1静力学基础
静力学基础
三、力与力系
力:物体间的相互机械作用,是矢量。
单位:国际:牛顿(N),千牛(kN);
工程:千克力(kgf)。
注意:凡以人名命名的单位符号的第一个字母
要大写,如瓦特(W)、安培(A)、焦尔(J)
力系:同一个物体上作用着
两个及其以上的力,
则这些力组成力系。
F1 F3
F2
四、力的三要素
大小、方向、作用点。
力的基本性质是公理及其推论,它是静 力的作用面积很小,可以看做作用在一点上,称为集中力。
一般地:本课程研究的均为非自由体 在作用于刚体的任一力系中,加上或减去任一平衡力系,并不改变原力系对刚体的运动效应。 (1)拉杆BC受力图见图(b)
力学的理论基础,是解题的依据。 §1-4 受力分析和受力图
一般地:本课程研究的均为非自由体 如放在地板上的讲台,地板给讲台一个支持力。 3、光滑圆柱铰链约束(铰链约束) 反力沿接触点的公法线方向,背离光滑面
注意:不是平衡力系!! 为什么?
由于两个力作用于不同物体上,尽管有
“等值、反向、共线”
§1-3 约束与约束反力
证明:三个不平行的共面力F1、F2、F3分别作用于A1 、 A2 、 A3。
§1-3 约束与约束反力
一、自由体与非自由体 由于两个力作用于不同物体上,尽管有“等值、反向、共线”
B处由作用与反作用公理得R´B,与RB反向、等值。
② 其方向与被约束物体位移方向相反。 其由两带孔的物体用圆柱销钉插入孔中连接而成。 任何物体上都作用着一定的载荷,化工设备、机械是在一定载荷下工作的。
括总结出来,无需证明。 力的多边形法则(封闭边为合力) (多力合成) 。
力的多边形法则(封闭边为合力) (多力合成) 。 若刚体在两个力作用下平衡,充要条件是:两力大小相等,方向相反,并且在同一条直线上,即 (2)先画已知力(主动力)
1.1静力学基础
一点。
F1
证明:1 利用力的可传性原理找到、
F2两个力的交点O;
A
R12
2 利用平行四边形法则在交 点O合成一个合力R12;
CO
B
F2
3 合力R12与第三个力F3满足 二力平衡公理,必定共线,
F3
2020/9/26
各力的汇交点
即三力平衡必汇交与一点O。
4.作用与反作用原理公理(公理四)
两物体间相互作用的力,总是大小相等、方向相反、 沿同一作用线,分别作用在相互作用的两个物体上。
2020/9/26
1.平面力系— 力的作用线在同一平面上的力系为平面力
系。平面力系又可以分为:
平面汇交力系 —所有力的作用线汇交于一点的平面力系
平面平行力系 —所有力的作用线都互相平行的平面力系
平面力偶系—物体受同一平面的一群力偶作用
平面任意力系 —所有力的作用线既不交于同一点,又不
互相平行的平面力系。 如果作用于刚体上的一力系可用另一力系来代替,而不改 变刚体的运动状态,则称两力系互为等效力系。一个力与 一个力系等效,则称这个力为该力系的合力;力系中的各 个力称为合力的分力。将各分力代换成合力的过程,称为 力2系020/的9/26合成;将合力代换成分力的过程,则称为力的分解
R
R
怎 样 求 合 力 2020/9/26 ?
力三角形法则
求合力例题: 已知皮带预紧力s1、s2和包角,求对轴的压力Q
轴上压力Q 包角
怎 样 求 合 力 ?
皮带轮
2020/9/26
皮带预紧力S
推论2:三力平衡汇交定理
若刚体在三个力的作用下处于平衡,且其中二
力相交于一点,则第三个力的作用线必通过同
《工程力学》第一章 静力学基础及物体受力分析
• 在工程实际中,为求未知约束反力,需依 据已知力应用平衡条件求解。为此,首先 要确定构件(物体)受有多少力的作用以及 各作用力的作用位置和力的方向。这个确 定分析过程称为物体的受力分析。
• 四、作用与反作用原理
• 任何二物体间相互作用的一对力总是等值、 反向、共线的,并同时分别作用在这两个 物体上。这两个力互为作用力和反作用力。 这就是作用与反作用原理。
• 五、刚化原理 • 当变形体在已知力系作用下处于平衡时,
若把变形后的变形体刚化为刚体,则其 平衡状态保持不变。这个结论称为刚化 原理。
合力,其合力作用点在同一点上,合力的方向 和大小由原两个力为邻边构成的平行四边形的 对角线决定(图1-4)。这个性质称为力的平 行四边形原理。其矢量式为
• 即合力矢R等于二分力F1和F2的矢量和。
图1-4
图1-5
• 推论:作用于刚体上三个相互平衡的力, 若其中二力作用线汇交于一点,则此三力 必在同一平面内,且第三力的作用线必定 通过汇交点。这个推论被称为三力平衡汇 交定理。
• 力对物体作用的效应取决于力的三个要素:力的大小、方向和作 用点。
• 力的作用点是指物体承受力的那个部位。两个物体间相互接触时 总占有一定的面积,力总是分布于物体接触面上各点的。当接触 面面积很小时,可近似将微小面积抽象为一个点,这个点称为力 的作用点,该作用力称为集中力;反之,当接触面积不可忽略时, 力在整个接触面上分布作用,此时的作用力称为分布力。分布力 的大小用单位面积上的力的大小来度量,称为载荷集度,用 q(N/cm2)表示。
静力学基础知识
弹性力学问题分析
弹性力学问题
弹性力学是研究弹性体在力的作用下的变 形和应力的学科。在工程中,弹性力学被 广泛应用于结构分析和设计。
分析方法
弹性力学问题分析可以采用有限元法、变 分法等数值方法和解析方法进行求解。根 据问题的具体情况选择合适的方法进行求 解,可以得到物体的应力分布、位移分布 等信息。
分离变量法
将多变量问题分解为多个 单变量问题,逐个求解。
反三角函数法
用于求解与角度相关的静 力学问题。
静力学问题的数值解法
有限元法
将物体离散化为有限个单元, 通过数学方法求解每个单元的 受力情况,进而得到整个物体
的受力分布。
边界元法
基于边界条件建立数学模型,用 于求解某些特定的静力学问题。
有限差分法
外伸梁的受力分析
总结词
外伸梁的一端伸出支座并受到约束,受力分析需要考虑 伸出端部的支撑反力和跨中挠度的情况。
详细描述
外伸梁是一种常见的桥梁结构形式,其受力分析需要考 虑伸出端部的支撑反力和跨中挠度的情况。在外伸梁的 伸出端部,支撑反力的大小和方向需根据具体约束条件 进行确定,同时该端部的刚度需考虑支撑反力的影响。 此外,跨中挠度是外伸梁受力后的主要变形表现,其大 小和分布情况需根据梁的跨度、荷载分布等因素进行计 算。通过对支撑反力和跨中挠度的分析,可以确定外伸 梁的强度、刚度和稳定性等关键参数,为结构设计提供 依据。
简支梁的受力分析
总结词
简支梁的两端受到自由度的约束,受力分析需要考虑跨 中挠度和支座反力的情况。
详细描述
简支梁是一种常见的桥梁结构形式,其受力分析需要考 虑跨中挠度和支座反力的情况。在简支梁的两端,支座 对梁产生反力,这些反力的大小和方向需根据具体约束 条件进行确定。此外,跨中挠度是简支梁受力后的主要 变形表现,其大小和分布情况需根据梁的跨度、荷载分 布等因素进行计算。通过对跨中挠度和支座反力的分析 ,可以确定简支梁的强度、刚度和稳定性等关键参数, 为结构设计提供依据。
静力学基础知识
固定结构的分析是指对固定 不动的物体进行受力分析, 确定其在重力、支撑力等作 用力下的平衡状态。这种分 析方法在建筑、机械等领域 广泛应用,用于评估结构的 稳定性、安全性和可靠性。
固定结构分析需要使用静力学的基本原理, 如力的合成与分解、力的矩、力的平衡等, 以及相关的数学工具,如线性代数和微积分。
通过力的平移,将一个力系简化为一个合力,这 个合力与原力系等效。
简化
合成
力系的平衡条件
平衡方程
平衡条件
对于一个物体,如果它处于静止状态或匀速直线 运动状态,那么这个物体所受的力系是平衡的。
对于一个物体,如果它受到n个力的作用,那么这 n个力的合力为零,即∑Fi=0。
静
第力
六 章
例学 应 用
实
固定结构的分析
静力学的发展历程
总结词
静力学的发展经历了古代静力学、经典静力学和现代静力学三个阶段。
详细描述
古代静力学阶段主要基于经验和直观,如阿基米德浮力原理和杠杆原理等。经典静力学阶段开始于文艺复兴时期,主 要基于数学和物理原理,发展了力的合成与分解、力矩平衡等基本理论。现代静力学则更加注重实验和计算机技术的 应用,发展了有限元分析、优化设计等现代分析方法。
平衡条件的对称性
静
第力
五 章
系学 中 的
力
力系的定义与分类
根据力的作用线是 否通过一点,可以 分为共点力系和非 共点力系;根据力 的作用线是否在同 一个平面内,可以 分为平面力系和空 间力系。
力系是作用在物体上的一组力的集合。 定义 分类
力系的简化与合成
将两个或多个力合 成一个或少数几个 力,这些力与原力 等效。
静
第力
一 章
工程力学(静力学与材料力学)-1-静力学基础
力偶及其性质
力偶-最简单、最基本的力系
工程中的
力偶实例
F1
F2
1. 力偶的定义
两个力大小相等、方向相反、作用线互相平行、
但不在同一直线上,这两个力组成的力系称为力
偶(couple)。
(F,F)
力偶臂
dF F
力偶的作用面
平面力偶及其性质
m
B
F
o
dA
F’
力偶没有合力,不能用一个力来代替,也不能用一个力与之平
力偶及其性质
力偶及其性质
力偶-最简单、最基本的力系 力偶的性质 力偶系及其合成
力偶及其性质
力偶-最简单、最基本的力系
力偶及其性质
力偶-最简单、最基本的力系
工程中的力偶实例
钳工用绞杠丝锥攻螺纹时, 两手施于绞杆上的力和,如果 大小相等、方向相反,且作用 线互相平行而不重合时, 便组成一力偶 。
O
d1
d d2
F1
力和力矩
合力之矩定理
FR
n
mOFR=mOFi
i1
F2
例1 已知:如图 F、R、r, a , 求:MA(F)
解:应用合力矩定理
R Fy
F
r
a
a
Fx
M A ( F ) M A ( F x ) M A ( F y )
A
a a
M A ( F ) F x ( R r c) o F y r s sin
解 : 可以直接应用力矩公式计算力F 对O点之矩。但是,在本例的情形 下,不易计算矩心O到力F作用线的 垂直距离h。
如果将力F分解为互相垂直的
两个分力Fl和F2,二者的数值分别
为
F1=Fcos45
第1章 静力学基础
第一章静力学基础学习目标:1.理解力、刚体、约束、约束力的概念和静力学公理。
2.掌握物体受力图分析。
静力学是研究物体在力系作用下平衡规律的科学,主要解决两类问题:一是将作用在物体上的力系进行简化,即用一个简单的力系等效地替换一个复杂的力系,这类问题称为“力系的简化(或力系的合成)问题”;二是建立物体在各种力系作用下的平衡条件,这类问题称为“力系的平衡问题”。
静力学是建筑力学的基础,在土木工程实际中有着广泛的应用。
它所研究的两类问题(力系的简化和力系的平衡),对于研究物体的受力和变形都有十分重要的意义。
力在物体平衡时所表现出来的基本性质,也同样表现于物体在一般运动的情形中。
在静力学中关于力的合成、分解与力系简化的研究结果,可以直接应用于动力学。
本章将阐述静力学中的一些基本概念、静力学公理、建筑工程上常见的典型约束力与约束反力,以及物体的受力分析。
第一节基本概念一、力力的概念是人们在生活和生产实践中,通过长期的观察、分析和总结而逐步形成的。
当人们推动小车时,由于手臂肌肉的紧张和收缩而感受到了力的作用。
这种作用不仅存在于人与物体之间,而且广泛地存在于物体与物体之间,例如机车牵引车辆加速前进或者制动时,机车与车辆之间、车辆与车辆之间都有力的作用。
大量事实表明,力是物体(指广义上的物体,其中包括人)之间的相互作用,离开了物体,力就不可能存在。
力虽然看不见摸不着,但它的作用效应完全可以直接观察,或用仪器测量出来。
实际上,人们正是从力的效应来认识力本身的。
1.力的定义力是物体之间相互的机械作用。
由于力的作用,物体的机械运动状态将发生改变,同时还引起物体产生变形。
前者称为力的运动效应(或外效应);后者称为力的变形效应(或内效应)。
在本课程中,主要讨论力对物体的变形效应。
2.力的三要素实践表明,力对物体作用的效应,决定于力的大小、方向(包括方位和指向)和作用点,这三个因素称为力的三要素。
力的大小表示力对物体作用的强弱。
静力学分析基础
与静力学有密切联系。
静力学在新技术领域的应用
1 2
静力学在机械设计中的应用
机械设计中的结构分析和优化设计需要应用静力 学理论,以确保机械设备的稳定性和可靠性。
静力学在航空航天领域的应用
航空航天器在静止状态下的受力分析需要应用静 力学理论,以确保其结构的完整性和安全性。
3
静力学在土木工程中的应用
土木工程中的建筑物和桥梁等结构的稳定性分析 和设计需要应用静力学理论。
静力学分析基础
目录
• 静力学基本概念 • 静力学基本原理 • 静力学分析方法 • 静力学在工程中的应用 • 静力学的发展与展望
01
静力学基本概念
力的概念
总结词
力的概念是静力学分析中的基本要素,它描述了物体之间的相互作用。
详细描述
力是一个矢量,具有大小和方向两个基本属性。在物理学中,力是改变物体运 动状态的原因。在静力学中,主要关注处于平衡状态的物体所受的力。
02
静力学基本原理
二力平衡原理
总结词
二力平衡原理是静力学的基本原理之一,它指出一个物体在两个大小相等、方向相反且作用线通过同一点的力作 用下,将处于平衡状态。
详细描述
二力平衡原理是静力学中最基本的原理之一。当一个物体受到两个大小相等、方向相反且作用线通过同一点的力 作用时,物体将处于平衡状态,不会发生运动或转动。这个原理是静力学分析的基础,广泛应用于各种工程领域。
05
静力学的发展与展望
静力学与其他学科的交叉研究
静力学与材料科学
01
静力学在材料科学中广泛应用于研究材料的力学性能,如强度、
刚度和稳定性等。
静力学与流体力学
02
流体力学中的流体静力学是研究流体静止或相对静止状态下的
静力学:第1章:静力学基础
Theoretical Mechanics
返回首页
§1–3 静力学公理
推论(三力汇交定理) 当刚体在三个力作用下平衡时, 当刚体在三个力作用下平衡时,设其中两力的作用线 相交于某点,则第三力的作用线必定也通过这个点。 相交于某点,则第三力的作用线必定也通过这个点。 F1 证明: A1 A A3 F3
Theoretical Mechanics
返回首页
§1–3 静力学公理
公理三(力平行四边形公理) 作用于物体上任一点的两个力可合成为作用于同一点的 作用于物体上任一点的两个力可合成为作用于同一点的 物体 一个力,即合力。 一个力,即合力。合力的矢由原两力的矢为邻边而作出的力 平行四边形的对角矢来表示。 平行四边形的对角矢来表示。 力三角形法 F2 FR FR F2 A F1 A F1 A F2 F1 FR
Theoretical Mechanics
返回首页
§1–3 静力学公理
推论 (力在刚体上的可传性) 作用于刚体上的力, 作用于刚体上的力,其作用点可以沿作用线在该刚 刚体上的力 体内前后任意移动,而不改变它对该刚体的作用 体内前后任意移动,而不改变它对该刚体的作用。
B F A
B
F1 F2
B
F1
=
F A
Theoretical Mechanics
返回首页
§1–2
1.力的定义
力
力是物体相互间的机械作用, 力是物体相互间的机械作用,其作用结果使 物体的形状和运动状态发生改变。 物体的形状和运动状态发生改变。 外效应—改变物体运动状态的效应。 外效应 改变物体运动状态的效应。 改变物体运动状态的效应
2. 力的效应 内效应—引起物体变形的效应。 内效应 引起物体变形的效应。 引起物体变形的效应 大小 3. 力的三要素 方向 作用点 确定力的必要因素
工程力学-第1章 静力学基础
约束力的方向与它所限制物体的运动或运动趋势的方向相反,其 大小和方向是随主动力的不同而不确定,是一个未知力。
二、常见约束的类型
约束类型—把一构件与它构件的联接形式,按其限制构件运动 的特性抽象为理想化的力学类型,称为约束类型。
常见约束的约束类型—为柔体、光滑面、铰链和固定端。
值得注意的是,工程实际中的约束与约束类型有些比较相近,有 些差异很大。必须善于观察,正确认识约束类型及其应用意义。
工程力学的任务: 研究构件的受力分析、平衡规律(重 点)和运动规律(简介),以及构件的变形破坏规律。为构件 的设计和制造提供基本的理论依据和实用的计算方法。
第一章 静力学基础和受力图
△
一、基本概念 1.力的定义
◆ 课节1–1 静力学基础
力是物体间相互的机械作用。
2.力的三要素及表示法
B
G
F A
FN
2)固定铰支座 约束限制了构件销孔端的随意移动,不限制构 件绕圆柱销这一点的转动。
物体间相互的机械作用可以用力的符号表示。一个力的箭头符
号表示一个机械作用,相互机械作用需二个力的箭头符号。
3.力系与平衡
4.合力与分力 若一个力与一个力系等效,则称这个力为该力系 的合力,而该力系中的各力称为这个力的分力。
5. 平衡力系 一力系使物体处于平衡状态,则该力系称为平衡 力系。
二、基本公理 1.二力平衡公理 两个力使刚体平衡的必充条件是:这两个力
C
例1-1图
FA
FC
例1-2 图示结构,分析AB、BC杆的受力。
F
FB
B
BB
A
例1-2图
C A FB' FA
F 解:1.分离出AB、BC杆 2.对AB杆进行受力分析
静力学基础
第三节
物体的受力分析
一、约束的概念
1 自由体与非自由体 在空间各方向位移均不受限制的物体称为自由体。 2 约束与约束反力 对非自由体的某些位移起限制作用的周围物体或条件 称为约束。 约束对非自由体施加的力称为约束反力。 3 约束反力的特点 约束反力的方向总是与约束所能阻碍的物体的运动或 运动趋势的方向相反。
1、物体的受力分析:分析物体(包括物体系)受哪些力, 每个力的作用位置和方向,并画出物体的受力图。 2、力系的等效替换(或简化):用一个简单力系等效代替 一个复杂力系。 3、建立各种力系的平衡条件:建立各种力系的平衡条件, 并应用这些条件解决静力学实际问题 。 刚体:绝对不变形的物体,或物体内任意两点间的距离 不改变的物体。 平衡:物体相对惯性参考系静止或作匀速直线运动。
例1
圆柱齿轮如图,受到啮合力Fn的作用,设 Fn=1400N, 齿轮的压力角α=200,节圆半径,r=60mm,试计算力 Fn对轴心O的力矩。
解: 1)直接法:由力矩定义求解
M o ( Fn ) Fn h Fn r cos
2)合力矩定理
将力Fn分解为切向力Ft和法(径) 向力Fr,即
约束特点: 由上面构件1或2 之一与地面或机架固定而成。
约束力:与圆柱铰链相同
以上三种约束(经向轴承、光滑圆柱铰链、固定 铰链支座)其约束特性相同,均为轴与孔的配合 问题,都可称作光滑圆柱铰链。
5 固定端约束
• 通常将固定端约束反力画成两个正交分力和一 个约束反力偶。
三、力学模型的受力分析
在受力图上应画出所有力,主动力和约束力(被动力)
约 束 力
大小——待定 方向——与该约束所能阻碍的位移方向相反 作用点——接触处
二、常见工程约束的力学模型 1 、由柔软的绳索、胶带或链条等构成的约束
静力学基础
(1) 合力矩定理
平面汇交力系的合力对于平面内任一点之矩等于 所有各分力对于该点之矩的代数和。
n M O (F R ) M O (F i ) i 1
y
(2) 力矩的解析表达式
M O ( F ) xF sin q yF cos q xFy yFx
固定铰链支座
FR
Fy Fx 用铰链连接的两个构件中,如果有一个固定不动, 就构成了固定铰支座。 约束反力过销中心,方向不能确定,通常用正交的 两个分力表示。
滚动铰链支座
在铰链支座与支承面之间,装上 辊轴,就成了滑动铰支座。 FN
(2) 球铰链
FAz
FAy FAx
(3) 止推轴承
约束不但限制构件沿任 何方向的移动,也限制它 的转动,这样的约束称为 固定端约束。
对于一个确定的力系,主失是唯 一的,主矩不是唯一的。
等效的概念 等效力系:如果两个力系的主失和主矩对应 相等,二者对于同一刚体就会产生相同的运 动效应,则这两个力系就成为等效力系。
简化的概念
力系的简化就是将由若干力和力偶所组成 的力系,变为一个力,或者一个力偶,或 者一个力和一个力偶等简单的情形,这一 过程就称为力系的简化。
只要保持力偶矩不变,
可以任意改变力和力偶臂的大 小而不会改变力偶对刚体的转
动效应。
1.2.3
平面力偶系的合成
平面力偶系合成的结果为一合力偶,合力偶矩等于各分力偶矩的 代数和。即
M M1 M 2 M n M i
(1.11)
§1.3 约束与约束反力
自然界的一切事物总是以各种形式与周围的事物互相联系又互
顺时针为负; 4、单位相同,都是Nm 或 N.m 不同之处: 力矩的大小与矩心位置有关,
静力学基础
F
A
C
B
第1章
方法一
FAy
A
C
FAx
物体的受力分析和受力图
例题2
解: 1.取梁AB为研究对象,解除约束。
2.画主动力,即外力F
F
B 3.画约束力,即 FB 、FAx 、FAy
FB
FA
A
F
B
C
方法二
FB
第1章
物体的受力分析和受力图
例题3
如图所示的三铰拱桥,
F
由左右两拱桥铰接而成。 设各拱桥的自重不计, 在拱上作用有载荷F,试 分别画出左拱和右拱的 受力图。
1.1.4 集中力和分布力 ❖ 集中力 作用范围与体积相比很小可近似 地看作一个点时的作用力称为集中力。
❖ 分布力(分布载荷) 作用在一定长度、一定面积或一定体积
上的力称为分布力或分布载荷。
第1章
力的基本概念及其性质
❖ 均布力(均布载荷)
力均匀地分布在某一段长度、某一 个面或某一个体积上时,称为均布力或均布 载荷,用q表示。
机械设计基础
李海萍
1
第1章
第1章 静力学基础
静力学研究的问题: ❖ 力系的简化 ❖ 力系的等效替换 ❖ 力系的平衡条件
2
第1章
第1章 静力学基础
静力学的任务: 研究物体在力系作用下的平衡条
件,并由平衡条件解决工程实际问题。
3
第1章
第1章 静力学基础
本章要点:
❖ 静力学的基本概念 ❖ 静力学公理 ❖ 常见的典型约束、约束力 ❖ 物体的受力分析
第1章
1.2 约束和约束力
❖ 约束
限制被约束体运动的周围物体。
❖ 被约束体
工程力学:第1章 静力学基础
作用于刚体上的两个力,使刚体平衡的必要与充分条件是:
这两个力大小相等 | F1 | = | F2 | 方向相反 F1 = –F2
作用线共线, 作用于同一个物体上。
6
说明:①对刚体来说,上面的条件是充要的 ②对变形体来说,上面的条件只是必要条件(或多体中)
③二力体:只在两个力作用下平衡的刚体叫二力体。 二力杆
14
(2)二次投影法
已知力与z轴正向交角为 , 则在xOy面上投影大小:
Fxy F sin 在z轴上投影: Fz F cos
若 Fxy 与x轴正向交角为 ,则
Fx F sin cos Fy F sin sin
注意: 力在坐标轴上的投影是代数量,
应特别注意它的正负号。
15
z
能否用投影表达力矢量?
∴ 三力 F1 , F2 , F3 必汇交,且共面。 公理4 作用力和反作用力定律
等值、反向、共线、异体、且同时存在。 [例] 吊灯
10
公理5 刚化原理
变形体在某一力系作用下处于平衡,如将此变形体变成 刚体(刚化为刚体),则平衡状态保持不变。
公理5告诉我们:处于平衡 状态的变形体,可用刚体静 力学的平衡理论。
11力的投影ຫໍສະໝຸດ 一、力在轴上的投影F
F
x
B A
在x轴上的投影
x
B
A
投影 Fx F cos
Fx F cos
若x轴单位向量为 i 则: Fx F i →标量
12
问题:力的分解与力的投影有何不同?
Fn
Fn
n
F
F
n
F
τ
分解
τ
F
投影
二、力在平面上的投影
第1章 静力学基础知识
外效应 :物体运动状态发生变化 理论力学
内效应 :物体发生变形
例 如:力可以使汽车运动(外效应); 也可以 使球、梁发生变形(内效应)。
材料力学
3.力的三要素 大小、方向、作用点
力是矢量.
4.力的单位 牛顿 N KN
5.力在平面上的投影 力矢在某平面上的投影,等于力的模乘以力与 投影轴正向夹角的余弦。
理论力学 – 静力学
几个基本概念
刚体:在力的作用下,其内部任意两点间的距离始终保 持不变的物体.
平衡:物体相对惯性参考系(如地面)静止或作匀速 直线运动.
静力学:研究物体在力作用下的平衡规律。
第一章 静力学基础知识
§1-1 静力学基本概念
一、力
1.定义 力是物体间的相互机械作用,这种作用使物
体的形态或者运动状态发生变化。
推理1 力的可传性
作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意一 点,并不改变该力对刚体的作用。
作用在刚体上的力是滑动矢量,力的三要素为大小、方向和作用 线.
推理2 三力平衡汇交定理
作用于刚体上三个相互平衡的力,若其中两个力的作 用线汇交于一点,则此三力必在同一平面内,且第三个力 的作用线通过汇交点。
2、空间力对点的矩 ——力矩矢 三要素:
(1)大小:力 F与力臂的乘积 (2)方向:转动方向 (3)作用面:力矩作用面.
r r rr MO(F) r F
r rr r r r r r
r xi yj zk
r r rr
r
F
r
Fxri
Fy j
r
Fzk
r
r
MO(F) (r F) (xi yj zk )(Fxi Fy j Fzk )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正确熟练地掌握各种约束类型的性质画出相应的约束力。
能熟练地进行受力分析,正确地画出受力图。
1.1
静力学基本概念
1. 力(force) 的基本概念
定义:力是物体间相互的机械作用。
a 起重机大梁的变形
小车的运动
这种作用有两种效应∶
使物体产生运动状态变化和形状变化。
变 形 体
运动效应 (外)
变形效应 (内)
A 二力构件
FA
特点∶力一定沿杆两端铰链的连线,等 值反向。
B
工程应用
英国福思桥
动脑又动笔 §1–2
约束和约束力
双铰链刚杆约束
C
A A FA
B
FB B
受力图正确吗
?
动脑又动笔 §1–2
约束和约束力 受力图正确吗
双铰链刚杆约束
?
FA
C A
D A
B
FB
B
(7)其他约束 向心轴承
特点∶ 约束力确定∶
A
② 中间铰
未知数 2
Fy Fx
?
Fy
Fx Fx
Fy
Fx
约束符号
Fy
? ?
(4)活动铰支座
特点∶
约束力的确定∶
力学符号
FN
未知数 1
动脑又动笔
简支梁。试分析 A、B 两点的约束反力。
Fy
FN B
A
Fx W
(5)光滑球形铰链
特点∶
约束力确定∶ 未知数 3
固连于构件上 的小球嵌入另一构 件上的球窝内,若 接触面的摩擦可忽 略不计,即构成光 滑球形铰链。 球窝
推论1 力的可传性原理
作用于刚体上某点的力, 可以沿着它的作用线移到刚 体内任意一点,并不改变该 力对刚体的作用。
A F F
证明∶
F2 F2
B B F1
F = F2 =- F1
①力的可传性。
讨论 ②力的三要素∶力的大小、方向和作用线。 ③力是滑动矢量。
刚 体
F
F
变 形 体
①力的可传性。
×
②力的三要素∶力的大小、方向和作用点。
小球
与圆柱铰链相似,球铰提 供的约束力是一个过球心、大 小和方向都未知的三维空间矢 量FN ,常用三个大小未知的正 交分力Fx、Fy 和Fz来表示。
FN
Fz
小球
Fy
Fx
球窝
A
FAz
球铰的表示形式
A A
FAx
FAy
光滑球铰链约束实例
盆骨与股骨之间的球铰联结
工程应用
中国脊
2008年奥运会乒乓球馆坐落 于北京大学校园内。6000固定 坐席+2000可移动坐席, 结构
Fz = F z k
y
力的分类 作用方式
体积力 (重力)
表面力
分布情况
分布力 集中力
b
F
FR
分布力的理想化模型 —— 集中力
力系的概念 作用在物体的力的集合。 等效力系的概念 使同一个刚体产生相同 作用效应的力系。 合力 如果某力系与一个力等效, 则这一力称为力系的合力。 平衡力系 (零力系) 作用于刚体,并使刚体 保持平衡的力系。
约束的性质——接触面的物理性质和连接方式。 理 想 约 束 非 理 想 约 束
绝对光滑
存在摩擦
1. 约束的基本类型
(1) 柔性体约束
(绳索、胶带、链条)
F T3
特点∶ 提供拉力
确定∶ 未知数1 F T1 F T2 W1 W1
F T1
F T2
W2
绳索对物体的约束力: 作用在接触点, 方向沿着绳索背离物体
A C
D B
E
动脑又动笔
解: 1. 杆 BC 的受力图。
B
FB
B
D
E
F
A C C
FC
动脑又动笔
解: 1. 杆 AB 的受力图。
表示法二 FB
B D H D B
表示法一 FB
B
E
F
A C
F FAy
A
D
F
A
FAx
FA
基本概念
静力学公理 力的平行四边形法则 二力平衡公理 加减平衡力系原理 作用与反作用定律 刚化原理 约束的类型 受力图
止推轴承
特点∶ 约束力的确定∶ Fz
F
y
Fx
约束类型
约束力 FN
未知量
1
Fz
2
Fy
Fz
Fx
Fy
3
分析和讨论
如果没有关节,人体会像木板一样僵硬,关节使人体能 以多种方式运动。将我们身上各主要关节简化成各种约 束,肩关节( 髋关节( )、膝关节( )、肘关节( )。 )、
1.4
受力图
1. 研究对象
a
a
a
a=0
1. 2 静力学公理
公理1 力的平行四边形法则
作用在物体上同一点的 两个力,可以合成为一个合 力。 合力的作用点仍在该点, 合力的大小和方向,由这两 个力为邻边构成的平行四边 形地对角线确定。
F1 F A
F2
F = F1 + F2
y ①最简单的力系简 化的规律,是复杂 Fy A F2 F1 FR
刚 体
平动 转动 平衡
力对物体的作用效果决定于 ?
力的三要素∶
① 力的大小 ② 力的方向 ③ 力的作用点 力的单位∶牛顿(N ) 千牛(kN )
B
力是矢量
A F
定位矢量
力的解析表示∶
z
FZ F
F = Fx i + Fy j + Fz k
k Fx j
A
Fy
Fx = F x i
z
y
i O
x
x
Fy = F y j
解: 碾子的受力图为
F G B FNB
A B
A FNA
例 题 2
滑 轮 自 重 不 计
Fy Fx F F FT
FT
W W
例 题 3 自重不计
F
A
B
F FR A Fx Fy B FN N
动脑又动笔
FB B
Fy
FN
FN W
B W
A
Fx
B
×
FN
FB B W
×
W
例 题 4
F
自重不计
① 以整体为研究对象
力系简化的基础。
②力的分解的依据
③力的三角形法则 F1
F A
Fx
F2 F F
x
F1
F1
F2
O1 O2 F2
分析和讨论
为什么帆船逆风时会走“之”字形路线?
分析和讨论
风 向
帆
分析和讨论
公理2
二力平衡公理
作用在同一刚体上的的两个力,使刚体保持平衡
的必要和充分条件是,这两个力的大小相等、方向相
反、且在同一直线上。
C F Fy A
C
FA
Fx FC C
FB
B
② 以 BC 为 研 究 对 象
A
③ 以
B
FC C Fy A FA
AC F
为 研 究 对 象
B Fx FB
讨论
F
C
A
B F C
A
B
F NA
F NB
讨论 C
以整体为研究对象
FC C C F F A FC Fyy F A A Fxx F 主动力 FB FB B B
×
4. 力是滑动矢量,力沿其作用线滑移不会改变对物体的作用效 果。 × 5. 合力一定比分力大。× 6. 约束力的方向总是与约束所能阻止的被约束的物体运动方向一 致的。 ×
二、 选择题 1. 只适用于刚体的公理是 a. 二力平衡公理 b. 力的平行四边形法则 c. 作用与反作用定律 d. 加减平衡力系原理
约束与约束力 受力分析
基本概 念与受 力分析
平衡 刚体 约束 力 力系 等效力系 平衡力系 约束力的确定
本章内容小结
合力
力的可传性原理
三力平衡汇交定理
综合练习
一、是非题 1. 一物体在两个力的作用下,平衡的充分必要条件是这两个力 等值、反向、共线。
×
1. 若作用在刚体上的三个力的作用线汇交于一点,则该刚体 必处于平衡状态。 × 3. 凡是受到二个力作用的刚体都是二力构件。
W2
F T1
F T1
F T2
F T2
当它们绕在轮子上时,对轮子的 约束力沿轮缘的切线方向。
胶带、链条也只能承受拉力
n
(2) 光滑接触面约束
特点 提供压力 w
确定
未知数 1 法向反力 A FN FN
t
O
B
FN
结论:光滑接触面对物体的约束力,作用在接物体。
F2 B
F1 =- F2
A F1
二力等值、反向、共线。
①是一个最简单的平衡力系。 ②充分必要条件—— 刚体。 ③用于非刚体是必要而不充分的。
④与牛顿第三定律区分。
⑤ 二力构件
B
A
二力杆
公理3 加减平衡力系原理
在已知力上加上或减去任意的平衡力系,并不
改变原力系对刚体的作用。
a
a
①是力系简化的重理论依据和主要手段。 ②不适用于变形体。
特点:这类约束不能限制物体沿约束表面切线的位移,只能阻碍物体沿 接触表面法线并指向约束内部的位移。
动脑又动笔
n
C
FC
FA A B FB W
W O
t
FN
⑶ 光滑圆柱铰链
特点∶
约束力确定∶
FR
Fy
A Fx Fy Fx O