最新初中数学代数式技巧及练习题
巧妙运用代数式展开的数学练习题
巧妙运用代数式展开的数学练习题在数学学科中,代数式展开是一个重要而基础的概念。
通过巧妙地运用代数式展开,我们可以解决各种复杂的数学问题。
本文将为大家提供一些巧妙运用代数式展开的数学练习题,帮助大家加深对这一概念的理解和应用。
1. 题目一:将下列代数式展开并化简:(x + 2)(x - 3)解答:首先,我们可以使用分配律将括号内的两个项与外面的项相乘:(x + 2)(x - 3) = x(x) + x(-3) + 2(x) + 2(-3)= x^2 - 3x + 2x - 6= x^2 - x - 62. 题目二:将下列代数式展开并化简:(2a + b)(2a - b)解答:同样地,我们利用分配律将括号内的两个项与外面的项相乘:(2a + b)(2a - b) = (2a)(2a) + (2a)(-b) + (b)(2a) + (b)(-b)= 4a^2 - 2ab + 2ab - b^2= 4a^2 - b^23. 题目三:将下列代数式展开并化简:(x + y)^2解答:这道题目是代数式展开中的一个经典例子,我们使用平方公式进行展开:(x + y)^2 = (x + y)(x + y)= x(x) + x(y) + y(x) + y(y)= x^2 + xy + xy + y^2= x^2 + 2xy + y^24. 题目四:将下列代数式展开并化简:(a - b)^2解答:同样地,我们使用平方公式进行展开:(a - b)^2 = (a - b)(a - b)= a(a) - a(b) - b(a) + b(b)= a^2 - ab - ab + b^2= a^2 - 2ab + b^2这些都是一些简单而典型的代数式展开题目,通过对这些题目的练习,我们可以更熟练地掌握代数式展开的方法和技巧。
此外,代数式展开在数学的其他领域中也有广泛的应用,比如在因式分解、多项式求解等方面都有重要作用。
使用代数式展开可以将复杂的计算问题简化为简单的计算步骤,为我们解决数学难题提供了一种有效的方法。
代数式(压轴必刷30题5种题型专项训练)(解析版)
代数式(压轴必刷30题5种题型专项训练)一.列代数式(共7小题)1.(2022秋•拱墅区月考)现有一张边长为a的大正方形卡片和三张边长为b的小正方形卡片(a<b<a),如图1;取出两张小正方形卡片放入大正方形卡片内拼成的图案如图2;再重新用三张小正方形卡片放入大正方形卡片内拼成的图案如图3.则图3中阴影部分的面积为(用含有a,b的代数式表示);已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab﹣15,则小正方形卡片的面积是.【分析】图2中阴影正方形的边长为(2b﹣a),面积就是(2b﹣a)2;图3中两个阴影部分的面积可以上下拼在一起,也是个正方形,其边长是(a﹣b),面积就是(a﹣b)2.再根据等量关系列方程就可以得出含有a、b的关系式了.【解答】解:图2中阴影部分是正方形,它的边长是(2b﹣a),所以它的面积就是(2b﹣a)2.图3a﹣b),所以它的面积就可以表示为:(a﹣b)2.又因为图3中的阴影部分的面积比图2中的阴影部分的面积大2ab﹣15,所以可得:(2b﹣a)2+2ab﹣15=(a﹣b)2,4b2﹣4ab+a2+2ab﹣15=a2+b2﹣2ab,3b2=15,b2=5,故小正方形的面积是5.【点评】本题考查列代数式的能力,用字母表示阴影部分的面积.再根据等量关系进行推导.2.(2022秋•余姚市校级期中)A市、B市和C市分别有某种机器10台、10台、8台,现在决定把这些机器支援给D市18台,E市10台.已知调运机器的费用如表所示.设从A市、B市各调x台到D市.(1)C市调运到D市的机器为台(用含x的代数式表示);(2)B市调运到E市的机器的费用为元(用含x的代数式表示,并化简);(3)求调运完毕后的总运费(用含x的代数式表示,并化简);(4)当x=5和x=8时,哪种调运方式总运费少?少多少?【分析】(1)用D市需要的总数减去从A市、B市各调的台数即可;(2)求得B市剩下的台数,再乘运费即可;(3)用运送的台数乘运费分别求得各自得运费,再进一步求和即可;(4)把x=5和x=8分别代入求得答案即可.【解答】解:(1)C市调运到D市的机器为18﹣2x台;故答案为:(18﹣2x);(2)B市调运到E市的机器的费用为700(10﹣x)=(7000﹣700x)元(用含x的代数式表示,并化简);故答案为:(7000﹣700x).(3)调运完毕后的总运费为200x+800(10﹣x)+300x+700(10﹣x)+400(18﹣2x)+500[8﹣(18﹣2x)]=17200﹣800x;(4)当x=5时,总运费为17200﹣800×5=13200元;当x=8时,总运费为17200﹣800×8=10800元;10800元<13200元,13200﹣10800=2400,所以当x=8时,总运费最少,最少为10800元,少2400元.【点评】此题考查列代数式,题目关系是比较多,理清顺序,正确利用基本数量关系解决问题.3.(2021秋•陕州区期末)某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含a的代数式表示,并化简.)(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a,则这七天的日期之和为.(用含a的代数式表示,并化简.)(4)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程.)【分析】(1)由题意得,甲旅行社的费用=2000×0.75a;乙旅行社的费用=2000×0.8(a﹣1),再对两个式子进行化简即可;(2)将a=20代入(1)中的代数式,比较费用较少的比较优惠;(3)设最中间一天的日期为a,分别用含有a的式子表示其他六天,然后求和即可;根据前面求得七天的日期之和的求得最中间的那个日期,然后分别求得当为63的1倍,2倍,3倍时,日期分别是什么即可.【解答】解:(1)由题意得,甲旅行社的费用=2000×0.75a=1500a;乙旅行社的费用=2000×0.8(a﹣1)=1600a﹣1600;故答案为1500a.(1600a﹣1600).(2)将a=20代入得,甲旅行社的费用=1500×20=30000(元);乙旅行社的费用=1600×20﹣=30400(元)∵30000<30400元∴甲旅行社更优惠;(3)设最中间一天的日期为a,则这七天分别为:a﹣3,a﹣2,a﹣1,a,a+1,a+2,a+3∴这七天的日期之和=(a﹣3)+(a﹣2)+(a﹣1)+a+(a+1)+(a+2)+(a+3)=7a(4)①设这七天的日期和是63,则7a=63,a=9,所以a﹣3=6,即6号出发;②设这七天的日期和是63的2倍,即126,则7a=126,a=18,所以a﹣3=15,即15号出发;③设这七天的日期和是63的3倍,即189,则7a=189,a=27,所以a﹣3=24,即24号出发;所以他们可能于五月6号或15号或24号出发.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.4.(2020秋•衢州期中)甲.乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠一盒乒乓球;乙店的优惠办法是:按定价的9折出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于4盒).(1)用代数式表示(所填式子需化简):当购买乒乓球的盒数为x盒时,在甲店购买需付款元;在乙店购买需付款元.(2)当购买乒乓球盒数为10盒时,到哪家商店购买比较合算?说出你的理由.(3)当购买乒乓球盒数为10盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付款几元?【分析】(1)甲店需付费:4副乒乓球拍子费用+(x﹣4)盒乒乓球费用;乙店需付费:(4副乒乓球拍子费用+x盒乒乓球费用)×0.9,把相关数值代入求解即可;(2)把x=10代入(1)得到的式子计算,比较结果即可;(3)可在甲店购买乒乓球拍子,在乙店购买乒乓球.【解答】解:(1)甲店需付费:4×20+(x﹣4)×5=80+5x﹣20=(5x+60)元;乙店需付费:(4×20+x ×5)×0.9=(4.5x+72)元;故答案为(5x+60);(4.5x+72);(2)当x=10时,甲店需付费5×10+60=110元;乙店需付费4.5×10+72=117元,∴到甲商店比较合算;(3)可在甲店购买4副乒乓球拍子,在乙店购买(10﹣4)盒乒乓球,所需费用为:4×20+(10﹣4)×5×0.9=80+27=107元.【点评】5.(2021秋•下城区校级期中)从2012年7月1日起某市执行新版居民阶梯电价,小明同学家收到了新政后的第一张电费单,小明爸爸说:“小明,请你计算一下,这个月的电费支出与新政前相比是多了还是少了?”于是小明上网了解了有关电费的收费情况,得到如下两表:2004年1月至2012年6月执行的收费标准:2012年7月起执行的收费标准:(1)若小明家2012年7月份的用电量为200度,则小明家7月份的电费支出是多少元?比新政前少了多少元?(2)若新政后小明家的月用电量为a度,请你用含a的代数式表示当月的电费支出.【分析】(1)根据表格中的数据可以计算出小明家2012年7月份的用电量为200度时当月的电费支出和新政前用电量为200度时当月的电费支出,从而可以解答本题;(2)根据表格中的数据可以分别用代数式表示出各个阶段的电费支出.【解答】解:(1)由题意可得,小明家2012年7月份的用电量为200度,小明家7月份的电费支出是:200×0.53=106(元),新政前,用电200度电费支出为:50×0.53+(200﹣50)×0.56=110.5(元),∵110.5﹣106=4.5(元),∴新政后比新政前少华4.5元,即若小明家2012年7月份的用电量为200度,则小明家7月份的电费支出是106元,比新政前少了4.5元;(2)由题意可得,当0≤a≤230时,小明家当月的电费支出为:0.53a,当230<a≤400时,小明家当月的电费支出为:0.53×230+(a﹣230)×0.58=0.58a﹣11.5,当a>400时,小明家当月的电费支出为:0.53×230+0.58×(400﹣230)+0.83×(a﹣400)=0.83a﹣111.5,由上可得,新政后小明家的月用电量为a度,当月支出的费用为:.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.6.(2023秋•海曙区校级期中)小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔的费用;(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.【分析】(1)先求出甲商店10支水性笔的价钱,然后再求出超过10支的部分的价钱,然后列出代数式;乙商店每支水性笔的价钱是1.5×0.8元,那么x支的价钱是1.5×0.8×x元;(2)把x=30代入即可得到答案.【解答】解:(1)在甲商店需要:10×1.5+0.6×1.5×(x﹣10)=0.9x+6(元),在乙商店需要:1.5×0.8×x=1.2x(元),(2)当x=30时,0.9x+6=33,1.2x=36,因为33<36,所以小明要买30支笔应到甲商店买比较省钱.【点评】本题考查了列代数式,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.7.(2021秋•临海市月考)大客车上原有(3a﹣b)人,中途下车一半人,又上车若干人,使车上共有乘客(8a﹣5b)人.问中途上车乘客是多少人?当a=10,b=8时,上车乘客是多少人?【分析】原有(3a﹣b)人,中途下车(3a﹣b)人,又上车若干人后车上共有乘客(8a﹣5b)人.中途上车乘客数=车上共有乘客数﹣中途下车人数,所以中途上车乘客为,把a=10,b=8代入上式可得上车乘客人数.【解答】解:中途上车乘客是(8a﹣5b)﹣(3a﹣b)=(人),当a=10,b=8时,上车乘客是29人.【点评】要分析透题中的数量关系:中途上车乘客数=车上共有乘客数﹣中途下车人数,用代数式表示各个量后代入即可.二.代数式求值(共7小题)8.(2023秋•西湖区期中)已知|m|=3,|n|=2,且m<n,求m2+mn+n2的值.【分析】先利用绝对值的性质求得m、n的值,然后根据m<n分类计算即可.【解答】解:由题意可得,m=±2,n=±2,又∵m<n,∴m=﹣3,n=2 或m=﹣3,n=﹣2,当m=﹣3,n=2时,原式=(﹣3)2+(﹣3)×2+22=9﹣6+4=7;当m=﹣3,n=﹣2时,原式=(﹣3)2+(﹣3)×(﹣2)+(﹣2)2=9+6+4=19.【点评】本题主要考查的是求代数式的值,求得m、n的值是解题的关键.9.(2022秋•阳新县期中)某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元,“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉10台,电磁炉x台(x>10).(1)若该客户按方案一、方案二购买,分别需付款多少元?(用含x的式子表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.并计算需付款多少元?【分析】(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)将x=30代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)根据题意考可以得到先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台电磁炉更合算.【解答】解:(1)800×10+200x﹣10)=200x+6000(元),(800×10+200x)×90%=180x+7200(元);(2)当x=30时,方案一:200×30+6000=12000(元),方案二:180×30+7200=12600(元),所以,按方案一购买较合算.(3)先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台电磁炉,共10×800+200×20×90%=11600(元).【点评】本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.10.(2022秋•吴兴区期中)电动车厂计划每天平均生产n辆电动车(每周工作五天),而实际产量与计划产量相比有出入,下表记录了某周五个工作日每天实际产量情况(超过计划产量记为正、少于计划产量记为负):(1)用含n的整式表示本周五天生产电动车的总数;(2)该厂实行每日计件工资制,每生产一辆车可得200元,若超额完成任务,则超过部分每辆另奖55元;少生产一辆扣60元,当n=50时,那么该厂工人这一周的工资总额是多少元?(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,当n =50时,在此方式下这一周工人的工资总额与按日计件的工资哪一个更多?请说明理由.【分析】(1)根据正负数的意义分别表示出5天的生产电动车的数量,再求和即可;(2)5天的生产电动车的总数×200元+超出部分的奖励﹣罚款可得工人这一周的工资总额;(3)计算出一周的工资,然后与(2)中数据进行比较即可.【解答】解:(1)n+5+n﹣1+n﹣6+n+13+n﹣2=5n+9;(2)当n=50时,5n+9=5×50+9=259,200×259+55(5+13)+60(﹣1﹣6﹣2)=52250,所以该厂工人这一周的工资总额是52250元.(3)5+(﹣1)+(﹣6)+13+(﹣2)=9,259×200+9×55=52295,∵52250<52295,∴每周计件工资制一周工人的工资总额更多.【点评】此题主要考查了由实际问题列代数式,关键是正确理解题意,掌握每日计件工资制的计算方法.11.(2021秋•镇海区校级期中)周末小明陪爸爸去陶瓷商城购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶每把定价40元,茶杯每只定价5元,且两家都有优惠,甲商店买一送一大酬宾(买一把茶壶送一只茶杯),乙商店全场九折优惠,小明的爸爸需茶壶5把,茶杯a只(不少于25只)(1)分别用含有a的代数式表示在甲、乙两家商店购买所需的费用;(2)当a=40时,在甲、乙哪个商店购买付款较少?请说明理由.(3)若小明的爸爸准备了1800元钱,在甲、乙哪个商店购买的茶杯多?请说明理由.【分析】(1)根据实际付款数得到甲店购买需付款为5(a﹣5)+40×5=(5a+175)(元),乙店购买需付款为(5a+40×5)×0.9=(4.5a+180)(元);(2)将a=40分别代入(1)中所求的两式子,得出的值在哪家少就在那家买;(3)令甲乙的付款数都为1800,然后解方程5a+175=1800和4.5a+135=1800,根据a的大小进行判断.【解答】解:(1)设购买茶杯a只(不少于25只),甲商店买一送一大酬宾(买一把茶壶送一只茶杯),且茶壶每把定价40元,茶杯每只定价5元,故在甲店购买需付:5(a﹣5)+40×5=(5a+175)(元);乙商店全场九折优惠,故在乙店购买需付:(5a+40×5)×0.9=(4.5a+180)(元);(2)在乙商店购买付钱较少.理由如下:当a=40时,在甲店购买需付:5×40+175=375元,在乙店购买需付:4.5×40+180=360元,∵375>360,∴在乙商店购买付款较少;(3由5a+175=1800,得a=325;由4.5a+180=1800,得a=360.所以在乙商店购买的茶杯多.【点评】本题考查了一元一次方程在经济问题中的运用以及买东西的优惠问题,注意细心求解即可.12.(2023秋•下城区校级月考)如图,是一个有理数运算程序的流程图,请根据这个程序回答问题:当输入的x为4时,求最后输出的结果y是.【分析】根据题中的程序流程图,将x=4代入计算,得到结果为﹣2小于1,将x=﹣2代入计算得到结果为1,将x=1代入计算得到结果大于1,即可得到最后输出的结果.【解答】解:输入x=4,代入(x2﹣8)×(﹣)得:(16﹣8)×(﹣)=﹣2<1,将x=﹣2代入(x2﹣8)×(﹣)得:(4﹣8)×(﹣)=1=1,将x=1代入(x2﹣8)×(﹣)得:(1﹣8)×(﹣)=>1,则输出的结果为.故答案为:.【点评】此题考查了代数式求值,弄清题中的程序流程是解本题的关键.13.(2021秋•诸暨市期中)若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为h,(单位为:cm)(1)用m,n,h表示需要地毯的面积;(2)若m=160,n=60,h=80,求地毯的面积.【分析】(1)根据平移计算出地毯总长,然后再根据长×宽可得面积;(2)把已知数据代入(1)中求出答案.【解答】解:(1)地毯的面积为:mn+2nh;(2)地毯总长:80×2+160=320(cm),320×60=19200(cm2),答:地毯的面积为19200cm2.【点评】此题主要考查了生活中的平移现象、代数式求值,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.14.(2021秋•椒江区校级期中)历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)(f可用其它字母,但不同的字母表示不同的多项式)形式来表示,例如f(x)=x2+3x﹣5,把x=某数时多项式的值用f(某数)来表示.例如x=﹣1时多项式x2+3x﹣5的值记为f(﹣1)=(﹣1)2+3×(﹣1)﹣5=﹣7.已知g(x)=﹣2x2﹣3x+1,h(x)=ax3+2x2﹣x﹣12.(1)求g(﹣2)值;(2)若h()=﹣11,求g(a)的值.【分析】(1)根据举的例子把x=﹣2代入求出即可;(2)把x=代入h(x)=ax3+2x2﹣x﹣12得出一个关于a的方程,求出a的值,把a的值代入g(x)=﹣2x2﹣3x+1即可.【解答】解:(1)g(﹣2)=﹣2×(﹣2)2﹣3×(﹣2)+1=﹣2×4﹣3×(﹣2)+1=﹣8+6+1=﹣1;(2)∵h()=﹣11,∴a×()3+2×()2﹣﹣12=﹣11,解得:a=1,即a=8∴g(a)=﹣2×82﹣3×8+1=﹣2×64﹣24+1=﹣128﹣24+1=﹣151.【点评】本题考查了有理数的混合运算和新定义,关键是培养学生的阅读能力和理解能力,也培养学生的计算能力,题目比较典型,是一道比较好的题目.三.多项式(共1小题)15.(2021秋•越城区期中)关于x的多项式﹣5x2﹣(2m﹣1)x2+(2﹣3n)x﹣1中不含二次项和一次项时,求m、n的值.【分析】利用多项式的定义得出二次项与一次项系数为0,进而求出即可.【解答】解:∵关于x的多项式﹣5x2﹣(2m﹣1)x2+(2﹣3n)x﹣1中不含二次项和一次项,∴﹣5﹣(2m﹣1)=0,2﹣3n=0,解得:m=﹣2,n=.【点评】此题主要考查了多项式的定义,得出各项系数之间关系是解题关键.四.整式的加减(共9小题)16.(2020秋•西湖区校级期末)定义:若a+b=2,则称a与b是关于1的平衡数.(1)3与是关于1的平衡数,5﹣x与是关于1的平衡数.(用含x的代数式表示)(2)若a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],判断a与b是否是关于1的平衡数,并说明理由.【分析】(1)由平衡数的定义可求得答案;(2)计算a+b是否等于2即可.【解答】解:(1)设3的关于1的平衡数为a,则3+a=2,解得a=﹣1,∴3与﹣1是关于1的平衡数,设5﹣x的关于1的平衡数为b,则5﹣x+b=2,解得b=2﹣(5﹣x)=x﹣3,∴5﹣x与x﹣3是关于1故答案为:﹣1;x﹣3;(2)a与b不是关于1的平衡数,理由如下:∵a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],∴a+b=2x2﹣3(x2+x)+4+2x﹣[3x﹣(4x+x2)﹣2]=2x2﹣3x2﹣3x+4+2x﹣3x+4x+x2+2=6≠2,∴a与b不是关于1的平衡数.【点评】本题主要考查整式的加减,理解题目中所给平衡数的定义是解题的关键.17.(2021秋•婺城区校级期中)已知整式M=x2+5ax﹣x﹣1,整式M与整式N之差是3x2+4ax﹣x (1)求出整式N;(2)若a是常数,且2M+N的值与x无关,求a的值.【分析】(1)根据题意,可得N=(x2+5ax﹣x﹣1)﹣(3x2+4ax﹣x),去括号合并即可;(2)把M与N代入2M+N,去括号合并得到最简结果,由结果与x值无关,求出a的值即可.【解答】解:(1)N=(x2+5ax﹣x﹣1)﹣(3x2+4ax﹣x)=x2+5ax﹣x﹣1﹣3x2﹣4ax+x=﹣2x2+ax﹣1;(2)∵M=x2+5ax﹣x﹣1,N=﹣2x2+ax﹣1,∴2M+N=2(x2+5ax﹣x﹣1)+(﹣2x2+ax﹣1)=2x2+10ax﹣2x﹣2﹣2x2+ax﹣1=(11a﹣2)x﹣3,由结果与x值无关,得到11a﹣2=0,解得:a=.【点评】此题考查了整式的加减,熟练掌握去括号与合并同类项法则是解本题的关键.18.(2021秋•临海市校级期中)已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1.(1)求3A+6B;(2)若3A+6B的值与a的取值无关,求b的值;(3)如果A+2B+C=0,则C的表达式是多少?【分析】(1)先把A、B的表达式代入,再去括号,合并同类项即可;(2)根据(1)中3A+6B的表达式,再令a的系数等于0,求出b的值即可;(3)先把A、B C的表达式即可.【解答】解:(1)∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴3A+6B=3(2a2+3ab﹣2a﹣1)+6(﹣a2+ab﹣1)=6a2+9ab﹣6a﹣3﹣6a2+6ab﹣6=15ab﹣6a﹣9;(2)3A+6B=15ab﹣6a﹣9=a(15b﹣6)﹣9,∵3A+6B的值与a无关,∴15b﹣6=0,∴b=;(3)∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,A+2B+C=0,∴C=﹣A﹣2B=﹣(2a2+3ab﹣2a﹣1)﹣2(﹣a2+ab﹣1)=﹣2a2﹣3ab+2a+1+2a2﹣2ab+2=﹣5ab+2a+3.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.19.(2020秋•奉化区校级期末)已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求n m+mn的值.【分析】把A与B代入A﹣2B中,去括号合并得到最简结果,由结果不含有x2项和y项求出m与n的值,代入原式计算即可得到结果.【解答】解:∵A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,∴A﹣2B=2x2﹣xy+my﹣8+2nx2﹣2xy﹣2y﹣14=(2+2n)x2﹣3xy+(m﹣2)y﹣22,由结果不含有x2项和y项,得到2+2n=0,m﹣2=0,解得:m=2,n=﹣1,则原式=1﹣2=﹣1.【点评】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.20.(2021秋•嵊州市期中)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数.【分析】x,则这个数是100(2x+1)+10x+(3x﹣1),把这个三位数的百位上的数字和个位上的数字对调后的数为100(3x﹣1)+10x+(2x+1),根据新数减去原数等于99建立方程求解.【解答】解:由题意设十位上的数为x,则这个数是100(2x+1)+10x+(3x﹣1),把这个三位数的百位上的数字和个位上的数字对调后的数为100(3x﹣1)+10x+(2x+1),则100(3x﹣1)+10x+(2x+1)﹣[100(2x+1)+10x+(3x﹣1)]=99,解得x=3.所以这个数是738.【点评】本题利用了整式来表示每位上的数,整式的减法,建立方程求解.21.(2021秋•嵊州市期中)符号“”称为二阶行列式,规定它的运算法规为:=ad﹣bc.(1)计算:=;(直接写出答案)(2)化简二阶行列式:.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式利用题中的新定义化简,去括号合并即可得到结果.【解答】解:(1)根据题中的新定义得:原式=10﹣12=﹣2;故答案为:﹣2;(2)根据题中的新定义得:原式=(a+2b)(a﹣2b)﹣4b(0.5a﹣b)=a2﹣4b2﹣2ab+4b2=a2﹣2ab.【点评】此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(2023秋•象山县校级期中)已知:A=ax2+x﹣1,B=3x2﹣2x+4(a为常数).(1)若A与B的和中不含x2项,求出a的值;(2)在(1)的基础上化简:B﹣2A.【分析】(1)A与B的和中不含x2项,即x2项的系数为0,依此求得a的值;(2)先将表示A与B的式子代入B﹣2A,再去括号合并同类项.【解答】解:(1)A+B=ax2+x﹣1+3x2﹣2x+4=(a+3)x2﹣x+3,∵A与B的和中不含x2项,∴a+3=0,则a=﹣3;(2)B﹣2A=3x2﹣2x+4﹣2×(﹣3x2+x﹣1)=3x2﹣2x+4+6x2﹣2x+2=9x2﹣4x+6.【点评】本题考查了整式的加减,解答本题的关键是掌握多项式加减的运算法则,合并同类项的法则.23.(2020秋•婺城区期末)已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)用含a,b的代数式表示A.(2)若|a+1|+(b﹣2)2=0,求A的值.【分析】(1)表示出A,然后去掉括号,再根据整式的加减运算方法进行计算即可得解;(2)根据非负数的性质列式求出a、b的值,然后代入进行计算即可得解.【解答】解:(1)∵A﹣2B=7a2﹣7ab,∴A=7a2﹣7ab+2B,=7a2﹣7ab+2(﹣4a2+6ab+7)=7a2﹣7ab﹣8a2+12ab+14=﹣a2+5ab+14;(2)根据题意得,a+1=0,b﹣2=0,解得a=﹣1,b=2,∴A=﹣a2+5ab+14=﹣(﹣1)2+5×(﹣1)×2+14=﹣1﹣10+14=3.【点评】本题考查了整式的加减,代数式求值,非负数的性质,实质就是去括号,合并同类项的过程,熟记去括号法则和合并同类项法则是解题的关键.24.(2022秋•鄞州区校级期中)已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.(1)化简:2B﹣A;(2)已知﹣a|x﹣2|b2与ab y是同类项,求2B﹣A的值.【分析】(1)把A与B代入2B﹣A中,去括号合并即可得到结果;(2)利用同类项的定义求出x与y的值,代入原式计算即可得到结果.【解答】解:(1)∵A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,∴2B﹣A=2(2xy﹣3y2+4x2)﹣(3x2+3y2﹣5xy)=4xy﹣6y2+8x2﹣3x2﹣3y2+5xy=5x2+9xy﹣9y2;(2)∵﹣a|x﹣2|b2与ab y的同类项,∴|x﹣2|=1,y=2,解得:x=3或x=1,y=2,当x=3,y=2时,原式=45+54﹣36=63;当x=1,y=2时,原式=5+18﹣36=﹣13.【点评】此题考查了整式的加减,以及同类项,熟练掌握运算法则是解本题的关键.五.整式的加减—化简求值(共6小题)25.(2020秋•永嘉县校级期末)先化简再求值:2(x2+3y)﹣(2x2+3y﹣x),其中x=1,y=﹣2.【分析】先去括号,再合并同类项即可化简原式,继而将x、y的值代入计算可得.【解答】解:原式=2x2+6y﹣2x2﹣3y+x=3y+x,当x=1、y=﹣2时,原式=3×(﹣2)+1=﹣6+1=﹣5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算整式加减运算顺序和法则是解本题的关键.26.(2020秋•诸暨市期中)化简求值:5(3a2b﹣2ab2)﹣4(﹣2ab2+3a2b),其中a=﹣2,b=1.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=(15a2b﹣10ab2)﹣(﹣8ab2+12a2b)=15a2b﹣10ab2+8ab2﹣12a2b=3a2b﹣2ab2,当a=﹣2,b=1时,原式=16.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.27.(2020秋•富阳区期中)化简并求值:[2b2﹣3+2(a2﹣1)]﹣(4a2﹣3b2),其中a=﹣2,b=1.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2b2﹣3+2a2﹣2﹣4a2+3b2=5b2﹣2a2﹣5,当a=﹣2,b=1时,原式=5﹣8﹣5=﹣8.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2020秋•温州月考)求多项式的值,其中x=5,y=﹣8.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=﹣xy+x2﹣3x2+xy=﹣2x2,当x=5时,原式=﹣50.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.29.(2020秋•长兴县期末)先化简,再求值:2(a2﹣ab)﹣3(a2﹣ab﹣1),其中a=﹣2,b=3.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2a2﹣2ab﹣2a2+3ab+3=ab+3,当a=﹣2,b=3时,原式=﹣6+3=﹣3.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.30.(2021秋•椒江区校级期中)已知|x+2|+(y﹣)2=0,求代数式(x3+2x2y)+x3﹣(﹣3x2y+5xy2)﹣(7﹣5xy2)的值.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:∵|x+2|+(y﹣)2=0,∴x=﹣2,y=,则原式=x3+2x2y+x3+3x2y﹣5xy2﹣7+5xy2=x3+5x2y﹣7=﹣8+10﹣7=﹣5.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.。
代数式练习题(打印版)
代数式练习题(打印版)### 代数式练习题(打印版)#### 一、基础代数式运算1. 代入法求解代数式给定代数式:\( ax + b \),若 \( a = 2 \),\( b = 3 \),求代数式的值。
2. 合并同类项合并下列代数式中的同类项:\( 5x^2 + 3x - 2x^2 + x \)。
3. 代数式的简化简化代数式:\( 4y^2 - 3y + 2 - y^2 + 5y \)。
4. 多项式乘法计算多项式 \( (x + 2)(x - 3) \) 的乘积。
5. 多项式除法将多项式 \( 3x^3 - 6x^2 + 5x - 2 \) 除以 \( x - 1 \)。
#### 二、代数式的应用6. 平均数问题某班级有 25 名学生,平均分是 82 分,求总分。
7. 增长率问题如果某产品的初始价格是 100 元,每年增长 5%,求两年后的售价。
8. 速度与时间问题如果某人以 5 公里/小时的速度行走,求他 3 小时后走了多远。
9. 面积与周长问题一个矩形的长是 10 米,宽是 5 米,求其面积和周长。
10. 利润与成本问题某商品的成本是 50 元,售价是 80 元,求利润率。
#### 三、代数式的扩展11. 因式分解将代数式 \( x^2 - 9 \) 进行因式分解。
12. 配方法使用配方法将代数式 \( x^2 + 6x + 5 \) 转化为完全平方形式。
13. 代数式的不等式解不等式 \( 3x + 2 > 11 \)。
14. 代数式的方程解方程 \( 2x^2 - 5x + 1 = 0 \)。
15. 代数式的函数图像描述函数 \( y = x^2 \) 在 \( x = 0 \) 时的图像特征。
#### 四、综合应用题16. 代数式在几何中的应用一个直角三角形的两条直角边分别为 \( a \) 和 \( b \),求斜边的长度。
17. 代数式在物理中的应用如果一个物体从静止开始以匀加速运动,加速度是 \( 2 \) 米/秒²,求 3 秒后的速度。
七年级代数式知识点及例题
七年级代数式知识点及例题代数式在初中数学中占有重要地位,是进一步学习高中数学和其他科学学科的基础。
本文将为大家介绍七年级代数式的知识点,并通过例题让大家更好地掌握这些知识点。
一、代数式的概念代数式指用数字和字母以及运算符号组成的式子,例如:2x+3y或a²-b²等。
其中数字和字母都被称为代数项,符号+、-、×和÷被称为代数式的运算符号。
二、代数式的基本运算1. 合并同类项合并同类项是代数式基本原则之一。
同类项有相同的字母部分,其指数可以不同,例如:3x、5x和-2x就是同类项。
将同类项相加或相减得到的结果称为合并同类项。
例如:2x²+3x²=5x²,6xy-2xy=4xy。
2. 去括号一般情况下,可以使用分配律去掉括号,从而简化代数式。
例如:3(x+2)=3x+6。
3. 移项移项是指将代数式中的各个式子移到等式两边,通过加、减或乘、除等运算来求解。
三、代数式的解题方法1. 代入法代入法是求解代数式的一种简单方法。
将给定的数值代入代数式中,然后通过基本运算得出最终结果。
例如:已知x=2,求2x+3,将x=2代入得:2*2+3=7。
2. 整理法整理法是指通过基本运算对代数式进行化简,化简后的代数式更符合求解要求,从而实现对代数式求解的目的。
例如:已知3x+2=8,将式子化简为3x=6,然后得出x=2的解。
四、常见的七年级代数式例题1. 合并同类项:将3x+5x+2y-7y合并同类项,并化简为最简代数式。
解:同类项3x和5x的和是8x,同类项2y和-7y的和是-5y,因此合并同类项后得到8x-5y。
2. 去括号:化简3(x+2)+2(x-1),并将其化简为最简代数式。
解:根据分配律,展开式子3(x+2)+2(x-1)得到3x+6+2x-2。
将同类项3x和2x合并,同类项6和-2合并,得到最简代数式5x+4。
3. 求解未知数:已知3x+2=8,求x的值。
最新初中数学代数式技巧及练习题附解析
最新初中数学代数式技巧及练习题附解析一、选择题1.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.2.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y =【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;故选:D .【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.3.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.4.下列运算正确的是()A .336a a a +=B .632a a a ÷=C .()235a a a -⋅=-D .()336a a = 【答案】C【解析】【分析】分别求出每个式子的值,3332a a a +=,633a a a ÷=,()235aa a -⋅=-,()339a a =再进行判断即可.【详解】解:A: 3332a a a +=,故选项A 错;B :633a a a ÷=,故选项B 错;C :()235a a a -⋅=-,故本选项正确;D.:()339a a =,故选项D 错误.故答案为C.【点睛】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概念,即求n 个相同因数的乘积的运算叫乘方,乘方的结果叫做幂;分清()22n n a a -=,()2121n n a a ++-=-.5.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .6.通过计算大正方形的面积,可以验证的公式是( )A .B .C .D .【答案】C【解析】【分析】 根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a 2+b 2+c 2+2ab+2bc+2ac ,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.7.若35m =,34n =,则23m n -等于( ) A .254 B .6C .21D .20 【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.8.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( ) A .p =5,q =18B .p =-5,q =18C .p =-5,q =-18D .p =5,q =-18【答案】A【解析】试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A .9.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D【解析】【分析】本题主要考查的就是同底数幂的计算法则【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a .【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.10.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( ) A .5,3B .5,−3C .−5,3D .−5, −3【答案】D【解析】【分析】 此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值.【详解】由于()()2x 1x 3+-=2x 2-6x+x-3=2 x 2-5x-3=22x px q ++, 则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.11.下列计算正确的是( )A .236a a a ⋅=B .22a a a -=C .632a a a ÷=D .236()a a =【答案】D【解析】【分析】根据同底数幂的乘除法公式,合并同类项,以及幂的乘方公式逐项计算得到结果,即可作出判断.【详解】A 、235a a a ⋅=,不符合题意;B 、22a 和a 不是同类项,不能合并,不符合题意;C 、633a a a ÷=,不符合题意;D 、236()a a =,符合题意,故选:D .【点睛】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方,熟练掌握运算法则是解本题的关键.12.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a = 【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.13.如图,是一个运算程序的示意图,若开始输入x 的值为81,则第2018次输出的结果是( )A .3B .27C .9D .1【答案】D【解析】【分析】 根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,13×81=27, 第2次,13×27=9, 第3次,13×9=3, 第4次,13×3=1,第5次,1+2=3,第6次,13×3=1, …,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2018是偶数,∴第2018次输出的结果为1.故选D .【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.14.下列运算正确的是A .32a a 6÷=B .()224ab ab =C .()()22a b a b a b +-=-D .()222a b a b +=+【答案】C【解析】根据整式的除法,幂的乘方与积的乘方运算法则和平方差公式,完全平方公式逐一计算作出判断:A 、322a a 2a ÷=,故选项错误;B 、()2224ab a b =,故选项错误;C 、选项正确;D 、()222a b a 2ab b +=++,故选项错误.故选C .15.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .224a a a += 【答案】B【解析】【分析】根据积的乘方运算法则和同底数幂的运算法则分别计算即可解答.【详解】解:A. 235a a a ⋅=,故A 错误;B. 222()ab a b =,正确;C. ()326a a =,故C 错误;D. 2222a a a +=,故D 错误.故答案为B .【点睛】本题主要考查了积的乘方和同底数幂的运算运算法则,掌握并灵活运用相关运算法则是解答本题的关键.16.若代数式()212323aa x y xy -+-是五次二项式,则a 的值为( ) A .2B .2±C .3D .3± 【答案】A【解析】【分析】根据多项式的次数与项数的定义解答.【详解】∵()212323a a x y xy -+-是五次二项式,∴2125a -+=,且20a +≠,解得a=2,故选:A.【点睛】此题考查多项式的次数与项数的定义,熟记定义是解题的关键.17.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .18.下列算式能用平方差公式计算的是( )A .(2)(2)a b b a +-B .11(1)(1)22x x +-- C .(3)(3)x y x y --+D .()()m n m n ---+ 【答案】D【解析】【分析】利用平方差公式的结构特征判断即可.【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2,故选D .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.19.计算(-2)2009+(-2)2010的结果是( )A .22019B .22009C .-2D .-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B .20.下列说法正确的是()A .若 A 、B 表示两个不同的整式,则A B 一定是分式 B .()2442a a a ÷=C .若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍 D .若35,34m n ==则2532m n -= 【答案】C【解析】【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称A B 是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xy x y +中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34m n ==则()22253332544m n m n -=÷=÷=,故此选项错误. 故选:C【点睛】本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.。
代数式技巧及练习题附答案解析
代数式技巧及练习题附答案解析1 )个图形中面积为1的正方形有2个,1的图象有2+3=5个,1的正方形有2+3+4=9个,按此规律,的正方形有2+3+4+--+ (n+1)= —3)个,2则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B.一、选择题1.已知单项式3a2b m 1与7a n b互为同类项,则m n为(A. 1【答案】D【解析】B. C. 3 D. 4【分析】根据同类项的概念求解.【详解】解:Q单项式3a2b m 1与7a n b互为同类项,n 2, 则m n 故选D.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个的指数相同.相同”相同字母2.如图,面积为1面积为1下列图形都是由面积为1的正方形按一定的规律组成,其中,第(的正方形有的正方形有2个,第(2)个图形中面积为1的正方形有5个,9个,…,按此规律.则第(6)个图形中面积为1个图形中个图形中1)第(3)的正方形的个数为【答案】B【解析】试题解析:第(第(2)个图形中面积为第(3)个图形中面积为第n个图形中面积为1考点:规律型:图形变化类3.下列命题正确的个数有( )①若x2+kx+25是一个完全平方式,则k的值等于10;②一组对边平行,一组对角相等的四边形是平行四边形;③ 顺次连接平行四边形的各边中点,构成的四边形是菱形;④黄金分割比的值为逻二■- 0.618.2B. 1个A. 0个【答案】C【解析】【分析】根据完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定即可一一判断;【详解】①错误.x2+kx+25是一个完全平方式,则k的值等于± 10 正确.一组对边平行,一组对角相等,可以推出两组对角分别相等,即可判断是平行四边形;③错误.顺次连接平行四边形的各边中点,构成的四边形是平行四边形;^5十1④正确.黄金分割比的值为一3~ 0.618故选C.C. 2个D. 3个【点睛】本题考查完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定等知识, 解题的关键是熟练掌握基本知识.4.下列运算正确的是( )A. x3+x5=x8B. (y+1)(y-1)=y2-1 C a10+a=a5 D. (-a2b)3=a6b3 【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A、x3+x5, 无B、(y+1)C、a10^2=aD、(-a2b) 故选:B.【点睛】匸法计算,故此选项错误; (y-1) =y2-l,正确;8,故此选项错误;3=-a6b3,故此选项错误.本题考查了合并同类项以及积的乘方运算、整式的乘除运算, 题的关键. 正确掌握相关运算法则是解5.若(x+1)( x+n )= x 2+mx - 2,贝U m 的值为( A . - 1 B . 1 C - 2 【答案】A 【解析】 【分析】 先将(x+1)(x+ n)展开得出一个关于 x 的多项式,再将它与 m , n 的值. 【详解】 解:••• (x+1)(x+n)=x 2+(1+ n) x+n , •-x 2+(1+ n)x+n=x 2+mx-2, 1 n D . 2x 2+mx-2作比较,即可分别求得n=-2. /. m=-1 , 故选A . 【点睛】 本题考查了多项式乘多项式的法则以及类比法在解题中的运用. 6.如果(x 2 +px + q)(x 2 — 5x + 7)的展开式中不含 x 2与x 3叽那么p 与q 的值是( )A . p = 5, q = 18B . C. p =— 5, q =一 18【答案】A D . P =— 5, q = 18 p = 5, q = 一 18【解析】 试题解析:•••( x 2+ px+q )(x 2-5x+7) =x 4+ (p-5) 又•••展开式中不含x 2与x 3项, ••• p -5=0, 7-5p+q=0 , 解得 p=5, q=18. 故选A . x 3+ (7-5 p+q ) x 2+ (7-5q ) x+7q ,A . 5.某企业今年3月份产值为d 万元, 15%,贝y 5月份的产值是()(4 — 10%)( d +15%)万元 (d — 10 % +15%)万元 4月份比 B . 月份减少了10%, 5月份比4月份增加(1+15 %)万元 C. 【答案】B 【解析】 列代数式.据3月份的产值是a 万元, 得出5月份产值列出式子a 1 — 10%)D .(1 — 10 %) (1 — 10% + 15%)万元a 把4月份的产值表示出来 a ( 1— 10%),从而 (1+15%).故选 B .【解析】 本题考查幕的运算. 点拨:根据幕的运算法则. 3a故选B .【解析】【分析】 根据幕的乘方和同底数幕除法的运算法则求解. 【详解】...2m = 5, 4n= 3,• 43n 飞=41 =心=£ =空 4m(2m)25225故选B. 【点睛】10.下列计算,正确的是()【答案】D【解析】A. a 2和a,和不能合并,故本选项错误;D 2 3B. a aC 93C. a aD. a 328.下列计算正确的是( A . a?a 2= a 2 【答案】B B .()a 2) 2= a 4C. 3a+2a = 5a 2D . (a 2b ) 3= a 2?b 3A . a 2a a D 2 3B . a aC. a 9a 3a 3D .a 3 2解答:a a2a 1 2 a 22a 2 2a 43a 2a a 2b ‘5a6. 3a b9.若 2m = 5, 4n= 3,则43nm的值是(9A.—1027B.——25C. 2 D .本题考查幕的乘方和同底数幕除法,熟练掌握运算法则是解题关键a 5 a 6,故本选项错误;a 6 a 3 和不能合并,故本选项错误;a 6,故本选项正确;故选D.11.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这 则个等式是(75a7!A .( a+b )( a - b )C.( a - b ) 2【答案】A =a 2-b2=a 2- 2ab+b 2B .( a+b ) 2= a 2+2ab+b 2D . a ( a — b ) = a 2— ab【解析】 【分析】分别计算出两个图形中阴影部分的面积即可. 【详解】图1阴影部分面积:a 2- b 2,图2阴影部分面积:(a+b ) ( a - b ), 由此验证了等式(a+b )( a - b ) = a 2-b 2,故选:A .此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过 程,通过几何图形之间的数量关系对平方差公式做出几何解释.计算(0.5 X 50 3x (4X 10 2的结果是(2 1013B . 0.5 1014【答案】C 12. A . )C. 2 1021D . 8 1021【解析】根据同底数幕的乘法的性质,幕的乘方的性质,积的乘方的性质进行计算. 解:(0.5 X 10 3X ( 4 X故选C.本题考查同底数幕的乘法,10 2=0.125 X 10< 16 X 6=2 X 10.幕的乘方,积的乘方,理清指数的变化是解题的关键.13.图(1)是一个长为开,把它分成四块形状和大小都一样的小长方形,然后按图( 中间空的部分的面积是()2a ,宽为2b (a b )的长方形,用剪刀沿图中虚线(对称轴)剪2)那样拼成一个正方形,则【答案】C 【解析】 【分析】图(2)的中间部分是正方形,边长为 【详解】中间部分的四边形是正方形,边长为: •••面积是(a b )2, 故选:C.【点睛】此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键15.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第① 个图形有1颗棋子,第②个图形有6颗棋子,第 ③个图形有15颗棋子,第 ④ 个图中有28颗棋子,…, 则第6个图形中棋子的颗数为( )A . abB . (a b)22C. (a b)D . a 2b 2a-b ,根据图形列面积关系式子即可得到答案a+b-2b=a-b .A . ( 2x 2)38x 6B . 2x x 1 2x 2 c , 、222C. (x y) x yD .x 2yx 2y2x x 2 4y 2【解析】解: A . B .C. D . 故选A . (-2x 2)3=- 8x 6,正确;—2x(x + 1)=- 2x 2- 2x ,故 B 错误; (X + y)2= X 2 + 2xy+y 2,故 C 错误;(-X + 2y)(- x -2y) = x 2-4y 2,故 D 错误;巧I下列运算正确的是( 14. )【答案】 A【解析】 【分析】解:•••通过观察可以发现: 第1个图形中棋子的个数为 第2个图形中棋子的个数为故选:D 【点睛】16. 如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角 形中y 与n 之间的关系是()【解析】 【详解】•• •观察可知:左边三角形的数字规律为:■« « ・ • • • * • • • • •« + 4 * • ■• •• ««• • • • « « • • ••4•• • • ■•• • ▼ ■ ■ ■* * 4图①图②15③■圏④A . 63B . 64C. 65D . 66根据图形中棋子的个数找到规律, 【详解】从而利用规律解题.第3个图形中棋子的个数为 15 第4个图形中棋子的个数为28第n 个图形中棋子的个数为 n 2n•••第6个图形中棋子的个数为66.本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.A . y=2n+1【答案】B D . y=2n+n+11 , 2, …,n ,【答案】D B . y=2n+nC. y=2n+1+n右边三角形的数字规律为: 下边三角形的数字规律为: •••最后一个三角形中 y 与n 之间的关系式是y=2n+n. 故选B .【点睛】考点:规律型:数字的变化类.17. 若 x+y = 3+2^2,X -y = 3 - 2 迈,则庁【分析】根据二次根式的性质解答.【详解】 解:••• x+y = 3+2 屈,X - y = 3- 2血,•7X 2 y 2J (Q y)(x y) J (3 272)(3 近=「故选:B . 【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差 公式进行解题.【解析】C 正确;19.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉著的《详解九章算术》一书中,用如图的三角形解释二项和( a+b ) n的展开式的各项系数,此三角形称为 杨辉三角”.2, 2?,…,2",1+2, 2 + 2$ …,^+2"|,y2的值为(A . 4©【答案】B 【解析】B . 1 C. D . 3 - 24218.下列运算正确的是( A . X 4【答案】 )B . X 2X 3X 6c . 2,3 6 C. (X ) X r 2 2 . , 2D . X y (X y )试题分析:X 4与X 2不是同类项,不能合并, X 5 A 错误;B 错误;/ 2\3(X2 2X y故选C.考点:幕的乘方与积的乘方;合并同类项;同底数幕的乘法;因式分解(X y )(x y ) , D 错误.-运用公式法.13世纪)所(约(2to+勺 Q ......... Zzr 际1 ... ®id a/ ■① ② G 坍 ............ ,①③® ra+6/ ..... ① ® ⑥ ⑤ @ @ 根据杨辉三角”请计算(a+b ) 20 A . 2017 B . 2016【答案】D【解析】① ① ④①的展开式中第三项的系数为(C. 191 D . 190试题解析:找规律发现( (a+b ) 4的第三项系数为 (a+b ) 5的第三项系数为10=1+2+3+4; 不难发现(a+b ) n的第三项系数为1+2+3+-+ •••( a+b ) 20 第三项系数为 1+2+3+- +20=190, 故选D . a+b ) 3的第三项系数为 3=1+2;6=1+2+3; (n - 2) + (n - 1), 考点:完全平方公式. 20.如图,是一块直径为 2a + 2b 的圆形钢板, 剩下的钢板的面积为( ) 从中挖去直径分别为 2a 、2b 的两个圆,则【答案】B 【解析】 【分析】 B . 2ab C. 3ab D . 4ab剩下钢板的面积等于大圆的面积减去两个小圆的面积 ,利用圆的面积公式列出关系式 ,化简即【详解】 解:S 剩下=S 大圆-S 小圆1 - S 小圆2 2a+2b 2 / 2a 2 / 2b 2)-(T)- (7)a+b22 2-a -b =2 ab ,故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、合并同类项法则,熟练掌握公式及法则是解本题的关键.。
代数式技巧及练习题含答案
运算的时候很多同学容易用错,例如: amn am an 等等.
10.已知 a+b+c=1, a2 b2 c2 2c 3 ,则 ab 的值为( ).
A.1
B.-1
C.2
【答案】B
【解析】
D.-2
【分析】
将 a+b+c=1 变形为 a+b=1- c,将 a2 b2 c2 2c 3 变形为 a2 b2 2 c2 2c 1,然
12.下列说法正确的是()
A.若 A、B 表示两个不同的整式,则 A 一定是分式 B
B. a4 2 a4 a2
xy C.若将分式 x y 中,x、y 都扩大 3 倍,那么分式的值也扩大 3 倍
D.若 3m 5, 3n 4 则 32mn 5 2
【答案】C 【解析】 【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可. 【详解】
故选 C.
D.178
2.下列计算正确的是( )
A.a2+a3=a5
B.a2•a3=a6
C.(a2)3=a6
【答案】C
【解析】
试题解析:A.a2 与 a3 不是同类项,故 A 错误;
B.原式=a5,故 B 错误;
D.原式=a2b2,故 D 错误;
故选 C.
考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.
A. 若 A、B 表示两个不同的整式,如果 B 中含有字母,那么称 A 是分式.故此选项错误. B
B. a4 2 a4 a8 a4 a4 ,故故此选项错误.
xy
C. 若将分式
中,x、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确.
x y
D. 若 3m 5,3n 4 则 32mn 3m 2 3n 25 4 25 ,故此选项错误. 4
代数式练习题及答案
代数式练习题及答案代数式练习题及答案代数是数学中的一个重要分支,它研究的是数的运算和代数式的性质。
代数式是由数、字母和运算符号组成的表达式,它可以用来表示数的关系和运算。
在学习代数的过程中,练习题是必不可少的一环,通过解答练习题,可以帮助我们巩固知识,提高解题能力。
本文将介绍一些常见的代数式练习题及其答案。
一、简单的代数式求值题1. 求代数式a + b + c,其中a = 2,b = 3,c = 4。
答案:a + b + c = 2 + 3 + 4 = 9。
2. 求代数式3a - 2b,其中a = 5,b = 7。
答案:3a - 2b = 3 × 5 - 2 × 7 = 15 - 14 = 1。
3. 求代数式(a + b) × c,其中a = 2,b = 3,c = 4。
答案:(a + b) × c = (2 + 3) × 4 = 5 × 4 = 20。
二、代数式的展开和化简题1. 展开代数式(x + y)^2。
答案:(x + y)^2 = x^2 + 2xy + y^2。
2. 化简代数式2x + 3x - 4x。
答案:2x + 3x - 4x = x。
3. 展开代数式(a - b)^2。
答案:(a - b)^2 = a^2 - 2ab + b^2。
三、代数式的因式分解题1. 将代数式x^2 - 4x + 4分解因式。
答案:x^2 - 4x + 4 = (x - 2)^2。
2. 将代数式x^2 - 9分解因式。
答案:x^2 - 9 = (x - 3)(x + 3)。
3. 将代数式x^2 + 4x + 4分解因式。
答案:x^2 + 4x + 4 = (x + 2)^2。
四、代数式的方程求解题1. 解方程2x + 3 = 7。
答案:2x + 3 = 7,化简得2x = 4,再除以2得x = 2。
2. 解方程3(x - 4) = 15。
答案:3(x - 4) = 15,化简得3x - 12 = 15,再加上12得3x = 27,最后除以3得x = 9。
人教版初中数学代数式技巧及练习题
人教版初中数学代数式技巧及练习题一、选择题1.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为6cm ,宽为5cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长之和等于( )A .19cmB .20cmC .21cmD .22cm【答案】B 【解析】 【分析】根据图示可知:设小长方形纸片的长为a 、宽为b ,有:26a b +=(cm),则阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,计算即可求得结果. 【详解】解:设小长方形纸片的长为a 、宽为b ,由图可知:26a b +=(cm), 阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a , 化简得:444(2)-+a b ,代入26a b +=得:原式=44−4×6=44−24=20(cm), 故选:B . 【点睛】本题主要考查整式加减的应用,关键分清图形②如何用小长方形纸片的长和宽表示.2.下列各式中,运算正确的是( ) A .632a a a ÷= B .325()a a = C .223355= D 632=【答案】D 【解析】 【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算. 【详解】解:A 、a 6÷a 3=a 3,故不对; B 、(a 3)2=a 6,故不对;C、22和33不是同类二次根式,因而不能合并;D、符合二次根式的除法法则,正确.故选D.3.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4 B.6 C.8 D.10【答案】A【解析】【分析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值.【详解】解:根据勾股定理可得a2+b2=9,四个直角三角形的面积是:12ab×4=9﹣1=8,即:ab=4.故选A.考点:勾股定理.4.如果多项式4x4+ 4x2+A是一个完全平方式,那么A不可能是().A.1 B.4 C.x6D.8x3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x4+ 4x2+1=(2x+1)2,∴A=1,不符合题意,∵4x4+ 4x2+ 4不是完全平方式,∴A=4,符合题意,∵4x4+ 4x2+x6=(2x+x3)2,∴A= x 6,不符合题意, ∵4x 4+ 4x 2+8x 3=(2x 2+2x )2, ∴A=8x 3,不符合题意. 故选B . 【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.5.下列运算正确的是( ) A .232235x y xy x y += B .()323626ab a b -=-C .()22239a b a b +=+ D .()()22339a b a b a b +-=-【答案】D 【解析】 【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可. 【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意; D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意.故选D . 【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.6.下列运算或变形正确的是( ) A .222()a b a b -+=-+ B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C 【解析】 【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答. 【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误; 故选:C . 【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.7.计算 2017201817(5)()736-⨯ 的结果是( ) A .736-B .736C .- 1D .367【答案】A 【解析】 【分析】根据积的乘方的逆用进行化简运算即可. 【详解】2017201817(5)()736-⨯20172018367()()736=-⨯ 20173677()73636=-⨯⨯ 20177(1)36=-⨯736=- 故答案为:A . 【点睛】本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.8.观察下列图形:( )它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为( ) A .20 B .21C .22D .23【答案】C 【解析】【分析】设第n个图形共有a n(n为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n=3n+1(n为正整数)”,再代入n=7即可得出结论.【详解】解:设第n个图形共有a n(n为正整数)个五角星,∵a1=4=3×1+1,a2=7=3×2+1,a3=10=3×3+1,a4=13=3×4+1,…,∴a n=3n+1(n为正整数),∴a7=3×7+1=22.故选:C.【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n=3n+1(n为正整数)”是解题的关键.9.若2m=5,4n=3,则43n﹣m的值是( )A.910B.2725C.2 D.4【答案】B【解析】【分析】根据幂的乘方和同底数幂除法的运算法则求解.【详解】∵2m=5,4n=3,∴43n﹣m=344nm=32(4)(2)nm=3235=2725故选B.【点睛】本题考查幂的乘方和同底数幂除法,熟练掌握运算法则是解题关键.10.下列计算正确的是()A.2x2•2xy=4x3y4B.3x2y﹣5xy2=﹣2x2yC.x﹣1÷x﹣2=x﹣1D.(﹣3a﹣2)(﹣3a+2)=9a2﹣4【答案】D【解析】A选项:2x2·2xy=4x3y,故是错误的;B选项:3x2y和5xy2不是同类项,不可直接相加减,故是错误的;C.选项:x-1÷x-2=x ,故是错误的;D选项:(-3a-2)(-3a+2)=9a2-4,计算正确,故是正确的.故选D.11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( ) A .2017 B .2016C .191D .190【答案】D 【解析】试题解析:找规律发现(a+b )3的第三项系数为3=1+2; (a+b )4的第三项系数为6=1+2+3; (a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1), ∴(a+b )20第三项系数为1+2+3+…+20=190, 故选 D .考点:完全平方公式.12.下列计算正确的是( ) A .2571aa a -÷=B .()222a b a b +=+ C .2222+=D .()235a a =【答案】A 【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案. 详解:A 、2571aa a-÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误; C 、2,无法计算,故此选项错误; D 、(a 3)2=a 6,故此选项错误; 故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.13.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:+⨯=元,若一年内例如,购买A类会员年卡,一年内健身20次,消费1500100203500在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡【答案】C【解析】【分析】设一年内在该健身俱乐部健身x次,分别用含x的代数式表示出购买各类卡所需消费,然后将x=50和x=60分别代入各个代数式中比较大小即可得出结论.【详解】解:设一年内在该健身俱乐部健身x次,由题意可知:50≤x≤60则购买A类会员年卡,需要消费(1500+100x)元;购买B类会员年卡,需要消费(3000+60x)元;购买C类会员年卡,需要消费(4000+40x)元;不购买会员卡年卡,需要消费180x元;当x=50时,购买A类会员年卡,需要消费1500+100×50=6500元;购买B类会员年卡,需要消费3000+60×50=6000元;购买C类会员年卡,需要消费4000+40×50=6000;不购买会员卡年卡,需要消费180×50=9000元;6000<6500<9000当x=60时,购买A类会员年卡,需要消费1500+100×60=7500元;购买B类会员年卡,需要消费3000+60×60=6600元;购买C类会员年卡,需要消费4000+40×60=6400;不购买会员卡年卡,需要消费180×60=10800元;6400<6600<7500<10800综上所述:最省钱的方式为购买C类会员年卡故选C.【点睛】此题考查的是用代数式表示实际意义,掌握实际问题中各个量之间的关系是解决此题的关键.14.下列计算正确的是()A .23a a a ⋅=B .23a a a +=C .()325a a = D .23(1)1a a a +=+【答案】A 【解析】 【分析】根据合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识求解即可求得答案. 【详解】A 、a•a 2=a 3,故A 选项正确;B 、a 和2a 不是同类项不能合并,故B 选项错误;C 、(a 2)3=a 6,故C 选项错误;D 、a 2(a+1)=a 3+a 2,故D 选项错误. 故答案为:A . 【点睛】本题主要考查了合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识,解题的关键是熟记法则.15.下列算式能用平方差公式计算的是( ) A .(2)(2)a b b a +- B .11(1)(1)22x x +-- C .(3)(3)x y x y --+ D .()()m n m n【答案】D 【解析】 【分析】利用平方差公式的结构特征判断即可. 【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2, 故选D . 【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.16.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是( )(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A .食指B .中指C .小指D .大拇指【答案】B 【解析】 【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案. 【详解】解:∵大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.又∵2019是奇数,201925283=⨯+, ∴数到2019时对应的指头是中指. 故选:B . 【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.17.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( ) A .4 或-6 B .4C .6 或4D .-6【答案】A 【解析】 【详解】解:∵x 2+2(m+1)x+25是一个完全平方式, ∴△=b 2-4ac=0, 即:[2(m+1)]2-4×25=0 整理得,m 2+2m-24=0, 解得m 1=4,m 2=-6, 所以m 的值为4或-6. 故选A.18.下列运算中,正确的是( ) A .236x x x ⋅= B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B 【解析】【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.【详解】x2•x3=x5,故选项A不合题意;(ab)3=a3b3,故选项B符合题意;(2a)3=8a6,故选项C不合题意;3−2=19,故选项D不合题意.故选:B.【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.19.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab【答案】B【解析】【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故选B.【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.20.下列命题正确的个数有()①若 x2+kx+25 是一个完全平方式,则 k 的值等于 10;②一组对边平行,一组对角相等的四边形是平行四边形;③顺次连接平行四边形的各边中点,构成的四边形是菱形;④黄金分割比的值为≈0.618.A.0 个B.1 个C.2 个D.3 个【答案】C【解析】【分析】根据完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定即可一一判断;【详解】①错误.x2+kx+25是一个完全平方式,则 k 的值等于±10 ②正确.一组对边平行,一组对角相等,可以推出两组对角分别相等,即可判断是平行四边形;③错误.顺次连接平行四边形的各边中点,构成的四边形是平行四边形;④正确.黄金分割比的值为≈0.618;故选C.【点睛】本题考查完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定等知识,解题的关键是熟练掌握基本知识.。
最新代数式(基础篇)(Word版 含解析)
一、初一数学代数式解答题压轴题精选(难)1.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15﹪,并可用本金和利润再投资其他商品,到月末又可获利10﹪;如果月末出售可获利30﹪,但要付出仓储费用700元.(1)若商场投资元,分别用含的代数式表示月初出售和月末出售所获得的利润;(2)若商场投资40000元,问选择哪种销售方式获利较多?此时获利多少元?【答案】(1)由题意可得:该商月初出售时的利润为:15%x+(1+15%)×10%x=0.265(元);该商月末出售时的利润为:30%x-700=(0.3x-700)(元);(2)当x=40000时,该商月初出售时的利润为:0.265×40000=10600(元),该商月末出售时的利润为:0.3×40000-700=11300(元),∵11300>10600,∴选择月末出售这种方式,即若商场投资40000元,选择月末销售方式获利较多,此时获利11300元.【解析】【分析】(1)根据题意列代数式表示出月初出售和月末出售两种销售方式获得的利润即可;(2)将x=40000分别代入(1)中的代数式求值,通过比较,即可得解。
2.已知x1, x2, x3,…x2016都是不等于0的有理数,若y1= ,求y1的值.当x1>0时,y1= = =1;当x1<0时,y1= = =﹣1,所以y1=±1(1)若y2= + ,求y2的值(2)若y3= + + ,则y3的值为________;(3)由以上探究猜想,y2016= + + +…+ 共有________个不同的值,在y2016这些不同的值中,最大的值和最小的值的差等于________.【答案】(1)解:∵ =±1, =±1,∴y2= + =±2或0(2)±1或±3(3)2017;4032【解析】【解答】解:(2)∵ =±1, =±1, =±1,∴y3= + + =±1或±3.故答案为±1或±3,( 3 )由(1)(2)可知,y1有两个值,y2有三个值,y3有四个值,…,由此规律可知,y2016有2017个值,最大值为2016,最小值为﹣2016,最大值与最小值的差为4032.故答案分别为2017,4032.【分析】(1)根据题意先求出=±1,=±1,就可求出y2的3个值。
代数式知识归纳与题型训练(6类题型清单)(解析版)—2024-2025学年七年级数学上册(浙教版)
《代数式》知识归纳与题型训练(6类题型)一、代数式与代数式的值代数式:由数、表示数的字母和运算符号组成的数学表示称为代数式.代数式值:一般地,用数值代替代数式例的字母,计算后所得的结果叫作代数式的值.要点诠释:(1)代数式中的运算包括:加、减、乘、除、乘方和开方(2)单独的一个数或者一个字母也称代数式(3)代数式求值常需要用到整体思想二、整式单项式:由数与字母或字母与字母相乘组成的代数式叫作单项式;单独的一个数或一个字母也叫单项式;单项式的系数:单项式中的数字因数叫作这个单项式的系数;单项式的次数:单项式中所有字母的指数的和叫作这个单项式的次数;多项式:由几个单项式相加组成的代数式叫作多项式;在多项式中,每个单项式叫作多项式的项,不含字母的项叫作常数项,次数最高的项的次数就是这个多项式的次数,多项式根据其次数和项数,可以称为“几次几项式”;整式:单项式和多项式统称为整式;要点诠释:(1)单项式中只含有乘法运算;分数是一个完整的数,不拆开来算;单独的一个数或字母也叫单项式(2)单项式的系数包含前面的符号,去掉字母部分,剩余的即为单项式的系数(3)单独的数字的系数是其本身,次数为0;单独的字母的系数是1,次数为1(4)多项式中含有“乘法——加法——减法”运算;三、合并同类项同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项,叫作同类项;合并同类项:把多项式中的同类项合并成一项,叫作合并同类项;合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
四、整式的加减整式的加减:若干个整式相加减时,可以归结为去括号与合并同类项去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变号;括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.要点诠释:(1)去括号法则的字母表达式——:+(a+b-c)=a+b-c;-(a+b-c)=-a-b+c去括号法则主要是去括号时的变号问题,当括号外是“—”时,去掉括号后的各项均要改变符号(2)整式的化简求值问题:先去括号、再合并同类项,最后再将字母的值代入化简后的结果计算出答案(3)化简求值问题中,如果说结果与一个字母无关,则最后化简的结果中含该字母的项的系数整体=0题型一 代数式例题:1.(2023秋•西湖区校级期中)下面式子中符合代数式书写要求的是( )A.ab3B.2C.D.x+3克【分析】根据代数式的书写要求即可作出判断.【解答】解:A:ab3应写成3ab,故A错误;B:应写成,故B错误;C:书写正确,故C正确;D:x+3克应写成(x+3)克,故D错误.故选:C.2.(2023秋•义乌市期中)代数式3(y﹣3)的正确含义是( )A.3乘y减3B.y的3倍减去3C.y与3的差的3倍D.3与y的积减去3【分析】按照代数式的意义和运算顺序:先运算括号内的,再运算括号外的计算即可判断各项.【解答】解:代数式3(y﹣3)的正确含义应是y与3的差的3倍.故选:C.3.(2023秋•江北区期末)某人骑自行车t(小时)走了s(km),若步行s(km),则比骑自行车多用3(小时),那么骑自行车每小时比步行多走( )(km).A.B.C.s(t+s)D.5(t﹣3)【分析】根据速度=路程÷时间,结合题中的条件即可求解.【解答】解:由题意得:,故选:B.4.(2023秋•温州期中)现计划采购一批文具用品,若笔记本单价为a元,钢笔单价为b元,则购买35本笔记本和20支钢笔共需付 (35a+20b) 元.【分析】分别表示出购买笔记本和钢笔的费用再相加即可.【解答】解:由题意得:共需付:(35a+20b)元,故答案为:(35a+20b).巩固训练5.(2023秋•龙湾区校级期中)下列代数式中,书写规范的是( )A.B.a÷b C.D.﹣1ab【分析】根据代数式的书写要求判断即可【解答】解:A.应该写为,故A错误,不符合题意;B.a÷b应该写为,故B错误,不符合题意误;C.书写正确,故C正确,符合题意;D.﹣1ab应该写为﹣ab,故D错误,不符合题意.故选:C.6.(2023秋•仙居县校级期中)用代数式表示“a的2倍与3的和”,下列表示正确的是( )A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)【分析】a的2倍就是2a,与3的和就是2a+3,根据题目中的运算顺序就可以列出式子,从而得出结论.【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.7.(2024•杭州一模)一个直径为6cm的圆中阴影部分面积为S,现在这个圆与正方形在同一平面内,沿同一条直线同时相向而行,圆每秒滚动3cm,正方形每秒滑动2cm,第 4或6 秒时,圆与正方形重叠部分面积是S.【分析】先求出圆阴影部分的垂直长度1cm,再分圆与正方形刚接触后,相交1厘米;圆与正方形将要分开时,相交1厘米,两种情况运动的距离.最后用相遇距离除以速度和,就是所求的相遇时间.【解答】解:①=4(秒);②=6(秒)答:第4秒或6秒时,圆与正方形重叠部分面积是S.题型二 代数式的求值例题:1.(2023秋•西湖区期中)已知2m﹣3n=﹣2,则代数式4m﹣6n+1的值为( )A.﹣1B.3C.﹣3D.2【分析】将代数式适当变形后,利用整体代入的方法解答即可.【解答】解:∵2m﹣3n=﹣2,∴原式=2(2m﹣3n)+1=2×(﹣2)+1=﹣4+1=﹣3.故选:C.2.(2023秋•海曙区校级期中)如果代数式4y2﹣2y+5的值是7,那么代数式2y2﹣y+1的值等于( )A.2B.3C.﹣2D.4【分析】根据4y2﹣2y+5的值是7得到2y2﹣y=1,然后利用整体代入思想计算即可.【解答】解:∵4y2﹣2y+5=7,∴2y2﹣y=1,∴2y2﹣y+1=1+1=2.故选:A.3.(2022秋•萧山区月考)如图是某一长方形闲置空地,宽为3a米,长为b米.为了美化环境,准备在这个长方形空地的四个顶点处分别修建一个半径a米的扇形花圃(阴影部分),然后在花圃内种花,中间修一条长b米,宽a米的小路,剩余部分种草.(1)小路的面积为 ab 平方米;种花的面积为 πa2 平方米;(结果保留π)(2)请计算该长方形场地上种草的面积;(结果保留π)(3)当a=2,b=10时,请计算该长方形场地上种草的面积.(π取3.14,结果精确到1)【分析】(1)利用长方形和扇形面积公式求解;(2)根据种草的面积是整个长方形的面积减去小路面积和扇形花圃面积即可;(3)由此利用已知数据求出种草的面积即可.【解答】解:(1)依题意得小路的面积为ab平方米,种花的面积为平方米,故答案为:ab,πa2;(2)该长方形场地上种草的面积为:3a⋅b﹣ab﹣πa2=(2ab﹣πa2)平方米,故长方形场地上种草的面积为(2ab﹣πa2)平方米;(3)当a=2,b=10时,2ab﹣πa2≈2×2×10﹣3.14×2×2=27.44≈27平方米.答:该长方形场地上种草的面积为27平方米.巩固训练4.(2023秋•桐乡市期末)若a+3b﹣2=0,则代数式1+2a+6b的值是( )A.5B.4C.3D.2【分析】由已知条件可得a+3b=2,将原式变形后代入数值计算即可.【解答】解:∵a+3b﹣2=0,∴a+3b=2,∴1+2a+6b=1+2(a+3b)=1+2×2=5,故选:A.5.(2023秋•鄞州区校级月考)已知3x2﹣4x+6=9,则= 5 .【分析】利用代入法,代入所求的式子即可.【解答】解:∵3x2﹣4x+6=9,∴3x2﹣4x=3,∴当3x2﹣4x=3时,原式=﹣+6=﹣+6=5.故答案为:5.6.(2023秋•海曙区校级期中)如图所示是一个长方形.(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积S;(2)若x=3,求S的值.【分析】根据图形可知:阴影部分的面积可用长方形的面积减去两个直角三角形的面积.【解答】解:(1)由图形可知:S=4×8﹣×4×8﹣×4(4﹣x)=16﹣8+2x=(8+2x)cm2.另解:大三角形面积为:×4×8=16cm2,小直角三角形的面积为:×(8﹣4)×(4﹣x)=(8﹣2x)cm2,∴S=8×4﹣16﹣(8﹣2x)=(8+2x)cm2.(2)将x=3代入上式,S=8+2×3=14cm2.7.(2023秋•拱墅区校级期中)某校决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价140元,跳绳每条定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B网店:足球和跳绳都按定价的90%付款.已知要购买足球60个,跳绳x条(x>60).(1)若在A (6600+30x) 元(用含x的代数式表示);若在B网店购买,需付款 (7560+27x) 元(用含x的代数式表示);(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?【分析】(1)由题意在A店购买可列式:60×140+(x﹣60)×30=(6600+30x)元;在网店B购买可列式:(60×140+30x)×0.9=(7560+27x)元;(2)将x=100分别代入A网店,B网店的代数式计算,再比较即可求解;(3)由于A店是买一个足球送跳绳,B店是足球和跳绳都按定价的90%付款,所以可以在A店买60个足球,剩下的40条跳绳在B店购买即可.【解答】解:(1)A店购买可列式:60×140+(x﹣60)×30=(6600+30x)元;在网店B购买可列式:(60×140+30x)×0.9=(7560+27x)元;故答案为:(6600+30x),(7560+27x).(2)当x=100时,在A网店购买需付款:6600+30×100=9600(元),在B网店购买需付款:7560+27×100=10260(元),∵9600<10260,∴当x=100时,应选择在A网店购买合算.(3)由(2)可知,当x=100时,在A网店付款9600元,在B网店付款10260元,在A网店购买60个足球配送60个跳绳,再在B网店购买40个跳绳合计需付款:140×60+30×40×0.9=9480,∵9480<9600<10260,∴省钱的购买方案是:在A网店购买60个足球配送,60个跳绳,再在B网店购买40个跳绳,付款9480元.题型三 单项式与多项式例题:1.(2023秋•北仑区期末)单项式﹣的系数和次数分别是( )A.B.C.D.﹣2,2【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣的系数和次数分别是,3.故选:B.2.(2023秋•婺城区校级月考)整式0.34x2y,0,,x2﹣y,abc,中单项式有( )A.2个B.3个C.4个D.5个【分析】根据单项式的定义对各式进行判断即可.【解答】解:整式0,0.34x2y,abc,,x2﹣y,中,单项式有0,0.34x2y,abc,故选:B.3.(2022秋•鄞州区校级期中)若多项式4x2y|m|﹣(m﹣1)y2+1是关于x,y的三次三项式,则常数m= ﹣1 .【分析】直接利用多项式的次数与项数确定方法分析得出答案.【解答】解:∵多项式4x2y|m|﹣(m﹣1)y2+1是关于x,y的三次三项式,∴2+|m|=3,m﹣1≠0,解得:m=﹣1.故答案为:﹣1.4.(2022秋•鄞州区校级期中)对多项式按如下的规则确定它们的先后次序:先看次数,次数高的多项式排在次数低的多项式前面;再看项数,项数多的多项式排在项数少的多项式前面;最后看字母的个数,字母个数多的多项式排在字母个数少的多项式前面.现有以下多项式:①a2b2+ab+2;②a4+a3b+a2b2+ab3+b4;③a4+b4+a4b;④a2+2ab+b2;⑤a2+2a+1.(1)按如上规则排列以上5个多项式是 ③②①④⑤ (写序号);(2)请你写出一个排列后在以上5个多项式最后面的多项式.【分析】(1)通过确定各多项式的次数、项数及字母个数进行排序;(2)根据规定写一个含一个字母,次数为一次或次数是2的二项式即可.【解答】解:(1)∵多项式a2b2+ab+2的次数是4,项数是3,且含有2个字母;a4+a3b+a2b2+ab3+b4的次数是4,项数是5,且含有2个字母;a4+b4+a4b的次数是5,项数是3,且含有2个字母;a2+2ab+b2的次数是2,项数是3,且含有2个字母;a2+2a+1的次数是2,项数是3,且含有1个字母,∴按题目规则排列以上5个多项式是:③②①④⑤.故答案为:③②①④⑤;(2)a﹣1就是符合题意的多项式之一.巩固训练5.(2023秋•金东区期末)下列说法中正确的是( )A.单项式的系数是,次数是1B.单项式a3b没有系数,次数是4C.单项式的系数是,次数是4D.单项式﹣5y的系数是﹣5,次数是1【分析】根据单项式的系数:单项式中的数字因式,次数:所有字母的指数和,进行判断即可.【解答】解:A、单项式的系数是,次数是2.故原选项错误;B、单项式a3b的系数是1,次数是4.故原选项错误;C、单项式的系数是,次数是3.故原选项错误;D、单项式﹣5y的系数是﹣5,次数是1.故原选项正确;故选:D.6.(2023秋•玉环市校级期中)在下列代数式:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有( )A.2个B.3个C.4个D.5个【分析】直接利用多项式的定义分析得出答案.【解答】解:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有:,ab2+b+1,x3+x2﹣3共3个.故选:B.7.(2023秋•鄞州区校级期中)请写出一个只含有字母x的三次三项式 x3+x2+x(答案不唯一) .【分析】根据多项式的定义进行作答即可.【解答】x的三次三项式为:x3+x2+x,故答案为:x3+x2+x.8.(2023秋•东阳市月考)xy﹣x+y是 二 次 三 项式.【分析】一个多项式中,次数最高的项的次数,叫做这个多项式的次数;多项式的项数就是多项式中包含的单项式的个数.【解答】解:﹣x的次数为1,y的次数为1,xy的次数为2,故多项式的次数为2,该多项式共含有3个单项式,故多项式的项数为3,故答案为:二;三.题型四 同类项与合并同类项例题:1.(2023秋•沭阳县校级期中)在下列各组单项式中,不是同类项的是( )A.5x2y和﹣7x2y B.m2n和2mn2C.﹣3和99D.﹣abc和9abc【分析】根据同类项的定义判断即可.定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,几个常数项也是同类项.【解答】解:A.5x2y和﹣7x2y所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;B.m2n和2mn2所含字母相同,但相同字母的指数不相同,故不是同类项,故本选项符合题意;C.﹣3和99是同类项,故本选项不合题意;D.﹣abc和9abc所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意.故选:B.2.(2023秋•宿豫区期末)请你写出一个2a2b的同类项 a2b或3a2b等(答案不唯一) .【分析】根据同类项的定义可知,写出的同类项只要符合只含有a,b两个未知数,并且a的指数是2,b的指数是1即可.【解答】解:a2b或3a2b等(答案不唯一).故答案为:a2b或3a2b等(答案不唯一).3.(2023秋•西湖区校级月考)下列计算中正确的是( )A.2x+3y=5xy B.6x2﹣(﹣x2)=5x2C.4mn﹣3mn=1D.﹣7ab2+4ab2=﹣3ab2【分析】运用合并同类项的方法对各选项进行逐一计算、辨别.【解答】解:∵2x与3y不是同类项不能合并,∴选项A不符合题意;∵6x2﹣(﹣x2)=7x2,∴选项B不符合题意;∵4mn﹣3mn=mn,∴选项C不符合题意;∵﹣7ab2+4ab2=﹣3ab2,∴选项D符合题意;故选:D.4.(2023秋•庆元县校级月考)若多项式8x2+(m+1)xy﹣5y+xy﹣8(m是常数)中不含xy项,则m的值为 ﹣2 .【分析】根据合并同类项法则把原式合并同类项,根据题意列出方程,解方程得到答案.【解答】解:8x2+(m+1)xy﹣5y+xy﹣8=8x2+(m+2)xy﹣5y﹣8由题意得,m+2=0,解得,m=﹣2故答案为:﹣2.5.(2022秋•西湖区校级期中)合并同类项:(1)5m+3m﹣10m;(2)2ab2﹣3ab2﹣6ab2;(3)5x+2y﹣3x﹣7y;(4)11xy﹣3x2﹣7xy+x2.【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此解答即可.【解答】解:(1)5m+3m﹣10m=(5+3﹣10)m=﹣2m;(2)2ab2﹣3ab2﹣6ab2;=(2﹣3﹣6)ab2=﹣7ab2;(3)5x+2y﹣3x﹣7y=(5x﹣3x)+(2y﹣7y)=2x﹣5y;(4)11xy﹣3x2﹣7xy+x2=(11﹣7)xy+(1﹣3)x2=4xy﹣2x2.6.(2023秋•江干区校级期中)(1)已知2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与x的取值无关,求a和b的值.(2)已知关于x的四次三项式ax4﹣(a﹣12)x3﹣(b+3)x2﹣bx+11中不含x3及x2项,试写出这个多项式,并求当x=﹣1时,这个多项式的值.【分析】(1)先合并同类项,再根据值与x的取值无关,即含x项的系数都为0,据此求解即可;(2)根据不含x3及x2项,则﹣(a﹣12)=0,﹣(b+3)=0,求出a、b的值,进而得到原多项式,再代值计算即可.【解答】解:(1)2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1=(2﹣2b)x2+(a+3)x﹣6y+5,∵2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与x的取值无关,∴2﹣2b=0,a+3=0,∴a=﹣3,b=1;(2)∵关于x的四次三项式ax4﹣(a﹣12)x3﹣(b+3)x2﹣bx+11中不含x3及x2项,∴﹣(a﹣12)=0,﹣(b+3)=0,∴a=12,b=﹣3,∴原多项式为12x4+3x+11,当x=﹣1时,原式=12×(﹣1)4+3×(﹣1)+11=12×1﹣3+11=20.巩固训练7.(2023秋•舟山期末)下列计算正确的是( )A.5m﹣2m=3B.6x3+4x7=10x10C.3a+2a=5a2D.8a2b﹣8ba2=0【分析】依据同类项的定义与合并同类项法则求解即可.【解答】解:A、5m﹣2m=3m,故A错误;B、6x3与4x7不是同类项,不能合并,故B错误;C、3a+2a=5a,故C错误;D、8a2b﹣8ba2=0,故D正确.故选:D.8.(2023秋•南浔区期中)如果2x n+2y3与﹣3x3y2m﹣1是同类项,那么m,n的值是( )A.m=2,n=1B.m=0,n=1C.m=2,n=2D.m=1,n=2【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,得出关于m,n的方程,求得m,n的值.【解答】解:∵2x n+2y3与﹣3x3y2m﹣1是同类项,∴n+2=3,2m﹣1=3,∴m=2,n=1,故选:A.9.(2023秋•苍南县期末)已知单项式5x m y3和是同类项,则m+n= 5 .【分析】根据同类项的概念求解.定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:∵单项式5x m y3和是同类项,∴m=2,n=3,∴m+n=2+3=5,故答案为:5.10.(2023秋•义乌市月考)若﹣6x2y n与2x m+4y3的和是单项式,则mn的值是 ﹣6 .【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.据此可得m、n的值,再代入计算即可.【解答】解:∵﹣6x2y n与2x m+4y3的和是单项式,即﹣6x2y n与2x m+4y3是同类项,∴m+4=2,n=3,解得:m=﹣2,n=3,∴mn=(﹣2)×3=﹣6.故答案为:﹣611.(2023秋•瑞安市月考)计算:= ﹣ab2 .【分析】根据合并同类项的法则进行即可.【解答】解:﹣ab2﹣3ab2=(﹣﹣3)ab2=﹣ab2.故答案为:﹣.12.(2023秋•西湖区校级期中)请回答下列问题:(1)若多项式mx2+4xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值;(2)若关于x、y的多项式3mx2+2nxy+32x+2xy﹣x2+y+4不含二次项,求m﹣n的值;(3)若2x|k|+2y+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.【分析】(1)先把多项式合并同类项,再令含x项的系数等于0,求出m、n的值即可;(2)先把多项式合并同类项,然后根据多项式不含二次项,得到关于m、n的一次方程,求出m、n的值,再代入计算即可.(3)根据四次三项式的概念,得关于k的方程,求解即可.【解答】解:(1)原式=(m﹣1)x2+(4+n)xy﹣2y2﹣2y+6.∵原式的值与x的值无关,∴m﹣1=0,4+n=0,∴m=1,n=﹣4,∴(m+n)3=(1﹣4)3=﹣27,(2)原式=(3m﹣1)x2+(2n+2)xy+9x+y+4,∵多项式不含二次项,∴3m﹣1=0,2n+2=0.∴m=,n=﹣1∴m﹣n=+1=.(3)由题意得:|k|+1+2=4,∴k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.题型五 去括号与添括号例题:1.(2023秋•瑞安市月考)下列各式去括号正确的是( )A.﹣(a﹣3b)=﹣a﹣3bB.a+(5a﹣3b)=a+5a﹣3bC.﹣2(x﹣y)=﹣2x﹣2yD.﹣y+3(y﹣2x)=﹣y+3y﹣2x【分析】如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,由此即可判断.【解答】解:A、﹣(a﹣3b)=﹣a+3b,故A不符合题意;B、a+(5a﹣3b)=a+5a﹣3b,故B符合题意;C、﹣2(x﹣y)=﹣2x+2y,故C不符合题意;D、﹣y+3(y﹣2x)=﹣y+3y﹣6x,故D不符合题意.故选:B.2.(2022秋•新昌县期末)代数式,添上一个括号后,正确的是( )A.B.C.D.【分析】根据添括号方法解答.【解答】解:=.故选:B.3.(2024•东阳市二模)多项式a﹣(﹣b+c)去括号的结果是 a+b﹣c .【分析】根据去括号的方法进行解题即可.【解答】解:a﹣(﹣b+c)=a+b﹣c.故答案为:a+b﹣c.巩固训练4.(2023秋•娄星区校级期中)下列去括号或添括号的变形中,正确的是( )A.2a﹣(3b﹣c)=2a﹣3b﹣c B.3a+2(2b﹣1)=3a+4b﹣1C.a+2b﹣3c=a+(2b﹣3c)D.m﹣n+a﹣b=m﹣(n+a﹣b)【分析】根据去括号法则和添括号法则进行分析即可.【解答】解:A、2a﹣(3b﹣c)=2a﹣3b+c,错误;B、3a+2(2b﹣1)=3a+4b﹣2,错误;C、a+2b﹣3c=a+(2b﹣3c),正确;D、m﹣n+a﹣b=m﹣(n﹣a+b),错误;故选:C.5.(2023秋•吴兴区期中)下列各式可以写成a﹣b+c的是( )A.a﹣(+b)﹣(+c)B.a﹣(+b)﹣(﹣c)C.a+(﹣b)+(﹣c)D.a+(﹣b)﹣(+c)【分析】根据有理数的加减混合运算的符号省略法则化简,即可求得结果.【解答】解:根据有理数的加减混合运算的符号省略法则化简,得,A的结果为a﹣b﹣c,B的结果为a﹣b+c,C的结果为a﹣b﹣c,D的结果为a﹣b﹣c,故选:B.6.(2023春•衢江区期中)添括号:﹣x2﹣1=﹣( x2+1 ).【分析】根据添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号,是解题的关键,即可.【解答】解:﹣x2﹣1=﹣(x2+1).故答案为:x2+1.题型六 整式的加减与化简求值例题:1.(2022秋•拱墅区期末)化简(2a+b)﹣(2a﹣b)的结果是( )A.4a B.2b C.0D.4a+2b【分析】去括号后再合并即可得到答案.【解答】解:(2a+b)﹣(2a﹣b)=2a+b﹣2a+b=2b,故选:B.2.(2023秋•椒江区校级期末)已知关于x,y的多项式2x+my﹣12与多项式nx﹣3y+6的差中不含有关于x,y的一次项,则m+n+mn= ﹣7 .【分析】先将多项式直减并合并同类项;再根据差中不含有关于x,y的一次项,求出m和n的值;最后代入式子中,即可求出结果.【解答】解:2x+my﹣12﹣(nx﹣3y+6)=2x+my﹣12﹣nx+3y﹣6=(2﹣n)x+(m+3)y﹣18,∵差中不含有关于x,y的一次项,∴2﹣n=0;m+3=0,解得n=2;m=﹣3.将n=2;m=﹣3代入,则m+n+mn=﹣3+2+(﹣3)×2=﹣7,故答案为:﹣7.3.(2023秋•仙居县期末)若A=x2y+2x+3,B=﹣2x2y+4x,则2A﹣B=( )A.3B.6C.4x2y+6D.4x2y+3【分析】先去括号,再合并同类项即可得到答案【解答】解:∵A=x2y+2x+3,B=﹣2x2y+4x,∴2A﹣B=2(x2y+2x+3)﹣(﹣2x2y+4x)=2x2y+4x+6+2x2y﹣4x=(2x2y+2x2y)+(4x﹣4x)+6=4x2y+6,故选:C.4.(2023秋•仙居县校级期中)计算:(1)3m2﹣2n2+2(m2﹣n2);(2)2x﹣y﹣(x+5y).【分析】(1)根据整式的加减法,去括号,合并同类项即可解决问题;(2)根据整式的加减法,去括号,合并同类项即可解决问题.【解答】解:(1)3m2﹣2n2+2(m2﹣n2)=3m2﹣2n2+2m2﹣2n2=5m2﹣4n2;(2)2x﹣y﹣(x+5y)=2x﹣y﹣x﹣5y=x﹣6y.5.(2023秋•宜城市期末)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2.其中a=1,b=﹣3.【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=ab2,当a=1,b=﹣3时,原式=1×(﹣3)2=9.6.(2023秋•临海市期中)先化简,再求值:5x2﹣2(3y2+6xy)+(2y2﹣5x2),其中x=,y=.【分析】先去括号,再合并同类项,最后代入计算即可得.【解答】解:原式=5x2﹣6y2﹣12xy+2y2﹣5x2=﹣4y2﹣12xy,当x=,y=时,原式=﹣4×(﹣)2﹣12××(﹣)=﹣4×+2=﹣1+2=1.7.(2022秋•兰溪市期中)已知A=2x2﹣x﹣1,B=3x2﹣2x﹣1,C=x2﹣2x,求A﹣(B﹣C)的值,其中x=﹣.【分析】把A、B、C的式子代入A﹣(B﹣C)后,先去括号,合并同类项,把多项式化为最简形式后,把x=﹣代入计算即可.【解答】解:∵A=2x2﹣x﹣1,B=3x2﹣2x﹣1,C=x2﹣2x,∴A﹣(B﹣C)=2x2﹣x﹣1﹣[3x2﹣2x﹣1﹣(x2﹣2x)]=2x2﹣x﹣1﹣(3x2﹣2x﹣1﹣x2+2x)=2x2﹣x﹣1﹣3x2+2x+1+x2﹣2x=﹣x,当x=﹣时,原式=﹣(﹣)=.巩固训练8.(2023秋•嵊州市期末)如图,某长方形花园的长为(x+y)米,宽为(x﹣y)米.现根据实际需要对该花园进行整改,长方形花园的长增加(x﹣y)米,宽增加(x﹣2y)米,则整改后该花园的周长为( )A.(4x﹣3y)米B.(4x﹣6y)米C.(8x﹣3y)米D.(8x﹣6y)米【分析】根据整改的方案,表示出整改后的长与宽,再结合长方形的周长公式进行求解即可.【解答】解:整改后的花园周长为:2[(x+y+x﹣y)+(x﹣y+x﹣2y)]=2(2x+2x﹣3y)=2(4x﹣3y)=(8x﹣6y)米,故选:D.9.(2023秋•玉环市期末)长方形的长为2a+b,宽为3a﹣2b,则它的周长可表示为 10a﹣2b .【分析】根据长方形的周长公式计算即可.【解答】解:由题意得:长方形的周长为:(2a+b+3a﹣2b)×2=10a﹣2b故答案为:10a﹣2b.10.(2023秋•越城区校级期末)已知A+2B=3a2﹣4ab,B=﹣5a2+6ab﹣7.(1)用含有a,b的代数式表示A.(2)当a=﹣1,b=﹣2时,求A的值.【分析】(1)将B代入,移项,去括号,合并同类项,即可求解;(2)将a、b的值,代入计算即可求解;【解答】解:(1)∵A+2B=3a2﹣4ab,∴A=3a2﹣4ab﹣2B=3a2﹣4ab﹣2(﹣5a2+6ab﹣7)=3a2﹣4ab+10a2﹣12ab+14=13a2﹣16ab+14;(2)解:当a=﹣1,b=﹣2时,A=13×(﹣1)2﹣16×(﹣1)×(﹣2)+14=13﹣32+14=﹣5.11.(2023秋•襄城区期末)先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=,b=.【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:5(3a2b﹣ab2)﹣(ab2+3a2b)=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2当a=,b=时,原式=12××﹣6××=1﹣=.12.(2023秋•温岭市校级期中)先化简再求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.【分析】先去括号,然后合并同类项得到原式=﹣5x2y+5xy,然后把x、y的值代入计算即可.【解答】解:原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=1,y=﹣1时,原式=﹣5×1×(﹣1)+5×1×(﹣1)=0.。
代数式题型及解题口诀
合并同类项一.同类项的判断方法口诀:一看(看两个单项式是不是含有相同的字母,如果含有不同的字母一定不是同类项。
)二比较(比较两个单项式中每个相同字母头上的次数是否相同,如果有相同字母头上的次数不同,就不是同类项。
)三结论(如果两个单项式所含的字母都一样,每个相同字母头上的次数也一样,这两个单项式就是同类项。
)注意:找同类项时一定要连同它前面的符号一起。
例题1:下列是同类项的是:-2a2b+2b2a① ② ③ ④ ⑤ ⑥ ⑦解:一看(①与③含有同一字母a ;②与④,⑥与⑦含相同字母a,b)二比较(①与③中相同的字母a的次数都是2,所以①与③是同类项;②与④中a的次数都是1次,b的次数也是1次,所以②与④也是同类项;⑥中的a是2次,而⑦中的a是1次,所以⑥与⑦不是同类项)三结论同类项为:;(1)找下列是同类项的朋友a² mn xy 2 -3pq³ a³ -8pq³ -nm 3q³p -4(2)写出2个2xyz 的同类项,2个非同类项(3)写出6x2y+2xy-3x2y2-7x-5yx-4y2x2-6x2y中的同类项二.去括号与添括号方法口诀1:去括号:一看符号(看括号前面是“+”,还是“—”号)二去括号及括号前的符号(去掉括号以及括号前面的运算符号)三注意(1. 括号前面是“+”,直接去掉括号及前面的“+”,原来括号内的项不变号;2. 括号前面是“—”,去掉括号和这个“—”,原来括号内的每一项改变原来的符号,原来是“+”的变成“—”,原来是“—”的变成“+”。
)例题1:去括号250+(a+b-c-100)解:一看符号(括号前是“+”)二去括号及括号前的符号(去掉“+()”)三注意(去掉“+()”后,原来括号里剩下“a+b-c-100”,a前面省略了“+”所以把“+”号写出即可)250+(a+b-c-100)=250+a+b-c-100练习:去括号(a-b)+(c-d)=_________ -a+(b-c)=____________ a+(5a-3b)+ (a-2b);例题2:去括号58-(-5+a-b+c)解:一看符号(括号前是“—”)二去括号及括号前的符号(去掉“()”和前面的“—”,括号里面是“-5+a-b+c”)三注意(括号前面是“—”,所以,原来括号内的每一项改变符号,-5+a-b+c变成+5-a+b-c)58-(-5+a-b+c)=58+5-a+b-c练习:去括号(a+b)-(c+d)=(a+b)-(-c+d)= (8a-7b)-(4a-5b) 例题3:8x+2y-2(5x-2y)解:一此题括号外除了符号外还含有系数,所以先把系数乘入括号内,得:8x+2y-(10x-4y)二同例题28x+2y-2(5x-2y)= 8x+2y-(10x-4y)= 8x+2y-10x+4y练习:2xy- 3(2xy-y)方法口诀2:添括号一看符号(如果添括号处是“加号”,直接在其后面添上括号;如果添括号处是减号,在减号后面添上括号后原来各个数都改变符号)二添上符号后,再去括号看和原来是否一样。
代数式知识点及专项训练(含答案解析)
代数式知识点及分类训练(含答案解析)知识点一:代数式的定义1. 用基本的运算符号把数或表示数的字母连接而成的式子叫做代数式。
如:16n ,2a+3b ,34 ,n,(a+b)2等式子;代数式不含有等号或不等号,单独的2一个数或一个字母也是代数式。
知识点二:代数式的规范书写1. 数字与数字相乘用“×”;数字与字母、字母与字母相乘乘号, 通常用“·”表示或省略不写;2. 字母与数字相乘,数字因式应放在字母因式之前(之前/之后),带分数与字母相乘,带分数要化为假分数3. 代数式中的除号一般用“分数线”表示;4. 几个字母相乘时,一般按字母顺序排列。
5. 如果字母前面的数字是1,通常省略不写.知识点三:列代数式在解决实际问题时,常常先把问题中与数量有关的词语用代数式表示出来,即列出代数式,使问题变得简洁,更具一般性.1.重点:用字母表示数与数之间的关系;2.比谁的几倍多(少)几的问题;3.比谁的几分之几多(少)几的问题;4.折扣问题:例:八折是乘0.8,八五折是乘0.855.提价与降价问题:例:一个商品原价a,先提价20%,在降价20%,即a(1+20%)(1-20%)6.路程问题:掌握公式:s=vt7.出租车计费问题:分类讨论思想,将总路程切割成不同的段(例:前三公里收费7元,之后每公里1.6元,公里数x,总费用y)y={7 x≤3 1.6(x−3)+7 x>38.已知各数位上的数字,表示数的问题:字母乘10表示在十位上,乘100表示在百位上。
9.特定字母的意义:C:周长 S:面积 V:体积 r:半径 d:直径s:路程 t:时间 v:速度n:正整数知识点三:代数式的值1. 用数值代表代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。
2. 代数式的值的求解步骤:一是代入,二是计算。
在过程中一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行.3. 求代数式的值的方法3.1 直接代入法:将字母的值直接代入代数式中求值3.2 转换代入法:按指定的程序代入计算3.3 整体代入法:即整体思想:把“整体”看作一个新字母代入计算【知识点1:代数式的概念】1. 下列式子中,符合代数式书写格式的是( )A .813a 2b 3B .−y xC .xy ·5D .−1c【答案】B【解析】选项A 正确的书写格式是253a 2b 3,选项B 的书写格式是正确的,选项C 正确的书写格式是5xy ,选项D 正确的书写格式是-c.故选:B .2. 下列式子中,不属于代数式的是( )A .a+3B .mn 2C .√6D .x >y 【答案】D .【解析】A 、是代数式,故本选项错误;B 、是代数式,故本选项错误;C 、是代数式,故本选项错误;D 、不是代数式,故本选项正确;故选D .3. 下列各式符合代数式书写规范的是( )A .a bB . a×3C . 2m ﹣1个D . 125m 【答案】A .【解析】A 、符合代数式的书写,故A 选项正确;B 、a×3中乘号应省略,数字放前面,故B 选项错误;C 、2m ﹣1个中后面有单位的应加括号,故C 选项错误;D 、125m 中的带分数应写成假分数,故D 选项错误.4. 判断下列各式中哪些是代数式,哪些不是代数式?0,10x−1,F =ma ,m+2>m ,2x 2﹣3x+11,112,13≠12,6x 2+y 23,﹣y ,6π. 【答案】代数式的有:0,10x−1,2x2﹣3x+11,112,6x 2+y 23,﹣y ,6π.不是代数式的有:F =ma ,m+2>m ,13≠12.【解析】根据代数式的概念选择5. 指出下列各式哪些是代数式,哪些不是代数式?①0;②a+b=3;③b;④x+2>4;⑤1x ;⑥2mn;⑦1+x;⑧x 3.【答案】①、③、⑤、⑥、⑦、⑧是代数式,②、④不是代数式【解析】②a+b=3,④x+2>4中的“=”“>” 它们不是运算符号,因此②④都不是代数式;①0,③b,都是代数式,因为单个数字和字母是代数式;⑤1x ,⑦1+x,⑧x3,都是除、加、乘方等运算符号连接起来的,因此是代数式;综上,①、③、⑤、⑥、⑦、⑧是代数式,②、④不是代数式.6. 下列哪些是代数式?哪些不是代数式?(1)3x+y ;(2)a ≠0;(3)s=πr 2;(4)ab a+b ;(5)-1>-2;(6)65;(7)m.【答案】代数式有(1),(4),(6),(7);不是代数式的有(2),(3),(5).【解析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.代数式有:3x+y ,ab a+b ,65,m.不是代数式的有:a ≠0,s=πr 2,-1>-2.7. 指出下列各式中,哪些是代数式,哪些不是代数式?(1)2x-1;(2)a=1;(3)S=πR 2;(4)π;(5)72;(6)12>13.【答案】(2)(3)是等式不是代数式;(6)不是等式不是代数式;(1)(4)(5)是代数式.【解析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.解:(2)(3)是等式不是代数式;(6)不是等式不是代数式;(1)(4)(5)是代数式.【知识点2:列代数式】1.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.3(a+b)元C.(3a+b)元D.(a+3b)元【答案】D.【解析】求购买1个面包和2瓶饮料所用的钱数,我们需要用一个面包的价钱加上3瓶饮料的价钱即可,即(a+3b)元,故选D.2.x减去y的平方的差,用代数式表示正确的是().A.(x-y)2B.x2-y2C.x2-yD.x-y2【答案】D【解析】本题主要考查了列代数式,关键是正确理解文字语言中的关键词;y的平方为y2,所以x减去y的平方的差为x-y2,故选D.3.根据题意列式:(1)x的平方的3倍与5的差,用代数式表示为 .(2)操作电脑时,甲4小时打x个字,乙3小时打y个字,甲乙两人每小时共打个字.【答案】(1)3x2-5 (2)(x4+y3)【解析】(1)本题主要考查了列代数式,关键是正确理解文字语言中的关键词;x的平方为x2,它的3倍为3x2,所以再与5的差为3x2-5;(2)已知甲4小时打x个字,则甲每小时打x4个字;乙3小时打y个字,则乙每小时打y3个字,所以甲、乙两人每小时共同打(x4+y3)个字4.校园里刚栽下1.8m高的小树苗,以后每年长0.3m,则n年后是 m.【答案】(0.3n+1.8);【解析】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系。
初中数学代数式与方程练习题及参考答案
初中数学代数式与方程练习题及参考答案以下是初中数学代数式与方程练习题及参考答案的内容:代数式部分:1. 求以下代数式的值:a) 2x + 3y,当x = 5,y = 4时解:2x + 3y = 2(5) + 3(4) = 10 + 12 = 22b) x²– 4x,当x = 3时解:x²– 4x = 3²– 4(3) = 9 – 12 = -32. 合并化简以下代数式:a) x² + 3x – 5 + 2x²– 4x + 7解:x² + 3x – 5 + 2x²– 4x + 7 = 3x²– x + 2b) 2a²b – ab² + 3a²b – 2ab²– a²b + 5ab²解:2a²b – ab² + 3a²b – 2ab²– a²b + 5ab² = 4a²b + 2ab²3. 展开以下代数式:a) (x + 3)(x – 4)解:(x + 3)(x – 4) = x²– x – 12b) (2a – 5)(a + 2)解:(2a – 5)(a + 2) = 2a²– a – 104. 化简以下代数式:a) 6x²y ÷ 3xy解:6x²y ÷ 3xy = 2xb) (4a²b³)²解:(4a²b³)² = 16a^4b^6方程部分:1. 解以下方程:a) 3x – 4 = 7解:3x – 4 = 7,加4得3x = 11,除以3得x = 11÷3b) 2(x – 5) = 12解:2(x – 5) = 12,去括号得2x – 10 = 12,加10得2x = 22,除以2得x = 112. 解以下方程组:a) y = 2x + 13x – 2y = 8解:将第一个方程中的y代入第二个方程,得到3x –2(2x + 1) = 8,化简得x = 5,将x代入第一个方程中得到y = 11b) 2x + y = 54x – y = 1解:将第一个方程中的y代入第二个方程,得到4x – (5 – 2x) = 1,化简得x = 2,将x代入第一个方程中得到y = 1答案部分:代数式:1. a) 22 b) -32. a) 3x²– x + 2 b) 4a²b + 2ab²3. a) x²– x – 12 b) 2a²– a – 104. a) 2x b) 16a^4b^6方程式:1. a) x = 11÷3 b) x = 112. a) x = 5,y = 11 b) x = 2,y = 1总结:初中数学代数式与方程是数学学科的重要组成部分。
最新七年级数学代数式单元复习练习(Word版 含答案)
一、初一数学代数式解答题压轴题精选(难)1.根据数轴和绝对值的知识回答下列问题(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。
例如,数轴上4和1两点之间的距离是________.数轴上-3和2两点之间的距离是________.(2)数轴上表示数a的点位于-4与2之间,则│a+4│+│a-2│的值为________.(3)当a为何值时,│a+5│+│a-1│+│a-4│有最小值?最小值为多少?【答案】(1)3;5(2)6(3)解:①a≤1时,原式=1-a+2-a+3-a+4-a=10-4a,则a=1时有最小值6;②1≤a≤2时,原式=a-1+2-a+3-a+4-a=8-2a,则a=2时有最小值4③2≤a≤3时,原式=a-1+a-2+3-a+4-a=4④3≤a≤4时,原式=a-1+a-2+a-3+4-a=2a-2;则a=3时有最小值4⑤a≥4时,原式=a-1+a-2+a-3+a-4=4a-10;则a=4时有最小值6综上所述,当a=2或3时,原式有最小值4.故答案为:(1)3;5;(2)6;(3)当a=2或3时,原式有最小值4.【解析】【解答】(1)解:数轴上表示1和4的两点之间的距离是3;表示-3和2的两点之间的距离是5( 2 )解:根据题意得:-4<a<2,即a+4>0,a-2<0则原式=a+4+2-a=6.【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可直接算出答案;(2)根据数轴上所表示的数的特点得出-4<a<2,进而根据有理数的加减法法则得出a+4>0,a-2<0,然后根据绝对值的意义去绝对值符号,再合并同类项即可;(3)分①a≤1时,②1≤a≤2时,③2≤a≤3时,④3≤a≤4时,⑤a≥4时,五种情况,根据绝对值的意义分别取绝对值符号,再合并同类项得出答案,再比大小即可.2.糖业是我省重要的生物资源产业.我省某糖业集团今年4月收购甘蔗后入榨甘蔗250万吨,榨糖率为12%.经市场调查知5月份糖的销售价为2940/吨,若糖业集团在5月销售4月生产的糖,产销率为60%;又知糖业集团若在6月、7月两个月内销售4月生产的糖,销售价将在5月的基础上每月比上月降低6%、糖销量将在5月的基础上每月比上月增加9%.(1)问2005年4月糖业集团生产了多少吨糖?(2)若糖业集团计划只在7月销售4月生产的糖,请求出该糖业集团7月销售4月生产的糖的销售额是多少?(精确到万元)(注:榨糖率=(产糖量/入榨甘蔗量)×100%,产销率=(糖销量/产糖量)×100%,销售额=销售单价×销售数量).【答案】(1)解:2005年4月糖业集团产糖250×12%=30(万吨)=300000(吨)(2)解:设7月份的糖价为x元/吨,则据已知条件有x=2597.784(元/吨);设7月份的糖销量为y吨,则据已知条件得:y=30×0.60×(1+9%)2=21.3858(万吨)设7月份销售4月份产糖的销售额为w元,则据题意得:w=2597.784×21.3858≈55556(万元).答:糖业集团7月份销售4月份产糖的销售额约为55556万元.【解析】【分析】(1)根据产糖量等于入搾甘蔗量乘以搾糖率即可求解;(2)由题意先求出7月份的糖价=2940(1-6%)2=2597.784元/吨,再求出7月份的糖销量=30×0.60×(1+9%)2=21.3858(万吨),最后根据销售额等于销售单价乘以销售量即可解答。
代数式知识点、经典例题、习题及答案解析
1.2 代数式【考纲说明】1、理解字母表示数的意义及用代数式表示规律。
2、用代数式表示实际问题中的数量关系,求代数式的值。
【知识梳理】1、代数式:指含有字母的数学表达式。
2、一个代数式由数、表示数的字母、运算符号组成。
单个字母或数字也是代数式。
3、代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。
4、用字母表示数的规范格式:(1)、数和表示数的字母相乘,或字母和字母相乘时,乘号可以省略不写,或用“.”来代替。
(2)、当数和字母相乘,省略乘号时,要把数字写到前面,字母写后面。
如:100a或100•a,na或n•a。
(3)、后面接单位的相加式子要用括号括起来。
如:( 5s )时(4)、除法运算写成分数形式。
(5)、带分数与字母相乘时,带分数要写成假分数的形式。
5、列代数式时要注意:(1)语言叙述中关键词的意义,如“大”“小”“增加”“减少”。
“倍”“几分之几”等词语与代数式中的运算符号之间的关系。
(2)要理清运算顺序和正确使用括号,以防出现颠倒等错误,例如“积的和”与“和的积”“平方差”“差的平方”等等。
(3)在同一问题中,不同的数量必须用不同的字母表示。
【经典例题】【例1】(2012重庆,9,4分)下列图形都是由同样大小的五角星按一定的规律组成。
其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中的五角星的个数为( )【解析】仔细观察图形的特点,它们都是轴对称图形,每一行的个数都是偶数,分别是2,4,6,…,6,4,2,故第⑥个图形中五角星的个数为2+4+6+8+10+12+10+8+6+4+2=72。
答案:D【例2】(2011甘肃兰州,20,4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积为1,则第n 个矩形的面积为 .【解析】由中点四边形的性质可知,每次所得新中点四边形的面积是前一个图形的12,故后一个矩形的面积是前一个矩形的14,所以第n 个矩形的面积是第一个矩形面积的1221142n n --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,已知第一个矩形面积为1,则第n 个矩形的面积为2212n -⎛⎫⎪⎝⎭。
完整word版,初中数学代数式,整式和分式知识点和练习题,推荐文档
代数式课时1 .整式及其运算【课标要求】【知识考点】1•代数式:用运算符号(加、减、乘、除、乘方、开方)把 ___________ 或表示________________ 连接而成的式子叫做代数式•2•代数式的值:用代替代数式里的字母,按照代数式里的运算关系,计算后所得的__________ 叫做代数式的值•3. 整式(1 )单项式:由数与字母的______________ 组成的代数式叫做单项式(单独一个数或也是单项式)•单项式中的____________ 叫做这个单项式的系数;单项式中的所有字母的叫做这个单项式的次数•(2) 多项式:几个单项式的叫做多项式.在多项式中,每个单项式叫做多项式的________ ,其中次数最高的项的__________ 叫做这个多项式的次数•不含字母的项叫做____________ •(3) 整式:_____________ 与___________ 统称整式•4. 同类项:在一个多项式中,所含__________ 相同并且相同字母的也分别相等的项叫做同类项•合并同类项的法则是 __________ 相加,所得的结果作为合并后的系数,字母和字母的指数________ 。
5. 幕的运算性质:a m• a n= ___ ;(a m)n= ____ ; a m* a n = _______ ; (ab)n= _______6. 乘法公式:(1) (a b)(c d) ___________________ ;(2) (a+ b) (a —b) = _______________ ;⑶(a + b )2= ____________________ ; (4)(a - b )2= ____________ .7.整式的除法⑴ 单项式除以单项式的法则:把 _________ 、 _______ 分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式. ⑵多项式除以单项式的法则:先把这个多项式的每一项分别除以 _____________ ,再把所得的商【中考试题】二选择题1. (2009 年, 3分)计算a 223a 的结果是(A . 3a 2B . 4a 2C . 3a 4D . 4a 42.(2009 年,A . 4m 2 C . (m )3分)下列运算中, m 336m正确的是)(m n)2mm 23.(2010年,3分)下列计算中, 正确的是A . 20 0 / 3、2D . (a )4.(2009年,云南)下列计算正确的是(/ ■、2 2 .2A . (a b) a bB . (-2) 3 = 81 (―) 35.(2009年,昆明)下列运算正确的是( A . J6=± 4 B . 2a + 3b = 5ab C . (x —3)= n 2 n 2D. (- m )2=总6. (2011四川)计算 (A ) 2aa+( — a)的结果是((B ) 0)(C ) —a 2(D)- 2a37. (2011浙江)计算a ga , 正确的结果是 A . 2a 6 2a 58. (2011浙江台州)计算 / 2 \3(a )的结果是(A. 3a 2B.2a 3C.6D. a9. (2011广东株洲)计算 C . 计算 B .计算A . 4x 3B . 4x 4 10. (2011江苏宿迁)A . — a 5 11. (2011重庆市)x 2 4x 3的结果是(4x 5 D . 4x 6(—a 3)2的结果是( a 53a 2a 的结果是C . ) a 6D . — a 62A . 6aB . 6aC. 5aD. 5a12. (2011湖北宜昌)A. 3a — a = 3 13. (2011浙江舟山) 下列计算正确的是 2 3 6 iB. a .a =a ( ).C.(3a 3)2=2a 6) D. 2a a^= 222. (2011浙江省嘉兴)下列计算正确的是( )2 3 2(A) x x x (B ) x x x,2\3 5(C )(x ) x63 2 (D) x x x14. (2011广东广州)下面的计算正确的是A c 2 , 2彳c 2厂 35 15A . 3x •x =12xB . x x =x15. (2011江苏扬州)下列计算正确的是().C . x 4*x 3 )D . (x 5)2=x 72^36A. a ?a aB. (a+b)(a — 2b)=a 2 —2 b 2C. (ab 3)2=a 2b 6D.5a 2a=316. (2011山东日照)下列等式一定成立的是( )(A ) a 2+a 3=a 5( B ) (a+b ) 2=a 2+b 2(C ) ( 2ab 2) 3=6a 3b 6( D ) ( x — a ) ( x — b )17. (2011山东泰安)下列运算正确的是( )=x 2—( a+b ) x+abA . 3a 3+4a 3=7a 6B . 3a 2— 4a 2=— a 2 C.3a 2 4a 3=12a 3 D . (3a 3)2 韶a 3=4a 218. (2011山东威海)下列运算正确的是( 3 2 6 / x 3 6A .a a aB .(x ) xC .x 5x 5x 105 2D. ( ab) ( ab)a 3b 319. (2011山东烟台)下列计算正确的是( A.a 2+ a 3= a 5 B. a 6 为3= a 2C. 4x 2) 3x 2= 1D.( — 2x 2y)3=— 8 x 6y 320. A .21.B . a 2 + a 2= a 4C . 下列计算正确的是((3a) (2a) )=6a D . 3a — a = 3 A . x 2 x 4 x 6 B . 2x 3y 5xy/ 3、2(x )x 6232(A) x x x (B ) x x x i 2、3 (C ) (x )x 5632(D) x x x2 3.(2011山东济下列等式成立的是A ..a2+ a2= a5B . a2—a2= a2 4.(2011山东聊城)卜列运算不止确的是(A.a5a52a5 C.2a2a 12a2 5.(2011湖南益阳)下列计算正确的是A .x y2x2y2C .x 2y x 2y2^2x 2y2 6.(2011四川成都)下列计算正确的是2(A) x x x(B) x x 2x2 7.(2011四川宜宾)卜列运算止确的是(A.3a—2a=1 B. a2a3a6C. (a C . a2 a2= a 6 D . (a2) 3=a6)2362a2B .2a3 2 a2a2a 1D.B .x y2x2 2xy y2222D.x y x2xy y(C)/ 2\3(x )5x 3 2(D) x x x)b)2 2 a2ab b2 2 2 2D. (a b) a b29. (2011湖南怀化)下列运算正确的是 A.a a 3=a 3 B.(ab)3=ab 3C.a 3+a 3=a 630. (2011江苏南京)下列运算正确的是A . a 2+ a 3=a 5B . a 2?a=a 6C . a 3^a 2=a31. (2011山东临沂)下列运算中正确的是( )A . (— ab ) 2= 2a 2b 2B . (a + 1) 2 = a 2 + 1C . a 6^a 2= a 3D . 2a 3 + a 3 = 3a 332. (2011四川绵阳)下列运算正确的是 A.a+a2=a3 B. 2a+3b= 5abC.(a3)2 = a 933. (2011山东泰安)下列等式不成立的是( )A.m 2— 16=(m — 4)(m+4)B.m 2+4m=m(m+4)C.m 2— 8m+16=(m — 4)2 D.m 2+3m+9=(m+3)34. (2011江西)下列运算正确的是().A.a+b=abB.a 2 a 3=a 5C.a 2+2ab — b 2=(a — b)235. (2011湖北襄阳)下列运算正确的是36. (2011湖南永州)下列运算正确是(37. (2011江苏盐城)下列运算正确的是 A . x 2+ x 3 = x 538. (2011山东东营)下列运算正确的是39. (20011江苏镇江)下列计算正确的是2 3 A. a ?a 40.A . 41. (2011 3 2 a 3 3 B. y y y 内蒙古乌兰察布)下列计算正确的是( C.3m+3 n=6mn D.6 2 2 a a 2a 3a B. (2011广东湛江)下列计算正确的是 C. D.B a a a 2/ 2\3 C (a ) a 5a 2(a 1) a 242. (2011河北)下列运算中,正确的是 2x — x=1C .-2x-6x 3 x 243. (2011湖南)下列计算,正确的是(2x 2 ' 8x 6C . 2 23a 2a6a 244.A . 2011山东)如下列计算正确的是(a 6^a 2= a 3B . a 2 + a 3= a 5C . )(a 2)3= a 6D . (a + b)2= a 2+ b 23\2 6D.(a ) =aD . (a 2)3=a 8D. a 3 为2 = aD.3a — 2a=1A a 2a a6C.xD. (xy)22A . (a 1) a 1B . (a b)b 2B . x 4 x 2 = x 6C . x 6畝2 = x 3D . ( x 2 )3 = x 8)Ax 3x 32x 6B x 8x 2x 4C . xm ngxmnx20xa 145. (2011安徽芜湖)如图,从边长为(a + 4) cm 的正方形纸片中剪去一个边长为cm 的正方形(a I J K L M N O,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙)请你按以上规律写出第 4个算式; 把这个规律用含字母的式子表示出来;你认为(2)中所写出的式子一定成立吗?并说明理由. (2011浙江省)如图,下面是按照一定规律画出的 A1多出2个树枝”图A3比图A2多出4个 ……,照此规律,图 A6比图A2多出 树枝”(i B.56 C.60 D. 124为( 2A (2 a5a)cmB (3a 15)cm2C (6 a 9)cm2D (6a 15)cm<-«+1-^“—盯十4—,则矩形的面积).246. (2011山东枣庄)如图,边长为 (m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形 (不重叠无缝隙),若拼成的矩形一边长为 3,则另一边长是()49. (2011广东肇庆)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这 样的规律摆下去,则第n( n 是大于o 的整数)个图形需要黑色棋子的个数是(1) (2) (3) 48.( 比图‘ 枝” A.28 数形图”经观察可以发现:图A2树枝”图A4比图A3多出8个树)A . m+3 B. m+6C . 2m+3D .47. (2011湖南 益阳 )观察 下列算式: ①1 >3 - 22 = =3 —4 = -1②2 >4 - 32 = =8 —9 =-1③3 > —42 = =15—16 =—1④I2m+650. (2011内蒙古)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第图形 有个小圆•(用含n的代数式表示)0 6 0 6^ o o e « aO 0 o o 0O 9C O o o51. (2011山东聊城)如图,用围棋子按下面的规律摆图形,则摆第 枚数是()A . 5nB . 5n — 1C . 6n — 1D . 2n2+ 152. (2011广东)如下数表是由从 1开始的连续自然数组成,观察规律并完成各题的解答5 67 3910 11 12 13 14 15 161718 19 20 21 22 23 2425 2S 2728 20 30 31 32 33 343553. (2011浙江绍兴,17, 4分)先化简,(1) 表中第8行的最后一个数是 (2) 用含n 的代数式表示:第行共有 个数; (3)求第n 行各数之和.,它是自然数n 行的第一个数是的平方,第8行共有 ,最后一个数是个数; ,第nv0 4 00 O 补4 *O第1个图形 第2个图形 第 第3个图形 18题图第4个图形n 个图形需要2b) 2(a b)(a b) (a b)2 其再求值:a(a【课标要求】1.因式分解:就是把一个多项式化为几个整式的___________ 的形式•分解因式要进行到每一个 因式都不能再分解为止.2. 因式分解的方法:⑴ __________________ ,⑵ _________________ ,⑶ ________________ ,3. 提公因式法: ma mb me _____________________ .4. 公式法:⑴ a 8 b 2 ________________ ⑵ a 2 2ab b 2 _______________ ,⑶ a 2 2ab b 2 __________ . ________25. 十字相乘法: x p q x pq _________________________ .6•因式分解的一般步骤:一 “提”(取公因式),二“套”(公式)•三“十字”四“查” 7 •易错知识辨析注意因式分解与整式乘法的关系; 【中考试题】 •选择题 1.下列各式从左到右的变形中,是因式分解的为( A • x (a b ) ax bxB . x 21 y 22C . x 1 (x 1)(x 1)D . ax bx e8 (2011浙江)下列各式能用完全平方式进行分解因式的是()A . x 2 +1 B.X 2+2X — 1C.x 2+x+1D.X 2+4X +4课时2.因式分解(x 1)(x 1) x(a b) e4. (2011山东济宁)把代数式3x 3 6xJ 3x /分解因式,结果正确的是(A. x(3x y)(x 3y)2 2B 3x( x 2xy y )D. 3x(x y)2C. x(3x y)25. (2011江苏无锡)分解因式2x2 - 4x + 2的最终结果是((2011湖南)分解因式:(2011宁波)因式分解: (2011江苏)分解因式:A . 2x(x - 2)B . 2(x 2- 2x + 1)C . 2(x - 1) 2D . (2x - 2) 26. (2011江苏盐城)已知 a - b =1,则代数式2a — 2b — 3的值是 ___________A . — 1B . 1C . — 5D . 5 7. (08东莞)下列式子中是完全平方式的是( ) A . a 2 ab b 2 B . a 2 2a 2 C . a 2 2b b 2 D . a 2 2a 1 8. (2011湖北荆州)将代数式 x 2 4x 1化成(x Pl? q 的形式为 _____________________A . (x 2)23 B . (x 2)24 C . (x 2)25 D . (x 2)2 4 a>b )把余下的部分剪拼成一 ) 9.如图,在长为a 的正方形中挖掉一个边长为 b 的小正方形( 个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( A . a 2-b 2=(a+b )(a-b ) B . (a+b )2=a 2+2ab+b 2 C . (a-b ) 2=a 2-2ab+b 2 D . (a+2b)(a-b)=a 2+ab-2b 2J「 b “ 四角都做有半径为 ) R 的圆形喷水池,则这四个喷水池占 10 .如图,一块四边形绿化园地, 去的绿化园地的面积为( A 、2 R 2 B 、4 R 2 R 2 D 、不能确定 11.三角形三边 a,b,c 满足(a b)22ab ,则这个三角形是( ) A.锐角三角形 B. 二填空题 钝角三角形 C.直角三角形 D.等腰三角形1. (2011湖南)分解因式:4x5. (2011浙江台州)因式分解: 2a 1 =6. (2011四川宜宾)分解因式:4x 27. 8. 2(2011上海)因式分解:x(2011湖北黄冈)分解因式 8a 2— 2= 9y 29. (2011山东)分解因式:2xy y =10. (2011安徽芜湖)因式分解3^22x 2x y xy =3. 4. xy — y = 2a 2— 4a=(2011江苏南通)分解因式: 3m (2x — y )2 — 3mn 2= __________(2011山东临沂)分解因式: 9a — ab 2= ________________ .2 2(2011广东中山)因式分解 a b ac be(2011山东潍坊)分解因式:(10 温州)若 x — y = 3,贝U 2x — 2y = ________ .22(2011 山东)若 m n 6 ,且 m n 2,则 m n ___________________________ . 2 2(2011湖南)若mn2 , mn 5,则m n 的值为 ___________________________2 2简便计算:7.29 — 2.71 ___________2 ----------------------------------------------------------------------简便计算:2008 2009 2008 = ___________________ .如果x 2— kx + 9y 2是一个完全平方式,则常数 k = __________________ ;(2011江苏宿迁)已知实数 a 、b 满足ab = 1, a + b = 2,求代数式a 2b + ab 2的值 __________2(2011山东)代数式X 26x b可化为(x a ) 1,则b a 值是(2011浙江省)定义新运算 ’即"如下:当a 》b 寸,a ® b=ab+b,当a<b 时,a ® b=ab — a ;若(2x — 1) ® (x+2)=0,则 x=11. 12.13.14. 15. 16.17.18. 19.20. 21.22.23. 24. (2011四川)分解因式: 2 12a b ab 4【课标要求】考点1 :分式的概念:整式A除以整式B,可以表示成A的形式,如果除式B中含BA A A有_________ ,那么称A为分式.若____________ ,贝y B有意义;若 ________,贝y B无意义;若____________ ,贝y A = 0.考点2•分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的 ________________ .用式子表示为 _________________________________ .考点3:分式有意义、值为0的条件1•分式有意义的条件:分母不等于0.2 •分式值为0的条件:分子等于0且分母不等于0.3. __________________________________ 约分:把一个分式的分子和分母的约去,这种变形称为分式的约分.4•通分:根据分式的基本性质,把异分母的分式化为_______________ 的分式,这一过程称为分式的通分.5•约分的关键是确定分式的分子与分母的__________________ ;通分的关键是确定n个分式的6•分式的运算:(1)加减法法则①同分母的分式相加减:,字母表示:② 异分母的分式相加减:.字母表示:(2)__________________________ 乘法法则:. 字母表示:乘方法则:_________________________________ .字母表示:(3)除法法则:【中考试题】「选择题:1. (2011重庆江津)下列式子是分式的是()A.-B. D.2•代数式d 2X 1 X,X,—x 1 3 xa中,分式的个数是(课时3.分式________________________________ .字母表示:3. (10无锡)计算爺(ab)的结果为(4.5.6.7.8.9.C. 1(2011四川南充市)当8、分式x 1 —的值为20时, x的值是((A) 0 (B)(C) (D)—2 (2011江苏苏州)已知1A.—21B. 一2(2011江苏南通)(2010湖北孝感)化简1A.-yB.y(2011山东威海)A. m22m(2011浙江丽水)1+aA a—110.11. 12 .aba b的值是C.2D. —2设nn> n>0,m+ n2=4mr,2nmn的值等于计算:计算(2011山东临沂)化简(2011广东湛江)化简(2011浙江金华)计算1 + a代a—1B. C. 6 D. 3的结果是(C. D. y1a-1B.m22(m 1)的结果是2m 1 C. m22m 1 D. m21 圭的结果为(aa-1C. —1D.1 —a2x-1(x —x的结果是x—1x-1x -1b2——的结果是a bC a2b2占-总的结果为()C. —1D.1 —a2x x时,分式的值为0.x2时,分式一9的值为零.x 3x 2时,分式丄二的值为零.x 23x 2 27(2011四川内江)如果分式匸丁的值为10.填写出未知的分子或分母:(1)注」,⑵x y x yy 2 y 111.分式 一^三,丄,丄 的最简公分母是3x y 4xy 2x12. (2011湖南永州)化简 —— a 11 ax2- 913. (2011江苏盐城)化简:—;x - 313. (2010 年,2 分) 化简 b2— 的结果是a bc . a b14、(2011广西来宾) 计算 1的结果是x yA.— x(x y)B.2x+ y x(x y)C.2x y x(x y)D.--x(x y)二.填空题 1 .当 x =时, 分式1有意义;4. (2010年,3分)当x 时,分式5. (2011浙江省舟山)当 时,分式 —无意义. x 1 —有意义. 3 x6. x 3(2011浙江杭州)已知分式 — x 5x a 当x = 2时,分式无意义,则 a =,当a<6时,使分式无意义的 x 的值共有 个.9.计算:亠亠x y y x 2•当 x =3•当x7. (2011福建泉州)当 x =0,贝U x 的值应为8.14. (2011福建福州)化简1)(m1)的结果是15. (2011 山东泰安)化简:16. (2011 四川乐山)为正实数,且m则m217. (2011 山东聊城)化简:2 ,2a b~2 2 a 2ab b18. (2011包头)化简a 2a2 1 4a 4三.解答题12. (2011安徽)先化简,再求值:13. (2011 江苏扬州)(2)(1 1)x14.15.16.17.2a 2bb(2011四川南充市)先化简,再求值:(2011浙江衢州)(2011四川重庆)(2011福建泉州)化简:究先化简,再求值:先化简,再求值x—11,其中x= -2•xx2 1(x 1—2),其中x=2.xx—2x+ 1)2,其中x满足x2—x—1=0•xx212x2xx,其中x 2 •2.b 2(2011江苏泰州)(a - b + ------a b25. (2011江苏南京)计算(二18.(2011湖南)先化简,再求值.—x 1x 2 2x 1 2xx 1n ,其中x19. (2011湖南邵阳,18, 8分)已知x 11,求x 1的值。
代数式10大必考考点精讲精练
2022-2023学年七年级数学上学期复习备考高分秘籍【苏科版】专题1.2代数式10大必考考点精讲精练(知识梳理+典例剖析+变式训练)【目标导航】【知识梳理】1.代数式代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.注意:①不包括等于号(=)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈.②可以有绝对值.例如:|x|,|-2.25|等.2.列代数式(1)定义:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.(2)列代数式五点注意:①仔细辨别词义.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平方的差(或平方差)”与“差的平方”的词义区分.②分清数量关系.要正确列代数式,只有分清数量之间的关系.③注意运算顺序.列代数式时,一般应在语言叙述的数量关系中,先读的先写,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分括起来.④规范书写格式.列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用.⑤正确进行代换.列代数式时,有时需将题中的字母代入公式,这就要求正确进行代换.3.单项式(1)单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.用字母表示的数,同一个字母在不同的式子中可以有不同的含义,相同的字母在同一个式子中表示相同的含义.(2)单项式的系数、次数单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.在判别单项式的系数时,要注意包括数字前面的符号,而形如a或-a这样的式子的系数是1或-1,不能误以为没有系数,一个单项式的次数是几,通常称这个单项式为几次单项式.4.多项式(1)几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.(2)多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.5.整式(1)概念:单项式和多项式统称为整式.他们都有次数,但是多项式没有系数,多项式的每一项是一个单项式,含有字母的项都有系数.(2)规律方法总结:①对整式概念的认识,凡分母中含有字母的代数式都不属于整式,在整式范围内用“+”或“-”将单项式连起来的就是多项式,不含“+”或“-”的整式绝对不是多项式,而单项式注重一个“积”字.②对于“数”或“形”的排列规律问题,用先从开始的几个简单特例入手,对比、分析其中保持不变的部分及发展变化的部分,以及变化的规律,尤其变化时与序数几的关系,归纳出一般性的结论.6.数字的变化规律探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.(1)探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法,通常将数字与序号建立数量关系或者与前后数字进行简单运算,从而得出通项公式.(2)利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x ,再利用它们之间的关系,设出其他未知数,然后列方程.【典例剖析】【考点1】用字母表示数【例1】(2021秋•江都区期中)用代数式表示“m 的7倍与n 的差的平方”,正确的是( )A .7m ﹣n 2B .(m ﹣7n )2C .7(m ﹣n )2D .(7m ﹣n )2【分析】表示出m 的7倍为7m ,与n 的差,再减去n 为7m −n ,最后是平方,于是答案可得.【解答】解:用代数式表示“m 的7倍与n 的差的平方”为(7m −n )2,故选:D .【变式1.1】(2022秋•高港区期中)下列式子,符合代数式书写格式的是( )A .a +bB .113a C .a ×8D .b a【分析】根据代数式的书写要求判断各项即可.【解答】解:A .正确,符合题意;B .113a 的正确书写格式是43a ,故错误,不符合题意;C .a ×8的正确书写形式是8a ,故错误,不符合题意;D .ba后面加(a ≠0),符合代数式的书写要求,故本选项正确;故选:A .【变式1.2】(2022秋•梁溪区期中)若n 是整数,则n +1,n +3表示( )A .两个奇数B .两个偶数C .两个整数D .两个正整数【分析】根据代数式、整数的定义解答即可.【解答】解:因为n 是整数,所以n +1,n +3是两个整数,可能是两个奇数,也可能是两个偶数;可能正数,也可能是负数.故选:C.【变式1.3】(2019秋•淮安区期中)代数式a2―1b的正确解释是( )A.a与b的倒数是差的平方B.a与b的差是平方的倒数C.a的平方与b的差的倒数D.a的平方与b的倒数的差【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【解答】解:代数式a2―1b的正确解释是a的平方与b的倒数的差.故选:D.【考点2】列代数式【例2】(2020秋•江苏省江阴市期中)如图是一个长为a,宽为b的长方形,两个阴影图形的一组对边都在长方形的边上,其中一个是宽为1的长方形,另一个是一边长为1的平行四边形,则长方形中空白部分的面积等于( )A.ab﹣a﹣b B.ab﹣a﹣b+1C.ab﹣a﹣b﹣1D.ab﹣a+b﹣1【分析】根据图形,可以用含a、b的代数式表示出空白部分的面积.【解析】由图可得,长方形中空白部分的面积等于ab﹣a×1﹣1×(b﹣1)=ab﹣a﹣b+1,即长方形中空白部分的面积等于ab﹣a﹣b+1.故选:B.【变式2.1】(2022秋•扬州期中)为落实“双减”政策,某校利用课后服务时间开展读书活动.现需要购买甲、乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为( )A.8(100﹣x)元B.8x元C.10(100﹣x)元D.8(100﹣10x)元【分析】直接利用乙的单价×乙的本数=乙的费用,进而得出答案.【解答】解:设购买甲种读本x本,则购买乙种读本的费用为:8(100﹣x)元.故选:A.【变式2.2】(2022秋•梁溪区校级期中)如图为甲、乙、丙三根笔直的钢管平行摆放在地面上的情形.已知乙有一部分只与甲重叠,其余部分只与丙重叠,甲没有与乙重叠的部分的长度为3m,丙没有与乙重叠的部分的长度为4m.若乙的长度最长且甲、乙的长度相差xm,乙、丙的长度相差ym,则乙的长度为(用含有x、y的代数式表示)( )A.(x﹣y+7)m B.(x+y+7)m C.(2x+y﹣7)m D.(x+2y﹣7)m 【分析】设乙的长度为am,则甲的长度为:(a﹣x)m;丙的长度为:(a﹣y)m,甲与乙重叠的部分长度为:(a﹣x﹣3)m;乙与丙重叠的部分长度为:(a﹣y﹣4)m,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,列出方程(a﹣x﹣3)+(a﹣y﹣4)=a,即可解答.【解答】解:设乙的长度为am,∵乙的长度最长且甲、乙的长度相差xm,乙、丙的长度相差ym,∴甲的长度为:(a﹣x)m;丙的长度为:(a﹣y)m,∴甲与乙重叠的部分长度为:(a﹣x﹣3)m;乙与丙重叠的部分长度为:(a﹣y﹣4)m,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,∴(a﹣x﹣3)+(a﹣y﹣4)=a,a﹣x﹣3+a﹣y﹣4=a,a+a﹣a=x+y+3+4,a=x+y+7,∴乙的长度为:(x+y+7)m.故选:B.【变式2.3】(2022秋•玄武区期中)某船在相距skm的A、B两个码头之间航行,若该船在静水中的速度是50km/h,水流速度是akm/h,则该船从A到B顺水行驶的时间比从B到A逆水行驶的时间少( )A.(s50a―s50a)h B.(2s50a―2s50a)hC.(s50a ―s50a)h D.(2s50a―2s50a)h【分析】根据路程÷速度分别求出该船从B到A逆水行驶的时间和从A到B顺水行驶的时间,再相减即可求解.【解答】解:依题意有:该船从B到A逆水行驶的时间为s50ah,从A到B顺水行驶的时间为s50ah,则该船从A到B顺水行驶的时间比从B到A逆水行驶的时间少(s50a―s50a)h.故选:C .【考点3】单项式的有关概念【例3】(2021秋•苏州期中)若单项式﹣的系数是m ,次数是n ,则m +n 等于( )A .B .C .D .【分析】根据单项式的次数与系数的定义解决此题.【解答】解:由题意得:m =,n =3.∴m +n ==.故选:C .【变式3.1】(2022秋•宜兴市期中)在代数式1x,2x +y ,13a 2b ,x y π,0.5,a 中,单项式的个数是( )A .2个B .3个C .4个D .5个【分析】根据单项式的定义,数与字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式进行判断.【解答】解:单项式有13a 2b ,0.5,a ,共三个,故选:B .【变式3.2】(2022秋•海安市期中)下列四个单项式的系数、次数,正确的是( )A .πa 2b 系数为1,次数为3B .―15xy 系数为15,次数为3C .xy2系数为1,次数为2D .﹣5xy 2系数为﹣5,次数为3【分析】根据单项式的系数和次数的概念判断即可.【解答】解:A 、πa 2b 系数为π,次数为3,故本选项说法错误,不符合题意;B 、―15xy 系数为―15,次数为2,故本选项说法错误,不符合题意;C 、xy 2的系数为12,次数为2,故本选项说法错误,不符合题意;D 、﹣5xy 2系数为﹣5,次数为3,本选项说法正确,符合题意;故选:D .【变式3.3】(2022秋•宜兴市期中)如果单项式2a n b 2c 是六次单项式,那么n 的值取( )A .6B .5C .4D .3【分析】直接利用单项式的次数确定方法得出n 的值即可.【解答】解:∵单项式2a n b 2c 是六次单项式,∴n +2+1=6,解得:n =3,故n 的值取3.故选:D .【考点4】多项式的有关概念【例4】(2020秋•江苏省宝应县期中)下列说法中正确的个数是( )(1)a 和0都是单项式;(2)多项式﹣3a 2b +7a 2b 2﹣2ab +1是三次四项式;(3)单项式―xy 29的系数为﹣9;(4)多项式x 2+2xy ﹣y 2的项为x 2、2xy 、﹣y 2.A .1个B .2个C .3个D .4个【分析】根据单项式和多项式的相关定义解答即可.【解析】(1)a 和0都是单项式,原说法正确;(2)多项式﹣3a 2b +7a 2b 2﹣2ab +1是四次四项式,原说法错误;(3)单项式―xy 29的系数为―19,原说法错误;(4)多项式x 2+2xy ﹣y 2的项为x 2、2xy 、﹣y 2,原说法正确.说法中正确的个数是2个,故选:B .故选:C .【变式4.1】(2022秋•通州区期中)一次项系数为3的多项式可以是( )A .a 2+3B .3a 2+2a ﹣1C .13a 2+2a +3D .2a 2+3a【分析】先找出多项式的一次项,再找出项的系数即可.【解答】解:A .一次项系数为0,选项错误,不符合题意;B .一次项系数为2,选项错误,不符合题意;C .一次项系数为2,选项错误,不符合题意;D .一次项系数是3,选项正确,符合题意;故选:D .【变式4.2】(2022秋•高港区期中)下列说法正确的是( )A .多项式a 3+b ﹣1有3项,其中有一项是1B .单项式12πmn 3的次数是5次C .单项式12πmn 3的系数是12D .多项式―12x ﹣x 2y +2π是3次3项式【分析】根据单项式与多项式的定义解答即可.【解答】解:A 、多项式a 3+b ﹣1有3项,其中有一项是﹣1,不合题意;B 、单项式12πmn 3的次数是4次,不合题意;C 、单项式12πmn 3的系数是12π,不合题意;D 、多项式―12x ﹣x 2y +2π是3次3项式,符合题意.故选:D .【变式4.3】(2022秋•东海县期中)关于整式3x 2﹣y +3xy 3+x 3﹣1,理解错误的是( )A .它属于多项式B .它是三次五项式C .它的常数项是﹣1D .它的最高次项的系数是3【分析】先根据多项式的有关定义进行判断,不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,如果一个多项式含有a 个单项式,次数是b ,那么这个多项式就叫b 次a 项式.【解答】解:∵3x 2﹣y +3xy 3+x 3﹣1的最高次项是3xy 3,次数为4,常数项为﹣1,它的最高次项的系数是3,∴它是四次五项式,∴A 不符合题意;B 符合题意;C 不符合题意;D 不符合题意;故选:B .【考点5】同类项【例5】(2020秋•江苏省阜宁县期中)如果单项式2x m y 2与12y n +4x 5是同类项,那么n m 等于( )A .﹣32B .﹣1C .2D .32【分析】根据同类项的定义即可求出答案.【解析】由题意可知:m =5,2=n +4,∴m =5,n =﹣2,∴原式=(﹣2)5=﹣32,故选:A.【变式5.1】(2022秋•盐都区期中)若单项式﹣3x m y2与7xy n是同类项,则m+n的值是( )A.2B.3C.4D.5【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,由此求出m,n的值,即可解答.【解答】解:∵﹣3x m y2与7xy n是同类项,∴m=1,n=2,∴m+n=3,故选:B.【变式5.2】(2022秋•启东市期中)若5a3b n与―52a m b2是同类项,则mn的值为( )A.3B.4C.5D.6【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入即可得出答案.【解答】解:∵5a3b n与―52a m b2是同类项,∴m=3,n=2,∴mn=3×2=6.故选:D.【变式5.3】(2021秋•泗阳县期末)下列两个项是同类项的是( )A.ab2与a2b B.4a与﹣24C.2a2bc与2ab2c D.﹣4xy与2yx【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:A.所含相同字母的指数不相同,故A不符合题意;B.所含字母不相同,故B不符合题意;C.所含相同字母的指数不尽相同,故C不符合题意;D.所含字母相同且相同字母的指数也相同,故D符合题意;故选:D.【考点6】合并同类项【例6】(2019秋•江苏省江阴市期中)已知关于x、y的单项式2ax m y与3bx2m﹣3y的和是单项式.(1)求(8m﹣25)2020(2)已知其和(关于x、y的单项式)的系数为2,求(2a+3b﹣3)2019的值.【分析】(1)根据合并同类项和同类项的定义得到m=2m﹣3,然后求出m后再利用乘方的意义计算代数式的值;(2)利用合并同类项得到2a+3b=2,然后利用整体代入的方法和乘方的意义计算代数式的值.【解析】(1)∵关于x、y的单项式2ax m y与3bx2m﹣3y的和是单项式;∴m=2m﹣3,解得m=3,∴原式=(8×3﹣25)2020=1;(2)根据题意得2a+3b=2,所以原式=(2﹣3)2019=﹣1.【变式6.1】(2022秋•睢宁县期中)已知x a+3y3+(―13xy3)=23xy3,则a的值是( )A.﹣3B.﹣4C.0D.﹣2【分析】根据同类项的定义解答即可.【解答】解:由题意可得:x a+3y3与―13xy3是同类项,∴a+3=1,∴a=﹣2,故选:D.【变式6.2】(2022秋•建湖县期中)代数式5a3﹣4a3b+3a2b+2a2+4a3b﹣3a2b﹣7a3的值( )A.与字母a,b都有关B.只与a有关C.只与b有关D.与字母a,b都无关【分析】先找同类项,再根据合并同类项法则进行合并,然后得出答案即可.【解答】解:5a3﹣4a3b+3a2b+2a2+4a3b﹣3a2b﹣7a3=5a3﹣7a3﹣4a3b+4a3b+3a2b﹣3a2b+2a2=﹣2a3+2a2,则代数式5a3﹣4a3b+3a2b+2a2+4a3b﹣3a2b﹣7a3的值只与a有关;故选:B.【变式6.3】(2021秋•射阳县校级期末)若3x m+5y2与23x8y n+4的差是一个单项式,则代数式n m的值为( )A.﹣8B.6C.﹣6D.8【分析】根据同类项的定义,所含字母相同,相同字母的指数也相同,求出m,n的值,然后代入式子中进行计算即可解答.【解答】解:由题意得:m+5=8,n+4=2,∴m=3,n=﹣2,∴n m=(﹣2)3=﹣8,故选:A.【考点7】去括号【例7】(2020秋•江苏省清江浦区期中)计算:(1)﹣5a+b+(6a﹣9b);(2)﹣5(3m+4n)+8(3m+4n).【分析】(1)先去括号,然后合并同类项即可解答本题;(2)先去括号,然后合并同类项即可解答本题.【解析】(1)﹣5a+b+(6a﹣9b)=﹣5a+b+6a﹣9b=a﹣8b;(2)﹣5(3m+4n)+8(3m+4n)=﹣15m﹣20n+24m+32n=9m+12n.【变式7.1】(2022秋•玄武区期中)下列去括号正确的是( )A.a2﹣(2a﹣b2)=a2﹣2a﹣b2B.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣5)=2x2﹣3x+5D.﹣a﹣(﹣4a2+1﹣3a)=4a2﹣1+2a【分析】根据去括号法则逐个判断即可.【解答】解:A.a2﹣(2a﹣b2)=a2﹣2a+b2,故本选项不符合题意;B.﹣(2x+y)﹣(﹣x2+y2)=﹣2x﹣y+x2﹣y2,故本选项不符合题意;C.2x2﹣3(x﹣5)=2x2﹣3x+15,故本选项不符合题意;D.﹣a﹣(﹣4a2+1﹣3a)=﹣a+4a2﹣1+3a=4a2+2a﹣1,故本选项符合题意;故选:D.【变式7.2】(2022秋•江都区期中)若1﹣x=2,则﹣[﹣(﹣x)]= 1 .【分析】先求出x的值,再去括号,把x的值代入求解即可.【解答】解:∵1﹣x=2,∴x=﹣1,∴原式=﹣[x]=﹣x=1.故答案为:1.【变式7.3】(2016秋•泗洪县校级期中)﹣2x+3x2﹣5=﹣ (2x﹣3x2+5) ;5x2﹣2(3y2﹣3)= 5x2﹣6y2+6 .【分析】添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【解答】解:﹣2x+3x2﹣5=﹣(2x﹣3x2+5);5x2﹣2(3y2﹣3)=5x2﹣6y2+6.故答案为:(2x﹣3x2+5),5x2﹣6y2+6.【考点8】代数式求值问题【例8】(2021秋•姜堰区期中)当x=2时,代数式mx2﹣2x+n的值为2,则当x=﹣2时,这个代数式的值为 .【分析】把x=2代入代数式得到4m+n=6,然后整体代入求值即可得出答案.【解答】解:当x=2时,mx2﹣2x+n=4m﹣4+n=2,∴4m+n=6,当x=﹣2时,mx2﹣2x+n=4m+4+n=6+4=10,故答案为:10.【变式8.1】(2022秋•盐城期中)多项式x2+x的值为4,则多项式2x2+2x﹣5的值为 3 .【分析】根据x2+x的值是4,然后应用整体代入法即可求出2x2+2x﹣3的值.【解答】解:∵x2+x=4,∴2x2+2x﹣3=2(x2+x)﹣3=2×4﹣5=3,故答案为:3.【变式8.2】(2022秋•盐都区期中)若代数式a2﹣3b的值为11,则代数式2a2+3﹣6b的值为 25 .【分析】根据代数式a2﹣3b的值为11,可得2a2﹣6b的值,进一步计算即可.【解答】解:∵代数式a2﹣3b的值为11,∴2a2﹣6b=2(a2﹣3b)=2×11=22,∴2a2+3﹣6b=22+3=25,故答案为:25.【变式8.3】(2022秋•睢宁县期中)如图所示是计算机程序计算,若开始输入x=﹣3,则最后输出的结果是 ﹣9 .【分析】利用程序图中的程序进行运算即可.【解答】解:开始输入x=﹣3,∵(﹣3)2﹣10=9﹣10=﹣1>﹣2,∴重新输入x=﹣1,∵(﹣1)2﹣10=1﹣10=﹣9<﹣2,∴最后输出的结果是﹣9.故答案为:﹣9.【考点9】整式的加减【例9】(2021秋•丹阳市期中)化简:(1)5x+y﹣x+2y;(2)4(5a2﹣a)﹣(a﹣2a2);(3)2(3x2﹣y2)﹣3(y2﹣2x2);(4)﹣2(﹣3xy+2z)+5(﹣2xy﹣5z)+4z.【分析】(1)直接合并同类项即可;(2)先去括号,再合并同类项即可;(3)先去括号,再合并同类项即可;(4)先去括号,再合并同类项即可.【解答】解:(1)原式=(5﹣1)x+(1+2)y =4x+3y;(2)原式=20a2﹣4a﹣a+2a2=22a2﹣5a;(3)原式=6x2﹣2y2﹣3y2+6x2=12x2﹣5y2;(4)原式=6xy﹣4z﹣10xy﹣25z+4z=﹣4xy﹣25z.【变式9.1】(2022秋•宝应县期中)化简:(1)6a﹣7b﹣5a+3b;(2)2(a2+3b3)―13(9a2﹣12b3).【分析】(1)利用合并同类项的法则进行运算即可;(2)先去括号,再合并同类项即可.【解答】解:(1)6a﹣7b﹣5a+3b =(6a﹣5a)+(﹣7b+3b)=a﹣4b;(2)2(a2+3b3)―13(9a2﹣12b3)=2a2+6b3﹣3a2+4b3=﹣a2+10b3.【变式9.2】(2022秋•丹徒区期中)化简:(1)x﹣y2+x﹣y2;(2)3(m2﹣2m﹣1)﹣(2m2﹣3m)+2.【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项.【解答】解:(1)x﹣y2+x﹣y2=2x﹣2y2;(2)3(m2﹣2m﹣1)﹣(2m2﹣3m)+2=3m2﹣6m﹣3﹣2m2+3m+2=m2﹣3m﹣1.【变式9.3】(2022秋•盐都区期中)已知代数式M、N满足:M=2a2﹣3b+6,N=a2﹣2b+4.(1)计算:M﹣2N;(用含a,b的代数式表示)(2)对于M﹣2N的值,下列结论:①比﹣2大;②比﹣2小;③比b大;④比b 小.其中正确的结论是 ④ .(填序号)【分析】(1)根据整式的加减运算法则即可求出答案.(2)根据M﹣2N的化简式即可判断是否比﹣2大或比b大.【解答】解:(1)M﹣2N=(2a2﹣3b+6)﹣2(a2﹣2b+4)=2a2﹣3b+6﹣2a2+4b﹣8=b﹣2.(2)由于M﹣2N=b﹣2<b,故答案为:④.【考点10】整式的化简求值【例10】(2020秋•江苏省东台市期中)已知A=2x2+xy+3y,B=x2﹣xy.若(x+2)2+|y﹣3|=0;(1)求x,y的值.(2)求A﹣2B的值,【分析】(1)直接利用非负数的性质得出x,y的值;(2)直接合并同类项进而把(1)中所求代入求出答案.【解析】(1)∵(x+2)2+|y﹣3|=0,∴x+2=0,y﹣3=0,∴解得:x=﹣2,y=3;(2)A﹣2B=2x2+xy+3y﹣2(x2﹣xy)=2x2+xy+3y﹣2x2+2xy=3xy+3y,当x=﹣2,y=3时,原式=3xy+3y=3×(﹣2)×3+3×3=﹣9.【变式10.1】(2022秋•宝应县期中)先化简.再求值;5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a=12,b=―13.【分析】先将原式化简,然后将a与b的值代入原式即可求出答案.【解答】解:原式=15a2b﹣5ab2﹣5﹣ab2﹣3a2b+5=12a2b﹣6ab2,当a=12,b=―13时,原式=12×14×(―13)―6×14×19=﹣1―1 6=―7 6.【变式10.2】(2022秋•高港区期中)已知单项式4x a+1与﹣2x2y3b﹣1是同类项.(1)填空:a= 1 ,b= 13 ;(2)先化简,在(1)的条件下再求值:(5a2﹣3ab)﹣6(a2―13 ab).【分析】(1)根据同类项的概念可得a+1=2,3b﹣1=0,求出a、b的值即可;(2)先去括号合并同类项化简整式,然后代入a和b的值求值即可.【解答】解:(1)由题意,得a+1=2,3b﹣1=0,解得a=1,b=1 3.故答案为:1,1 3;(2)(5a2﹣3ab)﹣6(a2―13 ab)=5a2﹣3ab﹣6a2+2ab =﹣a2﹣ab,当a=1,b=13时,原式=﹣a2﹣ab=﹣1﹣1×13=―43.【变式10.3】(2022秋•丹徒区期中)已知:A=x2+2x﹣1,B=3x2﹣2ax+1.(1)当x=1,a=﹣3时,求B的值;(2)用含a,x的代数式表示3A﹣B;(3)若3A﹣B的值与x无关,求a的值.【分析】(1)直接把x=1,a=﹣3代入B,求值即可;(2)先把A、B表示的代数式代入,然后去括号,合并同类项;(3)根据代数式的值与x无关,得到关于a的方程,求解即可.【解答】解:(1)当x=1,a=﹣3时,B=3×12﹣2×(﹣3)×1+1=3+6+1=10;(2)3A﹣B=3(x2+2x﹣1)﹣(3x2﹣2ax+1)=3x2+6x﹣3﹣3x2+2ax﹣1=6x+2ax﹣4;(3)∵3A﹣B的值与x无关,∴6x+2ax=0∴6+2a=0.∴a=﹣3.。
最新初中数学代数式技巧及练习题含答案
最新初中数学代数式技巧及练习题含答案一、选择题1.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m =12×14−10=158.故选C.2.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.3.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D【解析】【分析】本题主要考查的就是同底数幂的计算法则【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a .【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.4.如果多项式4x 4+ 4x 2+ A 是一个完全平方式,那么A 不可能是( ).A .1B .4C .x 6D .8x 3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x 4+ 4x 2+1=(2x+1)2,∴A=1,不符合题意,∵4x 4+ 4x 2+ 4不是完全平方式,∴A=4,符合题意,∵4x 4+ 4x 2+ x 6=(2x+x 3)2,∴A= x 6,不符合题意,∵4x 4+ 4x 2+8x 3=(2x 2+2x )2,∴A=8x 3,不符合题意.故选B .【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.5.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.6.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .7.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.8.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 3【答案】B【解析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A 、x 3+x 5,无法计算,故此选项错误;B 、(y+1)(y-1)=y 2-1,正确;C 、a 10÷a 2=a 8,故此选项错误;D 、(-a 2b )3=-a 6b 3,故此选项错误.故选:B .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.9.计算3x 2﹣x 2的结果是( )A .2B .2x 2C .2xD .4x 2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x 2﹣x 2=(3-1)x 2=2x 2,故选B .【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.10.若35m =,34n =,则23m n -等于( ) A .254 B .6C .21D .20 【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.11.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是( )(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A .食指B .中指C .小指D .大拇指【答案】B【解析】【分析】 根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.又∵2019是奇数,201925283=⨯+,∴数到2019时对应的指头是中指.故选:B .【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.12.下列计算正确的是( )A .2571a a a -÷=B .()222a b a b +=+C .2222+=D .()235a a =【答案】A【解析】 分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A 、2571a a a -÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、2,无法计算,故此选项错误;D 、(a 3)2=a 6,故此选项错误;故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.13.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-【答案】A【解析】【分析】 根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c )c=ac+bc-c 2,故选项B 、D 正确,或“L”型钢材的截面的面积为:bc+(a-c )c=bc+ac-c 2,故选项C 正确,选项A 错误, 故选:A .【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.14.下列运算中正确的是( )A .2235a a a +=B .222(2)4a b a b +=+C .236236a a a ⋅=D .()()22224a b a b a b -+=- 【答案】D【解析】【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A 、2a+3a=5a ,故本选项错误;B 、(2a+b )2=4a 2+4ab+b 2,故本选项错误;C 、2a 2•3a 3=6a 5,故本选项错误;D 、(2a-b )(2a+b )=4a 2-b 2,故本选项正确.故选D .【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.15.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+-g g =1()()2x y x y -+g =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.16.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .17.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.18.已知112x y +=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+=∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.19.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( ) A .45 B .1625 C .1 D .-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2 =(1.25×45)2012×(45)2 =1625. 故选B .【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.20.下列计算正确的是( )A .2x 2•2xy =4x 3y 4B .3x 2y ﹣5xy 2=﹣2x 2yC .x ﹣1÷x ﹣2=x ﹣1D .(﹣3a ﹣2)(﹣3a +2)=9a 2﹣4【答案】D【解析】A 选项:2x 2·2xy =4x 3y ,故是错误的;B 选项:3x 2y 和5xy 2不是同类项,不可直接相加减,故是错误的;C.选项:x -1÷x -2=x ,故是错误的;D选项:(-3a-2)(-3a+2)=9a2-4,计算正确,故是正确的.故选D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新初中数学代数式技巧及练习题一、选择题1.如果(x2+px+q)(x2-5x+7)的展开式中不含x2与x3项,那么p与q的值是()A.p=5,q=18 B.p=-5,q=18C.p=-5,q=-18 D.p=5,q=-18【答案】A【解析】试题解析:∵(x2+px+q)(x2-5x+7)=x4+(p-5)x3+(7-5p+q)x2+(7-5q)x+7q,又∵展开式中不含x2与x3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A.2.计算3x2﹣x2的结果是()A.2 B.2x2 C.2x D.4x2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x2﹣x2=(3-1)x2=2x2,故选B.【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.3.下列各运算中,计算正确的是( )A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【答案】B【解析】试题解析:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选B.【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.4.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a,用含a的式子表示这组数的和是()A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a【答案】C【解析】【分析】 由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n =2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n =2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a ,∴2101=(250)2•2=2a 2,∴原式=2a 2-a .故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n =2n+1-2.5.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.6.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500 【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.7.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.8.下列运算正确的是 ( )A .()236a a a -⋅=-B .632a a a ÷=C .()2222a a =D .()326a a =【答案】D【解析】【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最后进一步判断即可.【详解】A :()523a a a -⋅=-,计算错误;B :633a a a ÷=,计算错误;C :()2224a a =,计算错误;D :()326a a =,计算正确;故选:D.【点睛】比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.9.若2m =5,4n =3,则43n ﹣m 的值是( )A .910B .2725C .2D .4【答案】B【解析】【分析】根据幂的乘方和同底数幂除法的运算法则求解.【详解】∵2m =5,4n =3,∴43n ﹣m =344n m =32(4)(2)n m =3235=2725 故选B.【点睛】本题考查幂的乘方和同底数幂除法,熟练掌握运算法则是解题关键.10.若35m =,34n =,则23m n -等于( ) A .254 B .6C .21D .20【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.11.下列计算正确的是( )A .236a a a ⋅=B .22a a a -=C .632a a a ÷=D .236()a a =【答案】D【解析】【分析】根据同底数幂的乘除法公式,合并同类项,以及幂的乘方公式逐项计算得到结果,即可作出判断.【详解】A 、235a a a ⋅=,不符合题意;B 、22a 和a 不是同类项,不能合并,不符合题意;C 、633a a a ÷=,不符合题意;D 、236()a a =,符合题意,故选:D .【点睛】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方,熟练掌握运算法则是解本题的关键.12.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( ) A .5,3B .5,−3C .−5,3D .−5, −3【答案】D【解析】【分析】 此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值.【详解】由于()()2x 1x 3+-=2x 2-6x+x-3=2 x 2-5x-3=22x px q ++,则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.13.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.14.如图,是一个运算程序的示意图,若开始输入x 的值为81,则第2018次输出的结果是( )A .3B .27C .9D .1【答案】D【解析】【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,13×81=27, 第2次,13×27=9, 第3次,13×9=3, 第4次,13×3=1, 第5次,1+2=3,第6次,13×3=1, …,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2018是偶数,∴第2018次输出的结果为1.故选D .【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.15.下列运算中正确的是( )A .2235a a a +=B .222(2)4a b a b +=+C .236236a a a ⋅=D .()()22224a b a b a b -+=- 【答案】D【解析】【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A 、2a+3a=5a ,故本选项错误;B 、(2a+b )2=4a 2+4ab+b 2,故本选项错误;C 、2a 2•3a 3=6a 5,故本选项错误;D 、(2a-b )(2a+b )=4a 2-b 2,故本选项正确.故选D .【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.16.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.17.已知x=2y+3,则代数式9-8y+4x 的值是( )A .3B .21C .5D .-15【答案】B【解析】【分析】直接将已知变形进而代入原式求出答案.【详解】解:∵x=2y+3∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21故选:B【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.18.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是()(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.=⨯+,又∵2019是奇数,201925283∴数到2019时对应的指头是中指.故选:B.【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.19.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.3【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=3.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.20.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b 【答案】C【解析】【分析】根据完全平方公式的形式(a±b )2=a 2±2ab+b 2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b 2故选C .【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.。