}.20.(8分)(2022秋•常宁市期末)计算:(1)﹣21+17﹣(﹣13)(2)﹣14﹣6÷(﹣2)×(﹣)221.(8分)(2022秋•临沭县校级月考)把下列各数表示在数轴上,然后把这些数按从大到小的顺序用“>”连接起来.0,1,﹣3,﹣(﹣0.5),﹣|﹣|,+(﹣4).22.(8分)(2022秋•岳阳楼区月考)宜宾叙州区水泥厂仓库6天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库):+50、﹣45、﹣33、+48、﹣49、﹣36.(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这6天,仓库管理员结算发现库里还存200吨水泥,那么6天前,仓库里存有水泥多少吨?(3)如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付多少元装卸费.23.(10分)(2022秋•麒麟区校级期末)以48.0千克为标准体重测量7名学生的体重,把超过标准体重的千克数记为正数,不足的千克数记为负数,将其体重记录如下表:学生1234567与标准体重之差(千克)﹣2.8+1.7+0.8﹣0.5﹣0.2+1.2+0.5(1)最接近标准体重的是 学生(填序号).(2)最大体重与最小体重相差 千克.(3)求7名学生的平均体重.24.(10分)(2022秋•旌阳区校级月考)观察下列三行数并按规律填空:﹣1,2,﹣3,4,﹣5, , ,…;1,4,9,16,25, , ,…;0,3,8,15,24, , ,…(1)第一行数按什么规律排列?(2)第二行数、第三行数分别与第一行数有什么关系?(3)取每行数的第10个数,计算这三个数的和.25.(10分)(2022秋•德城区校级月考)如图,某快递员要从公司点A出发,前往B、C、D 等地派发包裹,规定:向上向右走为正,向下向左走为负,并且行走方向顺序为先左右再上下.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,请根据如图完成如下问题:(1)A→C( , ),B→D( , ),C→D(+1, );(2)若快递员的行走路线为A→B→C→D,请计算该快递员走过的路程;(3)若快递员从A处去某P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.26.(10分)(2022秋•南海区校级月考)(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离= ;B,C两点间距离= ;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离= ;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,问:①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?。
有理数混合运算题库题

有理数混合运算题库题1. 小明手里有一张20元的纸币,他花了8元买了一本书,又花了6元买了一根铅笔。
请问他手里还剩下多少钱?解答:小明花了8元买书,剩下20 - 8 = 12元。
然后,又花了6元买铅笔,剩下12 - 6 = 6元。
所以,小明手里还剩下6元。
2. 一个罐子里原本装有30升水,小明喝掉了其中的5/6升水,小红喝掉了其中的1/3升水,问还剩下多少升水?解答:小明和小红共喝掉的水量为5/6 + 1/3 = 10/6 + 2/6 = 12/6 = 2升。
所以,罐子里还剩下30 - 2 = 28升水。
3. 小明用一张银行卡取了300元,又用另一张银行卡存入了225元,问他账户上的余额是多少?解答:小明取了300元,账户上的余额减少了300元。
然后,又存入了225元,账户上的余额增加了225元。
所以,小明账户上的余额为-300 + 225 = -75元。
4. 一家超市原价卖出一件衣服的价格为420元,现在打折销售,打8折,问现在的售价是多少?解答:打8折表示打折后的价格是原价的80%。
所以,现在的售价为420 × 80% = 420 × 0.8 = 336元。
5. 小明和小红在商场买了一件同样的商品,小明花了原价的1/4,小红花了原价的3/8,问他们两个人一共花了多少钱?解答:小明花了原价的1/4,小红花了原价的3/8。
两个人一共花的钱数为原价 × (1/4 + 3/8) = 原价 × (2/8 + 3/8) = 原价× (5/8)。
所以,他们两个人一共花了原价的5/8。
通过以上题目的解答,我们可以更好地理解有理数的混合运算。
希望以上内容对你有所帮助。
有理数的混合运算计算题(50题)(解析版)

有理数的混合运算的计算题(50题)1.(2022秋•靖西市期末)计算:(1)5﹣(+4)﹣(﹣2)+(﹣3);(2)6÷(﹣3)﹣(―12)×(﹣4)﹣22.【分析】(1)先把减法转化为加法,然后根据有理数加法计算即可;(2)根据有理数的乘方、有理数的乘除法和减法计算即可.【解答】解:(1)5﹣(+4)﹣(﹣2)+(﹣3)=5+(﹣4)+2+(﹣3)=0;(2)6÷(﹣3)﹣(―12)×(﹣4)﹣22一、有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.二、有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.=(﹣2)﹣2﹣4=﹣8.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.2.(2022秋•大竹县校级期末)计算:(1)(―12+16―38)×(﹣24)(2)﹣13﹣2×[2﹣(﹣3)2].【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=12﹣4+9=8+9=17;(2)原式=﹣1﹣2×(﹣7)=﹣1+14=13.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2023•梧州二模)计算:(﹣3)×2+|﹣4|﹣(﹣2)3.【分析】先计算乘法、绝对值和有理数的乘方,再计算加减.【解答】解:(﹣3)×2+|﹣4|﹣(﹣2)3=﹣6+4﹣(﹣8)=﹣6+4+8=6.【点评】本题考查了有理数的混合运算,掌握有理数的混合运算顺序:先算乘方,再算乘除,最后计算加减,如果有括号,先计算括号里面的是关键.4.(2022秋•长顺县期末)计算(―1)3―(―1)+(―6)÷(―12 ).【分析】先算乘方,再算除法,最后算加减法即可.【解答】解:(―1)3―(―1)+(―6)÷(―1 2 )=(﹣1)+1+(﹣6)×(﹣2)=(﹣1)+1+12=12.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.5.(2023•兴宁区校级模拟)计算:(﹣2+4)×3+(﹣2)2÷4.【分析】先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内的运算.【解答】解:(﹣2+4)×3+(﹣2)2÷4=2×3+4÷4=6+1=7.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.6.(2023•钦州一模)计算:﹣(﹣2)+22×(1﹣4).【分析】先计算乘方和括号内的运算,再计算乘法,最后计算减法即可.【解答】解:原式=2+4×(﹣3)=2﹣12=﹣10.7.(2023春•松江区期末)计算:(516―14)×(―4)2―32+14.【分析】先算括号内的和乘方,再算乘除法,最后算加法即可.【解答】解:原式=116×16﹣9+14=1﹣9+1 4=―31 4.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.8.(2022秋•海丰县期末)计算:﹣6÷2+(13―34)×12+(﹣3)2【分析】根据有理数混合运算顺序和运算法则计算可得.【解答】解:原式=﹣3+4﹣9+9=1.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.9.(2023春•黄浦区期中)计算:229×(―1)9―(―115)2÷(―0.9)2.【分析】先算乘方,再算乘除,最后算加减.【解答】解:229×(―1)9―(―115)2÷(―0.9)2=209×(﹣1)―3625÷0.81=―209―169=―369=﹣4.【点评】本题考查了有理数的混合运算,掌握运算顺序和运算法则是解题的关键.10.(2023春•杨浦区期末)计算:―32―(23―32)÷|―16|.【分析】先算乘方,再化简绝对值算除法,最后算加减.【解答】解:原式=﹣9﹣(23―32)÷16=﹣9﹣(23―32)×6=﹣9﹣(23×6―32×6)=﹣9﹣(4﹣9)=﹣9﹣(﹣5)=﹣9+5=﹣4.【点评】本题考查了实数的运算,掌握实数的运算法则、运算律和运算顺序是解决本题的关键.11.(2023•七星区校级模拟)计算:(﹣2)3+|﹣8|+(﹣36)÷(﹣3).【分析】原式先算乘方及绝对值,再算除法,最后算加法即可得到结果.【解答】解:原式=﹣8+8+12=12.【点评】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行.12.(2023春•青秀区校级月考)计算:23×(―12+1)÷(2―3).【分析】先计算乘方和括号内的式子,然后按照乘除混合运算顺序计算即可.【解答】解:原式=8×12÷(―1)=4×(﹣1)=﹣4.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.13.(2022秋•西宁期末)计算:―14―16×[2―(―3)2].【分析】根据有理数的混合运算的顺序计算.【解答】解:―14―16×[2―(―3)2]=﹣1―16×(2﹣9)=﹣1―16×(﹣7)=﹣1+7 6=1 6.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的顺序.14.(2023春•长宁区期末)计算:(2―0.4)×416÷(―123)―14.【分析】根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解答】解:(2―0.4)×416÷(―123)―14=1.6×256×(―35)﹣1=85×256×(―35)﹣1=﹣4﹣1=﹣5.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法:先乘方、再乘除、最后加减.15.(2022秋•宁明县期末)―22+|5―8|+24÷(―3)×13【分析】先乘方和括号里的,再乘除,最后加减.【解答】解:―22+|5―8|+24÷(―3)×13=―4+3+24×(―13)×13=―1―83 =―113.【点评】本题考查的是有理数的混合运算的能力,要注意运算顺序及符号的处理.16.(2023•大连一模)计算:(―2)3―(16+38―0.75)×|―24|.【分析】先算括号里面的,再算乘方,乘法,最后算加减即可.【解答】解:原式=﹣8﹣(16+38―0.75)×24=﹣8﹣(16×24+38×24―34×24)=﹣8﹣(4+9﹣18)=﹣8﹣(﹣5)=﹣3.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.17.(2023春•长宁区期末)计算:―22+(―43)―13×[(―2)3+1].【分析】根据有理数的混合运算顺序,先计算乘方,再计算乘除,后计算加减,有括号的先计算括号内的,据此解答即可.【解答】解:原式=﹣4―43―13×(―8+1)=―4―43―13×(―7) =―4―43+73=―4+(73―43) =﹣4+1=﹣3.【点评】本题考查了有理数的混合运算,掌握相关运算法则是解答本题的关键.18.(2023•兰陵县二模)计算:﹣16÷(﹣2)3﹣22×|―12|+(﹣1)2023.【分析】根据有理数的混合运算法则计算即可.【解答】解:―16÷(―2)3―22×|―12|+(―1)2023=―16÷(―8)―4×12―1 =2﹣2﹣1=﹣1.【点评】本题主要考查了有理数的混合运算,掌握相应的运算法则是解答本题的关键.19.(2023春•普陀区期末)计算:―32+(―214)÷32+(38―512)×24.【分析】先算乘方,再利用除法法则、乘法分配律计算乘除法,最后算加减.【解答】解:原式=﹣9+(―94)×23+38×24―512×24=﹣9+(―32)+9﹣10=﹣9+9―32―10=﹣1112.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则、运算律是解决本题的关键.20.(2023•桂平市三模)计算:―32×|―29|+(―1)2023―5+(―54).【分析】先根据平方运算、绝对值运算、(﹣1)n 计算,再由有理数加减运算法则求解即可得到答案.【解答】解:―32×|―29|+(―1)2023―5+(―54)=―9×29―1―5―54=―2―1―5―54=―(2+1+5+54) =―914.【点评】本题考查了有理数加减混合运算,平方运算、绝对值运算、(﹣1)n 计算,掌握相关运算法则是解决问题的关键.21.(2023春•普陀区期末)计算:―32+(―214)÷32+(38―512)×24.【分析】先算乘方,再利用除法法则、乘法分配律计算乘除法,最后算加减.【解答】解:原式=﹣9+(―94)×23+38×24―512×24=﹣9+(―32)+9﹣10=﹣9+9―32―10=﹣1112.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则、运算律是解决本题的关键.22.(2023春•黄浦区期中)计算:(―1112+34)×(―42)+(―213)÷3.5【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=(―1112+912)×(﹣16)―73×27=―16×(﹣16)―23=83―23=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(2022秋•大冶市期末)计算:﹣14+[4﹣(38+16―34)×24]÷5.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:﹣14+[4﹣(38+16―34)×24]÷5=﹣1+[4―38×24―16×24+34×24]÷5=﹣1+[4﹣9﹣4+18]÷5=﹣1+9÷5=﹣1+1.8=0.8【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.24.计算:﹣14﹣(0.5﹣1)÷13×[5﹣(﹣3)2].【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1﹣(―12)×3×(﹣4)=﹣1﹣6=﹣7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.计算:|4﹣412|+(―12+23―16)÷112―22―(+5).【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=|―12|+(―12+23―16)×12﹣4﹣5=12―6+8﹣2﹣4﹣5=﹣812.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.(2022秋•汝阳县期末)―14―(1―0.5)×(―113)×[2―(―3)2].【分析】原式先计算乘方运算以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1―12×(―43)×(2﹣9)=﹣1―143=―173.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.27.(2022秋•滕州市校级期末)计算(1)(―79+56―34)×(﹣36);(2)﹣14﹣(1﹣0.5)×13×|1﹣(﹣5)2|.【分析】(1)根据乘法分配律计算即可;(2)先算乘方和括号内的式子、再算乘法、最后算减法即可.【解答】解:(1)(―79+56―34)×(﹣36)=―79×(﹣36)+56×(﹣36)―34×(﹣36)=28+(﹣30)+27=25;(2)﹣14﹣(1﹣0.5)×13×|1﹣(﹣5)2|=﹣1―12×13×|1﹣25|=﹣1―12×13×24=﹣1﹣4=﹣5.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.28.(2022秋•禹城市期中)计算(1)36﹣27×(73―119+227)(2)﹣72+2×(﹣3)2﹣(﹣6)÷(―13)2.【分析】(1)利用乘法分配律化简即可;(2)先乘方,再乘除,最后算加减即可;【解答】解:(1)原式=36﹣63+33﹣2=4.(2)原式=﹣49+2×9﹣(﹣6)×9=﹣49+18+54=﹣31+54=23加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则进行计算,有时可以利用运算律来简化运算.29.(2022秋•武昌区期末)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)―24―(13―1)×13[6―(―3)].【分析】(1)利用有理数的加减运算的法则进行解答即可;(2)先算乘方,括号里的运算,再算乘法,最后算加减即可.【解答】解:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10)=﹣7﹣5﹣4+10=﹣6;(2)―24―(13―1)×13[6―(―3)]=﹣16﹣(―23)×13×9=﹣16+2=﹣14.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.30.(2022秋•洛江区期末)计算:(1)(12―23―34)×(﹣24).(2)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].【分析】(1)利用乘法分配律展开,再进一步计算即可;(2)先计算乘方和括号内运算,再计算乘法,最后计算加法即可.【解答】解:(1)原式=12×(﹣24)―23×(﹣24)―34×(﹣24)=﹣12+16+18=22;(2)原式=﹣1―12×13×(2﹣9)=﹣1―16×(﹣7)=﹣1+76=16.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.31.(2022秋•运城期末)计算:(1)(―1)2023―12×14+|―3|;(2)―32÷(―2)2×|―113|×6+(―2)3.【分析】(1)先进行乘方,乘法,去绝对值运算,再进行加减运算;(2)先进行乘方,去绝对值运算,再进行乘除运算,最后算加减.【解答】解:(1)原式=﹣1﹣3+3=﹣1;(2)原式=―9÷4×43×6―8=―9×14×43×6―8=﹣18﹣8=﹣26.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则是关键.32.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(―13)2+(34―16+38)÷(―124)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣72+37+22﹣17=﹣89+59=﹣30;(2)原式=﹣9×19+(34―16+38)×(﹣24)=﹣1﹣18+4﹣9=﹣28+4=﹣24.【点评】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.33.(2022秋•庐江县期中)计算:(1)―12÷3×[3﹣(﹣3)2];(2)﹣52×|1―1615|―|―13|+34×[(―1)3―7].【分析】(1)先算乘方和括号内的式子,然后计算括号外的乘除法即可;(2)先算乘方和括号内的式子,然后计算括号外的乘法,最后算加减法即可.【解答】解:(1)―12÷3×[3﹣(﹣3)2]=―12×13×(3﹣9)=―16×(﹣6)=1;(2)﹣52×|1―1615|―|―13|+34×[(―1)3―7]=﹣25×115―13+34×(﹣1﹣7)=―53―13+34×(﹣8)=―53―13+(﹣6)=﹣8.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.34.(2022秋•鞍山期末)计算:(1)(134―78―712)÷(―78)+(―34);(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2).【分析】(1)先把除法转为乘法,再利用乘法的分配律进行运算,最后算加减即可;(2)先算乘方,再算括号里的运算,接着算乘法与除法,最后算加减即可.【解答】解:(1)(134―78―712)÷(―78)+(―34)=(74―78―712)×(―87)+(―34)=74×(―87)―78×(―87)―712(―87)―34=﹣2+1+23―34=―1312;(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)=﹣8﹣3×(16+2)﹣9÷(﹣2)=﹣8﹣3×18﹣9×(―12)=﹣8﹣54+4.5=﹣57.5.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.35.(2022秋•花山区校级期中)计算(1)32+5×(﹣6)﹣(﹣4)2÷(﹣8);(2)﹣22×|﹣3|+(﹣6)2×(―512)﹣|+18|÷(―12)3.【分析】(1)先算乘方,再算乘除法,最后算加减;(2)先算乘方化简绝对值,再算乘除法,最后算加减.【解答】解:(1)原式=9+5×(﹣6)﹣16÷(﹣8)=9﹣30+2=﹣19;(2)原式=﹣4×3+36×(―512)―18÷(―18)=﹣12﹣15+1=﹣26.【点评】本题考查了有理数数的混合运算,掌握有理数的运算法则、运算律及运算顺序是解决本题的关键.36.(2022秋•安陆市期中)计算:(1)﹣15+(﹣23)+32;(2)(﹣2)2×3﹣(﹣2)3÷4;(3)(―79+56―34)×(﹣36);(4)75×(13―12)×37÷54.【分析】(1)按照有理数加减法法则进行计算即可;(2)先乘方,再乘除,最后算减法即可;(3)运用乘法分配律进行计算即可;(4)先算括号,再进行乘除计算即可.【解答】解:(1)原式=﹣15﹣23+32=﹣38+32=﹣6;(2)原式=4×3﹣(﹣8)÷4=12﹣(﹣2)=14;(3)原式=―79×(―36)+56×(―36)―34×(―36)=28﹣30+27=25;(4)原式=75×(26―36)×37÷54=75×(―16)×37÷54=―110×45=―2 25.【点评】本题考查了有理数的混合运算,熟练有理数的混合运算法则是解题的关键.37.计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13;(3)(34―13―56)×(﹣12);(4)﹣12021﹣(―13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13=(﹣4)×(―54)×3=15;(3)(34―13―56)×(﹣12)=34×(﹣12)―13×(﹣12)―56×(﹣12)=(﹣9)+4+10=5;(4)﹣12021﹣(―13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(―13)×(﹣4+3)+12×2=﹣1+13×(﹣1)+1=﹣1+(―13)+1=―1 3.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.38.(2022秋•单县期中)计算:(1)24+(﹣14)﹣(﹣16)+8;(2)(﹣81)÷94×49÷(﹣16);(3)﹣42﹣3×22×(13―12)÷(﹣113).【分析】(1)利用有理数的加减运算计算;(2)先把除法变成乘法,再计算;(3)先算乘方和括号,再算乘除,最后算加减.【解答】解:(1)24+(﹣14)﹣(﹣16)+8=24﹣14+16+8=10+16+8=34;(2)(﹣81)÷94×49÷(﹣16)=(﹣81)×49×49×(―116)=1;(3)﹣42﹣3×22×(13―12)÷(﹣113)=﹣16﹣3×4×(―16)×(―34)=﹣16―3 2=﹣171 2.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的法则和运算顺序.39.(2022秋•德州期中)计算:(1)―14―16×[3+(﹣3)2]÷(﹣112);(2)(―12+23―56)÷(―118);(3)(512+34―58+712)÷(―724)―227;(4)﹣12022﹣(1﹣0.5)×12×[2﹣(﹣3)2].【分析】(1)先算乘方,再算乘除,有括号先算括号里面的,最后算加减运算;(2)把除变成乘,去括号,再相乘,再加减运算;(3)把除变成乘,去括号,再相乘,再加减运算;(4)先算乘方和小括号,再算乘除,最后加减运算.【解答】解:(1)―14―16×[3+(﹣3)2]÷(﹣112)=﹣1―16×(3+9)×(―23)=﹣1―16×12×(―23)=﹣1+4 3=1 3;(2)(―12+23―56)÷(―118)=(―12+23―56)×(﹣18)=(―12)×(﹣18)+23×(﹣18)―56×(﹣18)=9﹣12+15=﹣3+15(3)(512+34―58+712)÷(―724)―227=(512+34―58+712)×(―247)―227=(―107)―187+157―2―227=﹣4+157―227―2=﹣4﹣1﹣2=﹣7;(4)﹣12022﹣(1﹣0.5)×12×[2﹣(﹣3)2]=﹣1―12×12×(2﹣9)=﹣1―12×12×(﹣7)=﹣1+7 4=3 4.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数的运算法则和混合运算的顺序.40.(2022秋•(1)﹣9﹣5﹣(﹣12)+(﹣3);(2)―14―16×[3―(―3)2];(3)(―60)×(34―56+112);(4)16÷(―2)2―(―12)3×(―4).【分析】(1)先化简符号,再算加减法;(2)先算乘方和括号内的,再算乘法,最后计算加减法;(3)利用乘法分配律展开计算;(4)先算乘方,再算乘除,最后计算加减.【解答】解:(1)﹣9﹣5﹣(﹣12)+(﹣3)=﹣9﹣5+12﹣3(2)―14―16×[3―(―3)2]=―1―16×(3―9) =―1―16×(―6) =﹣1+1=0;(3)(―60)×(34―56+112)=(―60)×34―(―60)×56+(―60)×112 =﹣45+50﹣5=0;(4)16÷(―2)2―(―12)3×(―4)=16÷4―(―18)×(―4) =4―12=72.加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时利用运算律来简化运算.41.(2022秋•新野县期中)计算题:(1)(―1)5+5÷(―14)―(1―4);(2)―22+313×(―65)+1÷(―14)2;(3)(75―2110―2815)÷(―710)+(―83);(4)[323÷(―2)―114×(―0.2)2÷110]÷(―13)―23.【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;(3)将除法变为乘法,根据乘法分配律简便计算;(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(―1)5+5÷(―14)―(1―4)=﹣1+5×(﹣4)+3=﹣1﹣20+3=﹣18;(2)―22+313×(―65)+1÷(―14)2=﹣4+103×(―65)+1×16=﹣4﹣4+16=8;(3)(75―2110―2815)÷(―710)+(―83)=(75―2110―2815)×(―107)+(―83) =75×(―107)―2110×(―107)―2815×(―107)+(―83)=―2+3+83+(―83) =1;(4)[323÷(―2)―114×(―0.2)2÷110]÷(―13)―23=[113×(―12)―54×(15)2×10]×(―3)―8 =[―116―120×10]×(―3)―8 =―116×(﹣3)―120×10×(﹣3)﹣8=112+32―8=﹣1.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.42.计算:(1)﹣10﹣(﹣16)+(﹣24);(2)5÷(―35)×53;(3)﹣22×7﹣(﹣3)×6+5;(4)(113+18―2.75)×(﹣24)+(﹣1)2014+(﹣3)3.【分析】(1)根据有理数的加减混合运算进行计算即可;(2)根据有理数的乘除法进行计算即可;(3)根据有理数的混合运算进行计算即可;(4)根据有理数的混合运算进行计算即可.【解答】解:(1)原式=﹣10+16﹣24=﹣18;(2)原式=﹣5×53×53=―1259;(3)原式=﹣4×7+18+5=﹣28+18+5=﹣5;(4)原式=―43×24―18×24+114×24+1﹣27=﹣32﹣3+66﹣26=5.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.43.计算:(1)(18―13+16)×(―24);(2)|―2|×(―1)2013―3÷12×2;(3)―12―(1―0.5)×13×[2―(―3)]2;(4)7×(―36)×(―87)×16.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算绝对值及乘方运算,再计算乘除运算,最后算加减运算,即可得到结果;(3)原式先计算乘方及括号中的运算,再计算乘法运算,最后算加减运算,即可得到结果;(4)原式约分即可得到结果.【解答】解:(1)原式=18×(﹣24)―13×(﹣24)+16×(﹣24)=﹣3+8﹣4=1;(2)原式=2×(﹣1)﹣3×2×2=﹣2﹣12=﹣14;(3)原式=﹣1―12×13×25=﹣1+7 6=―31 6;(4)原式=48.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.44.(2022秋•崇川区月考)计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7);(2)314+(﹣235)+534+(﹣825);(3)(23―110+16―25)÷(―130);(4)﹣12020+(﹣2)3×(―12)﹣|﹣1﹣6|.【分析】(1)将有理数的加减混合运算统一成加法后,利用加法的运算律解答即可;(2)利用有理数加法的运算律解答即可;(3)将有理数的除法转换成乘法后,利用乘法的分配律解答即可;(4)先算乘方,再算乘法,最后算加减.【解答】解:(1)原式=﹣20+3+5﹣7=﹣(20+7)+(3+5)=﹣27+8=﹣19;(2)原式=(314+534)+(﹣235―825)=9+(﹣11)=﹣2;(3)原式=(23―110+16―25)×(﹣30)=23×(﹣30)―110×(﹣30)+16×(﹣30)―25×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12)=﹣20+3﹣5+12=(﹣20﹣5)+(3+12)=﹣25+15=﹣10;(4)原式=﹣1+(﹣8)×(―12)―|﹣7|=﹣1+4﹣7=(﹣1﹣7)+4=﹣8+4=﹣4.【点评】本题主要考查了有理数的混合运算,正确利用有理数的混合运算的法则解答是解题的关键.45.(2022秋•邗江区月考)计算:(1)(―12―13+34)×(―60);(2)392324×(―12);(3)(―11)×(―25)+(―11)×235―(―11)×15;(4)―14―(1―0.5)×13×[2―(―2)2].【分析】(1)利用乘法的分配律解答即可;(2)将带分数适当变形后利用乘法的分配律解答即可;(3)利用乘法的分配律解答即可;(4)利用有理数的混合运算的法则:先算乘方,括号内的,再算乘法,最后算减法.【解答】解:(1)原式=―12×(﹣60)―13×(﹣60)+34×(―60)=30+20﹣45=50﹣45=5;(2)原式=(40―124)×(﹣12)=40×(﹣12)―124×(﹣12)=﹣480+1 2=﹣4791 2;(3)原式=(﹣11)×(―25+25―15)=(﹣11)×2=﹣22;(3)原式=﹣1―12×13×(2﹣4)=﹣1―12×13×(﹣2)=﹣1+1 3=―2 3.【点评】本题主要考查了有理数的混合运算,正确利用有理数的混合运算的法则解答是解题的关键.46.(2022秋•衡南县期中)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)(―45)×13+(―45)×2﹣(―45)×5(3)﹣22+5×(﹣3)﹣(﹣4)÷4(4)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].【分析】(1)从左向右依次计算即可.(2)应用乘法分配律,求出算式的值是多少即可.(3)首先计算乘方和乘除法,然后从左向右依次计算,求出算式的值是多少即可.(4)首先计算乘方和括号里面的运算,然后计算乘法和减法,求出算式的值是多少即可.【解答】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣34+18﹣13=﹣29(2)(―45)×13+(―45)×2﹣(―45)×5=(―45)×(13+2﹣5)=(―45)×10=﹣8(3)﹣22+5×(﹣3)﹣(﹣4)÷4=﹣4﹣15+1=﹣18(4)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2]=﹣1―16×(﹣7)=﹣1+7 6=1 6【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.47.(2022秋•魏都区校级月考)计算:(1)(+32)―512―52+(―712);(2)9+5×(﹣3)﹣(﹣2)2÷4;(3)(56+14―512―38)×(﹣24);(4)﹣14﹣1÷6×[3﹣(﹣3)2].【分析】(1)将有理数的加减混合运算统一成加法后,利用有理数的加法的运算律解答即可;(2)先算乘方,再算乘除,最后算加减;(3)利用乘法的分配律解答即可;(4)先算乘方与括号内的,再算乘除,最后做减法.【解答】解:(1)原式=32―512―52―712=(32―52)﹣(512+712)=﹣1﹣1=﹣2;(2)原式=9+(﹣15)﹣4÷4=9﹣15﹣1=﹣6﹣1=﹣7;(3)原式=56×(﹣24)+14×(﹣24)―512×(﹣24)―38×(﹣24)=﹣20﹣6+10+9=﹣26+19=﹣7;(4)原式=﹣1﹣1×16×(3﹣9)=﹣1﹣1×16×(﹣6)=﹣1﹣(﹣1)=0.【点评】本题主要考查了有理数的混合运算,正确利用有理数的混合运算法则运算是解题的关键.48.(2022秋•兰山区校级月考)计算.(1)3﹣(+63)﹣(﹣259)﹣(﹣41);(2)213―(+1013)+(﹣815)﹣(+325);(3)﹣12+|﹣8|÷(3﹣5)﹣(﹣2)3;(4)(―13+56―38)×(﹣24);(5)(14+16―12)×12+(﹣2)3÷(﹣4).【分析】(1)将有理数的加减混合运算统一成加法后,利用加法的运算律解答即可;(2)将有理数的加减混合运算统一成加法后,利用加法的运算律解答即可;(3)先算乘方与括号内的,再算加减即可;(4)利用乘方的分配律解答即可;(5)利用乘方的分配律解答,先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=3﹣63+259+41=(3+259+41)﹣63=303﹣63=240;(2)原式=213―1013―815―325=(213―1013)+(﹣815―325)=﹣8﹣113 5=﹣193 5;(3)原式=﹣1+8÷(﹣2)﹣(﹣8)=﹣1+(﹣4)+8=﹣5+8=3;(4)原式=―13×(﹣24)+56×(﹣24)―38×(﹣24)=8+(﹣20)+9=17﹣20=﹣3;(5)原式=14×12+16×12―12×12+(﹣8)÷(﹣4)=(3+2+2)﹣6=7﹣6=1.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.49.(2022秋•宜兴市月考)计算:(1)(﹣2)×(﹣4)﹣(﹣5)×10;(2)7÷(―712)×(12―13);(3)﹣14+3×(﹣2)2﹣(﹣2)3.(4)112×57―(―57)×212+(―12)÷125;(5)(15―14―512)×60;(6)(―1.25)×25―23÷(―113)2.【分析】(1)先算乘法,再算减法即可;(2)先计算括号内的式子,然后计算乘除法即可;(3(4)先变形,然后根据乘法分配律计算即可;(5)根据乘法分配律计算即可;(6)先算乘方,再算乘除法,最后算减法即可.【解答】解:(1)(﹣2)×(﹣4)﹣(﹣5)×10=8+50=58;(2)7÷(―712)×(12―13)=7×(―127)×16=﹣2;(3)﹣14+3×(﹣2)2﹣(﹣2)3=﹣1+3×4﹣(﹣8)=19;(4)112×57―(―57)×212+(―12)÷125=32×57+57×52―12×57=(32+52―12)×57=72×57=52;(5)(15―14―512)×60=15×60―14×60―512×60=12﹣15﹣25=﹣28;(6)(―1.25)×25―23÷(―113)2=(―54)×25―8÷169=―12―8×916 =―12―92=﹣5.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.50.(2022秋•渝中区校级月考)有理数的计算:(1)﹣42×|12―1|﹣(﹣5)+2;(2)(﹣56)×(﹣1516)÷(﹣134)×47;(3)﹣12020﹣[(﹣3)2×(―23)﹣(﹣7)×17];(4)(―34―59+712)÷136;(5)314×5+6×(﹣314)﹣(﹣3)×(﹣314);(6)(13―15)+(―15)2+|―13|+(﹣1)4+(0.25)2013×42014.【分析】(1)先算乘方和去绝对值,然后算乘法,最后算加减即可;(2)先把除法转化为乘法,然后根据乘法法则计算即可;(3)先算乘方和中括号内的式子,然后计算括号外的减法即可;(4)先把除法转化为乘法,然后根据乘法分配律计算即可;(5)先变形,然后根据乘法分配律计算即可;(6)先算乘方和括号内的式子,然后计算括号外的乘法,最后算加法即可.【解答】解:(1)﹣42×|12―1|﹣(﹣5)+2=﹣16×12+5+2=﹣8+5+2=﹣1;(2)(﹣56)×(﹣1516)÷(﹣134)×47=﹣56×2116×47×47=﹣24;(3)﹣12020﹣[(﹣3)2×(―23)﹣(﹣7)×17]=﹣1﹣[9×(―23)+1]=﹣1﹣(﹣6+1)=﹣1﹣(﹣5)=﹣1+5=4;(4)(―34―59+712)÷136=(―34―59+712)×36=―34×36―59×36+712×36=﹣27﹣20+21=﹣26;(5)314×5+6×(﹣314)﹣(﹣3)×(﹣314)=314×5﹣6×314―3×314=314×(5﹣6﹣3)=134×(﹣4)=﹣13;(6)(13―15)+(―15)2+|―13|+(﹣1)4+(0.25)2013×42014=215+125+13+1+(0.25×4)2013×4=215+125+13+1+12013×4=215+125+13+1+1×4=215+125+13+1+4=1075+375+2575+1+4=538 75.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.。
七年级有理数运算测试卷

七年级有理数运算测试卷一、选择题(每题3分,共30分)1. 下列各数中,是有理数的是()A. πB. √(2)C. -3D. 0.1010010001·s2. 计算:(-2)+3的结果是()A. -1B. 1C. -5D. 5.3. 计算3 - (-2)等于()A. 1B. -1C. 5D. -5.4. 计算(-2)×(-3)的结果是()A. -6B. 6C. -5D. 5.5. 计算:4÷(-2)等于()A. 2B. -2C. (1)/(2)D. -(1)/(2)6. 一个数的相反数是3,则这个数是()A. -3B. 3C. (1)/(3)D. -(1)/(3)7. 绝对值等于3的数是()A. 3B. -3C. 3和 - 3D. 以上都不对。
8. 计算:(-1)^2等于()A. -1B. 1C. -2D. 2.9. 计算:-2^2的值是()A. 4B. -4C. 2D. -2.10. 若a = - 3,b = 2,则a + b的值为()A. -1B. 1C. -5D. 5.二、填空题(每题3分,共15分)1. 比较大小:-5___-4(填“>”或“<”)。
2. 计算:(-3)+(-4)=___。
3. 一个数与它的相反数的积是___。
4. 绝对值最小的有理数是___。
5. 若x = 5,则x =___。
三、计算题(每题5分,共35分)1. (-3)+5 - (-2)2. (-2)×(-3)÷(-4)3. -3^2×(-(1)/(3))4. 12÷(-3)+(-2)×(-3)5. (-1)^2023+(-2)^2×36. <=ft((1)/(2)-(1)/(3))×67. - 3+(-2)^3 - (-4)四、解答题(每题10分,共20分)1. 某冷库的温度是零下10^∘C,下降-3^∘C后又上升了5^∘C,求现在冷库的温度。
七年级数学有理数混合运算100题

七年级数学有理数混合运算100题一、题目。
1. 计算:(-2)+3 - (-5)- 解析:- 首先去括号,根据去括号法则,−(−5)=5。
- 则原式变为−2 + 3+5。
- 按照从左到右的顺序计算,先算−2+3 = 1,再算1 + 5=6。
2. 计算:4 - 5×(-(1)/(2))^3- 解析:- 先计算指数运算,(-(1)/(2))^3=(-(1)/(2))×(-(1)/(2))×(-(1)/(2))=-(1)/(8)。
- 再算乘法,5×(-(1)/(8))=-(5)/(8)。
- 最后算减法,4-(-(5)/(8)) = 4+(5)/(8)=(32)/(8)+(5)/(8)=(37)/(8)。
3. 计算:(-3)×(-4)+(-2)^2-12÷(-3)- 解析:- 先分别计算各项。
- 乘法:(-3)×(-4)=12。
- 指数运算:(-2)^2=4。
- 除法:12÷(-3)= - 4。
- 然后将结果代入原式计算,12 + 4-(-4)=12 + 4 + 4=20。
4. 计算:(1)/(2)-<=ft(-(1)/(3))+<=ft(-(1)/(4))- 解析:- 去括号,-<=ft(-(1)/(3))=(1)/(3)。
- 然后通分计算,分母的最小公倍数是12。
- (1)/(2)=(6)/(12),(1)/(3)=(4)/(12),(1)/(4)=(3)/(12)。
- 原式变为(6)/(12)+(4)/(12)-(3)/(12)=(6 + 4-3)/(12)=(7)/(12)。
5. 计算:(-2)^3×(-(3)/(4))+(-1)^2023- 解析:- 先计算指数运算。
- (-2)^3=(-2)×(-2)×(-2)= - 8,(-1)^2023=-1。
- 再算乘法,-8×(-(3)/(4)) = 6。
有理数加减混合计算题100道【含答案】

有理数加减混合计算题100道【含答案】(七年级数学)92267(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--有理数运算练习(一) 【加减混合运算】一、有理数加法.1、【基础题】计算:(1) 2+(-3); (2)(-5)+(-8); (3)6+(-4); (4)5+(-5); (5)0+(-2); (6)(-10)+(-1); (7)180+(-10); (8)(-23)+9;(9)(-25)+(-7); (10)(-13)+5; (11)(-23)+0; (12)45+(-45).2、【基础题】计算:(1)(-8)+(-9); (2)(-17)+21; (3)(-12)+25; (4)45+(-23);(5)(-45)+23; (6)(-29)+(-31); (7)(-39)+(-45); (8)(-28)+37.3、【基础题】计算,能简便的要用简便算法:(1)(-25)+34+156+(-65); (2)(-64)+17+(-23)+68; (3)(-42)+57+(-84)+(-23); (4)63+72+(-96)+(-37); (5)(-301)+125+301+(-75); (6)(-52)+24+(-74)+12; (7)41+(-23)+(-31)+0; (8)(-26)+52+16+(-72).4、【综合Ⅰ】计算:(1))43(31-+; (2)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121; (3)()⎪⎭⎫⎝⎛++-5112.1; (4))432()413(-+-;(5))752()723(-+; (6)(—152)+8.0; (7)(—561)+0; (8)314+(—561).5、【综合Ⅰ】计算:(1))127()65()411()310(-++-+; (2)75.9)219()29()5.0(+-++-;(3))539()518()23()52()21(++++-+-; (4))37(75.0)27()43()34()5.3(-++++-+-+-二、有理数减法.6、【基础题】计算:(1)9-(-5); (2)(-3)-1; (3)0-8; (4)(-5)-0; (5)3-5; (6)3-(-5);(7)(-3)-5 (8)(-3)-(-5); (9)(-6)-(-6); (10)(-6)-6.、【综合Ⅰ】计算:(1)(-52)-(-53); (2)(-1)-211; (3)(-32)-52; (4)521-(-7.2);(5)0-(-74); (6)(-21)-(-21); (7)525413- ; (8)-64-丨-64丨7、【基础题】填空:(1)(-7)+( )=21; (2)31+( )=-85;(3)( )-(-21)=37; (4)( )-56=-408、【基础题】计算:(1)(-72)-(-37)-(-22)-17; (2)(-16)-(-12)-24-(-18); (3)23-(-76)-36-(-105); (4)(-32)-(-27)-(-72)-87.(5)(-32)-21-(-65)-(-31); (6)(-2112)-[ --(-)-516 ] .三、有理数加减混合运算9、【综合Ⅰ】计算(1)-7+13-6+20; (2)-+-+10; (3)(-53)+51-54;(4)(-5)-(-21)+7-37; (5)31+(-65)-(-21)-32; (6)-41+65+32-21;10、【综合Ⅰ】计算,能简便的要用简便算法:(1)-+(-); (2)(-)-21+(-51); (3)21-(-)-61; (4)(-31)-15+(-32); (5)32+(-51)-1+31; (6)(-12)-(-56)+(-8)-10711、【综合Ⅰ】计算:(1)-(-)+(-); (2)(-8)-(-15)+(-9)-(-12);(3)+(-41)-(-)+21; (4)(-32)+(-61)-(-41)-21;(5)21+(-32)-(-54)+(-21); (6)310+(-411)-(-65)+(-127)12、【综合Ⅰ】计算:(1)7+(-2)-; (2)(-)+3-+(-52); (3)31+(-45)+; (4)7-(-21)+; (5)49-(-)-53; (6)(-56)-7-(-)+(-1);(7)11512+丨-11611丨-(-53)+丨212丨; (8)(- )+ 1098 + +(- 1098)13、【综合Ⅰ】计算:(1)()()()()-+-+++-+-++12345678; (2)-+++(-)(3)-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪13123423; (4)5146162341456+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪;(5)--(-413)+-(+217); (6)3745124139257526+-+有理数运算练习(一) 答案1、【答案】 (1)-1; (2)-13; (3)2; (4)0; (5)-2; (6)-11; (7)170;(8)-14; (9)-32; (10)-8; (11)-23; (12)0.2、【答案】 (1)-17; (2)4; (3)13; (4)22; (5)-22;(6)-60; (7)-84; (8)9.3、【答案】(1)100; (2)-2; (3)-92; (4)2; (5)50; (6)-90; (7)-13; (8)-30.4、【答案】 (1)125-; (2)65-; (3)0; (4)-6; (5)74; (6)32; (7)615-; (8)65-.5、【答案】 (1)65 (2) (3)12 (4)311-6、【答案】 (1)14; (2)-4; (3)-8; (4)-5; (5)-2; (6)8; (7)-8;(8)2; (9)0; (10)-12、【答案】 (1)51; (2)-25; (3)-1516; (4); (5)74; (6)0;(7)-2043(8)-1287、【答案】 (1)28; (2)-116; (3)16; (4)168、【答案】 (1)-30; (2)-10; (3)168; (4)-20; (5)0; (6)-或-1016 9、【答案】 (1)20; (2); (3)-56; (4)61; (5)-32; (6)4310、【答案】 (1)-7; (2)-; (3)127; (4)-16; (5)-51; (6)-23911、【答案】 (1); (2)10; (3)27; (4)-1213; (5)152; (6)65;12、【答案】 (1); (2)-; (3)30; (4)9; (5)69; (6)-6; (7); (8)013、【答案】 (1)8; (2)-3; (3)41; (4)-13; (5)-2; (6)902313。
有理数加减乘除混合运算50题

有理数加减乘除混合运算题50题一、加法与乘法混合运算1. 2 + 3×4-解析:先算乘法3×4 = 12,再算加法2 + 12 = 14。
2. 5 + (-2)×3-解析:先算乘法(-2)×3 = -6,再算加法5 + (-6)= -1。
3.(-3)+4×2-解析:先算乘法4×2 = 8,再算加法(-3)+8 = 5。
4. 6 + (-1)×(-2)-解析:先算乘法(-1)×(-2)=2,再算加法6 + 2 = 8。
4.(-4)+3×(-2)-解析:先算乘法3×(-2)= -6,再算加法(-4)+(-6)= -10。
二、减法与乘法混合运算1. 8 - 2×3-解析:先算乘法2×3 = 6,再算减法8 - 6 = 2。
2. 7 - (-3)×2-解析:先算乘法(-3)×2 = -6,再算减法7 - (-6)= 13。
-解析:先算乘法4×2 = 8,再算减法(-5)-8 = -13。
4. 9 - (-1)×3-解析:先算乘法(-1)×3 = -3,再算减法9 - (-3)= 12。
4.(-6)-3×(-2)-解析:先算乘法3×(-2)= -6,再算减法(-6)-(-6)= 0。
三、加法与除法混合运算1. 4 + 8÷2-解析:先算除法8÷2 = 4,再算加法4 + 4 = 8。
2. 5 + (-6)÷3-解析:先算除法(-6)÷3 = -2,再算加法5 + (-2)= 3。
3.(-3)+12÷4-解析:先算除法12÷4 = 3,再算加法(-3)+3 = 0。
4. 6 + (-8)÷4-解析:先算除法(-8)÷4 = -2,再算加法6 + (-2)= 4。
人教版七年级有理数的混合运算练习题40道(带答案)

人教版七年级有理数的混合运算练习题40道(带答案)有理数的混合运算专题训练以下是一些有理数的混合运算题目,需要按照以下顺序进行运算:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
1.1241/141 + (-) + (+) + (-) + 2/先算括号内的正负号,得到-1,然后按照顺序进行运算,得到2/3.2.(-81) ÷ (-2.25) × (-) ÷ 16先算括号内的正负号,得到正,然后按照顺序进行运算,得到9.3.11 + (-22) - 3 × (-11)按照顺序进行运算,得到56.4.(+12) × (-) - 15 × (-1)按照顺序进行运算,得到-3.5.(-) × [-32 × (-)2 - 2]先算括号内的正负号,得到正,然后按照顺序进行运算,得到64.6.(-23) ÷ (-4)3先算括号内的正负号,得到正,然后按照顺序进行运算,得到-1/8.7.12 ÷ [(-)2 - 8]先算括号内的正负号,得到-6,然后按照顺序进行运算,得到-2.8.[(-2)2 × (-3)] × (-)先算括号内的正负号,得到正,然后按照顺序进行运算,得到6.9.[(-0.5)-] × (-6)先算括号内的正负号,得到正,然后按照顺序进行运算,得到3.10.|-| × (-) ÷ 2先算绝对值,得到0,然后按照顺序进行运算,得到0.11.-2² - (-2)² - 2³ + (-2)³先算括号内的正负号,得到-8,然后按照顺序进行运算,得到0.12.(-6)² - (-3)² ÷ (-1/2)³ × (-3)先算括号内的正负号,得到正,然后按照顺序进行运算,得到-108.13.-(-1)¹⁹⁹⁷ - (1 - 0.5) × 3 ÷ (-12)¹⁴先算括号内的正负号,得到正,然后按照顺序进行运算,得到-1.14.(-1)³ - (-8½) × 4/17 + (-3)³ ÷ [(-2)⁵ + 5]先算括号内的正负号,得到-1,然后按照顺序进行运算,得到-2.5.15.-10 + 8 ÷ (-2)² - (-4) × (-3)先算括号内的正负号,得到正,然后按照顺序进行运算,得到-4.16.-49 + 2 × (-3)² + (-6) ÷ (-1/9)先算括号内的正负号,得到正,然后按照顺序进行运算,得到-47.17.-14 + (1 - 0.5) × 1/3 × [2 × (-3)²]先算括号内的正负号,得到正,然后按照顺序进行运算,得到-10.18.[(-1/2)² - 3 × 3/4] ÷ 1/5先算括号内的正负号,得到-7/16,然后按照顺序进行运算,得到-8.75.19.5 × (-6) - (-4)² ÷ (-8)先算括号内的正负号,得到正,然后按照顺序进行运算,得到-25.20.(-2)² - 2 × [(-3)² ÷ (-4)] + (-5) × (-4)²先算括号内的正负号,得到正,然后按照顺序进行运算,得到-82.21.(7/12 - 5/6 + 3/4) × (-12) ÷ 6先算括号内的正负号,得到-1,然后按照顺序进行运算,得到2.22.(-7) ÷ 6 + (-5)³ - 3 ÷ (-2)³先算括号内的正负号,得到-125/8,然后按照顺序进行运算,得到-51.875.23.(-)² + (-)(-2)先算括号内的正负号,得到正,然后按照顺序进行运算,得到-2.24.-42 × [(-7) ÷ 6] + (-5)³ - 3 ÷ (-2)³先算括号内的正负号,得到-35,然后按照顺序进行运算,得到-124.875.25.6 - (-12) ÷ (-2)²先算括号内的正负号,得到正,然后按照顺序进行运算,得到2.26.(-5) ÷ (-1/2)²先算括号内的正负号,得到正,然后按照顺序进行运算,得到-20.27.42 × (-2/3) + (-4) ÷ 0.25按照顺序进行运算,得到-94.最终答案:1.2/32.93.564.-35.646.-1/87.-28.69.310.011.012.-10813.-114.-2.515.-416.-4717.-1018.-8.7519.-2520.-8221.222.-51.87523.-224.-124.87525.226.-2027.-941.删除明显有问题的段落,文章内容不完整,无法进行改写。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数运算综合测试题目
有理数运算综合测试题
一、选择
1、一个数的平方是81,这个数是( )
A 、9
B 、-9
C 、+9
D 、81
2. 如果两个有理数的和是正数.积是负数.那么这两个有理数 ( )
A.都是正数
B.绝对值大的那个数正数.另一个是负数
C.都是负数
D.绝对值大的那个数负数.另一个是正数
3. 比3的相反数小3的数是 ( )
A. -6
B. 6
C. ±6
D. 0
4. 在-(-8),│-1│,-│0│,(-2)3这4个数中,负数共有 ( )
A.4个
B.3个
C.2个
D.1个
5、下列说法正确的是( )
A .有理数的绝对值为正数
B .只有正数或负数才有相反数
C .如果两数之和为0,则这两个数的绝对值相等
D .如果两个数的绝对值相等,则这两个数之和为0 6、两个有理数的和为零,则这两个有理数一定( ) A. 都是零 B. 互为相反数 C. 一正一负 D. 至少有一个是零 7、两个有理数的积为零,则这两个有理数一定( ) A. 都是零 B. 互为相反数 C. 一正一负 D. 至少有一个是零
8、3
1-的相反数是( )(A )-3 (B )3 (C )31 (D )31- 9、3
1-的倒数是( )(A )-3 (B )3 (C )31 (D )3
1- 10.下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有
正数,③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等。
其中正确的有:( )
A 、0个;
B 、1个;
C 、2个;
D 、3个
11. 下面四个结论中,正确的是:( )
A 、|—2|>|—3|;
B 、|2|>|3|;
C 、2>|—3|;
D 、2<|—3|
12.下列说法正确的是:( )
A 、—1是相反数;
B 、—3.3与+3互为相反数;
C 、3
2-和—3/2互为相反数 D 、—4的相反数是4 13.若|x|=3,则 x 的值为( ).
A .3 B.-3 C.0,±3 D.±3
14.两个数的和为负数,则这两个数( ).
A .一个为正数,一个为负数 B.同为负数 C.一个为零,一个为负数 D.至少有
一个为负数
二、填空题:
1. 如果向东运动5米记作+5米,那么向西运动3米记作: .
2. -21的相反数是____________; |-
7.2|=______;0.1的倒数是______; -|-1|的倒数是 , 比13-小7-的数是________
3. 绝对值在2与5之间的整数
有 .
4. 数轴上表示—3的点到原点的距离是 个单位,那么到原点的距离等于3个单位的点表示的数是 .
5. 如果a ,b 互为相反数,那么a+b= .
6. 比较下列各数的大小(填“>”、“<”或“=”)
8-____ 0 , 32 _____3
2- ,218- _______219- , 21
- 0
7、绝对值小于5的所有整数是 ,它们的和是 .
8. 绝对值是25的数是_______________,平方是25的数是___________.
9、计算:(-23
2)- =-1; -19+ =20;
9×3÷31
= ;
231÷(-16
1)= 。
10.对正有理数a 、b 规定运算★如下:a ★b=b a ab +,则8★6= .
11、若|a-2|+|b+3|=0,则3a+2b= .
12. 若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________
13。
若5-x 与3+x 互为相反数,则=x . 绝对值等于3的数是
三、计算
-3-4+19-11+2 -1-(-10)
÷21
×2 +(-4);
)533()1072(--- 3)3
12(-- ()85.30--
(―41)+18+(―39)+12
-34 ×715 ×(-23 )×(-514 )
-8×(16 -512 +310 )×15
()22-= 22-= 322= 3
31⎪
⎭⎫ ⎝⎛-=
四、解答题
1.规定一种运算:a *b=b a ab
+;计算2*(-3)的值
2. 议一议,观察下面一列数,探求其规律:
-1,21,-31,41,-51,6
1…… (1)填出第7,8,9三个数; , , .
(2)第2004个数是什么?如果这一列数无限排列下去,与哪个数越来越接近?
4. 、观察下列依次排列的一列数,它的排列有什么规律。
请接着写出后面的3个数:
(1)2,4,—6,8,10,—12,_____,______,_______;
(2)3,2,1,0,—1,—2,______,_______,_______;
(3)1,—2,4,—8,16,—32,________,_________,_______;
5. 写出下列各数的相反数:
+2,—3,0,—(—1),—3.5,—(+2),—|—4|。